WO2022107349A1 - 蓄電池管理システム及び蓄電池管理方法 - Google Patents

蓄電池管理システム及び蓄電池管理方法 Download PDF

Info

Publication number
WO2022107349A1
WO2022107349A1 PCT/JP2021/008752 JP2021008752W WO2022107349A1 WO 2022107349 A1 WO2022107349 A1 WO 2022107349A1 JP 2021008752 W JP2021008752 W JP 2021008752W WO 2022107349 A1 WO2022107349 A1 WO 2022107349A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
remaining life
internal resistance
unit
management system
Prior art date
Application number
PCT/JP2021/008752
Other languages
English (en)
French (fr)
Inventor
昂祐 角
昌明 長野
光平 谷野
智紀 渡邉
弘佑 吉丸
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2022107349A1 publication Critical patent/WO2022107349A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Patent Document 1 discloses a method of estimating the degree of deterioration of a lithium ion storage battery. The method disclosed in Patent Document 1 charges a lithium ion storage battery with a constant current, and after the voltage reaches a specified voltage value, shifts to a constant voltage charge that continuously maintains the voltage, and at the time of this transition, the storage battery is charged. The current behavior is measured from the flowing current and the current flowing through the storage battery after a predetermined time has elapsed, and the degree of deterioration of the storage battery is estimated.
  • Patent Document 1 cannot be applied to the storage battery connected to the load, and it is necessary to remove the storage battery from the circuit and measure the current flowing through the removed storage battery using a tester.
  • An object of the present invention is to provide a storage battery management system and a storage battery management method that can estimate the remaining life of a storage battery even when the storage battery is connected to a load.
  • the storage battery management system is A temperature detector that detects the temperature of the storage battery, An internal resistance measuring unit that measures the internal resistance of the storage battery, A remaining life estimation unit that estimates the remaining life of the storage battery based on the temperature detected by the temperature detecting unit and the internal resistance measured by the internal resistance measuring unit. To prepare for.
  • the storage battery management method is A temperature detection step that detects the temperature of the storage battery connected to the load, The internal resistance measurement step for measuring the internal resistance of the storage battery, and A remaining life estimation step that estimates the remaining life of the storage battery based on the temperature detected in the temperature detection step and the internal resistance measured in the internal resistance measurement step. including.
  • the control unit 10 may include an earth leakage detection unit 15 that detects an electric leakage in at least one of the assembled battery 2, the cells 2-2-2n, and the storage battery management system 100. Further, the control unit 10 may include an overcharge and overdischarge monitoring unit 16 that monitors whether or not overcharge or overdischarge has occurred in the cells 2-2-2n.
  • the control unit 10 may be realized by one or a plurality of dedicated processors. Further, with respect to each component of the control unit 10, functions may be omitted, replaced, or added as appropriate according to the embodiment. In addition to the CPU, the control unit 10 may be composed of various semiconductor integrated circuits such as MPU, GPU, microcomputer, DSP, FPGA, and ASIC. The control unit 10 may be realized by an electronic control unit (ECU, Electronic Control Unit) mounted on a vehicle such as an electric vehicle.
  • ECU Electronic Control Unit
  • the storage unit 20 transfers the information of the program or the like by electrical, magnetic, optical, mechanical or chemical action so that the information of the program or the like recorded by the computer or other device, the machine or the like can be read. It is a medium to accumulate.
  • the storage unit 20 is, for example, an auxiliary storage device such as a hard disk drive or a solid state drive, and stores a program executed by the remaining life table 21 and the control unit 10 described later.
  • the remaining life table 21 is stored in the storage unit 20 in FIG. 1, but the present disclosure is not limited to this. For example, the remaining life table 21 does not have to be stored in the storage unit 20 at all times, and may be stored in the storage unit 20 when necessary for processing by the control unit 10.
  • the storage battery management system 100 includes a discharge resistor R1 and a discharge switch 3-1 connected in series between a positive electrode (anode) and a negative electrode (cathode), which are a pair of terminals of the cell 2-1.
  • a discharge resistor R1 for example, when the charge state (SOC, State of Charge) of the cell 2-1 is the highest and the other cells 2-2-2n are not sufficiently charged, The discharge switch 3-1 is turned on to discharge the cell 2-1.
  • SOC State of Charge
  • Step S11 First, as shown in FIG. 3A, the voltage measuring unit 11 of the control unit 10 turns off the discharge switch 3-1 and measures the off voltage Va, which is the terminal voltage of the cell 2-1 (S11).
  • the terminal voltage is the potential difference between the pair of terminals of the cell 2-1 and is the output voltage of the cell 2-1.
  • the following equation (1) holds between the off-voltage Va and the electromotive force E1 of the cell 2-1.
  • E1 V1 ... (1)
  • Step S12 Next, as shown in FIG. 3B, the voltage measuring unit 11 of the control unit 10 turns on the discharge switch 3-1 and measures the on-voltage Vb, which is the terminal voltage of the cell 2-1 (S12).
  • Step S13 the internal resistance measuring unit 12 of the control unit 10 determines the internal resistance r1 of the cell 2-1 based on the off-voltage Va measured in step S11 and the on-voltage Vb measured in step S12 (the internal resistance r1 of the cell 2-1 is determined). S13). Specifically, the internal resistance r1 is calculated as follows.
  • r1 (Va-Vb) ⁇ R1 / Vb ... (4)
  • the remaining life estimation unit 14 of the control unit 10 refers to the remaining life table 21 stored in the storage unit 20, and determines the remaining life of the cell 2-1 by a table lookup method (S15). For example, the remaining life estimation unit 14 of the control unit 10 acquires the remaining life for the temperature detected by the temperature detecting unit 13 and the internal resistance measured by the internal resistance measuring unit 12 from the remaining life table 21. The remaining life is determined as the remaining life of the cell 2-1.
  • FIG. 4 is a table showing an example of the remaining life table 21.
  • the remaining life table 21 shows the relationship between the cell temperature, the internal resistance, and the remaining life. Such a remaining life is obtained in advance by a cell test or the like.
  • Step S16 The control unit 10 causes the output unit 30 to output a signal indicating the remaining life of the cell 2-1 determined in step S15.
  • the control unit 10 may display the remaining life on the display.
  • the control unit 10 may turn on the LED when the remaining life is equal to or less than the threshold value.
  • step S16 the remaining life of each of cells 2-1 to 2-n can be objectively known from the outside. If the output unit 30 is used, the remaining life of the assembled battery 2 provided in the electric vehicle or the like can be easily known, and it is possible to prevent the short remaining life from being overlooked. Further, if the output unit 30 is used, for example, when a part of the existing cells 2-1 to 2-n is diverted to the reuse storage battery, the cells having a long remaining life can be selected to have a long remaining life. Reusable storage batteries can be manufactured. Further, for example, if the output unit 30 is used for a large-capacity storage battery, the storage battery module and the cell to be replaced can be objectively known from the outside at the time of maintenance, and the man-hours required for maintenance can be reduced.
  • the remaining life estimation method of FIG. 2 can be executed while the assembled battery 2 or the cells 2-1 to 2-n are connected to the load L without being removed from the circuit.
  • the storage battery management system 100 includes a temperature detection unit 13, an internal resistance measurement unit 12, and a remaining life estimation unit 14.
  • the temperature detection unit 13 detects the temperature of cells 2-1 to 2-n.
  • the internal resistance measuring unit 12 measures the internal resistance of the cells 2-1 to 2-n connected to the load L.
  • the remaining life estimation unit 14 estimates the remaining life of cells 2-1 to 2-n based on the temperature detected by the temperature detecting unit 13 and the internal resistance measured by the internal resistance measuring unit 12.
  • the remaining life of cells 2-1 to 2-n can be estimated while connected to the load L without removing cells 2-1 to 2-n from the circuit. Further, if the assembled battery 2 is to be discarded or replaced after a predetermined usable life has passed at the time of manufacture before use, the remaining life of the cells 2-1 to 2-n is sufficiently long. Even at times, it may be discarded or replaced. On the other hand, in the storage battery management system 100, in order to estimate the remaining life of each cell 2-1 to 2-n based on the temperature and the internal resistance, the assembled battery 2 is discarded according to a predetermined usable life. The assembled battery 2 can be used for a long period of time as compared with the case of replacement or the like.
  • the storage battery management system 100 may further include a storage unit 20 that stores a remaining life table 21 showing the relationship between the temperature of cells 2-1 to 2-n, the internal resistance, and the remaining life.
  • the remaining life estimation unit 14 estimates the remaining life of cells 2-1 to 2-n with reference to the remaining life table 21.
  • the processing load can be reduced while improving the processing speed of the remaining life estimation by the remaining life estimation unit 14.
  • the storage battery management system 100 may further include a series circuit connected to the pair of terminals of the cell 2-1 and a voltage measuring unit 11 connected in parallel to the series circuit and measuring the terminal voltage between the pair of terminals. good.
  • the series circuit is a circuit in which the discharge resistor R1 and the discharge switch 3-1 are connected in series with each other.
  • the internal resistance measuring unit 12 has a terminal voltage Vb measured by the voltage measuring unit 11 when the discharge switch 3-1 is on and a terminal measured by the voltage measuring unit 11 when the discharge switch is off.
  • the internal resistance of cell 2-1 is determined based on the voltage Va. The same applies to cells 2-2-2 to 2n of the assembled battery 2.
  • the internal resistance can be measured for each cell. Further, in a storage battery management system capable of performing passive cell balance control, the internal resistance is measured by using the discharge resistance R1 built in the circuit without adding a new resistance for measuring the internal resistance. Can be done.
  • the second embodiment is a block diagram showing a storage battery management system 200 according to the second embodiment of the present disclosure and an assembled battery 2 to be managed by the storage battery management system 200.
  • the storage battery management system 200 of FIG. 5 includes a storage unit 220 instead of the storage battery management system 100 of FIG. 1 including the storage unit 20.
  • the storage battery management system 200 of FIG. 5 uses the estimation result of the deterioration state (State of Health, SOH) of the cells 2-1 to 2-n in order to estimate the remaining life of the cells 2-1 to 2-n. ..
  • the storage unit 220 stores the SOH table 221 described later and the SOH vs. remaining life table 222.
  • FIG. 6 is a flowchart showing an example of the remaining life estimation method executed by the storage battery management system 200 of FIG.
  • the remaining life estimation method of FIG. 6 includes steps S21 and S22 instead of step S15 of the remaining life estimation method of FIG.
  • FIG. 7 is a table showing an example of the SOH table 221.
  • the SOH table 221 shows the relationship between the cell temperature, the internal resistance, and the SOH.
  • the SOH recorded in the SOH table 221 is an index indicating the deterioration state of the cell, and is an example of the “deterioration degree” of the present disclosure.
  • SOH is expressed, for example, as the ratio of the current (deteriorated) full charge capacity to the initial full charge capacity. Such SOH is obtained in advance by a cell test or the like.
  • Step S22 the remaining life estimation unit 14 of the control unit 10 refers to the SOH vs. remaining life table 222 stored in the storage unit 220, and the cell 2 is based on the SOH of the cell 2-1 acquired in step S21. The remaining life of -1 is determined (S22).
  • FIG. 8 is a table showing an example of the SOH vs. remaining life table 222.
  • the SOH vs. remaining life table 222 shows the relationship between the SOH of a cell and the remaining life. The relationship between SOH and the remaining life is obtained in advance by a cell test or the like.
  • the remaining life estimation unit 14 determines the SOH of cells 2-1 to 2-n based on the temperature detected by the temperature detection unit 13 and the internal resistance measured by the internal resistance measurement unit 12. Determined and estimate the remaining life of the cell based on SOH.
  • the storage battery management system 200 can estimate the remaining life of the cells 2-1 to 2-n while connected to the load L, similarly to the storage battery management system 100 according to the first embodiment.
  • the storage battery management system 200 may further include a storage unit 220.
  • the storage unit 220 stores the SOH table 221 showing the relationship between the cell temperature, the internal resistance of the cell, and the SOH of the cell.
  • the storage unit 220 further stores the SOH vs. remaining life table 222 showing the relationship between the SOH of the cell and the remaining life of the cell.
  • the remaining life estimation unit 14 determines the SOH of the cell 2-1 with reference to the SOH table 221 and determines the remaining life of the cell 2-1 based on the determined SOH with reference to the SOH vs. remaining life table 222. presume.
  • FIG. 9 is a schematic circuit diagram for explaining a modified example of the method for measuring the internal resistance r1 of the cell 2-1.
  • the constant current circuit 4 and the switch 5 are further provided as compared with the storage battery management systems 100 and 200 of the above-described embodiments shown in FIGS. 1 and 5, respectively.
  • the constant current circuit 4 is connected to the cell 2-1 via the switch 5 and is configured to be able to supply the constant current I to the cell 2-1.
  • the constant current circuit 4 is an example of the "constant current source" of the present disclosure.
  • the switch 5 switches between an on state and an off state according to control by, for example, the control unit 10, and switches between connection and non-connection between the constant current circuit 4 and the cell 2-1.
  • FIG. 10 is a circuit diagram showing an example of the constant current circuit 4.
  • the constant current circuit 4 of FIG. 10 includes an operational amplifier 41, a PNP type bipolar transistor 42, and a Zener diode 43.
  • a power supply Vcc is connected to the inverting input terminal of the operational amplifier 41 via a resistor Rs.
  • a power supply Vcc is connected to the non-inverting input terminal of the operational amplifier 41 via a Zener diode 43.
  • the output terminal of the operational amplifier 41 is connected to the base of the bipolar transistor 42 via a resistor R2 for preventing overload.
  • the inverting input terminal of the operational amplifier 41 is connected to the emitter of the bipolar transistor 42 via the resistor R3.
  • the collector of the bipolar transistor 42 is connected to the load cell 2-1.
  • a constant current Io flows through the resistor R3.
  • the constant current Io is represented by Vz / Rs.
  • Vz is the Zener voltage of the Zener diode 43
  • Rs is the resistance value of the resistance Rs.
  • a constant current I obtained by subtracting the base current from the constant current Io flows through the cell 2-1 which is a load.
  • the storage battery management system supplies a constant current to the voltage measuring unit 11 for measuring the terminal voltage Vc between the pair of terminals of the cell 2-1 and the cell 2-1. Further includes a constant current circuit 4.
  • the internal resistance measuring unit 12 measures the terminal voltage Vc (0) measured by the voltage measuring unit 11 at the start of constant current supply by the constant current circuit 4 and the voltage measuring unit 11 at time t1 after the start of supply.
  • the internal resistance r1 of the cell 2-1 is determined based on the difference from the terminal voltage Vc (t1). The same applies to cells 2-2-2 to 2n of the assembled battery 2.

Abstract

蓄電池管理システム100は、温度検出部13と、内部抵抗測定部12と、残寿命推定部14とを備える。温度検出部13は、セル2-1~2-nの温度を検出する。内部抵抗測定部12は、負荷Lに接続されたセル2-1~2-nの内部抵抗を測定する。残寿命推定部14は、温度検出部13によって検出された温度と、内部抵抗測定部12によって測定された内部抵抗とに基づいて、セル2-1~2-nの残寿命を推定する。

Description

蓄電池管理システム及び蓄電池管理方法
 本開示は、蓄電池管理システム及び蓄電池管理方法に関する。
 蓄電池(二次電池)の劣化状態又は残寿命を測定することにより、蓄電池の残寿命が十分に残っている状態で交換してしまうことによる無駄なコストの発生、及び蓄電池の交換遅延による電気システムの障害発生を防止することができる。特許文献1は、リチウムイオン蓄電池の劣化の度合いを推定する方法を開示している。特許文献1に開示された方法は、リチウムイオン蓄電池を定電流充電し、電圧が規定電圧値に到達した後、連続して電圧を維持する定電圧充電に移行し、この移行の時点で蓄電池に流れる電流と、所定時間経過後に蓄電池に流れる電流とから電流挙動を測定し、蓄電池の劣化度合いを推定するものである。
特開2003-153454号公報
 しかしながら、特許文献1に開示された方法は、負荷に接続された蓄電池には適用できず、蓄電池を回路から取り外し、テスタを用いて取り外した蓄電池に流れる電流を測定する必要がある。
 本発明の目的は、蓄電池が負荷に接続された場合であっても蓄電池の残寿命を推定できる蓄電池管理システム及び蓄電池管理方法を提供することにある。
 本開示の一態様に係る蓄電池管理システムは、
 蓄電池の温度を検出する温度検出部と、
 前記蓄電池の内部抵抗を測定する内部抵抗測定部と、
 前記温度検出部によって検出された温度と、前記内部抵抗測定部によって測定された内部抵抗とに基づいて、前記蓄電池の残寿命を推定する残寿命推定部と、
 を備える。
 本開示の一態様に係る蓄電池管理方法は、
 負荷に接続された蓄電池の温度を検出する温度検出ステップと、
 前記蓄電池の内部抵抗を測定する内部抵抗測定ステップと、
 前記温度検出ステップで検出された温度と、前記内部抵抗測定ステップで測定された内部抵抗とに基づいて、前記蓄電池の残寿命を推定する残寿命推定ステップと、
 を含む。
 本開示に係る蓄電池管理システム及び蓄電池管理方法によれば、蓄電池が負荷に接続された場合であっても蓄電池の残寿命を推定することができる。
本開示の第1実施形態に係る蓄電池管理システムと、蓄電池管理システムの管理対象である組電池とを示すブロック図である。 図1の蓄電池管理システムによって実行される残寿命推定方法の一例を示すフローチャートである。 図1に示したセルの内部抵抗測定を説明するための模式的な回路図である。 図1に示したセルの内部抵抗測定を説明するための模式的な回路図である。 図1に示した残寿命テーブルの一例を示す表である。 本開示の第2実施形態に係る蓄電池管理システムと、蓄電池管理システムの管理対象である組電池とを示すブロック図である。 図5の蓄電池管理システムによって実行される残寿命推定方法の一例を示すフローチャートである。 図5に示したSOHテーブル一例を示す表である。 図5に示したSOH対残寿命テーブル一例を示す表である。 内部抵抗の測定方法の変形例を説明するための模式的な回路図である。 図9に示した定電流回路の一例を示す回路図である。 定電流のステップ入力後のセルの端子電圧の時間的変化を示すグラフである。
 以下、添付の図面を参照して本開示に係る蓄電池管理システム(BMS、Battery Management System)の実施形態を説明する。なお、以下の実施形態において、同一又は同様の構成要素については同一の符号を付している。
1.第1実施形態
1-1.構成例
 図1は、本開示の第1実施形態に係る蓄電池管理システム100と、蓄電池管理システム100の管理対象である組電池2とを示すブロック図である。組電池2は、直列に接続されたn個の蓄電池(以下、「セル」という。)2-1~2-nを含む蓄電池モジュールである。ここで、nは、1以上の整数を表す。図1では、セル2-1の内部抵抗r1と容量C1とを模式的に示している。セル2-2~2-nについても同様である。組電池2は、負荷Lに電気的に接続され、負荷Lに電力を供給する。
 図1において、蓄電池管理システム100は、制御部10と、記憶部20と、出力部30とを備える。制御部10は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等を含み、情報処理に応じて蓄電池管理システム100の動作を制御する。このような情報処理は、制御部10がプログラムを実行することにより実現される。制御部10は、構成要素として、例えば、電圧測定部11と、内部抵抗測定部12と、温度検出部13と、残寿命推定部14と、セルバランス制御部17とを含む。
 制御部10は、組電池2、セル2-2~2-n、及び蓄電池管理システム100のうちの少なくとも1つにおける漏電を検知する漏電検知部15を含んでもよい。また、制御部10は、セル2-2~2-nにおいて過充電又は過放電が生じているか否かを監視する過充電及び過放電監視部16を含んでもよい。
 制御部10は、1又は複数の専用のプロセッサにより実現されてもよい。また、制御部10の各構成要素に関して、実施形態に応じて、適宜、機能の省略、置換及び追加が行われてもよい。制御部10は、CPUの他、MPU、GPU、マイコン、DSP、FPGA、ASIC等の種々の半導体集積回路で構成されてもよい。制御部10は、電気自動車等の車両に搭載される電子制御ユニット(ECU、Electronic Control Unit)で実現されてもよい。
 記憶部20は、コンピュータその他の装置、機械等が記録されたプログラム等の情報を読み取り可能なように、当該プログラム等の情報を、電気的、磁気的、光学的、機械的又は化学的作用によって蓄積する媒体である。記憶部20は、例えば、ハードディスクドライブ、ソリッドステートドライブ等の補助記憶装置であり、後述の残寿命テーブル21、及び制御部10で実行されるプログラムを記憶する。残寿命テーブル21は、図1では記憶部20に記憶されているが、本開示はこれに限定されない。例えば、残寿命テーブル21は、常に記憶部20に記憶されている必要はなく、制御部10による処理に必要な時に記憶部20に格納されていればよい。
 出力部30は、蓄電池管理システム100からの情報を出力するために、蓄電池管理システム100と外部機器とを接続するインタフェース回路である。出力部30は、例えば、組電池2の残寿命、セル2-1~2-nの各残寿命、故障等を報知するためのディスプレイ、スピーカ等を含む。また、出力部30は、組電池2の残寿命が少ないこと、故障が発生したこと等を光により報知するためのLEDを含んでもよい。出力部30は、既存の有線通信規格又は無線通信規格に従って通信を行う通信インタフェースを含み、外部機器に対して上記のような情報を出力してもよい。
 蓄電池管理システム100は、セル2-1の一対の端子である正極(陽極)と負極(陰極)との間で直列に接続された放電抵抗R1と放電スイッチ3-1とを備える。制御部10のセルバランス制御部17は、例えば、セル2-1の充電状態(SOC、State of Charge)が最も高く、他のセル2-2~2-nが十分に充電されていない場合、放電スイッチ3-1をオン状態にしてセル2-1に放電させる。セル2-2~セル2-nの構造についても同様である。このように、本実施形態のセルバランス制御部17は、パッシブ方式のセルバランス制御を実行する。
1-2.動作例
 以下、図2~図4を参照して、蓄電池管理システム100の動作例について説明する。図2は、図1の蓄電池管理システム100によって実行される残寿命推定方法の一例を示すフローチャートである。以下では、セル2-1の残寿命を推定する方法について説明するが、他のセル2-2~2-nの残寿命を推定する方法も同様である。
(ステップS11)
 まず、制御部10の電圧測定部11は、図3Aに示すように、放電スイッチ3-1をオフ状態にして、セル2-1の端子電圧であるオフ電圧Vaを測定する(S11)。端子電圧は、セル2-1の一対の端子間の電位差であり、セル2-1の出力電圧である。オフ電圧Vaと、セル2-1の起電力E1との間には、次の式(1)が成り立つ。
     E1=V1           …(1)
(ステップS12)
 次に、制御部10の電圧測定部11は、図3Bに示すように、放電スイッチ3-1をオン状態にして、セル2-1の端子電圧であるオン電圧Vbを測定する(S12)。
(ステップS13)
 次に、制御部10の内部抵抗測定部12は、ステップS11で測定されたオフ電圧Vaと、ステップS12で測定されたオン電圧Vbに基づいて、セル2-1の内部抵抗r1を決定する(S13)。具体的には、内部抵抗r1は、以下のようにして算出される。
 放電スイッチ3-1をオン状態にすると、セル2-1の正極から放電抵抗R1に放電電流Iが流れる。オン電圧Vbは、次の式(2)で表される。
     Vb=E1-r1・I      …(2)
 ここで、r1[Ω」は、セル2-1の内部抵抗r1の抵抗値を表す。
 さらに、図3Bのセル2-1の正極から負極までの閉ループ回路について、次の式(3)が成り立つ。
     I=E1/(r1+R1)     …(3)
 式(1)~(3)から、内部抵抗r1は、次の式(4)のように表される。
     r1=(Va-Vb)・R1/Vb  …(4)
(ステップS14)
 次に、制御部10の温度検出部13は、セル2-1の温度を検出する(S14)。例えば、各セル2-1~2-nに温度センサが取り付けられており、温度検出部13は、温度センサから温度データを取得する。
(ステップS15)
 次に、制御部10の残寿命推定部14は、記憶部20に記憶された残寿命テーブル21を参照し、テーブルルックアップの手法により、セル2-1の残寿命を決定する(S15)。例えば、制御部10の残寿命推定部14は、残寿命テーブル21から、温度検出部13によって検出された温度と、内部抵抗測定部12によって測定された内部抵抗とに対する残寿命を取得し、取得した残寿命をセル2-1の残寿命として決定する。
 図4は、残寿命テーブル21の一例を示す表である。残寿命テーブル21は、セルの温度と、内部抵抗と、残寿命との関係を示す。このような残寿命は、セルの試験等によって予め取得される。
(ステップS16)
 制御部10は、出力部30に、ステップS15で決定されたセル2-1の残寿命を示す信号を出力させる。例えば、制御部10は、残寿命をディスプレイに表示させてもよい。あるいは、制御部10は、残寿命が閾値以下である場合、LEDを点灯させてもよい。
 ステップS16により、セル2-1~2-nのそれぞれの残寿命が外部から客観的にわかる。出力部30を利用すれば、電気自動車等に備えられた組電池2の残寿命を簡単に知ることができ、残寿命が短いことを看過することを防止することができる。また、出力部30を利用すれば、例えば、既存のセル2-1~2-nの一部をリユース蓄電池に流用するような場合、残寿命の長いセルを選別することにより、残寿命の長いリユース蓄電池を作製することができる。さらに、例えば、出力部30を大容量蓄電池に利用すれば、メンテナンス時に、交換すべき蓄電池モジュール、セルが外部から客観的にわかり、メンテナンスに必要な工数を削減することができる。
 図2の残寿命推定方法は、組電池2又はセル2-1~2-nを回路から取り外すことなく、負荷Lに接続したまま実行することができる。
1-3.効果等
 以上のように、本実施形態に係る蓄電池管理システム100は、温度検出部13と、内部抵抗測定部12と、残寿命推定部14とを備える。温度検出部13は、セル2-1~2-nの温度を検出する。内部抵抗測定部12は、負荷Lに接続されたセル2-1~2-nの内部抵抗を測定する。残寿命推定部14は、温度検出部13によって検出された温度と、内部抵抗測定部12によって測定された内部抵抗とに基づいて、セル2-1~2-nの残寿命を推定する。
 この構成によれば、セル2-1~2-nを回路から取り外すことなく、負荷Lに接続したままセル2-1~2-nの残寿命を推定することができる。また、組電池2について、使用前の製造時等に予め定められた使用可能年数を経過した場合に廃棄、交換等を行うとすると、セル2-1~2-nの残寿命が十分に長いときであっても廃棄、交換等がされることがある。これに対して、蓄電池管理システム100では、温度と内部抵抗とに基づいて各セル2-1~2-nの残寿命を推定するため、予め定められた使用可能年数に従って組電池2の廃棄、交換等を行う場合に比べて、組電池2を長期間使用することができる。
 蓄電池管理システム100は、セル2-1~2-nの温度と、内部抵抗と、残寿命との関係を示す残寿命テーブル21を記憶する記憶部20を更に備えてもよい。残寿命推定部14は、残寿命テーブル21を参照してセル2-1~2-nの残寿命を推定する。
 この構成によれば、残寿命推定部14による残寿命推定の処理速度を向上させつつ、処理負荷を低減することができる。
 蓄電池管理システム100は、セル2-1の一対の端子に接続された直列回路と、直列回路に並列に接続され、一対の端子間の端子電圧を測定する電圧測定部11とを更に備えてもよい。直列回路は、放電抵抗R1と放電スイッチ3-1とが互いに直列に接続された回路である。内部抵抗測定部12は、放電スイッチ3-1がオン状態であるときに電圧測定部11によって測定された端子電圧Vbと、放電スイッチがオフ状態であるときに電圧測定部11によって測定された端子電圧Vaと、に基づいて、セル2-1の内部抵抗を決定する。組電池2のセル2-2~2-nについても同様である。
 この構成により、セル毎に内部抵抗を測定することができる。また、パッシブ方式のセルバランス制御を実行可能な蓄電池管理システムでは、内部抵抗測定用の新たな抵抗を追加することなく、回路に内蔵された放電抵抗R1を利用することにより内部抵抗を測定することができる。
2.第2実施形態
 図5は、本開示の第2実施形態に係る蓄電池管理システム200と、蓄電池管理システム200の管理対象である組電池2とを示すブロック図である。図5の蓄電池管理システム200は、図1の蓄電池管理システム100が記憶部20を備えることに代えて、記憶部220を備える。図5の蓄電池管理システム200は、セル2-1~2-nの残寿命を推定するために、セル2-1~2-nの劣化状態(State of Health、SOH)の推定結果を利用する。図5において、記憶部220は、後述のSOHテーブル221と、SOH対残寿命テーブル222とを記憶する。
 図6は、図5の蓄電池管理システム200によって実行される残寿命推定方法の一例を示すフローチャートである。図6の残寿命推定方法は、図2の残寿命推定方法のステップS15に代えて、ステップS21,S22を含む。
(ステップS21)
 セル2-1の温度を検出するステップS14の後、制御部10の残寿命推定部14は、記憶部220に記憶されたSOHテーブル221を参照し、テーブルルックアップの手法により、セル2-1のSOHを取得する(S21)。
 図7は、SOHテーブル221の一例を示す表である。SOHテーブル221は、セルの温度と、内部抵抗と、SOHとの関係を示す。SOHテーブル221に記録されるSOHは、セルの劣化状態を示す指標であり、本開示の「劣化度」の一例である。SOHは、例えば、初期の満充電容量に対する現時点(劣化時)の満充電容量の割合で表される。このようなSOHは、セルの試験等によって予め取得される。
(ステップS22)
 図6に戻り、制御部10の残寿命推定部14は、記憶部220に記憶されたSOH対残寿命テーブル222を参照し、ステップS21で取得されたセル2-1のSOHに基づいてセル2-1の残寿命を決定する(S22)。
 図8は、SOH対残寿命テーブル222の一例を示す表である。SOH対残寿命テーブル222は、セルのSOHと残寿命との関係を示す。このようなSOHと残寿命との関係は、セルの試験等によって予め取得される。
 以上のように、残寿命推定部14は、温度検出部13によって検出された温度と、内部抵抗測定部12によって測定された内部抵抗とに基づいて、セル2-1~2-nのSOHを決定し、SOHに基づいて当該セルの残寿命を推定する。この構成により、蓄電池管理システム200は、第1実施形態に係る蓄電池管理システム100と同様に、負荷Lに接続したままセル2-1~2-nの残寿命を推定できる。
 蓄電池管理システム200は、記憶部220を更に備えてもよい。記憶部220は、セルの温度と、セルの内部抵抗と、セルのSOHとの関係を示すSOHテーブル221を記憶する。記憶部220は、セルのSOHとセルの残寿命との関係を示すSOH対残寿命テーブル222を更に記憶する。残寿命推定部14は、SOHテーブル221を参照してセル2-1のSOHを決定し、SOH対残寿命テーブル222を参照して、決定されたSOHに基づいてセル2-1の残寿命を推定する。組電池2のセル2-2~2-nについても同様である。この構成によれば、残寿命推定部14による残寿命推定の処理速度を向上させつつ、処理負荷を低減することができる。
(変形例)
 以上、本開示の実施形態を詳細に説明したが、前述までの説明はあらゆる点において本開示の例示に過ぎない。本開示の範囲を逸脱することなく種々の改良や変形を行うことができる。例えば、以下のような変更が可能である。なお、以下では、上記実施形態と同様の構成要素に関しては同様の符号を用い、上記実施形態と同様の点については、適宜説明を省略する。以下の変形例は適宜組み合わせることができる。
 上記の実施形態では、図2及び図6のステップS13ように、制御部10の内部抵抗測定部12が、ステップS11で測定されたオフ電圧Vaと、ステップS12で測定されたオン電圧Vbに基づいて、セル2-1の内部抵抗r1を決定する例について説明した。しかしながら、セルの内部抵抗を測定する方法はこれに限定されない。
 図9は、セル2-1の内部抵抗r1の測定方法の変形例を説明するための模式的な回路図である。本変形例では、図1及び図5にそれぞれ示した上記の実施形態の蓄電池管理システム100,200と比較して、定電流回路4とスイッチ5とを更に備える。定電流回路4は、スイッチ5を介して、セル2-1に接続され、セル2-1に定電流Iを供給可能に構成されている。定電流回路4は、本開示の「定電流源」の一例である。スイッチ5は、例えば制御部10による制御に従ってオン状態とオフ状態とを切り替え、定電流回路4とセル2-1との接続と非接続とを切り替える。
 図10は、定電流回路4の一例を示す回路図である。図10の定電流回路4は、オペアンプ41と、PNP型のバイポーラトランジスタ42と、ツェナーダイオード43とを備える。オペアンプ41の反転入力端子には、抵抗Rsを介して電源Vccが接続されている。オペアンプ41の非反転入力端子には、ツェナーダイオード43を介して電源Vccが接続されている。オペアンプ41の出力端子は、過負荷防止用の抵抗R2を介して、バイポーラトランジスタ42のベースに接続されている。また、オペアンプ41の反転入力端子は、抵抗R3を介して、バイポーラトランジスタ42のエミッタに接続されている。バイポーラトランジスタ42のコレクタは、負荷であるセル2-1に接続される。
 この構成により、抵抗R3に定電流Ioが流れる。定電流Ioは、Vz/Rsで表される。ここで、Vzはツェナーダイオード43のツェナー電圧であり、Rsは、抵抗Rsの抵抗値である。負荷であるセル2-1には、定電流Ioからベース電流を差し引いた定電流Iが流れる。
 図9において、オフ状態のスイッチ5をオン状態に切り替え、セル2-1に対して定電流Iをステップ入力すると、内部抵抗r1によりセル2-1の端子電圧Vcが降下する。図11は、定電流Iのステップ入力後の端子電圧Vcの時間的変化(ステップ応答)を示すグラフである。図11では、t=0がステップ入力をした時刻に対応する。図11では、時刻tにおけるセル2-1の端子電圧VcをVc(t)と表す。ステップ入力から時間t1が経過したときのセル2-1の端子電圧の電圧降下ηは、Vc(0)-Vc(t1)と表すことができる。電圧降下ηを用いると、内部抵抗r1は、次の式(5)で表される。
     r1=η/I        …(5)
 以上のように、本実施形態の変形例に係る蓄電池管理システムは、セル2-1の一対の端子間の端子電圧Vcを測定する電圧測定部11と、セル2-1に定電流を供給する定電流回路4と、を更に備える。内部抵抗測定部12は、定電流回路4による定電流の供給開始時において電圧測定部11によって測定された端子電圧Vc(0)と、供給開始時より後の時刻t1に電圧測定部11によって測定された端子電圧Vc(t1)との差に基づいて、セル2-1の内部抵抗r1を決定する。組電池2のセル2-2~2-nについても同様である。
 この構成によれば、パッシブ方式のセルバランス制御を採用しない蓄電池管理システムにおいても、セル毎に内部抵抗を測定することができる。
 2 組電池
 2-1~2-n セル(蓄電池)
 3-1~3-n 放電スイッチ
 4 定電流回路
 5 スイッチ
 10 制御部
 11 電圧測定部
 12 内部抵抗測定部
 13 温度検出部
 14 残寿命推定部
 15 漏電検知部
 16 過放電監視部
 17 セルバランス制御部
 20,220 記憶部
 21 残寿命テーブル
 30 出力部
 41 オペアンプ
 42 バイポーラトランジスタ
 43 ツェナーダイオード
 100,200 蓄電池管理システム
 221 SOHテーブル
 222 SOH対残寿命テーブル

Claims (7)

  1.  負荷に接続された蓄電池の温度を検出する温度検出部と、
     前記蓄電池の内部抵抗を測定する内部抵抗測定部と、
     前記温度検出部によって検出された温度と、前記内部抵抗測定部によって測定された内部抵抗とに基づいて、前記蓄電池の残寿命を推定する残寿命推定部と、
     を備える蓄電池管理システム。
  2.  前記蓄電池管理システムは、前記蓄電池の温度と、前記蓄電池の内部抵抗と、前記蓄電池の残寿命との関係を示す残寿命テーブルを記憶する記憶部を更に備え、
     前記残寿命推定部は、前記残寿命テーブルを参照して前記蓄電池の残寿命を推定する、請求項1に記載の蓄電池管理システム。
  3.  前記残寿命推定部は、前記温度検出部によって検出された温度と、前記内部抵抗測定部によって測定された内部抵抗とに基づいて、蓄電池の劣化状態を示す劣化度を決定し、前記劣化度に基づいて前記蓄電池の残寿命を推定する、
     請求項1に記載の蓄電池管理システム。
  4.  前記蓄電池管理システムは、記憶部を更に備え、
     前記記憶部は、
       前記蓄電池の温度と、前記蓄電池の内部抵抗と、前記蓄電池の劣化度との関係を示す劣化度テーブルと、
       前記蓄電池の劣化度と前記蓄電池の残寿命との関係を示す劣化度対残寿命テーブルとを記憶し、
     前記残寿命推定部は、
       前記劣化度テーブルを参照して前記蓄電池の劣化度を決定し、
       前記劣化度対残寿命テーブルを参照して、決定された前記劣化度に基づいて前記蓄電池の残寿命を推定する、請求項3に記載の蓄電池管理システム。
  5.  前記蓄電池管理システムは、
       前記蓄電池の一対の端子に接続された回路であって、放電抵抗と放電スイッチとが互いに直列に接続された直列回路と、
       前記直列回路に並列に接続され、前記一対の端子間の端子電圧を測定する電圧測定部とを更に備え、
     前記内部抵抗測定部は、前記放電スイッチがオン状態であるときに前記電圧測定部によって測定された前記端子電圧と、前記放電スイッチがオフ状態であるときに前記電圧測定部によって測定された前記端子電圧と、に基づいて、前記蓄電池の内部抵抗を決定する、
     請求項1~4のいずれか1項に記載の蓄電池管理システム。
  6.  前記蓄電池管理システムは、
       前記蓄電池の一対の端子間の端子電圧を測定する電圧測定部と、
       前記蓄電池に定電流を供給する定電流源と、を更に備え、
     前記内部抵抗測定部は、前記定電流源による定電流の供給開始時において前記電圧測定部によって測定された前記端子電圧と、前記供給開始時より後に前記電圧測定部によって測定された前記端子電圧との差に基づいて、前記蓄電池の内部抵抗を決定する、
     請求項1~4のいずれか1項に記載の蓄電池管理システム。
  7.  負荷に接続された蓄電池の温度を検出する温度検出ステップと、
     前記蓄電池の内部抵抗を測定する内部抵抗測定ステップと、
     前記温度検出ステップで検出された温度と、前記内部抵抗測定ステップで測定された内部抵抗とに基づいて、前記蓄電池の残寿命を推定する残寿命推定ステップと、
     を含む蓄電池管理方法。
PCT/JP2021/008752 2020-11-19 2021-03-05 蓄電池管理システム及び蓄電池管理方法 WO2022107349A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-192612 2020-11-19
JP2020192612A JP2022081210A (ja) 2020-11-19 2020-11-19 蓄電池管理システム及び蓄電池管理方法

Publications (1)

Publication Number Publication Date
WO2022107349A1 true WO2022107349A1 (ja) 2022-05-27

Family

ID=81708621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008752 WO2022107349A1 (ja) 2020-11-19 2021-03-05 蓄電池管理システム及び蓄電池管理方法

Country Status (2)

Country Link
JP (1) JP2022081210A (ja)
WO (1) WO2022107349A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05281309A (ja) * 1992-02-03 1993-10-29 Nippon Telegr & Teleph Corp <Ntt> 鉛蓄電池の劣化判定方法及び劣化判定器
JPH0933620A (ja) * 1995-07-19 1997-02-07 Nippon Telegr & Teleph Corp <Ntt> 鉛蓄電池の劣化判定方法
JP2016038276A (ja) * 2014-08-07 2016-03-22 矢崎総業株式会社 劣化要因推定方法及び余寿命推定方法
WO2016059869A1 (ja) * 2014-10-17 2016-04-21 株式会社 東芝 二次電池の充電状態推定装置及びその充電状態推定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05281309A (ja) * 1992-02-03 1993-10-29 Nippon Telegr & Teleph Corp <Ntt> 鉛蓄電池の劣化判定方法及び劣化判定器
JPH0933620A (ja) * 1995-07-19 1997-02-07 Nippon Telegr & Teleph Corp <Ntt> 鉛蓄電池の劣化判定方法
JP2016038276A (ja) * 2014-08-07 2016-03-22 矢崎総業株式会社 劣化要因推定方法及び余寿命推定方法
WO2016059869A1 (ja) * 2014-10-17 2016-04-21 株式会社 東芝 二次電池の充電状態推定装置及びその充電状態推定方法

Also Published As

Publication number Publication date
JP2022081210A (ja) 2022-05-31

Similar Documents

Publication Publication Date Title
US8878493B2 (en) Apparatus for monitoring operation state of battery pack composed of plurality of cells mutually connected in series
WO2014132403A1 (ja) 二次電池劣化度判定装置
US10838013B2 (en) Management apparatus and power storage system
CN109616704B (zh) 用于电池管理的装置和用于对电池的充电进行管理的方法
WO2008065910A1 (en) Accumulator failure detecting device, accumulator failure detecting method, accumulator failure detecting program, and computer-readable recording medium containing the accumulator failure detecting program
JP6973899B2 (ja) バッテリー管理システム、それを含むバッテリーパック及び電流測定回路の故障判定方法
JP2019522215A (ja) バッテリーの充電状態をキャリブレーションするためのバッテリー管理装置及び方法
US20180328998A1 (en) System and apparatus for battery internal short current detection under arbitrary load conditions
JPWO2020021888A1 (ja) 管理装置、及び電源システム
JP7067549B2 (ja) 蓄電素子管理装置及び蓄電素子管理方法
WO2017110578A1 (ja) 電流監視回路、クーロンカウンタ回路、それらを用いたバッテリ管理システムおよび自動車
WO2017056732A1 (ja) 電池制御装置及び電池システム
JP2008027658A (ja) 電池パックおよびその断線検知方法
JP2021501895A (ja) 電流測定装置、電流測定方法及び前記電流測定装置を含むバッテリーパック
JP6171128B2 (ja) 電池制御システム、車両制御システム
JP2011137681A (ja) インピーダンス検出回路、電池電源装置、及び電池利用システム
JP2012208066A (ja) 電池電圧検出装置
KR20190075609A (ko) 전류 센서 진단 장치 및 방법
US11965936B2 (en) Battery diagnosis apparatus and method
WO2022107349A1 (ja) 蓄電池管理システム及び蓄電池管理方法
JP5561049B2 (ja) 電池電圧測定装置
JP4360052B2 (ja) 二次電池の寿命判定装置、寿命判定方法、及び、寿命判定プログラム
JP2013072711A (ja) 電圧検出回路
KR20190140782A (ko) 배터리 관리 시스템, 그것을 포함하는 배터리팩 및 전류 측정 회로의 고장 판정 방법
JP2015102336A (ja) 電池監視装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21894226

Country of ref document: EP

Kind code of ref document: A1