WO2022105064A1 - 电感器及其制备方法 - Google Patents

电感器及其制备方法 Download PDF

Info

Publication number
WO2022105064A1
WO2022105064A1 PCT/CN2021/074650 CN2021074650W WO2022105064A1 WO 2022105064 A1 WO2022105064 A1 WO 2022105064A1 CN 2021074650 W CN2021074650 W CN 2021074650W WO 2022105064 A1 WO2022105064 A1 WO 2022105064A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
coil
magnetic core
area
wires
Prior art date
Application number
PCT/CN2021/074650
Other languages
English (en)
French (fr)
Inventor
刘开煌
高鹏
虞成城
Original Assignee
深圳市信维通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市信维通信股份有限公司 filed Critical 深圳市信维通信股份有限公司
Publication of WO2022105064A1 publication Critical patent/WO2022105064A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • H01F37/005Fixed inductances not covered by group H01F17/00 without magnetic core

Definitions

  • the invention relates to the technical field of inductors, in particular to an inductor and a preparation method thereof.
  • the integrated inductor also has the following advantages: stable electromagnetic characteristics, stable temperature rise, low audible noise, good electromagnetic compatibility and shock resistance.
  • the coil needs to be spot welded on the material frame, the smaller size is difficult to fix, and the phenomenon of virtual welding is prone to occur, and the welding resistance is high.
  • the winding of the coil is usually single-channel winding, and increasing the output requires increasing the equipment cost, which is not conducive to mass production.
  • the technical problem to be solved by the present invention is to provide an inductor and a manufacturing method thereof, which can manufacture small-sized integrated inductors in batches.
  • the technical solution adopted in the present invention is: a preparation method of an inductor, comprising:
  • At least one array unit is formed on the magnetic core block, the array unit includes a first coil area and a second coil area arranged oppositely, and are located on both sides of the first coil area and the second coil area respectively
  • the first electrode area and the second electrode area, the first coil area and the second coil area are respectively embedded with the same number and linearly arranged coil wires, the first electrode area and the second electrode area are respectively embedded with an electrode wire, the coil wire and the electrode wire are parallel to each other;
  • the present invention also provides an inductor, which is prepared by using the above-mentioned manufacturing method of the inductor.
  • the beneficial effect of the invention is that: the wire is formed into a coil structure by a combination method, which avoids the problem of high difficulty in coil winding in the traditional small-sized inductor manufacturing process, is conducive to the production of small-sized inductors, and is conducive to mass production of inductance components. Productivity.
  • the inductance magnetic core prepared by the invention is more compact and has stronger anti-saturation current capability.
  • FIG. 1 is a flowchart of a method for manufacturing an inductor according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic structural diagram of a magnetic core block with a pre-embedded wire according to Embodiment 1 of the present invention
  • Fig. 3 is the partial enlarged schematic diagram of A place in Fig. 2;
  • FIG. 4 is a schematic diagram of a cutting process in step S2 of Embodiment 1 of the present invention.
  • FIG. 5 is a schematic structural diagram of a magnetic core slice according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram of the connection of the first cutting plane of the magnetic core slice in step S3 of the first embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the connection of the second cutting plane of the magnetic core slice in step S3 of the first embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a magnetic core slice after forming the first magnetic core and the second magnetic core in step S4 of Embodiment 1 of the present invention.
  • FIG. 9 is a schematic structural diagram of a magnetic core slice after punching in step S5 of Embodiment 1 of the present invention.
  • FIG. 10 is a schematic structural diagram of a magnetic core slice after the electrode holes are filled with metal material in step S5 of Embodiment 1 of the present invention.
  • FIG. 11 is a schematic structural diagram of a magnetic core slice after forming an electrode sheet in step S6 of Embodiment 1 of the present invention.
  • FIG. 12 is a schematic diagram of the cutting process in step S7 in the first embodiment of the present invention.
  • Magnetic core block 11. Magnetic core slice; 12. First magnetic core; 13. Second magnetic core; 14. Inductance unit;
  • a method of manufacturing an inductor includes:
  • At least one array unit is formed on the magnetic core block, the array unit includes a first coil area and a second coil area arranged oppositely, and are located on both sides of the first coil area and the second coil area respectively
  • the first electrode area and the second electrode area, the first coil area and the second coil area are respectively embedded with the same number and linearly arranged coil wires, the first electrode area and the second electrode area are respectively embedded with an electrode wire, the coil wire and the electrode wire are parallel to each other;
  • the beneficial effects of the present invention are that it is conducive to the manufacture of small-sized inductors, facilitates mass production of inductor elements, and improves production efficiency.
  • step (3) is specifically:
  • a first conductive connecting wire is used to connect the electrode wires of the first electrode area in the same array unit with the coil wires of the first coil area close to the first electrode area, Connect the coil wires near the second electrode area in the second coil area in the same array unit with the electrode wires in the second electrode area, and connect other coil wires in the first coil area in the same array unit with the second coil area.
  • Other coil wires are connected in a one-to-one correspondence according to the order of linear arrangement;
  • the coil wires of the first coil area and the coil wires of the second coil area in the same array unit are connected in a one-to-one correspondence in the order of linear arrangement on the second cutting surface of the magnetic core slice using second conductive connecting wires.
  • a complete coil structure can be formed by connecting the electrode wires and the coil wires through the first conductive connection wire and the second conductive connection wire.
  • step (4) the pressing pressure in the press forming is 30-300MPa, and the pressing temperature is 150-300°C.
  • the filling of the metal material in the electrode hole is specifically: forming an electroplated metal layer through a metal electroplating process to fill the electrode hole; or, printing a metal paste to fill the electrode hole.
  • the electrode is drawn out by filling the metal material to connect the first conductive connection line on the electrode wire and the electrode sheet formed subsequently.
  • the metal slurry is a mixed slurry formed by metal powder and a binder
  • the metal powder includes at least one of copper powder, nickel powder, silver powder and gold powder
  • the binder includes acrylic resin, At least one of epoxy resin and phenolic resin.
  • an insulating layer is provided on the surface of the coil wire and the electrode wire; and an insulating layer is provided on the surface of the first conductive connection wire and the second conductive connection wire that is not in contact with the coil wire and the electrode wire.
  • the coil wire is in a flat shape, the width of the coil wire is 0.05-0.5mm, and the thickness is 0.02-0.2mm.
  • the electrode lead is flat, the width of the electrode lead is 0.1-0.8mm, and the thickness is 0.02-0.4mm.
  • the cross-sectional shape of the electrode sheet is square, the width of the electrode sheet is 0.05-2.0 mm, and the thickness is 0.02-0.2 mm.
  • the present invention also provides an inductor, which is prepared by using the above-mentioned manufacturing method of the inductor.
  • the first embodiment of the present invention is: a method for preparing an inductor, which can be applied to prepare an integrated inductor, as shown in FIG. 1 , including the following steps:
  • At least one array unit is formed on the magnetic core block.
  • each array unit includes a first coil arranged oppositely area 101 and the second coil area 102, and the first electrode area 103 and the second electrode area 104 on both sides of the first coil area 101 and the second coil area 102, respectively, the first coil area 101 and the second
  • the coil regions 102 are respectively embedded with the same number of linearly arranged coil wires 21
  • the first electrode region 103 and the second electrode region 104 are respectively embedded with an electrode wire 22
  • the coil wires 21 and the electrode wires 22 are parallel to each other.
  • the first coil area and the second coil area are respectively provided with coil through holes penetrating the magnetic core block, and the coil through holes in the first coil area and the coil through holes in the second coil area are the same in number and arranged linearly, Preferably, the positions are also in one-to-one correspondence; the coil through holes are all provided with coil wires.
  • the first electrode region and the second electrode region are respectively provided with an electrode through hole, preferably, the positions of the two electrode through holes correspond to each other; electrode wires are arranged in the electrode through holes.
  • insulating layers are provided on the outer surfaces of the coil wires and the electrode wires except for the two end faces. As shown in FIG. 3 , an insulating layer 3 is provided between the coil wire 21 and the magnetic core block 10 .
  • the array units are arranged as close as possible to improve the utilization rate of the magnetic core block.
  • the nine array elements are arranged seamlessly.
  • the magnetic core block 10 is transversely cut to obtain at least one magnetic core slice 11 .
  • five magnetic core slices are obtained by cutting.
  • a single core slice 11 is shown in FIG. 5 .
  • S3 Use the first conductive connecting wire to connect the electrode wires of the first electrode area, the coil wires of the first coil area, the coil wires of the second coil area and the The electrode wires of the second electrode area are connected in sequence; the coil wires of the first coil area and the coil wires of the second coil area in the same array unit are connected by a second conductive connecting wire on the second cutting surface of the magnetic core slice to connect.
  • the cutting plane is the plane parallel to the cutting direction.
  • the first conductive connecting wires 23 are used on the first cutting surface of the magnetic core slice 11 to connect the electrode wires of the first electrode area in the same array unit to those in the first coil area that are close to each other.
  • the coil wires in the first electrode area are connected, the coil wires near the second electrode area in the second coil area in the same array unit are connected with the electrode wires in the second electrode area, and the first coil in the same array unit is connected.
  • the other coil wires in the area and the other coil wires in the second coil area are connected in a one-to-one correspondence with other coil wires in the order of linear arrangement.
  • the first cutting surface of the magnetic core slice uses The first conductive connecting wire connects the electrode wires in the first electrode area in the same array unit with the first coil wire in the first coil area, and connects the second coil wire in the first coil area with the second coil wire in the second coil area. Connect the first coil wire in the first coil area to the second coil wire in the second coil area, and connect the fourth coil wire in the first coil area to the second coil wire in the first coil area.
  • the third coil wire in the second coil area is connected, and the fourth coil wire in the second coil area is connected with the electrode wire in the second electrode area.
  • the coil wires of the first coil area and the coil wires of the second coil area in the same array unit are linearly arranged on the second cut surface of the magnetic core slice 11 by using the second conductive connecting wires 24 The order of the one-to-one correspondence is connected.
  • the above example is still taken as an example, that is, the first coil wire in the first coil area and the first coil wire in the second coil area in the same array unit are connected by the second conductive connecting wire on the second cutting surface. Make connections, connect the second coil wire in the first coil area to the second coil wire in the second coil area, and connect the third coil wire in the first coil area to the third coil wire in the second coil area. The three coil wires are connected, and the fourth coil wire in the first coil area is connected with the fourth coil wire in the second coil area.
  • the electrode wire and the coil wire can be combined to form a coil structure.
  • an insulating layer is provided on the surfaces of the first conductive connection wire and the second conductive connection wire that are not in contact with the coil wire and the electrode wire, that is, the area in direct contact with the coil wire and the electrode wire has no insulating layer, and other areas are attached with an insulating layer.
  • S4 Fill the first cut surface and the second cut surface of the magnetic core slice with magnetic powder respectively, and press and form to form a first magnetic core and a second magnetic core, and the first magnetic core embeds the first conductive A connecting wire, the second magnetic core embeds the second conductive connecting wire.
  • the first magnetic core covers the first cutting surface and embeds the first conductive connecting wire; fill the magnetic powder with magnetic powder.
  • the second cutting surface of the core is sliced and press-molded to form a second magnetic core, the second magnetic core covers the second cutting surface and embeds the second conductive connection lines.
  • the magnetic core slice 11 after forming the first magnetic core 12 and the second magnetic core 13 is shown in FIG. 8 .
  • the magnetic powder is pressed under the pressure of 30-300MPa and the temperature of 150-300°C. That is, the pressing pressure in the pressing process is 30-300MPa, and the pressing temperature is 150-300°C.
  • S5 Punch holes on the first magnetic core at positions corresponding to the electrode wires until the first conductive connection wires on the electrode wires are exposed to form electrode holes, and fill the electrode holes with metal materials.
  • the magnetic core slice 11 after the electrode hole 4 is punched is shown in FIG. 9
  • the magnetic core slice 11 after the metal material 5 is filled is shown in FIG. 10 .
  • the electrodes are drawn out by filling the metal material.
  • the filling metal material can be realized by means of metal electroplating process or printing metal paste.
  • an electroplating metal layer is formed through a metal electroplating process, and the electrode holes are completely filled; that is, metal plating is performed until the electrode holes are completely filled.
  • the electrode holes are filled by printing metal paste.
  • the metal slurry is a mixed slurry formed by metal powder and a binder, the metal powder includes at least one of copper powder, nickel powder, silver powder and gold powder, and the binder includes acrylic resin, epoxy resin and at least one of phenolic resins.
  • the coil wire is flat, the width of the coil wire is 0.05-0.5mm, and the thickness is 0.02-0.2mm; the electrode wire is flat, and the width of the electrode wire is 0.1-0.8mm, thickness is 0.02-0.4mm.
  • the cross-sectional shape of the electrode sheet is square, the width of the electrode sheet is 0.05-2.0 mm, and the thickness is 0.02-0.2 mm.
  • the material of the magnetic core block and the magnetic powder include atomized iron powder, reduced iron powder, carbonyl iron powder, iron-silicon-chromium alloy, iron-nickel alloy, iron-silicon alloy, iron-aluminum alloy, iron-silicon-aluminum alloy and amorphous at least one of the alloys.
  • the material of the coil wire and the electrode wire includes at least one of copper, nickel, silver and gold.
  • the material of the electrode sheet includes at least one of copper, nickel, silver, gold and tin.
  • the wires are formed into a coil structure in a combined manner, which avoids the problem of high difficulty in coil winding in the traditional small inductor manufacturing process, is conducive to the manufacture of small size inductors, and facilitates mass production of inductor components, thereby improving production efficiency.
  • the inductance magnetic core prepared by the invention is more compact and has stronger anti-saturation current capability.
  • This embodiment is a specific embodiment of the first embodiment.
  • the material of the magnetic core block and the magnetic powder are iron-silicon-chromium alloy
  • the cross-sectional size of the coil wire is 0.2mm*0.04mm
  • the cross-sectional size of the electrode wire is 0.2mm*0.04mm
  • the material of the coil wire and the electrode wire is 0.2mm*0.04mm.
  • They are all made of copper, with an insulating layer attached to the surface; the area where the first conductive connecting wire and the second conductive connecting wire directly contact the coil wire and the electrode wire have no insulating layer, and other areas are attached with an insulating layer; the height of the magnetic core slice is 0.8 mm.
  • the pressure of the press molding process used is 150MPa
  • the temperature during pressing is 200°C
  • the metal material used to fill the electrode holes is conductive paste
  • the conductive paste is a mixture of silver powder, copper powder and epoxy resin binder.
  • the cross-sectional size of the electrode sheet is 1.0*0.1mm, and finally an integrated inductor with a size specification of 2.0mm*1.0mm*0.8mm is obtained.
  • This embodiment is another specific embodiment of the first embodiment.
  • the material of the magnetic core block and the magnetic powder are carbonyl iron powder
  • the cross-sectional size of the coil wire is 0.1mm*0.02mm
  • the cross-sectional size of the electrode wire is 0.1mm*0.02mm
  • the material of the coil wire and the electrode wire are all It is made of copper and has an insulating layer on the surface; the area where the first conductive connecting wire and the second conductive connecting wire directly contact the coil wire and the electrode wire has no insulating layer, and other areas have an insulating layer; the height of the magnetic core slice is 0.3mm .
  • the pressure of the press molding process used is 150MPa
  • the temperature during pressing is 150°C
  • the metal material used to fill the electrode holes is electroplated copper
  • the cross-sectional size of the electrode sheet is 0.4*0.05mm
  • the final size specification is 0.8mm*0.4mm*0.3 mm integrally formed inductors.
  • the present invention provides an inductor and a manufacturing method thereof, which form a coil structure by combining wires, which avoids the problem of high difficulty in coil winding in the manufacturing process of traditional small inductors, and is beneficial to the manufacture of small-sized inductors. , and is conducive to the mass production of inductive components and improve production efficiency.
  • the inductance magnetic core prepared by the invention is more compact and has stronger anti-saturation current capability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

本发明公开了一种电感器及其制备方法,方法包括:在磁芯块体上形成至少一个的阵列单元,其中的两个线圈区域分别包埋有相同数量且线性排列的线圈导线,两个电极区域分别包埋有电极导线;切割得到磁芯切片;在磁芯切片的第一切割面上使用第一导电连接线连接两个电极区域的电极导线和两个线圈区域的线圈导线;在磁芯切片的第二切割面上使用第二导电连接线连接两个线圈区域的线圈导线;分别用磁粉填充第一切割面和第二切割面,并压制成型,形成第一磁芯和第二磁芯;在第一磁芯上形成电极孔,并填充金属材料;在第一磁芯上形成电极片;按照阵列单元对磁芯切片进行分割,得到至少一个的电感单元。本发明有利于制作小尺寸的电感及批量化生产电感元件。

Description

电感器及其制备方法 技术领域
本发明涉及电感器技术领域,尤其涉及一种电感器及其制备方法。
背景技术
随着电子产品的快速发展,高频化、集成化、小型化是其技术发展的趋势。智能手机、笔电等产品多采用电源管理IC统一管理各项功能模块,功率电感起降低纹波电流的作用。对功率型电感器总体上的要求是小型化、薄型化、高频、低DCR、大电流、低EMI(电磁干扰)和低制造成本。一体成型电感的显著优势是耐大电流。另外,一体成型电感的损耗更低,转换效率更高,能有效地提升手机的续航能力;一体成型电感的外形尺寸比其他结构的要更小。此外,一体成型电感还具有以下优势:电磁特性平稳、温升稳定、低可听噪声、电磁兼容性好以及耐冲击等。
对于传统的一体成型电感,需要将线圈点焊在料架上,较小的尺寸难以固定,且容易出现虚焊现象,焊接电阻较高。
此外,对于传统的一体成型电感,线圈的绕制通常为单通道绕制,提高产量需要增加设备成本,不利于大规模生产。
技术问题
本发明所要解决的技术问题是:提供一种电感器及其制备方法,可批量制备出小尺寸的一体成型电感。
技术解决方案
为了解决上述技术问题,本发明采用的技术方案为:一种电感器的制备方法,包括:
(1)在磁芯块体上形成至少一个的阵列单元,所述阵列单元包括相对设置的第一线圈区域和第二线圈区域,以及分别位于所述第一线圈区域和第二线圈区域两侧的第一电极区域和第二电极区域,所述第一线圈区域和第二线圈区域分别包埋有相同数量且线性排列的线圈导线,所述第一电极区域和第二电极区域分别包埋有一条电极导线,所述线圈导线和电极导线相互平行;
(2)沿与所述线圈导线和电极导线的长度方向垂直的方向,对所述磁芯块体进行切割,得到磁芯切片;
(3)在所述磁芯切片的第一切割面上使用第一导电连接线将同一阵列单元中的第一电极区域的电极导线、第一线圈区域的线圈导线、第二线圈区域的线圈导线和第二电极区域的电极导线依次进行连接;
在所述磁芯切片的第二切割面上使用第二导电连接线将同一阵列单元中的第一线圈区域的线圈导线与第二线圈区域的线圈导线进行连接;
(4)分别用磁粉填充所述磁芯切片的第一切割面和第二切割面,并压制成型,形成第一磁芯和第二磁芯,所述第一磁芯包埋所述第一导电连接线,所述第二磁芯包埋所述第二导电连接线;
(5)在所述第一磁芯上对应电极导线的位置进行打孔,直至露出电极导线上的第一导电连接线,形成电极孔,并在所述电极孔内填充金属材料;
(6)分别在所述第一磁芯上对应第一电极区域和第二电极区域的位置进行金属化,形成电极片;
(7)按照阵列单元对所述磁芯切片进行分割,得到至少一个的电感单元。
本发明还提出一种电感器,采用如上所述的电感器的制备方法制备获得。
有益效果
本发明的有益效果在于:通过组合方式将导线形成线圈结构,避免了传统小型电感制备过程存在的线圈绕制难度高等问题,有利于制作小尺寸的电感,且有利于批量化生产电感元件,提高生产效率。本发明制备得到的电感磁芯更加致密,抗饱和电流能力更强。
附图说明
图1为本发明实施例一的一种电感器的制备方法的流程图;
图2为本发明实施例一的预埋导线的磁芯块体的结构示意图;
图3为图2中A处的局部放大示意图;
图4为本发明实施例一的步骤S2中的切割工序的示意图;
图5为本发明实施例一的磁芯切片的结构示意图;
图6为本发明实施例一的步骤S3中的磁芯切片第一切割面的连接示意图;
图7为本发明实施例一的步骤S3中的磁芯切片第二切割面的连接示意图;
图8为本发明实施例一的步骤S4中形成第一磁芯和第二磁芯后的磁芯切片的结构示意图;
图9为本发明实施例一的步骤S5中打孔后的磁芯切片的结构示意图;
图10为本发明实施例一的步骤S5中电极孔填充金属材料后的磁芯切片的结构示意图;
图11为本发明实施例一的步骤S6中形成电极片后的磁芯切片的结构示意图;
图12为本发明实施例一的步骤S7中的切割工序的示意图。
标号说明:
10、磁芯块体;11、磁芯切片;12、第一磁芯;13、第二磁芯;14、电感单元;
101、第一线圈区域;102、第二线圈区域;103、第一电极区域;104、第二电极区域;
21、线圈导线;22、电极导线;23、第一导电连接线;24、第二导电连接线;
3、绝缘层;4、电极孔;5、金属材料;6、电极片。
本发明的实施方式
为详细说明本发明的技术内容、所实现目的及效果,以下结合实施方式并配合附图详予说明。
请参阅图1,一种电感器的制备方法,包括:
(1)在磁芯块体上形成至少一个的阵列单元,所述阵列单元包括相对设置的第一线圈区域和第二线圈区域,以及分别位于所述第一线圈区域和第二线圈区域两侧的第一电极区域和第二电极区域,所述第一线圈区域和第二线圈区域分别包埋有相同数量且线性排列的线圈导线,所述第一电极区域和第二电极区域分别包埋有一条电极导线,所述线圈导线和电极导线相互平行;
(2)沿与所述线圈导线和电极导线的长度方向垂直的方向,对所述磁芯块体进行切割,得到磁芯切片;
(3)在所述磁芯切片的第一切割面上使用第一导电连接线将同一阵列单元中的第一电极区域的电极导线、第一线圈区域的线圈导线、第二线圈区域的线圈导线和第二电极区域的电极导线依次进行连接;
在所述磁芯切片的第二切割面上使用第二导电连接线将同一阵列单元中的第一线圈区域的线圈导线与第二线圈区域的线圈导线进行连接;
(4)分别用磁粉填充所述磁芯切片的第一切割面和第二切割面,并压制成型,形成第一磁芯和第二磁芯,所述第一磁芯包埋所述第一导电连接线,所述第二磁芯包埋所述第二导电连接线;
(5)在所述第一磁芯上对应电极导线的位置进行打孔,直至露出电极导线上的第一导电连接线,形成电极孔,并在所述电极孔内填充金属材料;
(6)分别在所述第一磁芯上对应第一电极区域和第二电极区域的位置进行金属化,形成电极片;
(7)按照阵列单元对所述磁芯切片进行分割,得到至少一个的电感单元。
从上述描述可知,本发明的有益效果在于:有利于制作小尺寸的电感,且有利于批量化生产电感元件,提高生产效率。
进一步地,步骤(3)具体为:
在所述磁芯切片的第一切割面上使用第一导电连接线将同一阵列单元中的第一电极区域的电极导线与第一线圈区域中靠近所述第一电极区域的线圈导线进行连接,将同一阵列单元中的第二线圈区域中靠近第二电极区域的线圈导线与第二电极区域的电极导线进行连接,将同一阵列单元中的第一线圈区域的其他线圈导线与第二线圈区域的其他线圈导线按照线性排列的顺序一一对应进行错位连接;
在所述磁芯切片的第二切割面上使用第二导电连接线将同一阵列单元中的第一线圈区域的线圈导线与第二线圈区域的线圈导线按照线性排列的顺序一一对应进行连接。
由上述描述可知,使得电极导线和线圈导线通过第一导电连接线和第二导电连接线的连接,可以形成完整的线圈结构。
进一步地,步骤(4)中,所述压制成型中的压制压力为30-300MPa,压制温度为150-300℃。
进一步地,步骤(5)中,在所述电极孔内填充金属材料具体为:通过金属电镀工艺形成电镀金属层,填充所述电极孔;或,通过印刷金属浆料,填充所述电极孔。
由上述描述可知,通过填充金属材料,将电极引出,以连接电极导线上的第一导电连接线和后续形成的电极片。
进一步地,所述金属浆料为金属粉和粘结剂形成的混合浆料,所述金属粉包括铜粉、镍粉、银粉和金粉中的至少一种,所述粘结剂包括丙烯酸树脂、环氧树脂和酚醛树脂中的至少一种。
进一步地,所述线圈导线和电极导线的表面上设有绝缘层;所述第一导电连接线和第二导电连接线未与所述线圈导线和电极导线接触的表面上设有绝缘层。
进一步地,所述线圈导线呈扁平状,所述线圈导线的宽度为0.05-0.5mm,厚度为0.02-0.2mm。
进一步地,所述电极导线呈扁平状,所述电极导线的宽度为0.1-0.8mm,厚度为0.02-0.4mm。
进一步地,所述电极片的截面形状为方形,所述电极片的宽度为0.05-2.0mm,厚度为0.02-0.2mm。
本发明还提出一种电感器,采用如上所述的电感器的制备方法制备获得。
实施例一
请参照图1-12,本发明的实施例一为:一种电感器的制备方法,可应用于制备一体成型的电感器,如图1所示,包括如下步骤:
S1:在磁芯块体上形成至少一个的阵列单元。
如图2所示,图2中在磁芯块体10上形成了九个阵列单元(图2中用虚线划分出的9个相同区域的部分),每个阵列单元包括相对设置的第一线圈区域101和第二线圈区域102,以及分别位于所述第一线圈区域101和第二线圈区域102两侧的第一电极区域103和第二电极区域104,所述第一线圈区域101和第二线圈区域102分别包埋有相同数量且线性排列的线圈导线21,所述第一电极区域103和第二电极区域104分别包埋有一条电极导线22,所述线圈导线21和电极导线22相互平行。
即第一线圈区域和第二线圈区域分别设有贯穿所述磁芯块体的线圈通孔,第一线圈区域中的线圈通孔和第二线圈区域中的线圈通孔数量一致且线性排列,优选地,位置也一一对应;所述线圈通孔内均设有线圈导线。第一电极区域和第二电极区域分别设有一个电极通孔,优选地,两个电极通孔的位置对应;所述电极通孔内均设有电极导线。
进一步地,线圈导线和电极导线除两个端面外的外表面上设有绝缘层。如图3所示,线圈导线21和磁芯块体10之间设有绝缘层3。
优选地,阵列单元之间尽可能地紧密设置,以提高磁芯块体的利用率。图2中,9个阵列单元之间无缝设置。
S2:沿与所述线圈导线和电极导线长度方向垂直的方向,对所述磁芯块体进行切割,得到磁芯切片。
如图4所示,即横向切割所述磁芯块体10,得到至少一个的磁芯切片11,图4中切割得到5个磁芯切片。单个磁芯切片11如图5所示。
S3:在所述磁芯切片的第一切割面上使用第一导电连接线将同一阵列单元中的第一电极区域的电极导线、第一线圈区域的线圈导线、第二线圈区域的线圈导线和第二电极区域的电极导线依次进行连接;在所述磁芯切片的第二切割面上使用第二导电连接线将同一阵列单元中的第一线圈区域的线圈导线与第二线圈区域的线圈导线进行连接。其中,切割面即与切割方向平行的面。
具体地,如图6所示,在所述磁芯切片11的第一切割面上使用第一导电连接线23将同一阵列单元中的第一电极区域的电极导线与第一线圈区域中靠近所述第一电极区域的线圈导线进行连接,将同一阵列单元中的第二线圈区域中靠近第二电极区域的线圈导线与第二电极区域的电极导线进行连接,将同一阵列单元中的第一线圈区域的其他线圈导线与第二线圈区域的其他线圈导线按照线性排列的顺序一一对应进行错位连接。
例如,本实施例中以包括每个线圈区域中均包埋有四条线圈导线为例,假设按照第一电极区域至第二电极区域的方向排序,则在磁芯切片的第一切割面上用第一导电连接线将同一阵列单元中第一电极区域的电极导线与第一线圈区域中的第一条线圈导线进行连接,将第一线圈区域中的第二条线圈导线与第二线圈区域中的第一条线圈导线进行连接,将第一线圈区域中的第三条线圈导线与第二线圈区域中的第二条线圈导线进行连接,将第一线圈区域中的第四条线圈导线与第二线圈区域中的第三条线圈导线进行连接,将第二线圈区域中的第四条线圈导线与第二电极区域的电极导线进行连接。
如图7所示,在所述磁芯切片11的第二切割面上使用第二导电连接线24将同一阵列单元中的第一线圈区域的线圈导线与第二线圈区域的线圈导线按照线性排列的顺序一一对应进行连接。
例如,仍以上述例子为例,即在第二切割面上用第二导电连接线将同一阵列单元中第一线圈区域中的第一条线圈导线与第二线圈区域中的第一条线圈导线进行连接,将第一线圈区域中的第二条线圈导线与第二线圈区域中的第二条线圈导线进行连接,将第一线圈区域中的第三条线圈导线与第二线圈区域中的第三条线圈导线进行连接,将第一线圈区域中的第四条线圈导线与第二线圈区域中的第四条线圈导线进行连接。
此时,通过第一导电连接线和第二导电连接线的连接,即可将电极导线和线圈导线组合起来,形成线圈结构。
进一步地,第一导电连接线和第二导电连接线未与线圈导线和电极导线接触的表面上设有绝缘层,即与线圈导线和电极导线直接接触区域没有绝缘层,其他区域附有绝缘层。
S4:分别用磁粉填充所述磁芯切片的第一切割面和第二切割面,并压制成型,形成第一磁芯和第二磁芯,所述第一磁芯包埋所述第一导电连接线,所述第二磁芯包埋所述第二导电连接线。
即用磁粉填充所述磁芯切片的第一切割面并压制成型,形成第一磁芯,所述第一磁芯覆盖第一切割面并包埋第一导电连接线;用磁粉填充所述磁芯切片的第二切割面并压制成型,形成第二磁芯,所述第二磁芯覆盖第二切割面并包埋第二导电连接线。形成第一磁芯12和第二磁芯13后的磁芯切片11如图8所示。
进一步地,在30-300MPa的压力,150-300℃的温度下,对磁粉进行压制。即压制处理中的压制压力为30-300MPa,压制温度为150-300℃。
S5:在所述第一磁芯上对应电极导线的位置进行打孔,直至露出电极导线上的第一导电连接线,形成电极孔,并在所述电极孔内填充金属材料。打出电极孔4后的磁芯切片11如图9所示,填充金属材料5后的磁芯切片11如10所示。通过填充金属材料,将电极引出。
其中,填充金属材料可采用金属电镀工艺或印刷金属浆料的方式实现。具体地,通过金属电镀工艺形成电镀金属层,完全填充所述电极孔;即电镀金属直至电极孔被完整填充。或者通过印刷金属浆料,填充所述电极孔。所述金属浆料为金属粉和粘结剂形成的混合浆料,所述金属粉包括铜粉、镍粉、银粉和金粉中的至少一种,所述粘结剂包括丙烯酸树脂、环氧树脂和酚醛树脂中的至少一种。
S6:分别在所述第一磁芯上对应第一电极区域和第二电极区域的位置进行金属化,形成电极片。形成电极片6后的磁芯切片11如图11所示。
S7:按照阵列单元对所述磁芯切片进行分割,得到至少一个的电感单元。如图12所示,由于步骤S1中在磁芯块体上形成了九个阵列单元,因此此时按照阵列单元的区域对磁芯切片进行切割,得到九个电感单元14。
在可选的实施例中,所述线圈导线呈扁平状,所述线圈导线的宽度为0.05-0.5mm,厚度为0.02-0.2mm;所述电极导线呈扁平状,所述电极导线的宽度为0.1-0.8mm,厚度为0.02-0.4mm。所述电极片的截面形状为方形,所述电极片的宽度为0.05-2.0mm,厚度为0.02-0.2mm。
所述磁芯块体的材质和所述磁粉包括雾化铁粉、还原铁粉、羰基铁粉、铁硅铬合金、铁镍合金、铁硅合金、铁铝合金、铁硅铝合金和非晶质合金中的至少一种。所述线圈导线和电极导线的材质包括铜、镍、银和金中的至少一种。所述电极片的材质包括铜、镍、银、金和锡中的至少一种。
本实施例通过组合方式将导线形成线圈结构,避免了传统小型电感制备过程存在的线圈绕制难度高等问题,有利于制作小尺寸的电感,且有利于批量化生产电感元件,提高生产效率。本发明制备得到的电感磁芯更加致密,抗饱和电流能力更强。
实施例二
本实施例是实施例一的一种具体实施例。
本实施例中,磁芯块体的材质和磁粉为铁硅铬合金,线圈导线的截面尺寸为0.2mm*0.04mm,电极导线的截面尺寸为0.2mm*0.04mm,线圈导线和电极导线的材质均为铜材质,且表面附有绝缘层;第一导电连接线和第二导电连接线直接接触线圈导线和电极导线的区域没有绝缘层,其他区域附有绝缘层;磁芯切片的高度为0.8mm。所用的压制成型工艺压力为150MPa,压制时温度为200℃,电极孔所用填充的金属材料为导电浆料,导电浆料为银粉、铜粉和环氧树脂粘合剂混合物,电极片的截面尺寸为1.0*0.1mm,最终得到尺寸规格为2.0mm*1.0mm*0.8mm的一体成型电感。
实施例三
本实施例是实施例一的另一种具体实施例。
本实施例中,磁芯块体的材质和磁粉为羰基铁粉,线圈导线的截面尺寸为0.1mm*0.02mm,电极导线的截面尺寸为0.1mm*0.02mm,线圈导线和电极导线的材质均为铜材质,且表面附有绝缘层;第一导电连接线和第二导电连接线直接接触线圈导线和电极导线的区域没有绝缘层,其他区域附有绝缘层;磁芯切片的高度为0.3mm。所用的压制成型工艺压力为150MPa,压制时温度为150℃,电极孔所用填充的金属材料为电镀铜,电极片的截面尺寸为0.4*0.05mm,最终得到尺寸规格为0.8mm*0.4mm*0.3mm的一体成型电感。
综上所述,本发明提供的一种电感器及其制备方法,通过组合方式将导线形成线圈结构,避免了传统小型电感制备过程存在的线圈绕制难度高等问题,有利于制作小尺寸的电感,且有利于批量化生产电感元件,提高生产效率。本发明制备得到的电感磁芯更加致密,抗饱和电流能力更强。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等同变换,或直接或间接运用在相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种电感器的制备方法,其特征在于,包括:
    (1)在磁芯块体上形成至少一个的阵列单元,所述阵列单元包括相对设置的第一线圈区域和第二线圈区域,以及分别位于所述第一线圈区域和第二线圈区域两侧的第一电极区域和第二电极区域,所述第一线圈区域和第二线圈区域分别包埋有相同数量且线性排列的线圈导线,所述第一电极区域和第二电极区域分别包埋有一条电极导线,所述线圈导线和电极导线相互平行;
    (2)沿与所述线圈导线和电极导线的长度方向垂直的方向,对所述磁芯块体进行切割,得到磁芯切片;
    (3)在所述磁芯切片的第一切割面上使用第一导电连接线将同一阵列单元中的第一电极区域的电极导线、第一线圈区域的线圈导线、第二线圈区域的线圈导线和第二电极区域的电极导线依次进行连接;
    在所述磁芯切片的第二切割面上使用第二导电连接线将同一阵列单元中的第一线圈区域的线圈导线与第二线圈区域的线圈导线进行连接;
    (4)分别用磁粉填充所述磁芯切片的第一切割面和第二切割面,并压制成型,形成第一磁芯和第二磁芯,所述第一磁芯包埋所述第一导电连接线,所述第二磁芯包埋所述第二导电连接线;
    (5)在所述第一磁芯上对应电极导线的位置进行打孔,直至露出电极导线上的第一导电连接线,形成电极孔,并在所述电极孔内填充金属材料;
    (6)分别在所述第一磁芯上对应第一电极区域和第二电极区域的位置进行金属化,形成电极片;
    (7)按照阵列单元对所述磁芯切片进行分割,得到至少一个的电感单元。
  2. 根据权利要求1所述的电感器的制备方法,其特征在于,步骤(3)具体为:
    在所述磁芯切片的第一切割面上使用第一导电连接线将同一阵列单元中的第一电极区域的电极导线与第一线圈区域中靠近所述第一电极区域的线圈导线进行连接,将同一阵列单元中的第二线圈区域中靠近第二电极区域的线圈导线与第二电极区域的电极导线进行连接,将同一阵列单元中的第一线圈区域的其他线圈导线与第二线圈区域的其他线圈导线按照线性排列的顺序一一对应进行错位连接;
    在所述磁芯切片的第二切割面上使用第二导电连接线将同一阵列单元中的第一线圈区域的线圈导线与第二线圈区域的线圈导线按照线性排列的顺序一一对应进行连接。
  3. 根据权利要求1所述的电感器的制备方法,其特征在于,步骤(4)中,所述压制成型中的压制压力为30-300MPa,压制温度为150-300℃。
  4. 根据权利要求1所述的电感器的制备方法,其特征在于,步骤(5)中,在所述电极孔内填充金属材料具体为:通过金属电镀工艺形成电镀金属层,填充所述电极孔;或,通过印刷金属浆料,填充所述电极孔。
  5. 根据权利要求4所述的电感器的制备方法,其特征在于,所述金属浆料为金属粉和粘结剂形成的混合浆料,所述金属粉包括铜粉、镍粉、银粉和金粉中的至少一种,所述粘结剂包括丙烯酸树脂、环氧树脂和酚醛树脂中的至少一种。
  6. 根据权利要求1所述的电感器的制备方法,其特征在于,所述线圈导线和电极导线的表面上设有绝缘层;所述第一导电连接线和第二导电连接线未与所述线圈导线和电极导线接触的表面上设有绝缘层。
  7. 根据权利要求1所述的电感器的制备方法,其特征在于,所述线圈导线呈扁平状,所述线圈导线的宽度为0.05-0.5mm,厚度为0.02-0.2mm。
  8. 根据权利要求1所述的电感器的制备方法,其特征在于,所述电极导线呈扁平状,所述电极导线的宽度为0.1-0.8mm,厚度为0.02-0.4mm。
  9. 根据权利要求1所述的电感器的制备方法,其特征在于,所述电极片的截面形状为方形,所述电极片的宽度为0.05-2.0mm,厚度为0.02-0.2mm。
  10. 一种电感器,其特征在于,采用如权利要求1-9任一项所述的电感器的制备方法制备获得。
PCT/CN2021/074650 2020-11-23 2021-02-01 电感器及其制备方法 WO2022105064A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011322392.5A CN112635182B (zh) 2020-11-23 2020-11-23 电感器及其制备方法
CN202011322392.5 2020-11-23

Publications (1)

Publication Number Publication Date
WO2022105064A1 true WO2022105064A1 (zh) 2022-05-27

Family

ID=75303748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074650 WO2022105064A1 (zh) 2020-11-23 2021-02-01 电感器及其制备方法

Country Status (2)

Country Link
CN (1) CN112635182B (zh)
WO (1) WO2022105064A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114551074B (zh) * 2022-01-05 2023-08-11 深圳市信维通信股份有限公司 一种电感制作方法
CN117038298B (zh) * 2023-08-23 2024-02-20 东莞市三体微电子技术有限公司 一种隔离型电感排及其制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09246080A (ja) * 1996-03-13 1997-09-19 Taiyo Yuden Co Ltd チップ状電子部品素地の製造方法
US20030227008A1 (en) * 2002-06-07 2003-12-11 Kimiharu Anao Conductive paste
CN1519867A (zh) * 2003-01-31 2004-08-11 Tdk��ʽ���� 电感元件、叠层电子元件、叠层电子元件模块及制造这些元件和模块的方法
CN1661736A (zh) * 2004-02-27 2005-08-31 Tdk株式会社 感应元件及其制造方法
CN104603889A (zh) * 2012-09-10 2015-05-06 Nec东金株式会社 片状电感器、层叠基板内置型电感器及它们的制造方法
CN108701527A (zh) * 2016-02-16 2018-10-23 株式会社村田制作所 电感器部件以及电感器部件的制造方法
CN110619987A (zh) * 2019-09-25 2019-12-27 深圳振华富电子有限公司 可调式贴片电感器及其制备方法
JP2020021834A (ja) * 2018-08-01 2020-02-06 株式会社トーキン インダクタ及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8378777B2 (en) * 2008-07-29 2013-02-19 Cooper Technologies Company Magnetic electrical device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09246080A (ja) * 1996-03-13 1997-09-19 Taiyo Yuden Co Ltd チップ状電子部品素地の製造方法
US20030227008A1 (en) * 2002-06-07 2003-12-11 Kimiharu Anao Conductive paste
CN1519867A (zh) * 2003-01-31 2004-08-11 Tdk��ʽ���� 电感元件、叠层电子元件、叠层电子元件模块及制造这些元件和模块的方法
CN1661736A (zh) * 2004-02-27 2005-08-31 Tdk株式会社 感应元件及其制造方法
CN104603889A (zh) * 2012-09-10 2015-05-06 Nec东金株式会社 片状电感器、层叠基板内置型电感器及它们的制造方法
CN108701527A (zh) * 2016-02-16 2018-10-23 株式会社村田制作所 电感器部件以及电感器部件的制造方法
JP2020021834A (ja) * 2018-08-01 2020-02-06 株式会社トーキン インダクタ及びその製造方法
CN110619987A (zh) * 2019-09-25 2019-12-27 深圳振华富电子有限公司 可调式贴片电感器及其制备方法

Also Published As

Publication number Publication date
CN112635182B (zh) 2021-10-22
CN112635182A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
JP7190527B2 (ja) 金属粉末コアからなる集積チップインダクタの製造方法
WO2022105064A1 (zh) 电感器及其制备方法
WO2021043343A2 (zh) 一种一体成型电感及其制作方法
CN103400819A (zh) 一种引线框架及其制备方法和应用其的封装结构
CN110429075B (zh) 高密度多侧面引脚外露的封装结构及其生产方法
CN103681593A (zh) 一种无引线陶瓷片式载体封装结构及其制备工艺
CN201466022U (zh) 微型贴片二极管封装的引线框架与芯片连接结构
CN112967878A (zh) 一种电感器的制造方法
CN104183359A (zh) 铁硅铝粉一体压制电感及其生产工艺
CN103377821B (zh) 表面粘着型晶片线圈的制造方法
CN218482238U (zh) 一种sot23引线框架结构
TWI629699B (zh) Electronic component manufacturing method, electronic component
CN215007783U (zh) 电感器及电子设备
CN212570657U (zh) 一种超薄型模压小体积大电流电感器
KR20180017479A (ko) 코일 부품
CN215417806U (zh) 一种电感器
CN104078204B (zh) 电感器和用于制造其的方法
CN211181908U (zh) 一种带凹槽的一体成型电感
TW202211265A (zh) 電子組件以及其製造方法
CN111223650A (zh) 一种超薄型模压小体积大电流电感器
CN215644034U (zh) 一种电感元件
CN113053636A (zh) 一种大电流表面贴装功率电感器及其制造方法
CN111899970A (zh) 电感器的制备方法
CN111945202B (zh) 陶瓷无引线外壳的盲孔电镀方法
KR102558332B1 (ko) 인덕터 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21893224

Country of ref document: EP

Kind code of ref document: A1