WO2022105363A1 - 传动轴轴管接头结构 - Google Patents

传动轴轴管接头结构 Download PDF

Info

Publication number
WO2022105363A1
WO2022105363A1 PCT/CN2021/115980 CN2021115980W WO2022105363A1 WO 2022105363 A1 WO2022105363 A1 WO 2022105363A1 CN 2021115980 W CN2021115980 W CN 2021115980W WO 2022105363 A1 WO2022105363 A1 WO 2022105363A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
shaft
concave
cylindrical surface
convex
Prior art date
Application number
PCT/CN2021/115980
Other languages
English (en)
French (fr)
Inventor
朱卓选
Original Assignee
上海纳铁福传动系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海纳铁福传动系统有限公司 filed Critical 上海纳铁福传动系统有限公司
Priority to US18/036,662 priority Critical patent/US11940019B2/en
Publication of WO2022105363A1 publication Critical patent/WO2022105363A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/26Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected
    • F16D3/38Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another
    • F16D3/382Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another constructional details of other than the intermediate member
    • F16D3/387Fork construction; Mounting of fork on shaft; Adapting shaft for mounting of fork
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/02Couplings for rigidly connecting two coaxial shafts or other movable machine elements for connecting two abutting shafts or the like
    • F16D1/027Couplings for rigidly connecting two coaxial shafts or other movable machine elements for connecting two abutting shafts or the like non-disconnectable, e.g. involving gluing, welding or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0034Materials; Production methods therefor non-metallic
    • F16D2200/0052Carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S285/00Pipe joints or couplings
    • Y10S285/915Mastic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/47Molded joint
    • Y10T403/477Fusion bond, e.g., weld, etc.

Definitions

  • the invention relates to the field of automobile transmission shafts, in particular to a transmission shaft shaft pipe joint structure used in automobiles.
  • the automobile transmission shaft is the key component that transmits the power of the engine/motor to the front/rear axle of the chassis.
  • the transmission bearing In the process of power transmission, the transmission bearing is subjected to a huge dynamic torque load, so the strength, stiffness, efficiency and fatigue life of the transmission shaft have a significant impact on the performance of the vehicle.
  • the use of lightweight carbon fiber composite transmission shaft is an effective development direction.
  • the carbon fiber composite drive shaft is usually composed of a carbon fiber composite shaft tube in the middle and the universal joint heads at both ends through viscose bonding.
  • the bonding method of the carbon fiber composite shaft tube and the universal joint head is usually as follows: 1. The outer cylindrical surface of the extension tube of the universal joint head and the carbon fiber The inner cylindrical surface of the end of the composite shaft tube is directly lapped; or, 2. After the inner cylindrical surface of the extension tube of the universal joint is directly lapped with the outer cylindrical surface of the end of the carbon fiber composite shaft tube, it passes through the lap joint.
  • the glue in the gap between the two cylindrical surfaces glues them together, that is, the method of bonding by glue after one-sided overlap is adopted.
  • the technical problem to be solved by the present invention is to provide a transmission shaft pipe joint structure with high shear stress resistance, so as to improve the bearing capacity of the transmission shaft pipe joint for dynamic torque.
  • the present invention provides a shaft pipe joint structure of a transmission shaft, which includes an extension pipe, a shaft pipe, a convex pipe, a concave pipe, an inner bonding rubber ring and an outer bonding rubber ring;
  • the shaft tube is connected to the extension tube along the axis direction, and the shaft tube has an inner cylindrical surface of the shaft tube and an outer cylindrical surface of the shaft tube;
  • the inner cylindrical surface of the extension tube is connected to the inner cylindrical surface of the shaft tube, and the outer cylindrical surface of the extension tube is The face is connected to the outer cylindrical surface of the shaft tube;
  • the convex tube has an outer circumferential surface of the convex tube, the convex tube is sleeved at the butt joint of the extension tube and the shaft tube along the axis direction, and the convex tube is located on the inner cylindrical surface of the extension tube and The inside of the inner cylindrical surface of the shaft tube;
  • the axle tube is made of carbon fiber composite material.
  • the transmission shaft pipe joint structure further includes a universal joint head, and the extension pipe is a part of the universal joint head, extending from the universal joint head and extending along the axis direction.
  • the diameter of the middle portion of the outer circumferential surface of the convex pipe is larger than the diameters of both end portions of the outer circumferential surface of the convex pipe.
  • the generatrix of the outer circumferential surface of the convex tube is a section of elliptical arc that is convex in the middle.
  • the generatrix of the outer circumferential surface of the convex tube is formed by connecting a middle straight line segment and inwardly inclined end line segments at both ends of the middle straight line segment through a smooth transition.
  • the diameter of the middle portion of the inner circumferential surface of the concave tube is smaller than the diameter of both end portions of the inner circumferential surface of the concave tube.
  • the generatrix of the inner circumferential surface of the concave tube is a section of elliptical arc that is concave in the middle.
  • the generatrix of the inner circumferential surface of the concave tube is formed by connecting a middle straight line segment and end straight line segments inclined outward at both ends of the middle straight line segment through a smooth transition.
  • the concave tube and the convex tube are manufactured from a metal blank tube by extrusion forming, swaging forming or rolling forming.
  • the concave tube and the convex tube are made of non-metallic materials by profiling and forming process.
  • the inner adhesive apron is filled with adhesive glue through the inner seam, and after the adhesive glue is solidified, an inner adhesive apron with a change in thickness and size distribution along the axis direction is formed.
  • the gap between the inner seam and the middle part is smaller than the gap between the two ends of the inner seam, so that the thickness of the middle part of the inner bonding rubber ring is smaller than the thickness of both ends of the inner bonding rubber ring.
  • the outer adhesive apron is filled with adhesive glue through the outer seam, and after the adhesive glue is solidified, an outer adhesive apron with a change in thickness and size distribution along the axis direction is formed.
  • the gap between the outer seam and the middle portion is smaller than the gap between the two ends of the outer seam, so that the thickness of the middle portion of the outer bonding rubber ring is smaller than the thickness of both ends of the outer bonding rubber ring.
  • the beneficial effect of the transmission shaft pipe joint structure of the present invention is that the inner bonding rubber ring and the outer bonding rubber ring can be fully utilized to transmit the power torque at the same time, and the bearing capacity of the power torque of the transmission shaft shaft pipe joint part is improved.
  • a convex pipe and a concave pipe are added inside and outside for double-sided bonding to form a variable-thickness inner bonding rubber ring and a variable-thickness outer bonding rubber ring. Connect the rubber ring to transmit power torque at the same time.
  • the aforementioned bonding method basically eliminates the stress concentration phenomenon of uneven distribution of circumferential shear stress caused by dynamic torque in the inner bonding rubber ring and the outer bonding rubber ring, and further improves the bearing capacity of the dynamic torque of the shaft pipe joint of the transmission shaft.
  • FIG. 1 is a schematic longitudinal cross-sectional view of a transmission shaft pipe joint structure according to an embodiment of the present invention.
  • FIG. 2 is a schematic longitudinal cross-sectional view of a universal joint head in an embodiment of the present invention.
  • FIG. 3 is a schematic longitudinal cross-sectional view of a shaft tube in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the assembly relationship of a convex tube, an extension tube, and a shaft tube in an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the assembly relationship of another convex tube, an extension tube, and a shaft tube in an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the connection relationship between the inner bonding rubber ring, the convex tube, the extension tube, and the shaft tube in the embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the assembly relationship of a concave tube, an extension tube, and a shaft tube in an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the assembly relationship of another concave tube, an extension tube, and a shaft tube in an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of the connection relationship between the outer bonding rubber ring, the concave tube, the extension tube, and the shaft tube in the embodiment of the present invention.
  • a transmission shaft shaft pipe joint structure of the present invention includes an extension pipe 11 , a shaft pipe 2 , a convex pipe 3 , a concave pipe 4 , an inner bonding rubber ring 7 and an outer bonding rubber ring 8 .
  • the extension pipe 11 is a part of the universal joint head 1 , extends from the universal joint head 1 , and extends along the axis direction X.
  • the extension tube 11 has an inner cylindrical surface 111 of the extension tube and an outer cylindrical surface 112 of the extension tube, which are located inside and outside the extension tube 11 respectively.
  • the axle tube 2 is preferably made of carbon fiber composite material.
  • the front end of the shaft tube 2 is abutted against the rear end of the extension tube 11 along the axis direction X, as shown in FIG. 1 and FIG. 3 .
  • the shaft tube 2 has a shaft tube outer cylindrical surface 21 and a shaft tube inner cylindrical surface 22 . Therefore, when the inner cylindrical surface 111 of the extension tube is butted against the inner cylindrical surface 22 of the shaft tube, the two pipes 11 , 2 form a single inner cylindrical surface 111 , 22 and a single outer cylindrical surface 112 , 21 extending continuously along the axis direction X.
  • the middle part of the convex tube outer circumferential surface 31 of the convex tube 3 protrudes outward, that is, the diameter D1 of the middle part of the convex tube outer circumferential surface 31 is larger than that of the convex tube outer circumferential surface Diameters D2 and D3 of both end portions of 31 .
  • the generatrix of the outer circumferential surface 31 of the convex tube is a section of an elliptical arc that is convex in the middle.
  • the convex tube 3 is sleeved on the butt joint of the extension tube 11 and the shaft tube 2 along the axis direction X, and the convex tube 3 is located inside the inner cylindrical surface 111 of the extension tube and the inner cylindrical surface 22 of the shaft tube.
  • the outer circumferential surface 31 of the convex tube forms an inner seam 5 between the butt joint, the inner cylindrical surface 111 of the extension tube and the inner cylindrical surface 22 of the shaft tube. Since the middle portion of the outer circumferential surface 31 of the convex tube is protruded outward, the inner seam 5 has a change in the size distribution of the gap along the axis direction X. As shown in FIG.
  • the convex tube 3 is directly and precisely machined by a cutting-free process, which is beneficial to saving material consumption, simplifying the manufacturing process, improving production efficiency and reducing manufacturing cost.
  • the male pipe 3 may be processed and manufactured from a metal blank pipe such as a steel pipe through compression forming, swaging forming, or rolling forming.
  • the convex tube 3 may be made of a non-metallic material such as a carbon fiber composite material by means of a plastic forming process.
  • the generatrix of the outer circumferential surface 31 of the convex tube can also be formed by a middle straight section 311 , a left straight section 312 and a right straight section 313 connected by a smooth transition.
  • the left end of the straight section 312 at the left end is inclined inward, and the right end of the straight section 313 at the right end is also inclined inward, so that the shape of the convex tube 3 with the middle part protruding outward can be formed.
  • the inner adhesive apron 7 is filled in the inner seam 5 , and the thickness of the inner adhesive apron 7 has a thickness distribution variation along the axis direction X.
  • the inner adhesive rubber ring 7 is filled with adhesive glue through the inner seam 5, and after the adhesive glue is solidified, the inner adhesive rubber ring 7 is formed with a change in thickness distribution along the axis direction X.
  • the convex tube 3 is bonded to the single inner cylindrical surface 111 , 22 formed by the abutment of the two tube pieces 11 , 2 .
  • the gap between the inner seam 5 in the middle part is the smallest, and the gap between the left and right ends of the inner seam 5 gradually increases from the middle, so that the inner seam 5 is internally coated
  • the thickness t1 of the middle portion of the inner adhesive rubber ring 7 formed by solidification after being filled with adhesive is the smallest.
  • the thickness of the left part of the inner bonding rubber ring 7 gradually increases from t1 to t2
  • the thickness of the right part of the inner bonding rubber ring 7 gradually increases from t1 to t3.
  • the thickness of t1 is 0.0mm-0.3mm
  • the thickness of t2 and t3 is determined by sample experiment or computer-aided engineering (CAE, Computer Aided Engineering) calculation and analysis, so that the outer circumferential surface 31 of the convex tube can be determined.
  • CAE Computer Aided Engineering
  • the shape of the busbar changes.
  • the goal of changing the thickness of the inner bonding rubber ring 7 is to transmit the dynamic torque, and the circumferential shear stress caused by the dynamic torque is distributed evenly in the inner bonding rubber ring 7.
  • the generatrix of the outer circumferential surface 31 of the convex tube in FIG. 4 is a single segment of elliptical arc, and the generatrix of the outer circumferential surface 31 of the convex tube in FIG. 5 is formed by a smooth transition of three straight lines.
  • the stress distribution uniformity effect caused by the convex tube 3 and the inner bonding rubber ring 7 formed by the outer circumferential surface 31 of the convex tube is better than that of the convex tube 3 of FIG.
  • the middle part of the inner circumferential surface 41 of the concave tube 4 is recessed inward, and the diameter d1 of the middle part of the inner circumferential surface 41 of the concave tube is smaller than the two ends of the inner circumferential surface 41 of the concave tube The diameters of the parts d2, d3.
  • the generatrix of the inner circumferential surface 41 of the concave tube is an elliptical arc line concave in the middle.
  • the concave tube 4 is sleeved on the butt joint of the extension tube 11 and the shaft tube 2 along the axis direction X, and the concave tube 4 is located outside the extension tube outer cylindrical surface 112 and the shaft tube outer cylindrical surface 21 .
  • the inner circumferential surface 41 of the concave tube forms an outer seam 6 between the butt joint, the outer cylindrical surface 112 of the extension tube and the outer cylindrical surface 21 of the shaft tube. Since the middle portion of the concave tube 4 is inwardly recessed, the outer seam 6 has a gap size distribution variation along the axis direction X. As shown in FIG.
  • the concave tube 4 is directly and precisely machined by a cutting-free process, which is beneficial to saving material consumption, simplifying the manufacturing process, improving production efficiency and reducing manufacturing cost.
  • the concave tube 4 may be processed and manufactured from a metal blank tube such as a steel tube through compression forming, swaging or roll forming.
  • the concave tube 4 may also be made of a non-metallic material such as a carbon fiber composite material by a plastic forming process.
  • the generatrix of the inner circumferential surface 41 of the concave tube can also be formed by a middle straight section 411 , a left end straight section 412 and a right end straight section 413 connected by a smooth transition.
  • the left end of the straight section 412 at the left end is inclined outward, and the right end of the straight section 413 at the right end is also inclined outward, so that the shape of the concave tube 4 with the middle part concave inward can be formed.
  • the outer adhesive rubber ring 8 is filled in the outer seam 6 , and the thickness of the outer adhesive rubber ring 8 has a thickness distribution variation along the axis direction X.
  • the outer adhesive rubber ring 8 is filled with adhesive glue through the outer seam 6, and after the adhesive glue is solidified, the outer adhesive rubber ring 8 with thickness distribution changes along the axis direction X is formed.
  • the concave tube 4 is glued on the single outer cylindrical surface 112, 21 formed by the butt joint of the two tube pieces 11, 2 at the butt joint.
  • the gap between the outer seam 6 in the middle part is the smallest, and the gaps between the left and right ends of the outer seam 6 gradually increase from the middle to the outer seam 6 , so that the outer seam 6 is filled with adhesive
  • the thickness t4 of the middle portion of the outer adhesive rubber ring 8 formed by solidification after the glue is the smallest.
  • the thickness of the left part of the outer adhesive rubber ring 8 gradually increases from t4 to t5
  • the thickness of the right part of the outer adhesive rubber ring 8 gradually increases from t4 to t6.
  • the thickness of t4 is 0.0mm-0.3mm
  • the thicknesses of t5 and t6 are determined by sample experiments or CAE calculation and analysis of computer-aided engineering, so that the shape change of the generatrix of the inner circumferential surface 41 of the concave tube can be determined.
  • the goal of changing the thickness of the outer bonding rubber ring 8 is to transmit the power torque, and the circumferential shear stress caused by the dynamic torque is distributed evenly in the outer bonding rubber ring 8.
  • t5 t6 ⁇ t4+1mm, that is can meet the requirements.
  • the generatrix of the inner circumferential surface 41 of the concave tube in FIG. 7 is a single segment of ellipse arc
  • the generatrix of the inner circumferential surface 41 of the concave tube in FIG. 8 is a smooth transition of three straight lines.
  • the stress distribution uniformity effect caused by the tube 4 and the outer adhesive rubber ring 8 formed by the inner circumferential surface 41 of the concave tube is better than that of the concave tube 4 in FIG. Circle 8.
  • the extension tube 11 of the universal joint head 1 and the shaft tube 2 are butted along the axis direction X, they pass through the convex tube 3 , the concave tube 4 , the inner adhesive rubber ring 7 and the outer adhesive
  • the combination of the rubber ring 8 enables the extension tube 11 to be connected with the shaft tube 2 by means of gluing on both the inner and outer sides.
  • the beneficial effect of the present invention is that the inner bonding rubber ring 7 and the outer bonding rubber ring 8 can be fully utilized to transmit power torque at the same time, which improves the bearing capacity of the transmission shaft pipe joint for power torque.
  • the structure of the drive shaft shaft pipe joint proposed by the present invention uses the extension pipe 11 and the shaft pipe 2 butt joints, and then adds the convex pipe 3 and the concave pipe 4 inside and outside for double-sided bonding to form an internal adhesive with varying thickness.
  • the rubber ring 7 and the outer adhesive ring 8 with varying thickness are attached to transmit the power torque at the same time.
  • the aforementioned bonding method basically eliminates the stress concentration phenomenon of uneven distribution of circumferential shear stress caused by the dynamic torque in the inner bonding rubber ring 7 and the outer bonding rubber ring 8, and improves the bearing capacity of the dynamic torque of the shaft pipe joint of the transmission shaft . Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial utilization value.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

一种传动轴轴管接头结构,包括延伸管(11)、轴管(2)、凸形管(3)、凹形管(4)、内粘接胶圈(7)以及外粘接胶圈(8);延伸管与轴管互相对接,凸形管内套于延伸管与轴管的对接处,并且沿着轴线方向具有间隙大小分布变化的内接缝(5);凹形管外套于延伸管与轴管的对接处,并且沿着轴线方向具有间隙大小分布变化的外接缝(6)。通过内粘接胶圈与外粘接胶圈分别填充于内接缝与外接缝,使得延伸管与轴管互相连接,充分利用内粘接胶圈以及外粘接胶圈同时传递动力扭矩,提高了传动轴轴管接头结构对于动力扭矩的承载能力。

Description

传动轴轴管接头结构 技术领域
本发明涉及汽车传动轴领域,特别是涉及汽车使用的一种传动轴轴管接头结构。
背景技术
目前,汽车传动轴是将发动机/电动机的动力传递到底盘前桥/后桥的关键零部件。在动力传递过程中,传动轴承受着巨大的动力扭矩载荷,因此传动轴的强度、刚度、效率及疲劳耐久寿命对汽车的使用性能有着显着影响。为了提升汽车动力传动系统的综合性能,同时达到节能减排的目的,轻量化的碳纤维复合材料传动轴的使用是有效的发展方向。
碳纤维复合材料传动轴通常由中间的碳纤维复合材料轴管与两端的万向节头通过粘胶粘结方式组成。目前,由于碳纤维复合材料轴管只能制作成壁厚均匀的直管,碳纤维复合材料轴管与万向节头的胶结方式通常为:一、万向节头的延伸管的外圆柱面与碳纤维复合材料轴管端部的内圆柱面直接搭接;或者,二、万向节头的延伸管的内圆柱面与碳纤维复合材料轴管端部的外圆柱面直接搭接后,通过搭接部位两者圆柱面之间的缝隙中的粘胶将它们胶合在一起,即采用了单面搭接后通过粘胶粘结的方式。这种单面搭接后通过粘胶粘结的方式,只有单个连接面承受动力扭矩,导致了轴管接头部位动力扭矩的承载能力较低。在搭接接缝中,动力扭矩引起的周向剪切应力表现为搭接接缝两端部位的周向剪切应力较大,搭接接缝中间部位的周向剪切应力较小,即在搭接接缝中存在动力扭矩引起的周向剪切应力分布不均的较为严重的应力集中现象,这进一步降低了碳纤维复合材料轴管接头部位动力扭矩的承载能力。
因此,需要一种强度较高的传动轴轴管接头结构。
发明内容
针对上述现有技术的不足,本发明要解决的技术问题是提供一种抗剪切应力强度较高的传动轴轴管接头结构,提高传动轴轴管接头对于动力扭矩的承载能力。
为了解决上述技术问题,本发明提供一种传动轴轴管接头结构,包括延伸管、轴管、凸形管、凹形管、内粘接胶圈以及外粘接胶圈;延伸管具有延伸管内圆柱面以及延伸管外圆柱面;轴管沿轴线方向对接于延伸管,轴管具有轴管内圆柱面以及轴管外圆柱面;延伸管内圆 柱面对接于轴管内圆柱面,并且延伸管外圆柱面对接于轴管外圆柱面;凸形管具有凸形管外圆周面,凸形管沿着轴线方向被套设在延伸管与轴管的对接处,并且凸形管位于延伸管内圆柱面以及轴管内圆柱面的内部;凸形管外圆周面在对接处与延伸管内圆柱面以及轴管内圆柱面之间形成沿着轴线方向具有间隙大小分布变化的内接缝;内粘接胶圈填充于内接缝,并且内粘接胶圈的厚度沿着轴线方向具有厚度大小分布变化;凹形管具有凹形管内圆周面,凹形管沿着轴线方向外套于延伸管与轴管的对接处,并且凹形管位于延伸管外圆柱面以及轴管外圆柱面外部;凹形管在对接处与延伸管外圆柱面以及轴管外圆柱面之间形成沿着轴线方向具有间隙大小分布变化的外接缝;外粘接胶圈填充于外接缝,并且外粘接胶圈的厚度沿着轴线方向具有厚度大小分布变化。
优选地,轴管是由碳纤维复合材料所制成。
优选地,传动轴轴管接头结构还包括万向节头,延伸管是万向节头的一部分,延伸自万向节头并且沿着轴线方向延伸。
优选地,凸形管外圆周面中间部分的直径大于凸形管外圆周面的两端部分的直径。
进一步地,凸形管外圆周面的母线是中部外凸的一段椭圆弧线。
进一步地,凸形管外圆周面的母线是由一中部直线段与在中部直线段的两端向内倾斜的端部直线段,经由光滑过渡连接而成。
优选地,凹形管内圆周面中间部分的直径小于凹形管内圆周面的两端部分的直径。
进一步地,凹形管内圆周面的母线是中部内凹的一段椭圆弧线。
进一步地,凹形管内圆周面的母线是由一中部直线段与在中部直线段的两端向外倾斜的端部直线段,经由光滑过渡连接而成。
凹形管以及凸形管是由金属毛坯管经由涨压成形、旋锻成形或者滚压成形所加工制造而成。
进一步地,凹形管以及凸形管是由非金属材料采用塑形成形工艺仿形加工制造而成。
优选地,内粘接胶圈是经由内接缝内涂满粘接胶,于粘接胶凝固后所形成沿着轴线方向厚度大小分布变化的内粘接胶圈。
优选地,内接缝于中间部分的间隙小于内接缝的两端的间隙,使得内粘接胶圈的中间部分的厚度小于内粘接胶圈两端的厚度。
优选地,外粘接胶圈是经由外接缝内涂满粘接胶,于粘接胶凝固后所形成沿着轴线方向 具有厚度大小分布变化的外粘接胶圈。
优选地,外接缝于中间部分的间隙小于外接缝的两端的间隙,使得外粘接胶圈的中间部分的厚度小于外粘接胶圈两端的厚度。
本发明传动轴轴管接头结构的有益效果是,可以充分利用内粘接胶圈以及外粘接胶圈同时传递动力扭矩,提高了传动轴轴管接头部位动力扭矩的承载能力。本发明提出的传动轴轴管接头结构,利用延伸管以及轴管对接后,内外加上凸形管以及凹形管进行双面胶结,形成变厚度的内粘接胶圈及变厚度的外粘接胶圈,以同时传递动力扭矩。前述胶结方式基本消除了内粘接胶圈及外粘接胶圈中动力扭矩引起的周向剪切应力分布不均的应力集中现象,进一步提高了传动轴轴管接头部位动力扭矩的承载能力。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明较佳的实施例并配合附图对本发明进行详细说明。
附图说明
图1是本发明实施例的一种传动轴轴管接头结构的纵剖面示意图。
图2是本发明实施例中一种万向节头的纵剖面示意图。
图3是本发明实施例中一种轴管的纵剖面示意图。
图4是本发明实施例中一种凸形管与延伸管、轴管的装配关系示意图。
图5是本发明实施例中另一种凸形管与延伸管、轴管的装配关系示意图。
图6是本发明实施例中内粘接胶圈、凸形管与延伸管、轴管的连接关系示意图。
图7是本发明实施例中一种凹形管与延伸管、轴管的装配关系示意图。
图8是本发明实施例中另一种凹形管与延伸管、轴管的装配关系示意图。
图9是本发明实施例中外粘接胶圈、凹形管与延伸管、轴管的连接关系示意图。
其中,附图标记:
1    万向节头
11   延伸管
111  延伸管内圆柱面
112  延伸管外圆柱面
2    轴管
21   轴管外圆柱面
22   轴管内圆柱面
3    凸形管
31   凸形管外圆周面
311  中部直线段
312  左端部直线段
313  右端部直线段
4    凹形管
41   凹形管内圆周面
411  中部直线段
412  左端部直线段
413  右端部直线段
5    内接缝
6    外接缝
7    内粘接胶圈
8    外粘接胶圈
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。
须知,本说明书附图所绘制的结构、比例、大小等,都是仅用以配合说明书所揭露的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,因此不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭露的技术内容得能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”及“中间”等用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在没有实质变更技术内容下,应当也视为本发明可实施的范围。
如图1所示,本发明一种传动轴轴管接头结构包括延伸管11、轴管2、凸形管3、凹形 管4、内粘接胶圈7以及外粘接胶圈8。
如图1及图2所示,延伸管11是万向节头1的一部分,延伸自万向节头1,并且沿着轴线方向X延伸。延伸管11具有延伸管内圆柱面111以及延伸管外圆柱面112,分别位于延伸管11内侧及外侧。
如图1及图3所示,轴管2优选地是由碳纤维复合材料所制成。轴管2的前端沿轴线方向X对接于延伸管11的后端,如图1、图3所示的左右对接。轴管2具有轴管外圆柱面21以及轴管内圆柱面22,延伸管内圆柱面111对接于轴管内圆柱面22,并且延伸管外圆柱面112对接于轴管外圆柱面21。因此,在延伸管内圆柱面111对接于轴管内圆柱面22时,两个管件11,2会形成沿着轴线方向X连续延伸单一内圆柱面111,22以及单一外圆柱面112,21。
如图1及图4所示,凸形管3的凸形管外圆周面31的中间部分向外凸出,即凸形管外圆周面31的中间部分的直径D1大于凸形管外圆周面31的两端部分的直径D2、D3。如图4所示,凸形管外圆周面31的母线是中部外凸的一段椭圆弧线。凸形管3沿着轴线方向X被套设在延伸管11与轴管2的对接处,并且凸形管3位于延伸管内圆柱面111以及轴管内圆柱面22的内部。凸形管外圆周面31在对接处与延伸管内圆柱面111以及轴管内圆柱面22之间形成内接缝5。由于凸形管外圆周面31的中间部分向外凸出,内接缝5沿着轴线方向X具有间隙大小分布变化。
如图4所示,具体而言,凸形管3采用免切削工艺直接精密加工制造而成,有利于节约材料用量、简化制造工艺、提高生产效率及降低制作成本。凸形管3可以是由钢管等金属毛坯管经由涨压成形、旋锻成形或者滚压成形所加工制造而成。或者,凸形管3可以是由碳纤维复合材料等非金属材料采用塑性成形工艺仿形加工制造而成。
如图5所示,为了方便制造,凸形管外圆周面31的母线也可以由一条中部直线段311、左端部直线段312及右端部直线段313,经由光滑过渡连接而成。左端部直线段312的左端向内倾斜,右端部直线段313的右端也向内倾斜,就能形成中间部分向外凸出的凸形管3的形态。
如图1及图5所示,内粘接胶圈7填充于内接缝5,并且内粘接胶圈7的厚度沿着轴线方向X具有厚度大小分布变化。内粘接胶圈7是经由内接缝5内涂满粘接胶,于粘接胶凝固后所形成沿着轴线方向X厚度大小分布变化的内粘接胶圈7,从而经由粘贴方式,在对接处将凸形管3粘合在两个管件11,2对接所形成单一内圆柱面111,22上。
如图1、图4、图5以及图6所示,内接缝5于中间部分的间隙最小,从中间向内接缝5的左端及右端的间隙逐渐变大,使得内接缝5内涂满粘接胶后凝固形成的内粘接胶圈7的中间部分的厚度t1最小。在图6中,内粘接胶圈7左部的厚度由t1逐渐变大到t2,内粘接胶圈7右部的厚度由t1逐渐变大到t3。一般而言,t1的厚度为0.0mm-0.3mm,t2、t3的厚度由样品实验或计算机辅助工程(CAE,Computer Aided Engineering)计算分析确定,如此一来就可以决定凸形管外圆周面31的母线形状变化。内粘接胶圈7的厚度大小变化的目标是传递动力扭矩时,动力扭矩引起的周向剪切应力在内粘接胶圈7中的分布较为均匀,一般情况下t2=t3≈t1+1mm即可满足要求。
图4及图5揭示不同的凸形管外圆周面31的母线。图4中的凸形管外圆周面31的母线是单一段椭圆弧线,图5中的凸形管外圆周面31的母线是由三段直线平滑过渡而成,相较之下图4中的凸形管3以及通过凸形管外圆周面31形成的内粘接胶圈7导致的应力分布均匀化效果,要优于图5的凸形管3以及通过凸形管外圆周面31形成的内粘接胶圈7。
如图1及图7所示,凹形管4的凹形管内圆周面41的中间部分向内凹进,凹形管内圆周面41的中间部分的直径d1小于凹形管内圆周面41的两端部分的直径d2、d3。如图7所示,凹形管内圆周面41的母线是中部内凹的一段椭圆弧线。凹形管4沿着轴线方向X外套于延伸管11与轴管2的对接处,并且凹形管4位于延伸管外圆柱面112以及轴管外圆柱面21的外部。凹形管内圆周面41在对接处与延伸管外圆柱面112以及轴管外圆柱面21之间形成外接缝6。由于凹形管4的中间部分向内凹进,外接缝6沿着轴线方向X具有间隙大小分布变化。
如图7所示,具体而言,凹形管4采用免切削工艺直接精密加工制造而成,有利于节约材料用量、简化制造工艺、提高生产效率及降低制作成本。凹形管4可以是由钢管等金属毛坯管经由涨压成形、旋锻成形或者滚压成形所加工制造而成。或者,凹形管4也可以是由碳纤维复合材料等非金属材料采用塑性成形工艺仿形加工制造而成。
如图8所示,为了方便制造,凹形管内圆周面41的母线也可以由一条中部直线段411、左端部直线段412及右端部直线段413,经由光滑过渡连接而成。左端部直线段412的左端向外倾斜,右端部直线段413的右端也向外倾斜,就能形成中间部分向内凹进的凹形管4的形态。
如图1、图7、图8以及图9所示,外粘接胶圈8填充于外接缝6,并且外粘接胶圈8的厚度沿着轴线方向X具有厚度大小分布变化。外粘接胶圈8是经由外接缝6内涂满粘接胶, 于粘接胶凝固后所形成沿着轴线方向X具有厚度大小分布变化的外粘接胶圈8,从而经由粘贴方式,在对接处将凹形管4粘合在两个管件11,2对接所形成单一外圆柱面112,21上。
如图1、图7以及图9所示,外接缝6于中间部分的间隙最小,从中间向外接缝6的左端及右端的间隙逐渐变大,使得外接缝6内涂满粘接胶后凝固形成的外粘接胶圈8的中间部分的厚度t4最小。在图9中,外粘接胶圈8左部的厚度由t4逐渐变大到t5,外粘接胶圈8右部的厚度由t4逐渐变大到t6。一般而言,t4的厚度为0.0mm-0.3mm,t5、t6的厚度由样品实验或计算机辅助工程CAE计算分析确定,如此一来就可以决定凹形管内圆周面41的母线形状变化。外粘接胶圈8的厚度大小变化的目标是传递动力扭矩时,动力扭矩引起的周向剪切应力在外粘接胶圈8中的分布较为均匀,一般情况下t5=t6≈t4+1mm即可满足要求。
图7及图8揭示不同的凹形管内圆周面41的母线。图7中的凹形管内圆周面41的母线是单一段椭圆弧线,图8中的凹形管内圆周面41的母线是由三段直线平滑过渡而成,相较之下图7的凹形管4以及通过凹形管内圆周面41形成的外粘接胶圈8导致的应力分布均匀化效果,要优于图8的凹形管4以及通过凹形管内圆周面41形成的外粘接胶圈8。
如图1至图9所示,万向节头1的延伸管11与轴管2沿着轴线方向X对接后,通过凸形管3、凹形管4、内粘接胶圈7以及外粘接胶圈8的结合,使得延伸管11与轴管2对接后内、外双面都通过胶结的方式进行连接。本发明有益的效果是可以充分利用内粘接胶圈7以及外粘接胶圈8同时传递动力扭矩,提高了传动轴轴管接头对于动力扭矩的承载能力。
综上所述,本发明提出的传动轴轴管接头结构,利用延伸管11以及轴管2对接后,内外加上凸形管3以及凹形管4进行双面胶结,形成厚度变化的内粘接胶圈7及厚度变化的外粘接胶圈8,以同时传递动力扭矩。前述胶结方式基本消除了内粘接胶圈7及外粘接胶圈8中动力扭矩引起的周向剪切应力分布不均的应力集中现象,提高了传动轴轴管接头部位动力扭矩的承载能力。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
以上对本发明实施例所提供的一种传动轴轴管接头结构进行了详细介绍,对于本领域的一般技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有所改变之处。综上所述,本说明书内容不应理解为对本发明的限制,凡依据本发明的精神与技术思想所做的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (15)

  1. 一种传动轴轴管接头结构,其特征在于,包括:
    延伸管,具有延伸管内圆柱面以及延伸管外圆柱面;
    轴管,沿轴线方向对接于所述延伸管,所述轴管具有轴管内圆柱面以及轴管外圆柱面;所述延伸管内圆柱面对接于所述轴管内圆柱面,并且所述延伸管外圆柱面对接于所述轴管外圆柱面;
    凸形管,具有凸形管外圆周面,所述凸形管沿着所述轴线方向被套设在所述延伸管与所述轴管的对接处,并且所述凸形管位于所述延伸管内圆柱面以及所述轴管内圆柱面的内部;所述凸形管外圆周面在对接处与所述延伸管内圆柱面以及所述轴管内圆柱面之间形成沿着所述轴线方向具有间隙大小分布变化的内接缝;
    内粘接胶圈,填充于所述内接缝,并且所述内粘接胶圈的厚度沿着所述轴线方向具有厚度大小分布变化;
    凹形管,具有凹形管内圆周面,所述凹形管沿着所述轴线方向外套于所述延伸管与所述轴管的对接处,并且所述凹形管位于所述延伸管外圆柱面以及所述轴管外圆柱面外部;所述凹形管内圆周面在对接处与所述延伸管外圆柱面以及所述轴管外圆柱面之间形成沿着所述轴线方向具有间隙大小分布变化的外接缝;以及
    外粘接胶圈,填充于所述外接缝,并且所述外粘接胶圈的厚度沿着所述轴线方向具有厚度大小分布变化。
  2. 根据权利要求1所述的传动轴轴管接头结构,其特征在于,所述轴管是由碳纤维复合材料所制成。
  3. 根据权利要求1所述的传动轴轴管接头结构,其特征在于,还包括万向节头,所述延伸管是所述万向节头的一部分,延伸自所述万向节头并且沿着所述轴线方向延伸。
  4. 根据权利要求1所述的传动轴轴管接头结构,其特征在于,所述凸形管外圆周面中间部分的直径大于所述凸形管外圆周面的两端部分的直径。
  5. 根据权利要求4所述的传动轴轴管接头结构,其特征在于,所述凸形管外圆周面的母线是中部外凸的一段椭圆弧线。
  6. 根据权利要求4所述的传动轴轴管接头结构,其特征在于,所述凸形管外圆周面的母线是由一中部直线段与在所述中部直线段的两端向内倾斜的端部直线段,经由光滑过渡连接而成。
  7. 根据权利要求1所述的传动轴轴管接头结构,其特征在于,所述凹形管内圆周面中间部分的直径小于所述凹形管内圆周面的两端部分的直径。
  8. 根据权利要求7所述的传动轴轴管接头结构,其特征在于,所述凹形管内圆周面的母线是中部内凹的一段椭圆弧线。
  9. 根据权利要求7所述的传动轴轴管接头结构,其特征在于,所述凹形管内圆周面的母线是由一中部直线段与在所述中部直线段的两端向外倾斜的端部直线段,经由光滑过渡连接而成。
  10. 根据权利要求1所述的传动轴轴管接头结构,其特征在于,所述凹形管以及所述凸形管是由金属毛坯管经由涨压成形、旋锻成形或者滚压成形所加工制造而成。
  11. 根据权利要求1所述的传动轴轴管接头结构,其特征在于,所述凹形管以及所述凸形管是由非金属材料采用塑形成形工艺仿形加工制造而成。
  12. 根据权利要求1所述的传动轴轴管接头结构,其特征在于,所述内粘接胶圈是经由所述内接缝内涂满粘接胶,于所述粘接胶凝固后所形成沿着所述轴线方向厚度大小分布变化的内粘接胶圈。
  13. 根据权利要求12所述的传动轴轴管接头结构,其特征在于,所述内接缝于中间部分的间隙小于所述内接缝的两端的间隙,使得所述内粘接胶圈的中间部分的厚度小于所述内粘接胶圈两端的厚度。
  14. 根据权利要求1所述的传动轴轴管接头结构,其特征在于,所述外粘接胶圈是经由所述外接缝内涂满粘接胶,于所述粘接胶凝固后所形成沿着所述轴线方向具有厚度大小分布变化的外粘接胶圈。
  15. 根据权利要求14所述的传动轴轴管接头结构,其特征在于,所述外接缝于中间部分的间隙小于所述外接缝的两端的间隙,使得所述外粘接胶圈的中间部分的厚度小于所述外粘接胶圈两端的厚度。
PCT/CN2021/115980 2020-11-20 2021-09-01 传动轴轴管接头结构 WO2022105363A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/036,662 US11940019B2 (en) 2020-11-20 2021-09-01 Shaft tube joint structure of drive shaft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011309890.6A CN112431866B (zh) 2020-11-20 2020-11-20 传动轴轴管接头结构
CN202011309890.6 2020-11-20

Publications (1)

Publication Number Publication Date
WO2022105363A1 true WO2022105363A1 (zh) 2022-05-27

Family

ID=74693111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115980 WO2022105363A1 (zh) 2020-11-20 2021-09-01 传动轴轴管接头结构

Country Status (3)

Country Link
US (1) US11940019B2 (zh)
CN (1) CN112431866B (zh)
WO (1) WO2022105363A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112431866B (zh) * 2020-11-20 2022-09-20 上海纳铁福传动系统有限公司 传动轴轴管接头结构

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6022054A (en) * 1998-03-20 2000-02-08 Ameron International Corporation Thin wall fiberglass pipe connectors
JP2000320529A (ja) * 1999-05-13 2000-11-24 Tokai Rubber Ind Ltd プロペラシャフト
CN1995792A (zh) * 2006-12-29 2007-07-11 陈阵 复合管接头及其加工方法
JP2014070667A (ja) * 2012-09-28 2014-04-21 Sekisui Chem Co Ltd 管継手及び配管の接続構造
CN106402558A (zh) * 2016-10-19 2017-02-15 青岛红石极威实业集团有限公司 一种热熔式rtp高压管接头以及连接方法
CN107044477A (zh) * 2016-02-09 2017-08-15 本田技研工业株式会社 驱动轴及其制造方法
CN110131323A (zh) * 2019-06-06 2019-08-16 吉林大学 一种碳纤维复合材料传动轴轴管接头结构
US20190360626A1 (en) * 2016-03-03 2019-11-28 Construction Research & Technology Gmbh Pipe Section Joining Member, Pipe Joint and Elongated Pipe
CN112431866A (zh) * 2020-11-20 2021-03-02 上海纳铁福传动系统有限公司 传动轴轴管接头结构

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2004980B (en) * 1977-04-05 1982-03-03 Pilgrim Eng Dev Hollow drive shafting
US20030060295A1 (en) * 2001-09-27 2003-03-27 Myers Christopher Alan Shaft assembly providing a surface for forming joints
CN104632861A (zh) * 2014-12-24 2015-05-20 芜湖市汽车产业技术研究院有限公司 一种纤维复合材料汽车传动轴的制备方法
KR101744705B1 (ko) * 2015-09-14 2017-06-09 한국과학기술원 하이브리드 프로펠러 샤프트 및 이의 제조 방법
CN107605928A (zh) * 2017-11-08 2018-01-19 哈尔滨工业大学(威海) 一种碳纤维缠绕铺层变截面胶粘传动轴及其组合式模具
CN110242682B (zh) * 2019-04-22 2021-03-16 武汉理工大学 一种基于碳纤维复合材料的传动轴扭矩过载保护方法
CN211314824U (zh) * 2019-12-16 2020-08-21 泰安市中研复合材料科技有限公司 一种复合材料传动轴
CN111288090B (zh) * 2020-02-06 2022-07-26 湖北文理学院 复合材料传动轴连接结构

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6022054A (en) * 1998-03-20 2000-02-08 Ameron International Corporation Thin wall fiberglass pipe connectors
JP2000320529A (ja) * 1999-05-13 2000-11-24 Tokai Rubber Ind Ltd プロペラシャフト
CN1995792A (zh) * 2006-12-29 2007-07-11 陈阵 复合管接头及其加工方法
JP2014070667A (ja) * 2012-09-28 2014-04-21 Sekisui Chem Co Ltd 管継手及び配管の接続構造
CN107044477A (zh) * 2016-02-09 2017-08-15 本田技研工业株式会社 驱动轴及其制造方法
US20190360626A1 (en) * 2016-03-03 2019-11-28 Construction Research & Technology Gmbh Pipe Section Joining Member, Pipe Joint and Elongated Pipe
CN106402558A (zh) * 2016-10-19 2017-02-15 青岛红石极威实业集团有限公司 一种热熔式rtp高压管接头以及连接方法
CN110131323A (zh) * 2019-06-06 2019-08-16 吉林大学 一种碳纤维复合材料传动轴轴管接头结构
CN112431866A (zh) * 2020-11-20 2021-03-02 上海纳铁福传动系统有限公司 传动轴轴管接头结构

Also Published As

Publication number Publication date
US11940019B2 (en) 2024-03-26
CN112431866B (zh) 2022-09-20
US20230323920A1 (en) 2023-10-12
CN112431866A (zh) 2021-03-02

Similar Documents

Publication Publication Date Title
WO2022105363A1 (zh) 传动轴轴管接头结构
CN107605928A (zh) 一种碳纤维缠绕铺层变截面胶粘传动轴及其组合式模具
US20220403872A1 (en) Stub shaft
CN202158099U (zh) 一种金属法兰和碳纤维复合材料传动轴的连接结构
CN210531442U (zh) 一种碳纤维复合材料传动轴轴管接头结构
TW200404973A (en) Butt joint between two pipe segments of sheet metal and process for manufacture thereof
JP3913017B2 (ja) 動力伝達部材の連結構造
CN110131323A (zh) 一种碳纤维复合材料传动轴轴管接头结构
CN110332214A (zh) 一种基于轻量化设计的新能源汽车高速驱动的电机轴及其制造工艺
CN205089784U (zh) 一种车用传动轴
JP2011017414A (ja) 動力伝達軸用シャフト
CN113942248B (zh) 一种复合材料传动轴的制作方法及其复合材料传动轴
WO2010116883A1 (ja) ドライブシャフト用中間軸
CN102672344A (zh) 一种铝制管件与钢制轴端件的接合方法
CN111828762A (zh) 一种带分流结构的尼龙管总成
CN203211031U (zh) 汽车碳纤维横臂
CN205207583U (zh) 高强度的汽车驱动桥差速器壳体单元装置
CN213420166U (zh) 带有耐腐蚀及减阻耐磨涂层的钢管
CN207740725U (zh) 一种正六边异形无缝钢套管
CN213298628U (zh) 一种复合连接方式的传动轴接头结构
CN207955236U (zh) 一种降低材料成本的推力杆总成
CN210715538U (zh) 一种轻量化汽车传动轴
CN212251516U (zh) 热熔防腐层内置钢网的钢管
CN217623737U (zh) 一种应用于汽车转向系统的分段式转向中间轴
CN205702121U (zh) 锥形管材制作芯模

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21893514

Country of ref document: EP

Kind code of ref document: A1