WO2022104640A1 - 量子点防蓝光材料及其制备方法、防蓝光镜片和膜片 - Google Patents

量子点防蓝光材料及其制备方法、防蓝光镜片和膜片 Download PDF

Info

Publication number
WO2022104640A1
WO2022104640A1 PCT/CN2020/130086 CN2020130086W WO2022104640A1 WO 2022104640 A1 WO2022104640 A1 WO 2022104640A1 CN 2020130086 W CN2020130086 W CN 2020130086W WO 2022104640 A1 WO2022104640 A1 WO 2022104640A1
Authority
WO
WIPO (PCT)
Prior art keywords
blue light
quantum dot
group
dot material
lens
Prior art date
Application number
PCT/CN2020/130086
Other languages
English (en)
French (fr)
Inventor
邓正涛
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学 filed Critical 南京大学
Priority to PCT/CN2020/130086 priority Critical patent/WO2022104640A1/zh
Publication of WO2022104640A1 publication Critical patent/WO2022104640A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/23Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  for the control of the colour

Definitions

  • the invention relates to an anti-blue light material and its preparation technology and application. More specifically, it relates to a semiconductor quantum dot material technology with high-efficiency blue light absorption performance, which can eliminate the influence of the "overflow blue light” hazard of various display screens and light-emitting diode LED lighting devices.
  • Light can be divided into two categories: visible light segment and invisible light segment.
  • the wavelength range of visible light is 380nm to 760nm, of which light in the range of 380nm to 500nm is perceived by our retina as blue, so it is called blue light.
  • Blue light is an important part of natural light. Blue light hazard refers to the photochemical action caused by radiation with a wavelength between 400nm and 500nm (short wavelength light), which leads to retinal damage. Part of the blue light can penetrate the lens to reach the retina and contains high photon energy.
  • blue light has the highest sensitivity to the retina and the strongest penetrating power, so it is harmful. It can cause photochemical damage to the retina and accelerate the oxidative damage of cells in the macular region.
  • blue light is not only found in sunlight, but also in computer monitors (whether LED or CCFL), digital electronic product displays, mobile phones, TVs, and even car lights and neon lights. Relevant studies have shown that the harmful effects of different wavelengths of blue light on the human eye are different, and the effect gradually decreases with the increase or decrease of the wavelength.
  • the optical principle of anti-blue light is to protect the eyes from blue light by blocking, reflecting or absorbing blue light through special materials.
  • the real difficulty lies in the effective and specific absorption of the blue light emitted by the blue LED, that is, the blue light of 440-470 nm, rather than the non-application blue light of other bands.
  • blue light protection technology is usually used as a solution to reduce the blue light intensity of the light source, such as blue light preventing glasses and anti-blue light films.
  • the blue light intensity of the light source such as blue light preventing glasses and anti-blue light films.
  • the first method is mainly composed of polymer materials and organic materials.
  • the disadvantages are: 1) Most of the organic blue light absorbing materials are organic materials, which mainly absorb ultraviolet wavelengths and wavelengths in the The short-wave blue light within 440nm cannot effectively absorb the blue light of 440-470nm commonly used in display, so it cannot effectively protect the blue light of electronic products.
  • Traditional organic materials absorb blue light, and the molar extinction coefficient is very small; 2) The synthesis process of organic materials is complex, The cost is relatively high; while the oxide blue light absorbing materials that are also used as blue light absorbing materials are mostly indirect band gap materials, the molar extinction coefficient is small, and the blue light absorption effect is limited.
  • the grating is mainly composed of silicon dioxide or other oxides, and its absorption and attenuation effect on blue light is extremely limited; while the third method is relatively expensive to realize, and it is difficult to be used for mass production of commercial products.
  • the technical problem to be solved by the present invention is that, in view of the above-mentioned defects of the prior art, a quantum dot anti-blue light material and a preparation method thereof, an anti-blue light lens and a film are provided, which can efficiently absorb the LED blue light of 440-470 nm and prevent the display
  • the red and green light in the device is subjected to secondary absorption and interference, which effectively protects electronic products from blue light damage without affecting the display effect.
  • the material has a simple synthesis process, low synthesis cost, no heavy metals in synthesis, and is an environment-friendly product.
  • a quantum dot anti-blue light material including quantum dot material and macromolecular polymer material, the quantum dot material is dispersed in the macromolecular polymer material after adding thiol; the quantum dot material is an absorption band used for absorbing blue light A semiconductor nanocrystal with a side of 440 to 470 nm, and is a compound of group 26 elements, group 35 element compound, group 147 element compound, or group 147 element compound of the periodic table of elements, and the thiol refers to a mercapto group-containing compound A class of non-aromatic compounds with functional groups (-SH).
  • the compound of group 147 elements is at least one of ABX 3 and A 2 B'B"X 6 , wherein: A is a positive monovalent metal cation and a positive monovalent organic cation of the first main group of the periodic table of elements Or at least one of the monovalent organic cations containing benzene ring; B is a positive divalent cation; B' is a positive monovalent metal cation of the first subgroup of the periodic table; B" is a positive trivalent cation; X is a negative monovalent cation One or a combination of halogen anions.
  • the high molecular polymer material is polystyrene, polymethyl methacrylate, polycarbonate, poly-4-methyl-1-pentene or polysulfone.
  • the quantum dot material is treated with thiol to reduce its fluorescence emission, it is dispersed into the polymer material, which specifically includes the following steps:
  • step (3) cooling the turbid liquid obtained in step (2), centrifuging after mixing evenly, then discarding the precipitation to obtain a supernatant;
  • step (3) (4) adding alcohols to the supernatant obtained in step (3), mixing evenly and then centrifuging, discarding the supernatant to obtain the bottom layer precipitate, that is, the quantum dot material treated with thiol;
  • step (4) uniformly mixing the polymer material, thermosetting resin, thermosetting initiator and the quantum dot material obtained in step (4) to obtain a sol-shaped quantum dot anti-blue light material.
  • the quantum dot material in step (1) is CdSeS, InP or CsPbBrCl, and the organic solvent is oleylamine or octadecene.
  • the alcohols in step (4) are methanol, ethanol or isopropanol.
  • An anti-blue light lens is made, which includes an outer hardened protective layer and an intermediate anti-blue light layer; the anti-blue light layer adopts the quantum dot anti-blue light material prepared by the above method.
  • the quantum dot anti-blue light material comprises a weight ratio of 20-40% of a thermosetting resin, 0.1-3% of a quantum dot material, 54-74% of a high molecular polymer material, and 0.5-3% of a thermosetting initiator.
  • the quantum dot anti-blue light material is coated on the hardened protective layer and then thermally cured and formed.
  • the thermally cured resin is a UV-curable resin with a viscosity of 500cps to 8000cps, a curing temperature of 70 to 95 degrees Celsius, and a curing time of 1- 24 hours.
  • a kind of anti-blue light film is made, which sequentially includes a hardening protective layer, an anti-blue light layer, a transparent polymer film base and another hardening protective layer; the anti-blue light layer adopts the quantum dots obtained by the method according to claim 5 or 6 Anti-blue light material.
  • the quantum dot anti-blue light material comprises a weight ratio of 40-70% of a thermosetting resin, 0.1-3% of a quantum dot material, 25-55% of a high molecular polymer material, and 0.4-2% of a thermosetting initiator.
  • the quantum dot anti-blue light material is coated on the hardened protective layer and/or the transparent polymer film base and then thermally cured. 10 to 60 seconds.
  • the invention adopts the semiconductor quantum dot material with high-efficiency blue light absorption performance to effectively absorb the overflowing blue light, and simultaneously reduces the fluorescence emission by adding thiol.
  • the present invention has the following beneficial effects: it can be applied to products such as mobile phones, films of display screens, anti-blue light glasses, etc., and has good anti-blue light effect.
  • the adopted quantum dot material has an absorption wavelength band edge of 2.64 to 2.81 electron volts (eV), and an absorption peak of 440 to 470 nanometers (nm).
  • the preparation method has the advantages of low reaction temperature, cheap raw materials, fast synthesis speed, simple operation, easy preparation, and can be expanded to industrial level for production.
  • FIG. 1 is a schematic cross-sectional view of an anti-blue light lens according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of an anti-blue light film according to an embodiment of the present invention.
  • FIG. 3 is a transmission electron microscope image of the compound quantum dot material of the Group 26 element.
  • FIG. 4 is a transmission spectrum diagram of an anti-blue light lens using a compound quantum dot material of group 26 elements according to an embodiment of the present invention.
  • FIG. 5 is a fluorescence spectrum diagram of an anti-blue light lens using a compound quantum dot material of group 26 elements according to an embodiment of the present invention.
  • FIG. 6 is a transmission electron microscope image of a quantum dot material of a compound of three or five elements.
  • FIG. 7 is a transmission spectrum diagram of an anti-blue light lens using a compound quantum dot of group III and V elements according to an embodiment of the present invention.
  • FIG. 8 is a fluorescence spectrum diagram of a lens using a compound quantum dot of group III and V elements according to an embodiment of the present invention.
  • FIG. 9 is a transmission electron microscope photograph of a perovskite type blue light absorbing quantum dot of a group 147 metal halide.
  • FIG. 10 is an absorption spectrum diagram of an anti-blue light lens using Group 147 metal halide perovskite quantum dot material according to an embodiment of the present invention.
  • FIG. 11 is a fluorescence spectrum diagram of an anti-blue light lens using Group 147 metal halide perovskite quantum dot material according to an embodiment of the present invention.
  • Figure 12 shows the effect of using the quantum dot anti-blue light lens. It can be seen that the composition of harmful blue light (400-450nm) is greatly reduced after adding the anti-blue light lens (spectral diagram shown in Figure 6-7).
  • Figure 13 shows the effect of using the quantum dot anti-blue light lens. It can be seen that the intensity of the blue light peak is greatly reduced after adding the anti-blue light lens (the spectrum diagram is shown in Figure 4-5).
  • Quantum dots also known as semiconductor nanocrystals, are inorganic doped particles composed of hundreds to thousands of atoms, coated with organic ligands, and their particle size is usually on the order of nanometers. Since quantum dots can controllably adjust their emission spectrum by adjusting the size, composition, ligand and other factors, they show great potential and application value in many fields such as LED lighting display, solar cell, and biofluorescence labeling. In the present invention, the characteristic of efficient absorption is mainly used to reduce the light emission to zero.
  • quantum dots it also has many unique advantages, such as: as an inorganic material, compared with organic materials, its stability is stronger, the life is longer, and it is not easy to age; -V (three-five), I-IV-VII (one-three-five) group quantum dots have a mature and perfect synthesis scheme, which can precisely control the particle size and achieve precise optical control; do not contain heavy metal elements, avoid environmental pollution and harm to the human body Toxicity, greener, safer, healthier and more environmentally friendly.
  • a quantum dot anti-blue light material containing the above quantum dots includes quantum dot material and high molecular polymer material, and the quantum dot material is dispersed in the high molecular polymer material after adding thiol.
  • the quantum dot materials include semiconductor quantum dot materials with various absorption band edges ranging from 440 to 470 nm, and the corresponding band gap energy ranges from about 2.64 eV to about 2.81 eV.
  • Such as binary or ternary II-VI groups ZnSe, CdSe, CdS, CdSSe, ZnCdS, binary or ternary III-V groups (such as GaP, InP, InGaP) and 147 metal halide perovskite quantum point, including at least one of ABX 3 and A 2 B'B"X 6.
  • B is a positive divalent cation such as Pb, Sn, Mn, Ge, Cu, or B' is a positive monovalent cation such as Ag, Cu, Au, and B" is Positive trivalent cations such as As, Sb, Bi, In, Ga, etc.
  • X is a negative monovalent halogen anion fluorine F - , chlorine Cl - , bromine Br - , iodine I - , one or a mixture of them.
  • Light sources that can be used to absorb blue light include: lighting sources such as desk lamps, task lights, classroom lights, various LCD displays and OLED displays such as mobile phones, tablets, laptops, desktop monitors, TVs and electronic whiteboard displays screen and so on.
  • the high molecular polymer material can be polystyrene, polymethyl methacrylate, polycarbonate, poly-4-methyl-1-pentene or polysulfone.
  • the preparation method of the above-mentioned quantum dot anti-blue light material, after the quantum dot material is treated with thiol to reduce its fluorescence emission, and then dispersed into the polymer polymer material which specifically includes the following steps:
  • step (3) cooling the turbid liquid obtained in step (2), centrifuging after mixing evenly, then discarding the precipitation to obtain a supernatant;
  • step (3) (4) adding alcohols to the supernatant obtained in step (3), mixing evenly and then centrifuging, discarding the supernatant to obtain the bottom layer precipitate, that is, the quantum dot material treated with thiol;
  • step (4) uniformly mixing the polymer material, thermosetting resin, thermosetting initiator and the quantum dot material obtained in step (4) to obtain a sol-shaped quantum dot anti-blue light material.
  • the above-mentioned quantum dot anti-blue light material is applied to a kind of anti-blue light lens, as shown in FIG. 1, the lens comprises an upper hardened protective layer, a lower hardened protective layer and an anti-blue light layer in the middle; the anti-blue light layer is obtained by the method described above.
  • Quantum dot anti-blue light material comprises a weight ratio of 20-40% of a thermosetting resin, 0.1-3% of a quantum dot material, 54-74% of a high molecular polymer material, and 0.5-3% of a thermosetting initiator.
  • the quantum dot anti-blue light material is coated on the upper hardened protective layer and/or the lower hardened protective layer and then thermally cured and formed. 95 degrees Celsius, curing time is 1 to 24 hours.
  • 1 represents the hardened protective layer
  • 2 represents the anti-blue light layer
  • 3 represents the quantum dot material
  • 4 represents the light source rich in blue light (such as desk lamps, classroom lighting, mobile phones, tablet computers, notebook computers, TVs and electronic whiteboards, etc.
  • 5 represents the low blue light source (such as the display screen of the display device such as desk lamp, classroom lighting, mobile phone, tablet computer, notebook computer, TV and electronic whiteboard).
  • the blue light source rich in blue light that passes through the anti-blue light lens, its blue light is absorbed by the anti-blue light layer of the lens and becomes a low blue light light source.
  • the above-mentioned quantum dot anti-blue light material is applied to a kind of anti-blue light film, as shown in Figure 2, including an upper hardened protective layer, an anti-blue light layer, a transparent polymer film base and a lower hardened protective layer in sequence from top to bottom;
  • the layer adopts the quantum dot anti-blue light material prepared by the above method.
  • the quantum dot anti-blue light material comprises a weight ratio of 40-70% of a thermosetting resin, 0.1-3% of a quantum dot material, 25-55% of a high molecular polymer material, and 0.4-2% of a thermosetting initiator.
  • the quantum dot anti-blue light material is coated on the upper hardened protective layer and/or the transparent polymer film base and then thermally cured and formed.
  • the curing time is 10 to 60 seconds.
  • 1 represents a hardened protective layer
  • 2 represents an anti-blue light layer
  • 3 represents quantum dots
  • 4 represents a polymer substrate
  • 5 represents a blue light-rich light source (such as desk lamps, classroom lighting, mobile phones, tablet computers, notebook computers, Displays of display devices such as TVs and electronic whiteboards)
  • 6 represents low-blue light sources (such as desk lamps, classroom lighting, mobile phones, tablet computers, notebook computers, TVs and electronic whiteboards and other display devices).
  • the temperature is lowered to 60 degrees, and 5-8 ml of n-hexane is added and mixed to obtain a product mother liquor.
  • 12 ml of n-hexane was added to the mother liquor, and the mixture was centrifuged at 10,000 rpm for 3 minutes, and the lower layer precipitate was discarded.
  • the preparation of quantum dot anti-blue light lens the weight ratio of thermal curing resin is 25%, quantum dots 0.5%, monomer solvent 74%, thermal curing agent 0.5%; the viscosity of UV curing resin is 1000cps, and its curing temperature is 75 degrees Celsius, The curing time is 18 hours; in this example, by controlling the elemental composition and size of the quantum dot material, the transmittance of blue light with a wavelength of 400nm to 450nm is less than 80%, reaching the "GB/T38120-2019" issued on December 10, 2019.
  • the national standard of "Light Health and Light Safety Application Technical Requirements for Blue Light Protective Film” produces a better anti-blue light effect, as shown in Figure 4, and there is no fluorescence emission, as shown in Figure 5.
  • the effect of using quantum dot anti-blue light lens is shown in Figure 13.
  • the preparation of quantum dot anti-blue light lens the weight ratio of thermal curing resin is 30%, quantum dots 0.7%, monomer solvent 68.5%, thermal curing agent 0.8%; the viscosity of UV curing resin is 2000cps, and its curing temperature is 80 degrees Celsius.
  • the curing time is 12 hours; the present invention controls the elemental composition and size of the quantum dot material, so that the transmittance of blue light with a wavelength of 400 nm to 450 nm is less than 80%, resulting in a better anti-blue light effect, as shown in Figure 7, and there is no fluorescence launch, as shown in Figure 8.
  • the effect of using quantum dot anti-blue light lens is shown in Figure 12.
  • the temperature is lowered to 60 degrees, and 5-8 ml of n-hexane is added and mixed to obtain a product mother liquor.
  • 12 ml of n-hexane was added to the mother liquor, and the mixture was centrifuged at 10,000 rpm for 3 minutes, and the lower layer precipitate was discarded.
  • the preparation of quantum dot anti-blue light lens adopt the weight ratio of 25% thermal curing resin, 0.5% quantum dots, 74% monomer solvent, and 0.5% thermal curing agent; the viscosity of the ultraviolet curing resin is 1000cps, and its curing temperature is 75% Celsius, the curing time is 18 hours; the present invention controls the elemental composition and size of the quantum dot material, so that the transmittance of blue light with a wavelength of 400nm to 450nm is less than 80%, resulting in a better anti-blue light effect, as shown in Figure 10, and There was no fluorescence emission, as shown in Figure 11.
  • the invention effectively solves the problem that the nano-particles in the macromolecule sol can be effectively solved by adopting the high-boiling point weakly polar organic solvent such as octadecene/oleylamine as the solvent, and performing the ligand exchange at a temperature of about 300 degrees Celsius
  • the problem of low solubility in the quantum dot-polymer glue can reach 20%.
  • the polymer film prepared with this glue can transmit less than 80% of blue light with a wavelength below 500nm, and the preparation raw materials are convenient and easy to obtain.
  • the preparation method has fast synthesis speed, simple operation, and is suitable for large-scale batch production.

Landscapes

  • Physics & Mathematics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

本发明涉及一种量子点防蓝光材料及其制备方法、防蓝光镜片和膜片,量子点防蓝光材料包括量子点材料和高分子聚合材料,该量子点材料加入硫醇后分散在所述高分子聚合材料中;所述量子点材料为用于吸收蓝光的吸收带边在440~470nm的半导体纳米晶体,并且是元素周期表二六族元素化合物、三五族元素化合物、一四七族元素化合物或者类一四七族元素化合物,所述硫醇是指含巯基官能团(-SH)的一类非芳香化合物。具有高效蓝光吸收性能,几乎无荧光,原料便宜,易于制备等技术效果。

Description

量子点防蓝光材料及其制备方法、防蓝光镜片和膜片 技术领域
本发明涉及一种防蓝光材料及其制备技术和应用。更进一步地说,涉及一种具有高效蓝光吸收性能的半导体量子点材料技术,消除各类显示屏和发光二极管LED灯具照明器件钟“溢出蓝光”危害的影响。
背景技术
光可分为可见光段和不可见光段两大类,可见光的波长范围为380nm~760nm,其中380nm~500nm范围的光,我们的视网膜感知为蓝色,所以称之为蓝光。蓝光是自然光线的重要组成部分,蓝光危害指的是由波长介于400nm~500nm(短波长光)的辐射照射后引起的光化学作用,导致视网膜损伤。部分蓝光可以穿透晶状体到达视网膜,含有高光子能量。可见光中蓝光对视网膜敏感性最高、穿透力最强,所以具有危害性,其对视网膜可造成光化学损害,加速黄斑区细胞的氧化损伤。
蓝光不同于紫外线,它不仅存在于太阳光中,还大量存在于电脑显示器(无论LED还是CCFL)、数码电子产品显示屏、手机、电视、甚至汽车车灯和霓虹灯中。相关研究表明,不同波长的蓝光对于人眼的危害效应是不同的,该效应随着波长的增加或递减而逐渐减小。
防蓝光的光学原理是通过特殊材料的阻隔、反射或者吸收蓝光,从而保护眼睛免受蓝光伤害。在电子产品应用中,真正的难点在于有效且特定吸收蓝光LED发出的蓝光,即440~470nm的蓝光,而非其他波段的非应用蓝光。
现有技术中,蓝光防护技术通常以防蓝光眼镜和防蓝光覆膜等降低光源的蓝光强度作为解决的手段。一般而言,防蓝光覆膜产品的机理有三种:其一,通过负载其他的吸光材料吸收一定波长的蓝光;其二,通过干涉和衍射使蓝光强度减弱或改变波长;其三、通过反射材料阻断蓝光。
然而现阶段市售的防蓝光产品中,利用第一种手段的主要采用高分子材料复合有机材料,不足之处在于:1)有机吸蓝光材料大多为有机材料,其主要吸收紫外波段以及波长在440nm以内的短波蓝光,对显示常用的440-470nm的蓝光无法有效吸收,因此无法有效地防护电子产品的蓝光,传统有机材料吸蓝光材料,摩尔消光系数非常小;2)有机材料合成工艺复杂,成本较高;而同用作吸蓝光材料的氧化物吸蓝光材料大多属于间接带隙材料,摩尔消光系数较小,蓝光吸收效果有限。
利用第二种手段的主要用二氧化硅或其他氧化物构成光栅,其对蓝光的吸收和减弱效果极为有限;而第三种手段实现起来成本较为昂贵,很难用于商品大规模生产。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提出一种量子点防蓝光材料及其制备方法、防蓝光镜片和膜片,高效吸收440~470nm的LED蓝光的同时,不对显示中的红绿光进行二次吸收干扰,有效防护电子产品蓝光损害,且不影响显示效果。该材料合成工艺简单,合成成本低,且合成不含重金属,是环境友好产品。
本发明解决其技术问题所采用的技术方案为:
提供一种量子点防蓝光材料,包括量子点材料和高分子聚合材料,该量子点材料加入硫醇后分散在所述高分子聚合材料中;所述量子点材料为用于吸收蓝光的吸收带边在440~470nm的半导体纳米晶体,并且是元素周期表二六族元素化合物、三五族元素化合物、一四七族元素化合物或者类一四七族元素化合物,所述硫醇是指含巯基官能团(-SH)的一类非芳香化合物,。
进一步地:
所述类一四七族元素化合物为ABX 3和A 2B’B”X 6中的至少一种,其中:A为元素周期表第一主族的正一价金属阳离子、正一价有机阳离子或者含苯环的一价有机阳离子中的至少一种;B为正二价阳离子;B’为元素周期表第一副族的正一价金属阳离子;B”为正三价阳离子;X为负一价卤族阴离子中的一种或者几种的混合。
所述高分子聚合材料是聚苯乙烯,聚甲基丙烯酸甲酯,聚碳酸酯,聚4-甲基-1-戊烯或者聚砜。
提供一种如上所述的量子点防蓝光材料的制备方法,量子点材料被硫醇处理使其荧光发射降低之后,再分散至所述高分子聚合材料中,具体包括以下步骤:
(1)将量子点材料和有机溶剂加入容器中,溶解后抽真空,再升温至180~220摄氏度,注入惰性气体,形成透明溶液;
(2)在透明溶液中加入硫醇,升温至280~300摄氏度,反应至透明溶液变为浊液;
(3)将步骤(2)得到浊液降温,混和均匀后进行离心,然后弃去沉淀,得到上清液;
(4)在步骤(3)得到的上清液中加入醇类,混和均匀后离心,弃去上清液,得到底层沉淀即经过硫醇处理的量子点材料;
(5)将高分子聚合材料、热固化树脂、热固化引发剂与步骤(4)得到的量子点材料混合均匀获得溶胶状的量子点防蓝光材料。
进一步地:
步骤(1)中的量子点材料采用CdSeS、InP或CsPbBrCl,所述有机溶剂采用油胺或十八烯。
步骤(4)中的醇类采用甲醇、乙醇或异丙醇。
制作一种防蓝光镜片,包括外层硬化保护层以及中间的防蓝光层;该防蓝光层采用如上所述方法制得的量子点防蓝光材料。
所述量子点防蓝光材料包括重量比为20~40%的热固化树脂、0.1~3%的量子点材料、54~74%的高分子聚合材料、0.5~3%的热固化引发剂,所述量子点防蓝光材料涂布在硬化保护层之上后热固化成型,所述热固化树脂为紫外光固化树脂,粘度为500cps~8000cps,其固化温度为70~95摄氏度,固化时间为1~24小时。
制作一种防蓝光膜片,依次包括一硬化保护层、防蓝光层、透明高分子片基和另一硬化保护层;该防蓝光层采用如权利要求5或6所述方法制得的量子点防蓝光材料。
所述量子点防蓝光材料包括重量比为40~70%的热固化树脂、0.1~3%的量子点材料、25~55%的高分子聚合材料、0.4~2%的热固化引发剂所述量子点防蓝光材料涂布在硬化保护层和/或透明高分子片基之上后热固化成型所述热固化树脂为紫外光固化树脂,粘度为500cps~8000cps,其固化温度为常温,固化时间为10~60秒。
本发明采用具有高效蓝光吸收性能的半导体量子点材料来对溢出蓝光进行有效吸收,同时通过加入硫醇来降低荧光发射。与现有技术相比,本发明具有以下有益效果:能够应用于手机、显示屏的膜片、防蓝光眼镜等产品中,具有良好的防蓝光效果。所采用的量子点材料,吸光波长带边在2.64至2.81电子伏特(eV),吸光峰值位于440~470纳米(nm)。制备方法反应温度低,原料便宜,合成速度快,操作简单,易于制备,可扩大体积至工业级别进行生产。
附图说明
图1是本发明实施例的防蓝光镜片的横断面示意图。
图2是本发明实施例的防蓝光膜片的横断面示意图。
图3为二六族元素化合物量子点材料透射电子显微镜图。
图4为本发明实施例采用二六族元素化合物量子点材料防蓝光镜片的透射光谱图。
图5为本发明实施例采用二六族元素化合物量子点材料防蓝光镜片的荧光光谱图。
图6为三五族元素化合物量子点材料透射电子显微镜图。
图7为本发明实施例采用三五族元素化合物量子点防蓝光镜片的透射光谱图。
图8为本发明实施例采用三五族元素化合物量子点镜片的荧光光谱图。
图9为一四七族金属卤化物钙钛矿型吸蓝光量子点的透射电子显微镜照片图。
图10为本发明实施例采用一四七族金属卤化物钙钛矿型量子点材料防蓝光镜片的吸收光谱图。
图11为本发明实施例采用一四七族金属卤化物钙钛矿型量子点材料防蓝光镜片的荧光光谱图。
图12为量子点防蓝光镜片的使用效果图,可以看到加入防蓝光镜片(光谱图如图6-7所示)后,有害蓝光(400-450nm)的成份大大降低。
图13为量子点防蓝光镜片的使用效果图,可以看到加入防蓝光镜片(光谱图如图4-5所示)后,蓝光峰的强度大大降低。
具体实施方式
现结合附图,对本发明的较佳实施例作详细说明。
量子点,又称之为半导体纳米晶,由几百到上千个原子组成的无机掺杂颗粒,外面包覆有机配体,其颗粒尺寸通常在纳米数量级。由于量子点可以通过调节尺寸、组分、配体等要素实现对其发射光谱的可控调节,在LED照明显示、太阳能电池、生物荧光标记等诸多领域显示出巨大的潜力和应用价值。在本发明中,则主要利用其高效吸收的特性,把发光降低至零。
对于量子点而言,其还具有诸多独特优势,例如:作为无机材料,与有机材料相比,其稳定性更强,寿命更长,更不易老化;现阶段II-VI(二六),III-V(三五),I-IV-VII(一三五)族量子点具有成熟而完善的合成方案,可以精准控制粒径,实现精准光学控制;不含有重金属元素,避免环境污染和对人体的毒性,更为绿色安全,健康环保。
含有上述量子点的一种量子点防蓝光材料,包括量子点材料和高分子聚合物材料,量子点材料加入硫醇后分散在所述高分子聚合材料中。其中量子点材料包括含有各种吸收带边在440~470nm的半导体量子点材料,其对应带隙能量范围在约2.64eV至约2.81eV之间。如二元或三元II-VI族:ZnSe,CdSe,CdS,CdSSe,ZnCdS,二元或三元III-V族(如GaP,InP,InGaP)和一四七族金属卤化物钙钛矿量子点,包括ABX 3和A 2B’B”X 6中的至少一种。其中A可以为正一价金属阳离子,如:氨NH 4 +,铯Cs +,铷Rb +,钾K +,钠Na +,锂Li +;或者正一价有机阳离子:甲胺CH 3NH 3 +,甲脒CH 2(NH 2) 2 +;胍CH(NH 2) 3 +,乙胺CH 3CH 2CH 2NH 3 +,丙胺CH 3CH 2CH 2NH 3 +,丁胺CH 3CH 2CH 2CH 2NH 3 +,戊胺CH 3CH 2CH 2CH 2CH 2NH 3 +等其它有机胺CH 3(CH 2) nNH 3 +(n=0~20);或者含苯环的一价有机 阳离子:如:卞胺C 6H 5CH 2NH 3 +,苯乙胺C 6H 5CH 2CH 2NH 3 +;或者其中的几种阳离子的混合。其中,B为Pb,Sn,Mn,Ge,Cu等正二价阳离子,或者B’为Ag,Cu,Au等正一价阳离子,B”为As,Sb,Bi,In,Ga等正三价阳离子。其中X为负一价卤族阴离子氟F -、氯Cl -、溴Br -、碘I -,其中的一种或者几种的混合。可以用于吸收蓝光的光源包括:照明光源,如台灯,作业灯,教室照明灯,各种LCD显示屏和OLED显示屏,如手机,平板电脑,笔记本电脑,台式机显示器,电视和电子白板显示屏等等。
所述高分子聚合材料可以是聚苯乙烯,聚甲基丙烯酸甲酯,聚碳酸酯,聚4-甲基-1-戊烯或者聚砜。
上述量子点防蓝光材料的制备方法,量子点材料被硫醇处理使其荧光发射降低之后,再分散至所述高分子聚合材料中,具体包括以下步骤:
(1)将量子点材料和有机溶剂加入容器如三颈烧瓶中,溶解后抽真空,再升温至180~220摄氏度,注入惰性气体,形成透明溶液;
(2)在透明溶液中加入硫醇,升温至280~300摄氏度,反应至透明溶液变为浊液;
(3)将步骤(2)得到浊液降温,混和均匀后进行离心,然后弃去沉淀,得到上清液;
(4)在步骤(3)得到的上清液中加入醇类,混和均匀后离心,弃去上清液,得到底层沉淀即经过硫醇处理的量子点材料;
(5)将高分子聚合材料、热固化树脂、热固化引发剂与步骤(4)得到的量子点材料混合均匀获得溶胶状的量子点防蓝光材料。
上述量子点防蓝光材料应用于一种防蓝光镜片,如图1所示,该镜片包括上层硬化保护层、下层硬化保护层以及中间的防蓝光层;该防蓝光层采用如上所述方法制得的量子点防蓝光材料。所述量子点防蓝光材料包括重量比为20~40%的热固化树脂、0.1~3%的量子点材料、54~74%的高分子聚合材料、0.5~3%的热固化引发剂,所述量子点防蓝光材料涂布在上层硬化保护层和/或下层硬化保护层之上后热固化成型,所述热固化树脂为紫外光固化树脂,粘度为500cps~8000cps,其固化温度为70~95摄氏度,固化时间为1~24小时。图1中,①代表硬化保护层,②代表防蓝光层,③代表量子点材料,④代表富含蓝光光源(如台灯,教室照明灯,手机,平板电脑,笔记本电脑,电视和电子白板等显示器件的显示屏),⑤代表低蓝光光源(如台灯,教室照明灯,手机,平板电脑,笔记本电脑,电视和电子白板等显示器件的显示屏)。经过防蓝光镜片的富含蓝光光源,其蓝光被镜片的防蓝光层吸收,变为低蓝光光源。
上述量子点防蓝光材料应用于一种防蓝光膜片,如图2所示,从上到下依次包括上 层硬化保护层、防蓝光层、透明高分子片基和下层硬化保护层;该防蓝光层采用如上所述方法制得的量子点防蓝光材料。所述量子点防蓝光材料包括重量比为40~70%的热固化树脂、0.1~3%的量子点材料、25~55%的高分子聚合材料、0.4~2%的热固化引发剂,所述量子点防蓝光材料涂布在上层硬化保护层和/或透明高分子片基之上后热固化成型所述热固化树脂为紫外光固化树脂,粘度为500cps~8000cps,其固化温度为常温,固化时间为10~60秒。图2中,①代表硬化保护层,②代表防蓝光层,③代表量子点,④代表高分子片基,⑤代表富含蓝光光源(如台灯,教室照明灯,手机,平板电脑,笔记本电脑,电视和电子白板等显示器件的显示屏),⑥代表低蓝光光源(如台灯,教室照明灯,手机,平板电脑,笔记本电脑,电视和电子白板等显示器件的显示屏)。经过防蓝光镜片的富含蓝光光源,其蓝光被镜片的防蓝光层吸收,变为低蓝光光源。
实例一:
取50~70mg已合成的量子点材料二六族元素化合物CdSeS(电镜图如图3所示)和10~15ml油胺加入三颈烧瓶中,在130~150摄氏度抽真空1.5-2h,之后升温之200~220度,多次通氮气后恢复真空,形成淡黄色透明溶液。向烧瓶中通入氮气,至温度稳定后,取500~600ul正十二硫醇注入烧瓶中,出现大量白烟,同时溶液由透明变为浊液,升温至280~300度,反应1~1.5h。反应结束后,降温至60度,加入5~8ml正己烷混匀,即得到产物母液。向母液中加入12ml正己烷,混匀后以10000rpm离心3分钟,弃去下层沉淀。向上清液中加入60ml甲醇,充分混匀,以10000rpm离心3分钟,弃去上层清液,底层沉淀即为修饰后的量子点。
量子点防蓝光镜片的制备:采用热固化树脂重量比25%,量子点0.5%,单体溶剂74%,热固化剂0.5%;紫外光固化树脂的粘度为1000cps,其固化温度为75摄氏度,固化时间为18小时;本实施例通过控制量子点材料的元素组成和尺寸,使波长400nm~450nm蓝光的透过率小于80%,达到了2019年12月10日颁布的《GB/T38120—2019蓝光防护膜的光健康与光安全应用技术要求》国家标准,产生较好的防蓝光效果,如图4所示,而且没有荧光发射,如图5所示。量子点防蓝光镜片的使用效果如图13所示。
实例二:
取30~50mg已合成的量子点材料三五族元素化合物InP量子点(电镜图如图6所示)和8~12ml十八烯加入三颈烧瓶中,在100~140摄氏度抽真空0.5~1h,之后升温到180~200度,多次通氮气后恢复真空,形成淡黄色透明溶液。取500~700ul辛硫醇注入烧瓶中,出现大量白烟,同时溶液由透明变为浊液,升温至280~300度,反应1~2h。反应结束 后,降温至70度,加入5~8ml甲苯混匀,即得到产物母液。向母液中加入12~15ml甲苯,混匀后以8000rpm离心3分钟,弃去下层沉淀。向上清液中加入60ml乙醇,充分混匀,以8000rpm离心3分钟,弃去上层清液,底层沉淀即为修饰后的量子点。
量子点防蓝光镜片的制备:采用热固化树脂重量比30%,量子点0.7%,单体溶剂68.5%,热固化剂0.8%;紫外光固化树脂的粘度为2000cps,其固化温度为80摄氏度,固化时间为12小时;本发明通过控制量子点材料的元素组成和尺寸,使波长400nm~450nm蓝光的透过率小于80%,产生较好的防蓝光效果,如图7所示,而且没有荧光发射,如图8所示。量子点防蓝光镜片的使用效果如图12所示。
实例三:
取50-70mg已合成的量子点材料一四七族金属卤化物钙钛矿型CsPbBrCl量子点(电镜照片如图9所示)和10~15ml油胺加入三颈烧瓶中,在130~150摄氏度抽真空1.5~2h,之后升温之200~220度,多次通氮气后恢复真空,形成淡黄色透明溶液。向烧瓶中通入氮气,至温度稳定后,取500~600ul己硫醇注入烧瓶中,出现大量白烟,同时溶液由透明变为浊液,升温至280~300度,反应1~1.5h。反应结束后,降温至60度,加入5~8ml正己烷混匀,即得到产物母液。向母液中加入12ml正己烷,混匀后以10000rpm离心3分钟,弃去下层沉淀。向上清液中加入60ml甲醇,充分混匀,以10000rpm离心3分钟,弃去上层清液,底层沉淀即为修饰后的量子点。
量子点防蓝光镜片的制备:采用重量比热固化树脂25%,量子点0.5%,单体溶剂74%,热固化剂0.5%;所述紫外光固化树脂的粘度为1000cps,其固化温度为75摄氏度,固化时间为18小时;本发明通过控制量子点材料的元素组成和尺寸,使波长400nm~450nm蓝光的透过率小于80%,产生较好的防蓝光效果,如图10所示,而且没有荧光发射,如图11所示。
本发明通过采用高效吸蓝光的量子点材料和十八烯/油胺等高沸点弱极性有机溶剂作为溶剂,在300摄氏度左右的温度下进行配体交换,有效解决了纳米颗粒在高分子溶胶中的溶解度较低问题,量子点-高分子胶水中量子点的质量分数可以达到20%,以此胶水制备的聚合物薄膜对波长500nm以下的蓝光透过小于80%,并且制备原料方便易得,制备方法合成速度快,操作简单,适合大规模批量生产。
应当理解的是,以上实施例仅用以说明本发明的技术方案,而非对其限制,对本领域技术人员来说,可以对上述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改和替换,都应属于本发明所附权利要求的保护范围。

Claims (10)

  1. 一种量子点防蓝光材料,其特征在于:包括量子点材料和高分子聚合材料,该量子点材料加入硫醇后分散在所述高分子聚合材料中;所述量子点材料为用于吸收蓝光的吸收带边在440~470nm的半导体纳米晶体,并且是元素周期表二六族元素化合物、三五族元素化合物、一四七族元素化合物或者类一四七族元素化合物,所述硫醇是指含巯基官能团(-SH)的一类非芳香化合物。
  2. 根据权利要求1所述的量子点防蓝光材料,其特征在于:所述类一四七族元素化合物为ABX 3和A 2B’B”X 6中的至少一种,其中:A为元素周期表第一主族的正一价金属阳离子、正一价有机阳离子或者含苯环的一价有机阳离子中的至少一种;B为正二价阳离子;B’为元素周期表第一副族的正一价金属阳离子;B”为正三价阳离子;X为负一价卤族阴离子中的一种或者几种的混合。
  3. 根据权利要求1或2所述的量子点防蓝光材料,其特征在于:所述高分子聚合材料是聚苯乙烯,聚甲基丙烯酸甲酯,聚碳酸酯,聚4-甲基-1-戊烯或者聚砜。
  4. 一种如权利要求1至3任一项所述的量子点防蓝光材料的制备方法,其特征在于:量子点材料被硫醇处理使其荧光发射降低之后,再分散至所述高分子聚合材料中,具体包括以下步骤:
    (1)将量子点材料和有机溶剂加入容器中,溶解后抽真空,再升温至180~220摄氏度,注入惰性气体,形成透明溶液;
    (2)在透明溶液中加入硫醇,升温至280~300摄氏度,反应至透明溶液变为浊液;
    (3)将步骤(2)得到浊液降温,混和均匀后进行离心,然后弃去沉淀,得到上清液;
    (4)在步骤(3)得到的上清液中加入醇类,混和均匀后离心,弃去上清液,得到底层沉淀即经过硫醇处理的量子点材料;
    (5)将高分子聚合材料、热固化树脂、热固化引发剂与步骤(4)得到的量子点材料混合均匀获得溶胶状的量子点防蓝光材料。
  5. 根据权利要求4所述的量子点材料的制备方法,其特征在于:步骤(1)中的量子点材料采用CdSeS、InP或CsPbBrCl,所述有机溶剂采用油胺或十八烯。
  6. 根据权利要求4所述的量子点材料的制备方法,其特征在于:步骤(4)中的醇类采用甲醇、乙醇或异丙醇。
  7. 一种防蓝光镜片,其特征在于:包括外层硬化保护层以及中间的防蓝光层;该防蓝光层采用如权利要求4至6任一项所述方法制得的量子点防蓝光材料。
  8. 根据权利要求7所述的防蓝光镜片,其特征在于:所述量子点防蓝光材料包括重量比为 20~40%的热固化树脂、0.1~3%的量子点材料、54~74%的高分子材料、0.5~3%的热固化引发剂,所述量子点防蓝光材料涂布在硬化保护层之上后热固化成型,所述热固化树脂为紫外光固化树脂,粘度为500cps~8000cps,其固化温度为70~95摄氏度,固化时间为1~24小时。
  9. 一种防蓝光膜片,其特征在于:从外层硬化保护层和中间的防蓝光层、透明高分子片基;该防蓝光层采用如权利要求5或6所述方法制得的量子点防蓝光材料。
  10. 根据权利要求9所述的防蓝光膜片,其特征在于:所述量子点防蓝光材料包括重量比为40~70%的热固化树脂、0.1~3%的量子点材料、25~55%的高分子材料、0.4~2%的热固化引发剂,所述量子点防蓝光材料涂布在硬化保护层和/或透明高分子片基之上后热固化成型所述热固化树脂为紫外光固化树脂,粘度为500cps~8000cps,其固化温度为常温,固化时间为10~60秒。
PCT/CN2020/130086 2020-11-19 2020-11-19 量子点防蓝光材料及其制备方法、防蓝光镜片和膜片 WO2022104640A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/130086 WO2022104640A1 (zh) 2020-11-19 2020-11-19 量子点防蓝光材料及其制备方法、防蓝光镜片和膜片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/130086 WO2022104640A1 (zh) 2020-11-19 2020-11-19 量子点防蓝光材料及其制备方法、防蓝光镜片和膜片

Publications (1)

Publication Number Publication Date
WO2022104640A1 true WO2022104640A1 (zh) 2022-05-27

Family

ID=81708098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130086 WO2022104640A1 (zh) 2020-11-19 2020-11-19 量子点防蓝光材料及其制备方法、防蓝光镜片和膜片

Country Status (1)

Country Link
WO (1) WO2022104640A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115166887A (zh) * 2022-07-21 2022-10-11 湖南尚鑫新材料科技有限公司 一种抗菌型手机防蓝光膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106833649A (zh) * 2017-02-15 2017-06-13 纳晶科技股份有限公司 光致发光材料、光转换膜片的制备方法、光转换膜片及显示设备
CN107966878A (zh) * 2016-10-19 2018-04-27 三星电子株式会社 量子点-聚合物复合物膜、其制造方法和包括其的装置
CN108822753A (zh) * 2018-07-03 2018-11-16 厦门市京骏科技有限公司 一种防蓝光量子点膜及其制备方法
CN108977050A (zh) * 2018-06-27 2018-12-11 安徽屹珹新材料科技有限公司 一种防蓝光硬化液及防蓝光硬化膜
CN111781749A (zh) * 2020-07-27 2020-10-16 合肥福纳科技有限公司 一种光转换膜及制备方法、防蓝光眼镜、照明及显示设备
CN111875896A (zh) * 2020-07-29 2020-11-03 武汉珈源同创科技有限公司 一种量子点高分子复合物及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107966878A (zh) * 2016-10-19 2018-04-27 三星电子株式会社 量子点-聚合物复合物膜、其制造方法和包括其的装置
CN106833649A (zh) * 2017-02-15 2017-06-13 纳晶科技股份有限公司 光致发光材料、光转换膜片的制备方法、光转换膜片及显示设备
CN108977050A (zh) * 2018-06-27 2018-12-11 安徽屹珹新材料科技有限公司 一种防蓝光硬化液及防蓝光硬化膜
CN108822753A (zh) * 2018-07-03 2018-11-16 厦门市京骏科技有限公司 一种防蓝光量子点膜及其制备方法
CN111781749A (zh) * 2020-07-27 2020-10-16 合肥福纳科技有限公司 一种光转换膜及制备方法、防蓝光眼镜、照明及显示设备
CN111875896A (zh) * 2020-07-29 2020-11-03 武汉珈源同创科技有限公司 一种量子点高分子复合物及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115166887A (zh) * 2022-07-21 2022-10-11 湖南尚鑫新材料科技有限公司 一种抗菌型手机防蓝光膜及其制备方法
CN115166887B (zh) * 2022-07-21 2024-02-09 湖南尚鑫新材料科技有限公司 一种抗菌型手机防蓝光膜及其制备方法

Similar Documents

Publication Publication Date Title
CA2927191C (en) Light emitting diode (led) devices
JP5940079B2 (ja) ディスプレイバックライトユニット及びディスプレイバックライトユニットの形成方法
CN107102514B (zh) 量子点光刻胶、量子点彩膜基板和显示装置
CN110028948A (zh) 无镉量子点、其制造方法、包括其的组合物、量子点-聚合物复合物和显示器件
KR101775260B1 (ko) 색도 좌표와 색 영역 조절이 가능한 형광 필름
US10712615B2 (en) Display substrate, method for fabricating the same, display panel and display device
WO2015024330A1 (zh) 彩色滤光层、彩膜基板、显示装置
TWI716158B (zh) 光轉換層、背光模組及包括其的顯示裝置
TWI716151B (zh) 含複合式色彩轉換光學材料之背光模組
US10400161B2 (en) Quantum rod composition, quantum rod polarizer and fabricating method for the same
TW201947303A (zh) 量子點顯示裝置
US10126485B2 (en) Optical film and lighting and display products including same
WO2022104640A1 (zh) 量子点防蓝光材料及其制备方法、防蓝光镜片和膜片
KR102034615B1 (ko) 안정화 불소화합물계 공중합체를 갖는 양자점
WO2018137262A1 (zh) 显示装置及其制备方法
TW201947006A (zh) 量子點材料及其製備方法
CN111363385B (zh) 一种有机改性钛酸钡纳米颗粒的制备方法及量子点光学膜的制备方法
Zhou et al. P‐92: Fabrication and Patterning of a Wide‐Color‐Gamut Color Filter Based on Quantum Dots
TWI788483B (zh) 經氰基芳基取代的苯并(硫代)氧雜蒽(benz(othi)oxanthene)化合物
Park et al. Progress and prospects of nanoscale emitter technology for AR/VR displays
Siao et al. Ultra high luminous efficacy of white Zn x Cd 1-x S quantum dots-based white light emitting diodes
CN109917587A (zh) 液晶显示装置及其制作方法
CN109762555A (zh) 一种量子点胶水组合物及一种量子点膜及其制备方法
CN109233803A (zh) 一种聚合物荧光纳米粒及其制备方法和应用
CN111226166A (zh) 基于纳米结构的显示器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961931

Country of ref document: EP

Kind code of ref document: A1