WO2022104996A1 - 一种复合金属箔及线路板 - Google Patents

一种复合金属箔及线路板 Download PDF

Info

Publication number
WO2022104996A1
WO2022104996A1 PCT/CN2020/137921 CN2020137921W WO2022104996A1 WO 2022104996 A1 WO2022104996 A1 WO 2022104996A1 CN 2020137921 W CN2020137921 W CN 2020137921W WO 2022104996 A1 WO2022104996 A1 WO 2022104996A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resistance
adjustment
adjustment layer
away
Prior art date
Application number
PCT/CN2020/137921
Other languages
English (en)
French (fr)
Inventor
苏陟
Original Assignee
广州方邦电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州方邦电子股份有限公司 filed Critical 广州方邦电子股份有限公司
Publication of WO2022104996A1 publication Critical patent/WO2022104996A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/167Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed resistors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0254High voltage adaptations; Electrical insulation details; Overvoltage or electrostatic discharge protection ; Arrangements for regulating voltages or for using plural voltages
    • H05K1/0257Overvoltage protection
    • H05K1/0259Electrostatic discharge [ESD] protection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor

Definitions

  • the application belongs to the technical field of composite metal foils, and relates to a composite metal foil and a circuit board.
  • the electronic equipment With the rapid development of wireless communication and electronic equipment, the electronic equipment is evolving towards precision, miniaturization and thinning. Therefore, the size of the components inside the electronic equipment is required to be miniaturized and thinned as much as possible.
  • the resistive elements inside electronic equipment have gradually developed into thin and light from the previous plug-in resistors with pins, to chip resistors, and then to embedded resistors.
  • the preparation process of the embedded resistor is roughly as follows: the composite metal foil is attached to the circuit board, and the embedded resistor is etched through an etching process.
  • embedded resistors There are many embedded resistors integrated on the circuit board inside the terminal electronic product, and the circuit is quite sensitive to electrostatic high voltage. When a person or object with static electricity touches these embedded resistors, electrostatic discharge will be generated. , When the electrostatic high voltage hits the circuit, it is easy to be broken down by the electrostatic high voltage, thus making the embedded resistor function invalid.
  • One purpose of the embodiments of the present application is to provide a composite metal foil, which can improve the current carrying capacity of the first resistance layer, thereby improving the ESD (Electro-Static Discharge, electrostatic discharge) resistance of the first resistance layer, thereby improving the embedded resistance antistatic breakdown performance.
  • ESD Electro-Static Discharge, electrostatic discharge
  • Another object of the embodiments of the present application is to provide a circuit board including the composite metal foil provided by the embodiments of the present application.
  • an embodiment of the present application provides a composite metal foil, including: a dielectric layer, an adjustment layer, a first resistance layer, and a first conductive layer;
  • the adjustment layer is arranged on one side of the dielectric layer
  • the first resistance layer is formed on the side of the adjustment layer away from the dielectric layer
  • At least a part of the area of the side of the adjustment layer away from the dielectric layer is provided with a first protruding structure, so that the first resistance layer is close to the adjustment layer and away from the adjustment layer. at least a part of the area forms a second protruding structure;
  • the first conductive layer is formed on a side of the first resistance layer away from the adjustment layer.
  • the roughness Rz of the side close to the adjustment layer and the side away from the adjustment layer of the first resistance layer are both in the range of 0.1 ⁇ m-30 ⁇ m.
  • the ranges of the roughness Sdr of the side close to the adjustment layer and the side far from the adjustment layer of the first resistance layer are both greater than or equal to 0.5%.
  • the entire area of the side of the adjustment layer away from the dielectric layer is provided with a first protruding structure, so that the first resistance layer is close to the side of the adjustment layer and away from the adjustment layer.
  • the whole area on one side of the second protrusion structure is formed.
  • At least a partial area of the side of the adjustment layer away from the dielectric layer is provided with a plurality of continuous first convex structures, so that the first resistance layer is close to the side of the adjustment layer and away from the adjustment layer.
  • a plurality of continuous second protruding structures are formed in at least a partial area of one side of the adjustment layer.
  • the entire area of the side of the adjustment layer away from the dielectric layer is provided with a plurality of continuous first convex structures, so that the first resistance layer is close to the side of the adjustment layer and away from the adjustment layer.
  • the entire area of one side of the adjustment layer forms a plurality of continuous second protruding structures.
  • the entire region of the first resistance layer on the side close to the adjustment layer and the side away from the adjustment layer forms a continuous second raised structure, so that the first resistance layer forms a continuous second convex structure. undulating structure.
  • the roughness Rz of the side close to the adjustment layer and the side away from the adjustment layer of the first resistance layer are both in the range of 0.1 ⁇ m-10 ⁇ m, and the first resistance layer is close to the adjustment layer.
  • the range of the roughness Sdr of the side of the layer and the side away from the adjustment layer is greater than or equal to 20%.
  • the roughness Rz of the side close to the adjustment layer and the side away from the adjustment layer of the first resistance layer are both in the range of 0.1 ⁇ m-10 ⁇ m, and the first resistance layer is close to the adjustment layer.
  • the range of the roughness Sdr of the side of the layer and the side away from the adjustment layer is greater than or equal to 50%.
  • the roughness Rz of the side close to the adjustment layer and the side away from the adjustment layer of the first resistance layer are both in the range of 0.1 ⁇ m-10 ⁇ m, and the first resistance layer is close to the adjustment layer.
  • the range of the roughness Sdr of the side of the layer and the side away from the adjustment layer is greater than or equal to 200%.
  • a second resistance layer and a second conductive layer are provided on a side of the dielectric layer away from the adjustment layer, and the second resistance layer is located between the dielectric layer and the second conductive layer.
  • the material of the first resistance layer includes at least one elemental metal selected from nickel, chromium, platinum, palladium, and titanium, and/or includes nickel, chromium, platinum, palladium, titanium, silicon, phosphorus, and aluminum. Alloys of at least two combinations.
  • the first resistance layer has a single-layer structure or at least a two-layer structure.
  • an embodiment of the present application further provides a circuit board, including the composite metal foil provided in the first aspect of the present application.
  • the composite metal foil provided by the embodiment of the present application includes a dielectric layer, a regulating layer, a first resistance layer and a first conductive layer, and the regulating layer is arranged on one side of the dielectric layer; the first resistance layer is formed on a side of the regulating layer away from the dielectric layer. At least part of the area on the side of the adjustment layer away from the dielectric layer is provided with a first protruding structure, so that at least part of the area on the side of the first resistance layer close to the adjustment layer and away from the adjustment layer forms a second bulge structure, the first conductive layer is formed on the side of the first resistance layer away from the adjustment layer.
  • the existence of the second protruding structure increases the cross-sectional area of the first resistance layer, improves the current carrying capacity of the first resistance layer, further improves the ESD resistance of the first resistance layer, and improves the antistatic property of the embedded resistance. Breakdown performance.
  • the product performance of the embedded resistor can be precisely adjusted.
  • FIG. 1A is a schematic structural diagram of a composite metal foil provided by an embodiment of the present application.
  • FIG. 1B is a schematic structural diagram of another composite metal foil provided by an embodiment of the present application.
  • FIG. 2A is a schematic structural diagram of another composite metal foil provided by an embodiment of the present application.
  • 2B is a schematic structural diagram of another composite metal foil provided by an embodiment of the present application.
  • 2C is a schematic structural diagram of another composite metal foil provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another composite metal foil provided by an embodiment of the present application.
  • FIG. 4A is a schematic structural diagram of another composite metal foil provided by an embodiment of the present application.
  • 4B is a schematic structural diagram of another composite metal foil provided by an embodiment of the present application.
  • 5A is a flow chart of a method for preparing a composite metal foil provided by an embodiment of the present application
  • 5B is a schematic diagram of forming an adjustment layer on a dielectric layer according to an embodiment of the present application.
  • 5C is a schematic diagram of forming a first protrusion structure on the side of the adjustment layer away from the dielectric layer according to an embodiment of the present application;
  • 5D is a schematic diagram of forming a first resistance layer on the adjustment layer according to an embodiment of the present application.
  • FIG. 5E is a schematic diagram of forming a first conductive layer on the first resistance layer according to an embodiment of the present application.
  • connection should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of two elements or the interaction relationship between the two elements.
  • connection may be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of two elements or the interaction relationship between the two elements.
  • a first feature "on” or “under” a second feature may include direct contact between the first and second features, or may include the first and second features Not directly but through additional features between them.
  • the first feature being “above”, “over” and “above” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature is “below”, “below” and “below” the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature has a lower level than the second feature.
  • first and “second” are only used for distinction in description and have no special meaning.
  • FIG. 1A is a schematic structural diagram of a composite metal foil provided by an embodiment of the present application
  • FIG. 1B is a schematic structural schematic diagram of another composite metal foil provided by an embodiment of the present application.
  • the composite metal foil includes a dielectric layer 110 , an adjustment layer 120 , a first resistance layer 130 and a first conductive layer 140 .
  • the dielectric layer 110 may be an insulating base layer for carrying the adjustment layer 120 .
  • the material of the dielectric layer 110 may be polyimide or resin with certain flexibility and buffering effect.
  • the adjustment layer 120 may be an insulating material, and its material may be the same as or different from that of the dielectric layer 110 , which is not limited in this embodiment of the present application.
  • the first resistance layer 130 is a key functional layer of the composite metal foil, and is used to realize the resistance function of the composite metal foil.
  • the first resistance layer 130 can be made of different materials according to different functional requirements, and thus have different resistance characteristics.
  • the material of the first resistance layer 130 may include any one elemental metal among nickel, chromium, platinum, palladium, and titanium, and/or at least two of nickel, chromium, platinum, palladium, titanium, silicon, phosphorus, and aluminum. combination of alloys.
  • nickel-chromium alloy (NiCr) or nickel-phosphorus alloy (NiP) with low resistivity may also be chromium-silicon alloy (CrSi) with high resistivity, which is not limited in this embodiment of the present application.
  • the first resistive layer 130 serves as a precursor of the first resistive layer in the embedded resistor.
  • the first resistive layer in the embedded resistor is obtained by removing part of the first resistive layer 130 through processes such as etching.
  • the thickness of the first resistance layer 130 ranges from 0.01 ⁇ m to 0.5 ⁇ m. It should be noted that the high resistivity and low resistivity in the embodiments of the present application are for the first resistance layer itself, not for the first conductive layer.
  • the first resistance layer 130 has a single-layer structure or at least a two-layer structure.
  • the single-layer structure may be a single-layer structure composed of any one of nickel, chromium, platinum, palladium, and titanium, or may be at least one of nickel, chromium, platinum, palladium, titanium, silicon, phosphorus, and aluminum.
  • the first conductive layer 140 has good conductivity, and the material of the metal layer can be gold, silver, copper or aluminum, or an alloy of at least two of them. In other embodiments of the present application, the first conductive layer 140 may also be other non-metallic layers with good conductivity. The embodiment of the present application does not limit the material of the first conductive layer, as long as it has good conductivity.
  • the thickness of the first conductive layer 140 ranges from 3 ⁇ m to 18 ⁇ m.
  • the adjustment layer 120 is formed on one side of the dielectric layer 110 , and at least a partial region of the side of the adjustment layer 120 away from the dielectric layer 110 is provided with the first protruding structure 121 .
  • the first protruding structure 121 enables at least a partial region of the side of the adjustment layer 120 away from the dielectric layer 110 to have a rough surface.
  • the shapes of the first protruding structures 121 may have various shapes according to actual needs, and may be regular or irregular three-dimensional geometric shapes, which are not limited in the embodiments of the present application.
  • the first protruding structure makes the adjustment layer have a continuous undulating surface, forming a relatively regular sinusoidal shape, or the shape of the first protruding structure is sharp angle, inverted cone, granular, dendritic, One or more of columnar, block, and arcuate.
  • the first resistance layer 130 is formed on the side of the adjustment layer 120 away from the dielectric layer 110. Specifically, in one embodiment of the present application, physical vapor deposition, chemical vapor deposition, evaporation plating, sputtering plating, electroplating, and mixing can be used.
  • the first resistance layer 130 is formed on the side of the adjustment layer 120 away from the dielectric layer 110 by means of plating or the like. Since at least part of the area of the side of the adjustment layer 120 away from the dielectric layer 110 is provided with the first protrusion structure 121 , when the first resistance layer 130 is formed on the adjustment layer 120 , the two sides of the first resistance layer 130 will conform to form the second protrusions Structure 131.
  • the first conductive layer 140 may be formed on the side of the first resistance layer 130 away from the adjustment layer 120 by means of physical vapor deposition, chemical vapor deposition, evaporation plating, sputtering plating, electroplating, and hybrid plating.
  • the cross-sectional area of the first resistance layer in the embedded resistor will affect the ESD resistance performance.
  • the cross-sectional area of the first resistance layer is larger, the current carrying capacity of the first resistance layer is larger, the ESD performance is better, and the anti-static breakdown performance is better.
  • the cross-sectional area of the first resistance layer may be increased.
  • the second protruding structures 131 are formed on both sides of the first resistance layer 130 , so that the first resistance layer 130 has a rough surface.
  • the existence of the second protruding structure 131 increases the cross-sectional area of the first resistance layer 130 , improves the current carrying capacity of the first resistance layer 130 , and further improves the ESD resistance of the first resistance layer 130 , thereby improving the embeddedness of the first resistance layer 130 .
  • Antistatic breakdown performance of the resistor can be adjusted by changing the first protruding structure 121 of the adjustment layer 120 , so as to precisely adjust the product performance of the embedded resistor.
  • the composite metal foil provided by the embodiment of the present application includes a dielectric layer, a regulating layer, a first resistance layer and a first conductive layer, and the regulating layer is arranged on one side of the dielectric layer; the first resistance layer is formed on a side of the regulating layer away from the dielectric layer. At least part of the area on the side of the adjustment layer away from the dielectric layer is provided with a first protruding structure, so that at least part of the area on the side of the first resistance layer close to the adjustment layer and away from the adjustment layer forms a second bulge structure, the first conductive layer is formed on the side of the first resistance layer away from the adjustment layer.
  • the existence of the second protruding structure increases the cross-sectional area of the first resistance layer, improves the current carrying capacity of the first resistance layer, further improves the ESD resistance of the first resistance layer, and improves the antistatic property of the embedded resistance. Breakdown performance.
  • the product performance of the embedded resistor can be precisely adjusted.
  • the second protruding structure 131 makes the range of the roughness Rz of at least part of the regions on both sides of the first resistance layer 130 (regions provided with the protruding structures) be greater than or equal to 0.1 ⁇ m, and the roughness The range of the degree Sdr is greater than or equal to 0.5%.
  • the roughness Rz and the roughness Sdr are used to characterize the microscopic unevenness of the surface of the first resistance layer 130. Specifically, the average value of the five largest contour peak heights and the five largest contour valley depths within the sampling length are usually averaged. The sum of the values is taken as the roughness Rz.
  • the roughness Sdr is the expanded area (surface area) of the defined area, which represents how much the area of the defined area has increased, wherein the roughness Sdr of a completely flat surface is zero. It should be noted that, in the embodiment of the present application, the roughness Rz on both sides of the first resistance layer 130 may be the same or different, and the roughness Sdr on both sides of the first resistance layer 130 may be the same or different, The embodiments of the present application are not limited herein. It should be noted that, in this embodiment and subsequent embodiments, the test standard of roughness is the ISO25178 standard.
  • the roughness Rz on both sides of the first resistance layer 130 ranges from 0.1 ⁇ m to 30 ⁇ m, including 0.1 ⁇ m and 30 ⁇ m, and The roughness Rz on both sides of the first resistance layer 130 may also be 1 ⁇ m, 5 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, and the like.
  • the range of roughness Sdr is 0.5%-8000%, including 0.5% and 8000%, and the value of roughness Sdr can also be 1%, 5%, 12%, 20%, 50%, 80%, 100%, 200%, 500%, 800%, 1500%, 2000%, 2500%, 3000%, 3500%, 4000%, 4500%, 5000%, 5500%, 6000%, 6500%, 7000%, 7500%, etc.
  • Table 1 shows the test results obtained from the ESD resistance test of the first resistance layer with different roughness Rz. On one resistive layer, apply three times with an interval of 10 seconds each, and then apply a reverse test electrostatic voltage to the first resistive layer for three times with an interval of 10 seconds each. The test electrostatic voltage is gradually increased, and the test electrostatic voltage that breaks down the first resistance layer is used as the electrostatic discharge resistance voltage of the first resistance layer.
  • the first resistance can be adjusted by arranging raised structures in at least part of the region on the side of the first resistance layer away from the first conductive layer.
  • the roughness Rz of the layer can improve the electrostatic discharge resistance voltage of the first resistance layer.
  • Table 2 shows the test results obtained by performing the ESD resistance test on the first resistance layer with different roughness Sdr, and the test method is the same as before.
  • different roughness Sdr has different electrostatic discharge resistance voltage, that is to say, by arranging raised structures in at least part of the region of the side of the first resistance layer away from the first conductive layer, the first resistance can be adjusted.
  • the layer roughness Sdr can improve the electrostatic discharge resistance voltage of the first resistance layer.
  • the shape of the second protruding structure 121 can be diverse according to actual needs, and can be a regular or irregular three-dimensional geometric shape.
  • the shape of the second protruding structure 121 can be a sharp angle. , one or more of inverted cone shape, granular shape, dendritic shape, column shape, block shape, and arc shape, which are not limited in the embodiments of the present application.
  • the second protrusion structures 131 disposed on at least part of both sides of the first resistance layer 130 are continuously disposed.
  • the shape of the second protruding structures 131 is dendritic, while the second protruding structures 131 are continuously distributed on at least part of the first resistance layer 130 ; or as shown in FIG. 1B .
  • the shape of the second protruding structures 131 is arc-like, and the second protruding structures 131 are continuously distributed in at least part of the first resistive layer 130 to form a structure similar to a “sinusoidal” shape on both sides of the first resistive layer 130 .
  • the second protruding structure may include a continuous undulating surface formed on both sides of the first resistance layer, and a plurality of protruding portions formed on the undulating surface. Do limit.
  • at least partial regions of the second protruding structures on both sides of the first resistance layer may also be discontinuously distributed, which is not limited in the embodiments of the present application.
  • the materials of the dielectric layer 110 and the adjustment layer 120 may be resin glue, polyimide (PI), modified polyimide, glass fiber cloth, glass fiber cloth composite material, paper substrate , composite substrate, HDI sheet, modified epoxy resin, modified acrylic resin, polyethylene terephthalate, glycol, polybutylene terephthalate, polyethylene, etc., to protect the first resistance layer 130, to prevent the first resistance layer 130 from being damaged by external force.
  • PI polyimide
  • modified polyimide glass fiber cloth
  • glass fiber cloth composite material paper substrate , composite substrate, HDI sheet
  • modified epoxy resin modified acrylic resin
  • polyethylene terephthalate glycol
  • polybutylene terephthalate polyethylene
  • At least part of the adjustment layer 120 is provided with fillers, so that at least part of the part of the side of the adjustment layer 120 away from the dielectric layer 110 is formed with the first protruding structures 121 .
  • the side of the adjustment layer 120 away from the dielectric layer 110 has different roughnesses, thereby adjusting the roughness of the first resistance layer 130 .
  • FIG. 2A is a schematic structural diagram of another composite metal foil provided by an embodiment of the application
  • FIG. 2B is a schematic structural diagram of another composite metal foil provided by an embodiment of the application
  • FIG. 2C is another composite metal foil provided by an embodiment of the application. Schematic diagrams of the structure of the composite metal foil are shown in FIG. 2A , FIG. 2B and FIG. 2C .
  • the composite metal foil includes a dielectric layer 210 , an adjustment layer 220 , a first resistance layer 230 and a first conductive layer 240 .
  • the dielectric layer 210 may be an insulating base layer for carrying the adjustment layer 220 .
  • the adjustment layer 220 may be an insulating material, and its material may be the same as or different from that of the dielectric layer 210 .
  • the first resistance layer 230 is a key functional layer of the composite metal foil, and is used to realize the resistance function of the composite metal foil.
  • the material of the first resistance layer 230 may include at least one elemental metal of nickel, chromium, platinum, palladium, and titanium, and/or at least two combinations of nickel, chromium, platinum, palladium, titanium, silicon, phosphorus, and aluminum. alloy.
  • the material of the first resistance layer 230 is nickel chrome.
  • the first conductive layer 240 has good conductivity, and the material of the metal layer can be gold, silver, copper or aluminum, or an alloy of at least two of them.
  • At least a part of the area of the side of the adjustment layer away from the dielectric layer is provided with a first protruding structure.
  • the adjustment layer 220 is close to the entire side of the first resistance layer 230 .
  • Each area is provided with a first protruding structure 221 . Since the first resistive layers 230 are sequentially formed on the side of the adjustment layer 220 where the first protruding structures 221 are disposed, the entire regions on both sides of the first resisting layer 230 formed will conform to the formation of the second protruding structures 231 .
  • the cross-sectional area of the first resistive layer 230 can be further increased, and the anti-static breakdown capability of the embedded resistor can be improved.
  • the range of the roughness Rz on both sides of the first resistance layer 230 is greater than or equal to 0.1 ⁇ m, and the range of the roughness Sdr is greater than or equal to 0.5%. It should be noted that, in the embodiment of the present application, the roughness Rz on both sides of the first resistance layer 230 may be the same or different, and the roughness Sdr on both sides of the first resistance layer 230 may be the same or different, The embodiments of the present application are not limited herein.
  • the roughness Rz on both sides of the first resistance layer 230 ranges from 0.1 ⁇ m to 30 ⁇ m, including 0.1 ⁇ m and 30 ⁇ m, and the roughness Rz on both sides of the first resistance layer 230 can also be 1 ⁇ m, 5 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, etc.
  • the range of roughness Sdr is 0.5%-8000%, including 0.5% and 8000%, and the value of roughness Sdr can also be 1%, 5%, 12%, 20%, 50%, 80%, 100%, 200%, 500%, 800%, 1500%, 2000%, 2500%, 3000%, 3500%, 4000%, 4500%, 5000%, 5500%, 6000%, 6500%, 7000%, 7500%, etc.
  • the shapes of the second protruding structures may have various shapes according to actual needs, and may be regular or irregular three-dimensional geometric shapes, which are not limited in the embodiments of the present application.
  • the second protruding structure may form a continuous undulating surface on both sides of the first resistive layer, or may form a relatively regular "sinusoidal" shape on both sides of the first resistive layer, or the shape of the protruding structure It is one or more of sharp angle, inverted cone, granular, dendritic, columnar, block, and arc shape.
  • the second protruding structures 231 provided in all regions on both sides of the first resistive layer 230 are continuously provided , that is to say, the second protruding structures 231 are continuously arranged on the two sides of the first resistance layer 230 to further increase the cross-sectional area of the first resistance layer 230, improve the ESD resistance performance of the first resistance layer 230, and further improve the buried The anti-static breakdown capability of the input resistor.
  • the range of the roughness Rz of the first resistance layer 230 is set to be 0.1 ⁇ m-10 ⁇ m, and the range of the roughness Sdr of the first resistance layer 230 is set to be greater than or equal to 20%.
  • the roughness height parameter Rz of the first resistance layer 230 By defining the roughness height parameter Rz of the first resistance layer 230 to be 0.1 ⁇ m-10 ⁇ m and the range of the surface area increase parameter Sdr to the defined area area to be ⁇ 20%, within a certain height range of the second protruding structure 231 , continuous and closely arranged second raised structures 231 are obtained in all areas on both sides of the first resistive layer 230 (the continuous and closely arranged raised structures in the whole area are similar to the "fuzz" structure), so that the height of the roughness is
  • the parameter Rz is constant, that is to say, it is ensured that the second protruding structure 231 will not be broken due to external force, the first resistance layer 230 with a larger cross-section is obtained, and the first resistance layer 230 is improved. Excellent ESD resistance, effectively ensuring that the embedded resistor has a strong anti-static breakdown capability.
  • the range of the roughness Rz of the first resistance layer 230 is 0.1 ⁇ m-10 ⁇ m, and the range of the roughness Sdr of the first resistance layer 230 is greater than or equal to 50%.
  • the roughness height parameter Rz of the first resistive layer 230 is 0.1 ⁇ m-10 ⁇ m and the range of the surface area increase parameter Sdr relative to the defined area area to be ⁇ 50%, within a certain height range of the second protruding structure 231 , continuous and more closely arranged second raised structures 231 are obtained in all areas on both sides of the first resistance layer 220 , that is, to obtain a more closely arranged raised structure than the range of the roughness Sdr ⁇ 20%, thereby
  • the cross section of the first resistance layer is further increased, the ESD resistance performance of the first resistance layer is further improved, and the embedded resistance is effectively ensured to have a strong anti-static breakdown capability.
  • the range of the roughness Rz of the first resistance layer 230 is 0.1 ⁇ m-10 ⁇ m, and the range of the roughness Sdr of the first resistance layer 230 is greater than or equal to 200%, thereby further increasing the roughness of the first resistance layer.
  • the cross section further improves the ESD resistance of the first resistive layer, effectively ensuring that the embedded resistor has excellent anti-static breakdown capability.
  • the materials of the dielectric layer 210 and the adjustment layer 220 may be resin glue, polyimide (PI), modified polyimide, glass fiber cloth, glass fiber cloth composite material, paper substrate , composite substrate, HDI sheet, modified epoxy resin, modified acrylic resin, polyethylene terephthalate, glycol, polybutylene terephthalate, polyethylene, etc., to protect the first resistance layer 230 to prevent the first resistance layer 230 from being damaged by external force.
  • PI polyimide
  • modified polyimide glass fiber cloth
  • glass fiber cloth composite material paper substrate , composite substrate, HDI sheet
  • modified epoxy resin modified acrylic resin
  • polyethylene terephthalate glycol
  • polybutylene terephthalate polyethylene
  • the entire area of the adjustment layer 220 is provided with fillers, so that at least a partial area of the side of the adjustment layer 220 away from the dielectric layer 110 is formed with the first protruding structures 221 .
  • the side of the adjusting layer 220 away from the dielectric layer 210 has different roughnesses, thereby adjusting the roughness of the first resistance layer 230 .
  • FIG. 3 is a schematic structural diagram of another composite metal foil provided by an embodiment of the present application.
  • the composite metal foil includes a dielectric layer 310 , an adjustment layer 320 , a first resistance layer 330 and a first resistance layer 330 .
  • Conductive layer 340 is a schematic structural diagram of another composite metal foil provided by an embodiment of the present application.
  • the composite metal foil includes a dielectric layer 310 , an adjustment layer 320 , a first resistance layer 330 and a first resistance layer 330 .
  • the dielectric layer 310 may be an insulating base layer for carrying the adjustment layer 320 .
  • the adjustment layer 320 may be an insulating material, which may be the same as or different from the dielectric layer 310 .
  • the first resistance layer 330 is a key functional layer of the composite metal foil, and is used to realize the resistance function of the composite metal foil.
  • the material of the first resistance layer 330 may include at least one elemental metal of nickel, chromium, platinum, palladium, and titanium, and/or at least two combinations of nickel, chromium, platinum, palladium, titanium, silicon, phosphorus, and aluminum. alloy.
  • the material of the first resistance layer 330 is nickel chrome.
  • the first conductive layer 340 has good conductivity, and the material of the metal layer can be gold, silver, copper or aluminum, or an alloy of at least two of them.
  • At least a part of the area of the side of the adjustment layer away from the dielectric layer is provided with the first protruding structure.
  • the entire area of the side of the adjustment layer 320 close to the first resistance layer 330 is provided with the first protruding structure.
  • the protruding structures 321 and the plurality of first protruding structures 321 are continuous to form an undulating surface. Since the first resistive layers 330 are sequentially formed on the side of the adjustment layer 320 where the first protruding structures 321 are provided, the entire regions on both sides of the first resistive layer 330 formed will conform to the formation of the second protruding structures 331 . And the second protruding structure 331 makes the first resistive layer 330 form a continuous undulating structure.
  • the range of the roughness Rz on both sides of the first resistance layer 330 is greater than or equal to 0.1 ⁇ m, and the range of the roughness Sdr is greater than or equal to 0.5%. It should be noted that, in the embodiment of the present application, the roughness Rz on both sides of the first resistance layer 330 may be the same or different, and the roughness Sdr on both sides of the first resistance layer 330 may be the same or different, The embodiments of the present application are not limited herein.
  • the roughness Rz on both sides of the first resistance layer 330 ranges from 0.1 ⁇ m to 30 ⁇ m, including 0.1 ⁇ m and 30 ⁇ m, and the roughness Rz on both sides of the first resistance layer 330 can also be 1 ⁇ m, 5 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, etc.
  • the range of roughness Sdr is 0.5%-8000%, including 0.5% and 8000%, and the value of roughness Sdr can also be 1%, 5%, 12%, 20%, 50%, 80%, 100%, 200%, 500%, 800%, 1500%, 2000%, 2500%, 3000%, 3500%, 4000%, 4500%, 5000%, 5500%, 6000%, 6500%, 7000%, 7500%, etc.
  • the materials of the dielectric layer 310 and the adjustment layer 320 may be resin glue, polyimide (PI), modified polyimide, glass fiber cloth, glass fiber cloth composite material, paper substrate , composite substrate, HDI sheet, modified epoxy resin, modified acrylic resin, polyethylene terephthalate, glycol, polybutylene terephthalate, polyethylene, etc., to protect the first resistance layer 330, to prevent the first resistance layer 330 from being damaged by external force.
  • PI polyimide
  • modified polyimide glass fiber cloth
  • glass fiber cloth composite material paper substrate , composite substrate, HDI sheet
  • modified epoxy resin modified acrylic resin
  • polyethylene terephthalate glycol
  • polybutylene terephthalate polyethylene
  • the entire area of the adjustment layer 320 is provided with fillers, so that at least a partial area of the side of the adjustment layer 320 away from the dielectric layer 310 is formed with the first protruding structures 321 .
  • the side of the adjustment layer 320 away from the dielectric layer 310 has different roughnesses, thereby adjusting the roughness of the first resistance layer 330 .
  • a second resistance layer and a second conductive layer are provided on the side of the dielectric layer away from the first resistance layer, and the second resistance layer is located between the dielectric layer and the second conductive layer.
  • the materials and uses of the second resistive layer and the first resistive layer can be the same or different, and similarly, the materials and uses of the second conductive layer and the first conductive layer can be the same or different.
  • the structure and parameters of the second resistance layer may be the same as those of the first resistance layer, and the structure and parameters of the second conductive layer may be the same as those of the first conductive layer, which will not be repeated here.
  • an adjustment layer may also be provided between the dielectric layer and the second resistance layer, and the structure, material and parameters of the adjustment layer and the adjustment layer between the dielectric layer and the first resistance layer may be Same, with the same functionality.
  • FIG. 4A is a schematic structural diagram of another composite metal foil provided by an embodiment of the present application
  • FIG. 4B is a schematic structural schematic diagram of another composite metal foil provided by an embodiment of the present application.
  • the composite metal foil includes a dielectric layer 410 , an adjustment layer 420 , a first resistance layer 430 , a first conductive layer 440 , a second resistance layer 450 and a second conductive layer 460 .
  • the adjustment layer 420 is formed on the side of the dielectric layer 410
  • the first resistance layer 430 is formed on the side of the adjustment layer 420 away from the dielectric layer 410
  • the first conductive layer 440 is formed at the side of the first resistance layer 430 away from the adjustment layer 420 .
  • the entire area of one side of the adjustment layer 420 away from the dielectric layer is provided with the first raised structures 421 , so that the adjustment layer 420 has a concave-convex surface, so that the two sides of the first resistive layer 430 are formed compliantly to form the second raised structures 431 .
  • the materials of the first conductive layer, the first resistance layer, the adjustment layer and the dielectric layer, the shape of the second raised structure, and the roughness on both sides of the first resistance layer have been described in detail in the foregoing embodiments. This will not be repeated here.
  • the second resistance layer 450 is disposed on the side of the dielectric layer 410 away from the adjustment layer 420
  • the second conductive layer 460 is disposed on the side of the second resistance layer 450 away from the dielectric layer 410 .
  • the materials and uses of the second resistive layer 450 and the first resistive layer 430 are the same.
  • the materials and uses of the second conductive layer 460 and the first conductive layer 440 are the same.
  • One or both sides of the second resistive layer 450 may be a flat surface, or similar to the first resistive layer 430 , at least part of the area may be provided with a protruding structure.
  • a protruding structure Exemplarily, as shown in FIG. 4A , the side of the second resistive layer 450 away from the dielectric layer 410 is provided with a protruding structure; as shown in FIG. 4B , all areas on both sides of the second resistive layer 450 are provided with a protruding structure.
  • the protrusion structure reference may be made to the protrusion structure on the first resistance layer 430 described in the foregoing embodiments of the present application, which will not be repeated in the embodiments of the present application.
  • FIG. 5A is a flowchart of a method for preparing a composite metal foil provided by an embodiment of the present application. As shown in FIG. 5A , the method includes:
  • the dielectric layer can be resin glue, polyimide (PI), modified polyimide, glass fiber cloth, glass fiber cloth composite material, paper substrate, composite substrate, HDI sheet, modified epoxy resin, Modified acrylic resin, polyethylene terephthalate, glycol ester, polybutylene terephthalate, polyethylene, etc.
  • the adjustable layer may be an insulating material, and its material may be the same as or different from that of the dielectric layer, which is not limited in this embodiment of the present application.
  • the adjustment layer can be obtained, or the adjustment layer can be directly attached to the medium layer.
  • FIG. 5B is a schematic diagram of forming an adjustment layer on a dielectric layer according to an embodiment of the present application. As shown in FIG. 5B , an adjustment layer 520 is formed on one side of the dielectric layer 510 .
  • a roughening treatment may be performed on the side of the adjustment layer away from the medium layer, and the roughening treatment may include, but is not limited to, physical grinding, chemical corrosion, shot blasting, and sand blasting.
  • a first protruding structure is formed on at least a partial area of the side of the adjustment layer away from the dielectric layer.
  • the first protruding structure can also be formed in at least a partial region of the adjusting layer on the side of the adjusting layer away from the dielectric layer by arranging fillers in the adjusting layer.
  • At least a partial area of the adjustment layer is provided with fillers, so that at least a partial area of the side of the adjustment layer away from the dielectric layer is formed with a first protruding structure.
  • FIG. 5C is a schematic diagram of forming a first protrusion structure on the side of the adjustment layer away from the dielectric layer provided by an embodiment of the present application. As shown in FIG. 5C , the entire area of the adjustment layer 520 on the side away from the dielectric layer 510 forms the first protrusion Start structure 521.
  • the shape of the first protruding structure 521 may have various shapes according to actual needs, and may be a regular or irregular three-dimensional geometric shape, which is not limited in this embodiment of the present application.
  • the first protruding structure makes the adjustment layer have a continuous undulating surface, forming a relatively regular sinusoidal shape, or the shape of the first protruding structure is sharp angle, inverted cone, granular, dendritic, One or more of columnar, block, and arcuate.
  • the first resistance layer may be formed on the side of the adjustment layer away from the dielectric layer by means of physical vapor deposition, chemical vapor deposition, evaporation plating, sputtering plating, electroplating, and hybrid plating.
  • the first resistance layer is the key functional layer of the composite metal foil, and is used to realize the resistance function of the composite metal foil.
  • the material of the first resistance layer may include at least one elemental metal of nickel, chromium, platinum, palladium, and titanium, and/or a combination of at least two of nickel, chromium, platinum, palladium, titanium, silicon, phosphorus, and aluminum. alloy.
  • the first resistance layer may be a single-layer structure or at least a two-layer structure. Any layer can be a single metal composed of any one of nickel, chromium, platinum, palladium, and titanium, or an alloy of at least two combinations of nickel, chromium, platinum, palladium, titanium, silicon, phosphorus, and aluminum.
  • FIG. 5D is a schematic diagram of forming a first resistance layer on the adjustment layer according to an embodiment of the present application.
  • the first resistance layer 530 is formed on the side of the adjustment layer 520 away from the dielectric layer 510 . Since the first protruding structures 521 are formed on the adjustment layer 520 , the second protruding structures 531 are formed on both sides of the first resistive layer 530 compliantly.
  • the shape of the second protruding structure may be diverse according to actual needs, and may be a regular or irregular three-dimensional geometric shape, which is not limited in this embodiment of the present application.
  • the second protruding structure may form a continuous undulating surface on both sides of the first resistive layer, or may form a relatively regular sinusoidal shape on both sides of the first resistive layer, or the second protruding structure may The shape is one or more of sharp angle, inverted cone, granular, dendritic, columnar, block, and arc, or the second convex structure makes the first resistive layer form a continuous undulating structure.
  • the range of the roughness Rz on both sides of the first resistance layer 530 is greater than or equal to 0.1 ⁇ m, and the range of the roughness Sdr is greater than or equal to 0.5%. It should be noted that, in the embodiment of the present application, the roughness Rz on both sides of the first resistance layer 530 may be the same or different, and the roughness Sdr on both sides of the first resistance layer 530 may be the same or different, The embodiments of the present application are not limited herein.
  • the roughness Rz on both sides of the first resistance layer 520 ranges from 0.1 ⁇ m to 30 ⁇ m, including 0.1 ⁇ m and 30 ⁇ m, and the roughness Rz on both sides of the first resistance layer 520 can also be 1 ⁇ m, 5 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, etc.
  • the range of roughness Sdr is 0.5%-8000%, including 0.5% and 8000%, and the value of roughness Sdr can also be 1%, 5%, 12%, 20%, 50%, 80%, 100%, 200%, 500%, 800%, 1500%, 2000%, 2500%, 3000%, 3500%, 4000%, 4500%, 5000%, 5500%, 6000%, 6500%, 7000%, 7500%, etc.
  • the shape and size of the first convex structures on the adjustment layer can be changed to adjust the topography and roughness of the two sides of the first resistance layer. , to achieve precise adjustment of the product performance of the embedded resistor.
  • the first conductive layer may be formed on the side of the first resistance layer away from the adjustment layer by means of physical vapor deposition, chemical vapor deposition, evaporation plating, sputtering plating, electroplating, and hybrid plating.
  • the first conductive layer has good conductivity, and the material of the metal layer can be gold, silver, copper or aluminum, or an alloy of at least two of them.
  • FIG. 5E is a schematic diagram of forming a first conductive layer on the first resistance layer according to an embodiment of the present application. As shown in FIG. 5E , the first conductive layer 540 is formed on the side of the first resistance layer 530 away from the adjustment layer 520 .
  • a second resistance layer and a second conductive layer may be provided on the side of the dielectric layer away from the adjustment layer, and the second resistance layer is located between the dielectric layer and the second conductive layer.
  • the preparation method of the composite metal foil provided in the embodiment of the present application includes: providing a dielectric layer, forming a regulating layer on one side of the dielectric layer, forming a first protruding structure on at least a part of the region of the regulating layer away from the dielectric layer, and A first resistance layer is formed on the side of the adjustment layer away from the dielectric layer, and a first conductive layer is formed at the side of the first resistance layer away from the adjustment layer.
  • the second protruding structures are formed on both sides of the first resistance layer.
  • the existence of the second protruding structure increases the cross-sectional area of the first resistance layer, improves the current carrying capacity of the first resistance layer, thereby improves the ESD performance of the first resistance layer, and further improves the antistatic property of the embedded resistor. Breakdown performance.
  • the embodiments of the present application further provide a circuit board, including the composite metal foil provided by any of the above embodiments of the present application.
  • circuit boards provided in the embodiments of the present application have functions and beneficial effects corresponding to the composite metal foils provided in the embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)

Abstract

本申请公开一种复合金属箔及线路板,复合金属箔包括:介质层、调节层、第一电阻层和第一导电层,调节层设置在介质层的一侧;第一电阻层形成在调节层远离介质层的一侧,调节层远离介质层的一侧的至少部分区域设置有第一凸起结构,以使第一电阻层靠近调节层的一侧和远离调节层的一侧的至少部分区域形成第二凸起结构,第一导电层形成在第一电阻层远离调节层的一侧。

Description

一种复合金属箔及线路板 技术领域
本申请属于复合金属箔技术领域,涉及一种复合金属箔及线路板。
背景技术
随着无线通讯和电子设备的高速发展,电子设备朝着精密化、小型化和轻薄化演化,因此,要求电子设备内部的元器件的尺寸要尽可能的向小型化、轻薄化发展。
电子设备内部的电阻元件由之前的带针脚的插接电阻,到贴片电阻,再到埋入式电阻,逐渐向轻薄化发展。埋入式电阻的制备过程大致如下:将复合金属箔贴附电路板上,通过刻蚀工艺刻蚀出埋入式电阻。
埋入式电阻的应用终端电子产品内部的电路板上集成有众多埋入式电阻,而电路对静电高压相当敏感,当带静电的人或物体接触到这些埋入式电阻时,会产生静电释放,当静电高压冲击电路后,容易被静电高压击穿,从而使得埋入式电阻功能失效。
发明内容
本申请实施例的一个目的在于:提供复合金属箔,能够提高第一电阻层的载流量,进而提高第一电阻层的耐ESD(Electro-Static Discharge,静电释放)性能,进而提高埋入式电阻的抗静电击穿性能。
本申请实施例的另一个目的在于:提供一种线路板,包括本申请实施例提供的复合金属箔。
为达上述目的,本申请采用以下技术方案:
第一方面,本申请实施例提供了一种复合金属箔,包括:介质层、调节层、第一电阻层和第一导电层;
所述调节层设置在所述介质层的一侧;
所述第一电阻层形成在所述调节层远离所述介质层的一侧;
所述调节层远离所述介质层的一侧的至少部分区域设置有第一凸起结构,以使所述第一电阻层靠近所述调节层的一侧和远离所述调节层的一侧的至少部分区域形成第二凸起结构;
所述第一导电层形成在所述第一电阻层远离所述调节层的一侧。
可选的,所述第一电阻层靠近所述调节层的一侧和远离所述调节层的一侧的粗糙度Rz的范围均为0.1μm-30μm。
可选的,所述第一电阻层靠近所述调节层的一侧和远离所述调节层的一侧的粗糙度Sdr的范围均为大于或等于0.5%。
可选的,所述调节层远离所述介质层的一侧的全部区域均设置有第一凸起结构,以使所述第一电阻层靠近所述调节层的一侧和远离所述调节层的一侧的全部区域均形成第二凸起结构。
可选的,所述调节层远离所述介质层的一侧的至少部分区域设置有多个连续的第一凸起结构,以使所述第一电阻层靠近所述调节层的一侧和远离所述调节层的一侧的至少部分区域形成多个连续的第二凸起结构。
可选的,所述调节层远离所述介质层的一侧的全部区域均设置有多个连续的第一凸起结构,以使所述第一电阻层靠近所述调节层的一侧和远离所述调节层的一侧的全部区域均形成多个连续的第二凸起结构。
可选的,所述第一电阻层靠近所述调节层的一侧和远离所述调节层的一侧的全部区域均形成连续的第二凸起结构,以使所述第一电阻层形成连续的波浪起伏结构。
可选的,所述第一电阻层靠近所述调节层的一侧和远离所述调节层的一侧的粗糙度Rz的范围均为0.1μm-10μm,所述第一电阻层靠近所述调节层的一侧和远离所述调节层的一侧的粗糙度Sdr的范围均为大于或等于20%。
可选的,所述第一电阻层靠近所述调节层的一侧和远离所述调节层的一侧的粗糙度Rz的范围均为0.1μm-10μm,所述第一电阻层靠近所述调节层的一侧和远离所述调节层的一侧的粗糙度Sdr的范围均为大于或等于50%。
可选的,所述第一电阻层靠近所述调节层的一侧和远离所述调节层的一侧的粗糙度Rz的范围均为0.1μm-10μm,所述第一电阻层靠近所述调节层的一侧和远离所述调节层的一侧的粗糙度Sdr的范围均为大于或等于200%。
可选的,所述介质层远离所述调节层的一侧设置有第二电阻层和第二导电层,所述第二电阻层位于所述介质层与所述第二导电层之间。
可选的,所述第一电阻层的材质包括镍、铬、铂、钯、钛中的至少一种单质金属,和/或包括镍、铬、铂、钯、钛、硅、磷、铝中至少两种组合的合金。
可选的,所述第一电阻层为单层结构或至少两层结构。
第二方面,本申请实施例还提供了一种线路板,包括本申请第一方面提供的复合金属箔。
本申请实施例提供的复合金属箔,包括介质层、调节层、第一电阻层和第一导电层,调节层设置在介质层的一侧;第一电阻层形成在调节层远离介质层的一侧,调节层远离介质层的一侧的至少部分区域设置有第一凸起结构,以使 第一电阻层靠近调节层的一侧和远离调节层的一侧的至少部分区域形成第二凸起结构,第一导电层形成在第一电阻层远离调节层的一侧。第二凸起结构的存在,增大了第一电阻层的截面积,提高了第一电阻层的载流量,进而提高了第一电阻层的耐ESD性能,提高了埋入式电阻的抗静电击穿性能。此外,通过改变调节层的第一凸起结构,调节第一电阻层的形貌和粗糙度,可以对埋入式电阻的产品性能进行精确调节。
附图说明
下面根据附图和实施例对本申请作进一步详细说明。
图1A为本申请实施例提供的一种复合金属箔的结构示意图;
图1B为本申请实施例提供的另一种复合金属箔的结构示意图;
图2A为本申请实施例提供的另一种复合金属箔的结构示意图;
图2B为本申请实施例提供的另一种复合金属箔的结构示意图;
图2C为本申请实施例提供的另一种复合金属箔的结构示意图;
图3为本申请实施例提供的另一种复合金属箔的结构示意图;
图4A为本申请实施例提供的另一种复合金属箔的结构示意图;
图4B为本申请实施例提供的另一种复合金属箔的结构示意图;
图5A为本申请实施例提供的一种复合金属箔的制备方法的流程图
图5B为本申请实施例提供的在介质层上形成调节层的示意图;
图5C为本申请实施例提供的在调节层远离介质层的一侧形成第一凸起结构的示意图;
图5D为本申请实施例提供的在调节层上形成第一电阻层的示意图;
图5E为本申请实施例提供的在第一电阻层上形成第一导电层的示意图。
具体实施方式
为使本申请解决的技术问题、采用的技术方案和达到的技术效果更加清楚,下面将结合附图对本申请实施例的技术方案作进一步的详细描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。此外,术语“第一”、“第二”,仅仅用于在描述上加以区分,并没有特殊的含义。
图1A为本申请实施例提供的一种复合金属箔的结构示意图,图1B为本申请实施例提供的另一种复合金属箔的结构示意图,如图1A和图1B所示,本实 施例中,复合金属箔包括介质层110、调节层120、第一电阻层130和第一导电层140。
具体的,介质层110可以是绝缘的基层,用于承载调节层120。示例性的,介质层110的材料可以是具有一定柔性和缓冲作用的聚酰亚胺或树脂。
调节层120可以是绝缘材料,其材料可以与介质层110相同或不同,本申请实施例在此不做限定。
第一电阻层130为复合金属箔的关键功能层,用于实现复合金属箔的电阻功能。通常第一电阻层130可以根据不同功能的需要而选用不同的材料,进而具有不同的电阻特性。例如,第一电阻层130的材料可以包括镍、铬、铂、钯、钛中的任意一种单质金属,和/或包括镍、铬、铂、钯、钛、硅、磷、铝中至少两种组合的合金。例如,具有低电阻率的镍铬合金(NiCr)或镍磷合金(NiP),也可以是具有高电阻率的铬硅合金(CrSi),本申请实施例在此不做限定。第一电阻层130作为埋入式电阻中第一电阻层的前驱体,换句话说,埋入式电阻中的第一电阻层是通过刻蚀等工艺去除部分第一电阻层130而得到的。第一电阻层130的厚度范围为0.01μm-0.5μm。需要说明的是,本申请实施例中的高电阻率和低电阻率是针对第一电阻层本身而言的,并非针对第一导电层。
在本申请的一些实施例中,第一电阻层130为单层结构或至少两层结构。示例性的,单层结构可以是镍、铬、铂、钯、钛中的任意一种金属组成的单层结构,也可为镍、铬、铂、钯、钛、硅、磷、铝中至少两种组合的合金组成的单层结构。至少两层结构中的任一层可以是镍、铬、铂、钯、钛中的任意一种金属组成单质金属,也可以是镍、铬、铂、钯、钛、硅、磷、铝中至少两种组合的合金。
第一导电层140具有良好导电性能,该金属层的材质可以是金、银、铜或铝,或其中至少两种的合金等。在本申请其他实施例中,第一导电层140也可以是其他具有良好导电性能的非金属层,本申请实施例对第一导电层的材质不做限定,只要具有良好导电性能即可。第一导电层140的厚度范围为3μm-18μm。
调节层120形成在介质层110的一侧,且调节层120远离介质层110的一侧的至少部分区域设置有第一凸起结构121。第一凸起结构121使得调节层120远离介质层110的一侧的至少部分区域具有粗糙的表面。本申请的实施例中,第一凸起结构121的形状根据实际需要可具有多样性,可为规则的或不规则的立体几何形状,本申请实施例在此不做限定。在一些示例中,第一凸起结构使得调节层具有连续起伏表面,形成较规则的正弦线形状,又或者第一凸起结构的形状为尖角状、倒锥状、颗粒状、树枝状、柱状、块状、弧状中的一种或多种。
第一电阻层130形成在调节层120远离介质层110的一侧,具体的,在本申请其中一实施例中,可以通过物理气相沉积、化学气相沉积、蒸发镀、溅射镀、电镀和混合镀等方式将第一电阻层130形成在调节层120远离介质层110的一侧。由于调节层120远离介质层110的一侧的至少部分区域设置有第一凸起结构121,因此,在调节层120上形成的第一电阻层130时,其两侧会顺应形成第二凸起结构131。
第一导电层140可以通过物理气相沉积、化学气相沉积、蒸发镀、溅射镀、电镀和混合镀等方式形成在第一电阻层130远离调节层120的一侧。
经发明人研究发现,埋入式电阻中第一电阻层的截面积会影响耐ESD性能。当第一电阻层的截面积越大,第一电阻层的载流量就越大,ESD性能也就越好, 防静电击穿性能越好。为了提高埋入式电阻的ESD性能,可以增大第一电阻层的截面积。
本申请实施例通过在第一电阻层130两侧形成第二凸起结构131,使得第一电阻层130的具有粗糙的表面。第二凸起结构131的存在,增大了第一电阻层130的截面积,提高了第一电阻层130的载流量,进而提高了第一电阻层130的耐ESD性能,进而提高了埋入式电阻的抗静电击穿性能。此外,可以通过改变调节层120的第一凸起结构121,调节第一电阻层130的形貌和粗糙度,进而对埋入式电阻的产品性能进行精确调节。
本申请实施例提供的复合金属箔,包括介质层、调节层、第一电阻层和第一导电层,调节层设置在介质层的一侧;第一电阻层形成在调节层远离介质层的一侧,调节层远离介质层的一侧的至少部分区域设置有第一凸起结构,以使第一电阻层靠近调节层的一侧和远离调节层的一侧的至少部分区域形成第二凸起结构,第一导电层形成在第一电阻层远离调节层的一侧。第二凸起结构的存在,增大了第一电阻层的截面积,提高了第一电阻层的载流量,进而提高了第一电阻层的耐ESD性能,提高了埋入式电阻的抗静电击穿性能。此外,通过改变调节层的第一凸起结构,调节第一电阻层的形貌和粗糙度,可以对埋入式电阻的产品性能进行精确调节。
在本申请的一些实施例中,第二凸起结构131使得第一电阻层130两侧的至少部分区域(设置有凸起结构的区域)的粗糙度Rz的范围为大于或等于0.1μm,粗糙度Sdr的范围为大于或等于0.5%。粗糙度Rz和粗糙度Sdr用于表征第一电阻层130表面的微观不平整度,具体的,通常将取样长度内五个最大的轮廓峰高的平均值与五个最大的轮廓谷深的平均值之和作为粗糙度Rz。粗糙 度Sdr为定义区域的扩展面积(表面积)表示相对于定义区域的面积增大了多少,其中,完全平坦的表面的粗糙度Sdr为零。需要说明的是,在本申请实施例中,第一电阻层130两侧的粗糙度Rz可以相同,也可以不相同,第一电阻层130两侧的粗糙度Sdr可以相同,也可以不相同,本申请实施例在此不做限定。需要说明的是,本实施例及后续实施例中,粗糙度的测试标准为ISO25178标准。
进一步地,在本申请的一些实施例中,为了进一步提高第一电阻层的耐ESD性能,第一电阻层130两侧的粗糙度Rz的范围为0.1μm-30μm,包括0.1μm和30μm,且第一电阻层130两侧的粗糙度Rz取值还可为1μm、5μm、8μm、9μm、10μm、15μm、20μm等。粗糙度Sdr的范围为0.5%-8000%,包括0.5%和8000%,且粗糙度Sdr的取值还可为1%、5%、12%、20%、50%、80%、100%、200%、500%、800%、1500%、2000%、2500%、3000%、3500%、4000%、4500%、5000%、5500%、6000%、6500%、7000%、7500%等。
表1为对不同的粗糙度Rz的第一电阻层进行耐ESD测试得到的测试结果,测试方式为:在其他条件一定的情况下,采用正向的测试静电电压施加在具有一定粗糙度的第一电阻层上,施加三次,每次间隔时间10秒,然后采用反向的测试静电电压施加在第一电阻层上,施加三次,每次间隔时间10秒。逐步提高测试静电电压,将击穿第一电阻层的测试静电电压作为该第一电阻层的耐静电释放电压。
表1
Rz(μm) 耐静电释放电压(KV)
0.1 0.51
1 1.22
2 1.57
4 2.25
6 3.15
10 3.49
30 4.1
如表1所示,不同的粗糙度Rz具有不同的耐静电释放电压,也就是说,通过在第一电阻层远离第一导电层的一侧的至少部分区域设置凸起结构,调整第一电阻层的粗糙度Rz,可以提高第一电阻层的耐静电释放电压。
表2为对不同的粗糙度Sdr的第一电阻层进行耐ESD测试得到的测试结果,测试方式同前。
表2
Sdr(%) 耐静电释放电压(KV)
0.5 0.53
10 0.76
70 1.45
100 2.18
500 3.07
1000 4.11
8000 4.3
如表2所示,不同的粗糙度Sdr具有不同的耐静电释放电压,也就是说,通过在第一电阻层远离第一导电层的一侧的至少部分区域设置凸起结构,调整第一电阻层的粗糙度Sdr,可以提高第一电阻层的耐静电释放电压。
本申请的实施例中,第二凸起结构121的形状根据实际需要可具有多样性,可为规则的或不规则的立体几何形状,例如,第二凸起结构121的形状可为尖角状、倒锥状、颗粒状、树枝状、柱状、块状、弧状中的一种或多种,本申请实施例在此不做限定。
为进一步提高第一电阻层130的耐ESD性能(也即,耐静电释放电压性能),在第一电阻层130两侧的至少部分区域设置的第二凸起结构131是连续设置的。示例性的,如图1A所示,第二凸起结构131的形状为树枝状,同时第二凸起结构131在第一电阻层130的至少部分区域上连续分布;又或者如图1B所示,第二凸起结构131的形状为弧状,第二凸起结构131在第一电阻层130的至少部分区域连续分布,以在第一电阻层130两侧形成类似于“正弦线”形状的结构。 此外,在本申请的另一些实施例中,第二凸起结构可以包括在第一电阻层两侧形成连续起伏表面,以及在起伏表面上形成的多个凸部,本申请实施例在此不做限定。另外,在本申请的又一些实施例中,第二凸起结构在第一电阻层两侧的至少部分区域也可是不连续分布的,本申请实施例在此不做限定。
在本申请的一些实施例中,介质层110和调节层120的材质可以是树脂胶、聚酰亚胺(PI)、改性聚酰亚胺、玻纤布、玻纤布复合材料、纸基板、复合基板、HDI板材、改性环氧树脂、改性丙烯酸树脂、聚对苯二甲酸乙、二醇酯、聚对苯二甲酸丁二醇酯、聚乙烯等,用于保护第一电阻层130,避免第一电阻层130受到来自外界的力而损伤。
在本申请的一些实施例中,调节层120的至少部分区域设置有填料,从而使得调节层120远离介质层110的一侧的至少部分区域形成有第一凸起结构121。通过调节调料的种类和尺寸,使得调节层120远离介质层110的一侧具有不同的粗糙度,从而调节第一电阻层130的粗糙度。
图2A为本申请实施例提供的另一种复合金属箔的结构示意图,图2B为本申请实施例提供的另一种复合金属箔的结构示意图,图2C为本申请实施例提供的另一种复合金属箔的结构示意图,如图2A、图2B和图2C所示,本实施例中,复合金属箔包括介质层210、调节层220、第一电阻层230和第一导电层240。
具体的,介质层210可以是绝缘的基层,用于承载调节层220。调节层220可以是绝缘材料,其材料可以与介质层210相同或不同。第一电阻层230为复合金属箔的关键功能层,用于实现复合金属箔的电阻功能。第一电阻层230的材料可以包括镍、铬、铂、钯、钛中的至少一种单质金属,和/或包括镍、铬、铂、钯、钛、硅、磷、铝中至少两种组合的合金。例如,具有低电阻率的铬化 镍(NiCr)或磷化镍(NiP),或具有高电阻率的铬硅合金(CrSi)。在本申请一具体实施例中,第一电阻层230的材料为铬化镍。第一导电层240具有良好导电性能,该金属层的材质可以是金、银、铜或铝,或其中至少两种的合金等。
调节层远离介质层的一侧的至少部分区域设置有第一凸起结构,示例性的,如图2A、图2B和图2C所示,调节层220靠近第一电阻层230的一侧的全部区域均设置有第一凸起结构221。由于第一电阻层230是顺序形成在调节层220设置有第一凸起结构221的一侧,因此,形成的第一电阻层230的两侧的全部区域会顺应形成第二凸起结构231。由于第一电阻层230两侧的整面均设置有第二凸起结构231,因此,可进一步增大了第一电阻层230的截面积,提高了埋入式电阻的抗静电击穿能力。
具体的,第一电阻层230的两侧的粗糙度Rz的范围为大于或等于0.1μm,粗糙度Sdr的范围为大于或等于0.5%。需要说明的是,在本申请实施例中,第一电阻层230两侧的粗糙度Rz可以相同,也可以不相同,第一电阻层230两侧的粗糙度Sdr可以相同,也可以不相同,本申请实施例在此不做限定。可选的,第一电阻层230两侧的粗糙度Rz的范围为0.1μm-30μm,包括0.1μm和30μm,且第一电阻层230两侧的粗糙度Rz取值还可为1μm、5μm、8μm、9μm、10μm、15μm、20μm等。粗糙度Sdr的范围为0.5%-8000%,包括0.5%和8000%,且粗糙度Sdr的取值还可为1%、5%、12%、20%、50%、80%、100%、200%、500%、800%、1500%、2000%、2500%、3000%、3500%、4000%、4500%、5000%、5500%、6000%、6500%、7000%、7500%等。
本申请的实施例中,第二凸起结构的形状根据实际需要可具有多样性,可为规则的或不规则的立体几何形状,本申请实施例在此不做限定。在一些示例 中,第二凸起结构可以在第一电阻层两侧形成连续起伏表面,也可以是在第一电阻层两侧形成较规则的“正弦线”形状,又或者凸起结构的形状为尖角状、倒锥状、颗粒状、树枝状、柱状、块状、弧状中的一种或多种。
在本申请实施例中,如图2C所示,为更进一步提高第一电阻层230的耐ESD性能,在第一电阻层230两侧的全部区域设置的第二凸起结构231为连续设置的,也就是说在第一电阻层230的两个侧面连续的设置第二凸起结构231,以进一步提高第一电阻层230的截面积,提高第一电阻层230的耐ESD性能,进而提高埋入式电阻的抗静电击穿能力。
进一步地,若第二凸起结构231的粗糙度高度参数Rz设置的太高,则在应用时,第二凸起结构231易受到外力作用而断裂,进而影响第一电阻层230的耐ESD性能,因此,设置第一电阻层230的粗糙度Rz的范围为0.1μm-10μm,且第一电阻层230的粗糙度Sdr的范围为大于或等于20%。通过限定第一电阻层230的粗糙度高度参数Rz为0.1μm-10μm以及表面积相对于定义区域面积的增加量参数Sdr的范围为≥20%,以在第二凸起结构231一定的高度范围内,在第一电阻层230两侧的全部区域获得连续且紧密排列的第二凸起结构231(该全部区域连续且紧密排列的凸起结构类似于“绒毛”结构),从而在粗糙度的高度参数Rz一定的情况下,也就是说,确保第二凸起结构231不会因受到外力作用而断裂的情况下,获得具有较大横截面的第一电阻层230,进而提高第一电阻层230的耐ESD性能,有效确保埋入式电阻具有较强的抗静电击穿能力。
可选地,第一电阻层230的粗糙度Rz的范围为0.1μm-10μm,且第一电阻层230的粗糙度Sdr的范围为大于或等于50%。通过限定第一电阻层230的粗糙度高度参数Rz为0.1μm-10μm以及表面积相对于定义区域面积的增加量参数 Sdr的范围为≥50%,以在第二凸起结构231一定的高度范围内,在第一电阻层220两侧的全部区域获得连续且较紧密排列的第二凸起结构231,也就是说,获得比粗糙度Sdr的范围为≥20%更紧密排列的凸起结构,从而进一步增大第一电阻层的横截面,进一步提高第一电阻层的耐ESD性能,有效确保埋入式电阻具有较强的抗静电击穿能力。
可选地,第一电阻层230的粗糙度Rz的范围为0.1μm-10μm,且第一电阻层230的粗糙度Sdr的范围为大于或等于200%,从而更进一步增大第一电阻层的横截面,更进一步提高第一电阻层的耐ESD性能,有效确保埋入式电阻具有优异的抗静电击穿能力。
在本申请的一些实施例中,介质层210和调节层220的材质可以是树脂胶、聚酰亚胺(PI)、改性聚酰亚胺、玻纤布、玻纤布复合材料、纸基板、复合基板、HDI板材、改性环氧树脂、改性丙烯酸树脂、聚对苯二甲酸乙、二醇酯、聚对苯二甲酸丁二醇酯、聚乙烯等,用于保护第一电阻层230,避免第一电阻层230受到来自外界的力而损伤。
在本申请的一些实施例中,调节层220的全部区域设置有填料,从而使得调节层220远离介质层110的一侧的至少部分区域形成有第一凸起结构221。通过调节调料的种类和尺寸,使得调节层220远离介质层210的一侧具有不同的粗糙度,从而调节第一电阻层230的粗糙度。
图3为本申请实施例提供的另一种复合金属箔的结构示意图,如图3所示,本实施例中,复合金属箔包括介质层310、调节层320、第一电阻层330和第一导电层340。
具体的,介质层310可以是绝缘的基层,用于承载调节层320。调节层320 可以是绝缘材料,其材料可以与介质层310相同或不同。第一电阻层330为复合金属箔的关键功能层,用于实现复合金属箔的电阻功能。第一电阻层330的材料可以包括镍、铬、铂、钯、钛中的至少一种单质金属,和/或包括镍、铬、铂、钯、钛、硅、磷、铝中至少两种组合的合金。例如,具有低电阻率的铬化镍(NiCr)或磷化镍(NiP),或具有高电阻率的铬硅合金(CrSi)。在本申请一具体实施例中,第一电阻层330的材料为铬化镍。第一导电层340具有良好导电性能,该金属层的材质可以是金、银、铜或铝,或其中至少两种的合金等。
调节层远离介质层的一侧的至少部分区域设置有第一凸起结构,示例性的,如图3所示,调节层320靠近第一电阻层330的一侧的全部区域均设置有第一凸起结构321,且多个第一凸起结构321连续,形成波浪起伏的表面。由于第一电阻层330是顺序形成在调节层320设置有第一凸起结构321的一侧,因此,形成的第一电阻层330的两侧的全部区域会顺应形成第二凸起结构331,且第二凸起结构331使得第一电阻层330形成连续的波浪起伏结构。
具体的,第一电阻层330的两侧的的粗糙度Rz的范围为大于或等于0.1μm,粗糙度Sdr的范围为大于或等于0.5%。需要说明的是,在本申请实施例中,第一电阻层330两侧的粗糙度Rz可以相同,也可以不相同,第一电阻层330两侧的粗糙度Sdr可以相同,也可以不相同,本申请实施例在此不做限定。可选的,第一电阻层330两侧的粗糙度Rz的范围为0.1μm-30μm,包括0.1μm和30μm,且第一电阻层330两侧的粗糙度Rz取值还可为1μm、5μm、8μm、9μm、10μm、15μm、20μm等。粗糙度Sdr的范围为0.5%-8000%,包括0.5%和8000%,且粗糙度Sdr的取值还可为1%、5%、12%、20%、50%、80%、100%、200%、500%、800%、1500%、2000%、2500%、3000%、3500%、4000%、4500%、5000%、 5500%、6000%、6500%、7000%、7500%等。
在本申请的一些实施例中,介质层310和调节层320的材质可以是树脂胶、聚酰亚胺(PI)、改性聚酰亚胺、玻纤布、玻纤布复合材料、纸基板、复合基板、HDI板材、改性环氧树脂、改性丙烯酸树脂、聚对苯二甲酸乙、二醇酯、聚对苯二甲酸丁二醇酯、聚乙烯等,用于保护第一电阻层330,避免第一电阻层330受到来自外界的力而损伤。
在本申请的一些实施例中,调节层320的全部区域设置有填料,从而使得调节层320远离介质层310的一侧的至少部分区域形成有第一凸起结构321。通过调节调料的种类和尺寸,使得调节层320远离介质层310的一侧具有不同的粗糙度,从而调节第一电阻层330的粗糙度。
进一步的,介质层远离第一电阻层的一侧设置有第二电阻层和第二导电层,第二电阻层位于介质层与第二导电层之间。第二电阻层和第一电阻层的材料、用途均可以相同或不相同,同样的,第二导电层与第一导电层的材料、用途均可以相同或不相同。此外,第二电阻层的结构、参数与第一电阻的结构和参数可以相同,第二导电层的结构、参数与第一导电层的结构和参数也可以相同,在此就不再一一赘述。进一步的,在本申请的一些实施例中,介质层和第二电阻层之间还可以设置调节层,该调节层和介质层和第一电阻层之间的调节层的结构、材料和参数可以相同,具有相同的功能。
图4A为本申请实施例提供的另一种复合金属箔的结构示意图,图4B为本申请实施例提供的另一种复合金属箔的结构示意图,如图4A和图4B所示,本实施例中,复合金属箔包括介质层410、调节层420、第一电阻层430、第一导电层440、第二电阻层450和第二导电层460。
调节层420形成在介质层410的一侧,第一电阻层430形成在调节层420远离介质层410的一侧,第一导电层440形成在第一电阻层430远离调节层420的一侧。调节层420远离介质层的一侧的全部区域设置有第一凸起结构421,使得调节层420具有凹凸的表面,使得形成的第一电阻层430的两侧顺应形成第二凸起结构431。第一导电层、第一电阻层、调节层和介质层的材料、第二凸起结构的形状以及第一电阻层两侧的粗糙度在前述实施例中已有详细记载,本申请实施例在此不再赘述。
第二电阻层450设置在介质层410远离调节层420的一侧,第二导电层460设置在第二电阻层450远离介质层410的一侧。在本申请一具体实施例中,第二电阻层450和第一电阻层430的材料、用途均相同,同样的,第二导电层460与第一导电层440的材料、用途均相同。
第二电阻层450中的一侧或两侧可以是平整的表面,也可以如第一电阻层430类似,至少部分区域设置有凸起结构。示例性的,如图4A所示,第二电阻层450远离介质层410的一侧设置有为凸起结构;如图4B所示,第二电阻层450两侧的全部区域设置有凸起结构,凸起结构可以参考本申请前述实施例中记载的第一电阻层430上的凸起结构,本申请实施例在此不再赘述。
图5A为本申请实施例提供的一种复合金属箔的制备方法的流程图,如图5A所示,该方法包括:
S501、提供介质层。
具体的,介质层可以是树脂胶、聚酰亚胺(PI)、改性聚酰亚胺、玻纤布、玻纤布复合材料、纸基板、复合基板、HDI板材、改性环氧树脂、改性丙烯酸树脂、聚对苯二甲酸乙、二醇酯、聚对苯二甲酸丁二醇酯、聚乙烯等。
S502、在介质层的一侧形成调节层。
具体的,可以调节层可以是绝缘材料,其材料可以与介质层相同或不同,本申请实施例在此不做限定。示例性的,将调节层的前驱液涂布在介质层的一侧,可得到调节层,也可以直接将调节层贴合至介质层上。
图5B为本申请实施例提供的在介质层上形成调节层的示意图,如图5B所示,调节层520形成在介质层510的一侧。
S503、在调节层远离介质层的一侧的至少部分区域形成第一凸起结构。
具体的,可以对调节层远离介质层的一侧进行粗化处理,粗化处理可以包括但不限于物理打磨、化学腐蚀、喷丸和喷砂等方式。经粗化处理后,在调节层远离介质层的一侧的至少部分区域形成第一凸起结构。此外,也可以通过在调节层内设置填料而使得调节层远离介质层一侧的至少部分区域形成第一凸起结构。
在本申请的一些实施例中,调节层的至少部分区域设置有填料,从而使得调节层远离介质层的一侧的至少部分区域形成有第一凸起结构。通过调节调料的种类和尺寸,使得调节层远离介质层的一侧具有不同的粗糙度,从而调节第一电阻层的粗糙度。
图5C为本申请实施例提供的在调节层远离介质层的一侧形成第一凸起结构的示意图,如图5C所示,调节层520远离介质层510的一侧的全部区域形成第一凸起结构521。第一凸起结构521的形状根据实际需要可具有多样性,可为规则的或不规则的立体几何形状,本申请实施例在此不做限定。在一些示例中,第一凸起结构使得调节层具有连续起伏表面,形成较规则的正弦线形状,又或者第一凸起结构的形状为尖角状、倒锥状、颗粒状、树枝状、柱状、块状、弧 状中的一种或多种。
S504、在调节层远离介质层的一侧形成第一电阻层。
具体的,第一电阻层可以通过物理气相沉积、化学气相沉积、蒸发镀、溅射镀、电镀和混合镀等方式形成在调节层远离介质层的一侧。第一电阻层为复合金属箔的关键功能层,用于实现复合金属箔的电阻功能。第一电阻层的材料可以包括镍、铬、铂、钯、钛中的至少一种单质金属,和/或包括镍、铬、铂、钯、钛、硅、磷、铝中至少两种组合的合金。例如,具有低电阻率的镍铬合金(NiCr)或镍磷合金(NiP),也可以是具有高电阻率的铬硅合金(CrSi),本申请实施例在此不做限定。在本申请的一些实施例中,第一电阻层可以为单层结构或至少两层结构。任一层可以是镍、铬、铂、钯、钛中的任意一种金属组成单质金属,也可以是镍、铬、铂、钯、钛、硅、磷、铝中至少两种组合的合金。
图5D为本申请实施例提供的在调节层上形成第一电阻层的示意图,如图5D所示,第一电阻层530形成在调节层520远离介质层510的一侧。由于调节层520上形成有第一凸起结构521,使得第一电阻层530两侧顺应形成第二凸起结构531。第二凸起结构的形状根据实际需要可具有多样性,可为规则的或不规则的立体几何形状,本申请实施例在此不做限定。在一些示例中,第二凸起结构可以在第一电阻层的两侧均形成连续起伏表面,也可以是在第一电阻层两侧形成较规则的正弦线形状,又或者第二凸起结构的形状为尖角状、倒锥状、颗粒状、树枝状、柱状、块状、弧状中的一种或多种,又或者第二凸起结构使得第一电阻层形成连续的波浪起伏结构。
具体的,第一电阻层530的两侧的粗糙度Rz的范围为大于或等于0.1μm,粗糙度Sdr的范围为大于或等于0.5%。需要说明的是,在本申请实施例中,第 一电阻层530两侧的粗糙度Rz可以相同,也可以不相同,第一电阻层530两侧的粗糙度Sdr可以相同,也可以不相同,本申请实施例在此不做限定。可选的,第一电阻层520两侧的粗糙度Rz的范围为0.1μm-30μm,包括0.1μm和30μm,且第一电阻层520两侧的粗糙度Rz取值还可为1μm、5μm、8μm、9μm、10μm、15μm、20μm等。粗糙度Sdr的范围为0.5%-8000%,包括0.5%和8000%,且粗糙度Sdr的取值还可为1%、5%、12%、20%、50%、80%、100%、200%、500%、800%、1500%、2000%、2500%、3000%、3500%、4000%、4500%、5000%、5500%、6000%、6500%、7000%、7500%等。
由于第一电阻层两侧的形貌和粗糙度由调节层决定,所以,可以通过改变调节层上第一凸起结构的形状和尺寸,进而调节第一电阻层两侧的形貌和粗糙度,实现对埋入式电阻的产品性能进行精确调节。
S505、在第一电阻层远离调节层的一侧形成第一导电层。
具体的,第一导电层可以通过物理气相沉积、化学气相沉积、蒸发镀、溅射镀、电镀和混合镀等方式形成在第一电阻层远离调节层的一侧。第一导电层具有良好导电性能,该金属层的材质可以是金、银、铜或铝,或其中至少两种的合金等。
图5E为本申请实施例提供的在第一电阻层上形成第一导电层的示意图,如图5E所示,第一导电层540形成在第一电阻层530远离调节层520的一侧。
进一步的,还可以在介质层远离调节层的一侧设置有第二电阻层和第二导电层,第二电阻层位于介质层与第二导电层之间。
本申请实施例提供的复合金属箔的制备方法,包括:提供介质层,在介质层的一侧形成调节层,在调节层远离介质层的一侧的至少部分区域形成第一凸 起结构,在调节层远离介质层的一侧形成第一电阻层,在第一电阻层远离调节层的一侧形成第一导电层。通过上述方法,在第一电阻层两侧均形成第二凸起结构。第二凸起结构的存在,增大了第一电阻层的截面积,提高了第一电阻层的载流量,进而提高了第一电阻层的ESD性能,进而提高了埋入式电阻的抗静电击穿性能。
本申请实施例还提供了一种线路板,包括本申请上述任意实施例提供的复合金属箔。
本申请实施例提供的线路板,具有与本申请实施例提供的复合金属箔相应的功能和有益效果。
于本文的描述中,需要理解的是,术语“上”、“下”、“左”“右”、等方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述和简化操作,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本说明书的描述中,参考术语“一实施例”、“示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以适当组合,形成本领域技术人员可以理解的其他实施方式。
以上结合具体实施例描述了本申请的技术原理。这些描述只是为了解释本 申请的原理,而不能以任何方式解释为对本申请保护范围的限制。

Claims (14)

  1. 一种复合金属箔,其包括:介质层、调节层、第一电阻层和第一导电层;
    所述调节层设置在所述介质层的一侧;
    所述第一电阻层形成在所述调节层远离所述介质层的一侧;
    所述调节层远离所述介质层的一侧的至少部分区域设置有第一凸起结构,以使所述第一电阻层靠近所述调节层的一侧和远离所述调节层的一侧的至少部分区域形成第二凸起结构;
    所述第一导电层形成在所述第一电阻层远离所述调节层的一侧。
  2. 根据权利要求1所述的复合金属箔,其中,所述第一电阻层靠近所述调节层的一侧和远离所述调节层的一侧的粗糙度Rz的范围均为0.1μm-30μm。
  3. 根据权利要求1所述的复合金属箔,其中,所述第一电阻层靠近所述调节层的一侧和远离所述调节层的一侧的粗糙度Sdr的范围均为大于或等于0.5%。
  4. 根据权利要求1所述的复合金属箔,其中,所述调节层远离所述介质层的一侧的全部区域均设置有所述第一凸起结构,以使所述第一电阻层靠近所述调节层的一侧和远离所述调节层的一侧的全部区域均形成所述第二凸起结构。
  5. 根据权利要求1所述的复合金属箔,其中,所述调节层远离所述介质层的一侧的至少部分区域设置有多个连续的所述第一凸起结构,以使所述第一电阻层靠近所述调节层的一侧和远离所述调节层的一侧的至少部分区域形成多个连续的所述第二凸起结构。
  6. 根据权利要求5所述的复合金属箔,其中,所述调节层远离所述介质层的一侧的全部区域均设置有多个连续的所述第一凸起结构,以使所述第一电阻层靠近所述调节层的一侧和远离所述调节层的一侧的全部区域均形成多个连续的所述第二凸起结构。
  7. 根据权利要求5所述的复合金属箔,其中,所述第一电阻层靠近所述调节层的一侧和远离所述调节层的一侧的全部区域均形成连续的所述第二凸起结构,以使所述第一电阻层形成连续的波浪起伏结构。
  8. 根据权利要求1-7任一所述的复合金属箔,其中,所述第一电阻层靠近所述调节层的一侧和远离所述调节层的一侧的粗糙度Rz的范围均为0.1μm-10μm,所述第一电阻层靠近所述调节层的一侧和远离所述调节层的一侧的粗糙度Sdr的范围均为大于或等于20%。
  9. 根据权利要求1-7任一所述的复合金属箔,其中,所述第一电阻层靠近所述调节层的一侧和远离所述调节层的一侧的粗糙度Rz的范围均为0.1μm-10μm,所述第一电阻层靠近所述调节层的一侧和远离所述调节层的一侧的粗糙度Sdr的范围均为大于或等于50%。
  10. 根据权利要求1-7任一所述的复合金属箔,其中,所述第一电阻层靠近所述调节层的一侧和远离所述调节层的一侧的粗糙度Rz的范围均为0.1μm-10μm,所述第一电阻层靠近所述调节层的一侧和远离所述调节层的一侧的粗糙度Sdr的范围均为大于或等于200%。
  11. 根据权利要求1-7任一所述的复合金属箔,其中,所述介质层远离所述调节层的一侧设置有第二电阻层和第二导电层,所述第二电阻层位于所述介质层与所述第二导电层之间。
  12. 根据权利要求1-7任一所述的复合金属箔,其中,所述第一电阻层的材质包括镍、铬、铂、钯、钛中的至少一种单质金属,和/或包括镍、铬、铂、钯、钛、硅、磷、铝中至少两种组合的合金。
  13. 根据权利要求12所述的复合金属箔,其中,所述第一电阻层为单层结构 或至少两层结构。
  14. 一种线路板,其包括如权利要求1-13任一所述的复合金属箔。
PCT/CN2020/137921 2020-11-19 2020-12-21 一种复合金属箔及线路板 WO2022104996A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011307443.7A CN114554686A (zh) 2020-11-19 2020-11-19 一种复合金属箔及线路板
CN202011307443.7 2020-11-19

Publications (1)

Publication Number Publication Date
WO2022104996A1 true WO2022104996A1 (zh) 2022-05-27

Family

ID=81660195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137921 WO2022104996A1 (zh) 2020-11-19 2020-12-21 一种复合金属箔及线路板

Country Status (2)

Country Link
CN (1) CN114554686A (zh)
WO (1) WO2022104996A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116137197A (zh) * 2023-04-20 2023-05-19 广州方邦电子股份有限公司 一种复合基材及电路板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1498749A (zh) * 2002-10-31 2004-05-26 �źӵ�·ͭ����ʽ���� 带载体的极薄铜箔及其制造方法以及印刷配线基板
US7215235B2 (en) * 2003-04-11 2007-05-08 Furukawa Circuit Foil Co., Ltd Conductive substrate with resistance layer, resistance board, and resistance circuit board
CN101772996A (zh) * 2007-08-03 2010-07-07 大自达系统电子株式会社 印刷布线板用屏蔽膜以及印刷布线板
CN111816397A (zh) * 2019-04-11 2020-10-23 上海其鸿新材料科技有限公司 一种电极箔及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1498749A (zh) * 2002-10-31 2004-05-26 �źӵ�·ͭ����ʽ���� 带载体的极薄铜箔及其制造方法以及印刷配线基板
US7215235B2 (en) * 2003-04-11 2007-05-08 Furukawa Circuit Foil Co., Ltd Conductive substrate with resistance layer, resistance board, and resistance circuit board
CN101772996A (zh) * 2007-08-03 2010-07-07 大自达系统电子株式会社 印刷布线板用屏蔽膜以及印刷布线板
CN111816397A (zh) * 2019-04-11 2020-10-23 上海其鸿新材料科技有限公司 一种电极箔及其制备方法

Also Published As

Publication number Publication date
CN114554686A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
TW200842913A (en) Capacitor devices
WO2022104996A1 (zh) 一种复合金属箔及线路板
CN110612783B (zh) 印刷配线板及其制造方法
CN116190022B (zh) 一种复合基材及电路板
JP2006121086A (ja) 容量性/抵抗性デバイス、有機誘電ラミネート、およびそのようなデバイスを組み込むプリント配線板、ならびにその作製の方法
CN116137197A (zh) 一种复合基材及电路板
CN114554684A (zh) 一种复合金属箔及线路板
KR100495133B1 (ko) 피티씨 서미스터
WO2022104995A1 (zh) 一种复合金属箔及线路板
WO2022104994A1 (zh) 一种复合金属箔及线路板
JPWO2020175477A1 (ja) プリント配線板
JP4297617B2 (ja) 抵抗器を製作する方法
CN114554685A (zh) 一种复合金属箔及线路板
CN214205968U (zh) 一种复合金属箔及线路板
JP5499518B2 (ja) 薄膜チップ抵抗器の製造方法
CN214205966U (zh) 一种复合金属箔及线路板
CN214205967U (zh) 一种复合金属箔及线路板
CN214205965U (zh) 一种复合金属箔及线路板
CN114521053A (zh) 一种复合金属箔及线路板
CN214627496U (zh) 埋阻金属箔和印制板
CN214014636U (zh) 一种埋阻金属箔及印制板
CN214014635U (zh) 埋阻金属箔
CN214014634U (zh) 埋阻金属箔
CN214014637U (zh) 埋阻金属箔
JP2019125648A (ja) めっき用遮蔽板製造方法及びプリント配線板製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01.09.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20962287

Country of ref document: EP

Kind code of ref document: A1