WO2022103245A1 - Sars-cov-2에 대한 단일 도메인 항체 및 이의 용도 - Google Patents

Sars-cov-2에 대한 단일 도메인 항체 및 이의 용도 Download PDF

Info

Publication number
WO2022103245A1
WO2022103245A1 PCT/KR2021/095101 KR2021095101W WO2022103245A1 WO 2022103245 A1 WO2022103245 A1 WO 2022103245A1 KR 2021095101 W KR2021095101 W KR 2021095101W WO 2022103245 A1 WO2022103245 A1 WO 2022103245A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
seq
acid sequence
antibody
sequence shown
Prior art date
Application number
PCT/KR2021/095101
Other languages
English (en)
French (fr)
Inventor
성승용
김정환
이상범
정형화
양혜영
김범준
김성은
Original Assignee
(주)샤페론
(주)휴벳바이오
서울대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)샤페론, (주)휴벳바이오, 서울대학교 산학협력단 filed Critical (주)샤페론
Publication of WO2022103245A1 publication Critical patent/WO2022103245A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1002Coronaviridae
    • C07K16/1003Severe acute respiratory syndrome coronavirus 2 [SARS‐CoV‐2 or Covid-19]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/215Coronaviridae, e.g. avian infectious bronchitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56983Viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6854Immunoglobulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]

Definitions

  • the present invention relates to a single domain antibody against SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) and uses thereof, and more particularly, to SARS-CoV-2 spike glycoprotein It relates to an antibody or antigen-binding fragment thereof comprising a single domain antibody (sdAb) that specifically binds to a receptor binding domain (RBD) and uses thereof.
  • SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
  • sdAb single domain antibody
  • RBD receptor binding domain
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus, is an acute and severe respiratory disease coronavirus 2 first known in 2019 as a positive-sense single-stranded RNA virus. are classified The disease infected with this virus was named Coronavirus disease 2019, abbreviated as COVID-19. The World Health Organization (WHO) has officially announced the coronavirus pandemic, and about 240 million people around the world are being investigated. SARS-Cov-2 is currently the most severe coronavirus outbreak in history. Unlike MERS-CoV and SARS-CoV, SARS-CoV-2 is spreading rapidly worldwide, with cases confirmed in more than 90 countries so far.
  • SARS-CoV-2 is spreading rapidly worldwide, with cases confirmed in more than 90 countries so far.
  • mutant viruses with increased transmission power or negative epidemiologic changes confirmed, increased pathogenicity or clinically confirmed disease severity changes, or reduced effectiveness of diagnosis, vaccines, therapeutics, etc. are spreading.
  • major SARS-CoV-2 mutated viruses include alpha, beta, gamma and delta, and their transmission power is at least 1.5 times higher than that of the existing wild type, and the mortality rate Or the hospitalization rate is high.
  • SARS-CoV-2 infects host cells through the interaction between the receptor binding domain (RBD) of the spike glycoprotein and angiotensin converting enzyme 2 (ACE2) of the host cell. do.
  • RBD receptor binding domain
  • ACE2 angiotensin converting enzyme 2
  • Remdesivir an Ebola virus treatment.
  • remdesivir also obtained significant statistical data for shortening the treatment period, it has not yet shown a significant effect in indexes such as improvement of mortality, and there is still a need to develop a new therapeutic agent.
  • two monoclonal neutralizing antibodies Liilly's LY-Cov555 and Regeneron's REGN-CoV2 have been approved for emergency use by the FDA for the treatment of SARS-CoV-2.
  • Nanobody (VHH, Nb) is a newly researched alternative to these existing antibody therapeutics.
  • Nanobody refers to an antigen recognition variable region of a heavy chain-only antibody (hcAb) found in camelids and the like.
  • hcAb heavy chain-only antibody
  • Nanobodies compared to conventional monoclonal antibodies, Nanobodies have structurally high antigen affinity and antigen specificity, and have a smaller size (1/10 the size of conventional monoclonal antibodies, 15 kDa), so tissue penetration is relatively high. has characteristics.
  • it has the advantage of low risk of immunogenicity due to high homology with human antibodies.
  • the nanobody structure has high thermal stability, making it easy to use in the manufacture of diagnostic kits, and provides high convenience in storage and use of finished products when manufactured as antibody products.
  • the present inventors have reached the present application by developing a novel nanobody targeting SARS-CoV-2 based on nanobody manufacturing technology.
  • An object of the present invention is to provide a single domain antibody (sdAb) against SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) and uses thereof.
  • sdAb single domain antibody against SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) and uses thereof.
  • the present invention provides a single domain antibody that specifically binds to the receptor binding domain (RBD) of SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) spike glycoprotein.
  • RBD receptor binding domain
  • SARS-CoV-2 severe acute respiratory syndrome coronavirus 2 spike glycoprotein
  • CDR1 consisting of the amino acid sequence shown in any one of SEQ ID NOs: 47 to 63, wherein the sdAb
  • CDR2 consisting of the amino acid sequence shown in any one of SEQ ID NOs: 64 to 83
  • it provides an antibody or antigen-binding fragment thereof, comprising a CDR3 consisting of the amino acid sequence shown in any one of SEQ ID NOs: 84 to 106.
  • the sdAb is CDR1 consisting of an amino acid sequence represented by any one of SEQ ID NOs: 48, 56, 57 and 60; CDR2 consisting of the amino acid sequence shown in any one of SEQ ID NOs: 65, 74, 75 and 78; and a CDR3 consisting of an amino acid sequence represented by any one of SEQ ID NOs: 85, 88, 92, 96, 97, 100 and 105, more specifically (1) a CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 48; CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 65; and a CDR3 consisting of an amino acid sequence represented by any one of SEQ ID NOs: 85, 88, 92 and 105; (2) CDR1 consisting of the amino acid sequence shown in SEQ ID NO: 56; CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 74; and CDR3 consisting of the amino acid sequence shown in SEQ ID NO:
  • the sdAb is FR1 consisting of an amino acid sequence represented by any one of SEQ ID NOs: 107 to 121; FR2 consisting of an amino acid sequence represented by any one of SEQ ID NOs: 122-137; FR3 consisting of an amino acid sequence represented by any one of SEQ ID NOs: 138 to 157; and a VHH domain comprising FR4 consisting of an amino acid sequence represented by any one of SEQ ID NOs: 158 to 166, and in some embodiments, any one of SEQ ID NOs: 2, 5, 9, 13, 14, 17 and 22 and the indicated amino acid sequence.
  • the sdAb is CDR1 consisting of an amino acid sequence represented by any one of SEQ ID NOs: 48, 51, 52 and 61; CDR2 consisting of an amino acid sequence represented by any one of SEQ ID NOs: 68 to 70, 79 and 80; And it may include a CDR3 consisting of the amino acid sequence shown in any one of SEQ ID NOs: 89 to 91, 101 and 102, more specifically (1) CDR1 consisting of the amino acid sequence shown in SEQ ID NO: 51; CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 68; and CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 89; (2) CDR1 consisting of the amino acid sequence shown in SEQ ID NO: 52; CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 69; and CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 90; (3) CDR1 consisting of the amino acid sequence shown in SEQ ID NO: 48
  • the sdAb is FR1 consisting of an amino acid sequence represented by any one of SEQ ID NOs: 107 to 121; FR2 consisting of an amino acid sequence represented by any one of SEQ ID NOs: 122-137; FR3 consisting of an amino acid sequence represented by any one of SEQ ID NOs: 138 to 157; and a VHH domain comprising FR4 consisting of an amino acid sequence represented by any one of SEQ ID NOs: 158 to 166, and in some embodiments, comprising an amino acid sequence represented by any one of SEQ ID NOs: 6 to 8, 18 and 19 .
  • the sdAb is CDR1 consisting of an amino acid sequence represented by any one of SEQ ID NOs: 53, 54 and 62; CDR2 consisting of the amino acid sequence shown in any one of SEQ ID NOs: 71, 72 and 81; And it may include a CDR3 consisting of the amino acid sequence shown in any one of SEQ ID NOs: 93, 94 and 103, more specifically (1) CDR1 consisting of the amino acid sequence shown in SEQ ID NO: 53; CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 71; and CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 93; (2) CDR1 consisting of the amino acid sequence shown in SEQ ID NO: 54; CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 72; and CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 94; or (3) CDR1 consisting of the amino acid sequence shown in SEQ ID NO: 62; CDR2
  • the sdAb is FR1 consisting of an amino acid sequence represented by any one of SEQ ID NOs: 107 to 121; FR2 consisting of an amino acid sequence represented by any one of SEQ ID NOs: 122-137; FR3 consisting of an amino acid sequence represented by any one of SEQ ID NOs: 138 to 157; and a VHH domain comprising FR4 consisting of an amino acid sequence represented by any one of SEQ ID NOs: 158 to 166, and in some embodiments, includes an amino acid sequence represented by any one of SEQ ID NOs: 10, 11 and 20.
  • the sdAb is CDR1 consisting of an amino acid sequence represented by any one of SEQ ID NOs: 49, 50, 55, 58 and 63; CDR2 consisting of an amino acid sequence represented by any one of SEQ ID NOs: 66, 67, 73, 76 and 82; and a CDR3 consisting of an amino acid sequence represented by any one of SEQ ID NOs: 86, 87, 95, 98 and 104, more specifically (1) a CDR1 consisting of an amino acid sequence represented by SEQ ID NO: 49; CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 66; and CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 86; (2) CDR1 consisting of the amino acid sequence shown in SEQ ID NO: 50; CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 67; and CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 87; (3) CDR1 consisting of the
  • the sdAb is FR1 consisting of an amino acid sequence represented by any one of SEQ ID NOs: 107 to 121; FR2 consisting of an amino acid sequence represented by any one of SEQ ID NOs: 122-137; FR3 consisting of an amino acid sequence represented by any one of SEQ ID NOs: 138 to 157; and a VHH domain comprising FR4 consisting of an amino acid sequence represented by any one of SEQ ID NOs: 158 to 166, and in some embodiments, the amino acid sequence represented by any one of SEQ ID NOs: 3, 4, 12, 15 and 21 include
  • the sdAb may comprise at least one or more amino acid substitutions, wherein the at least one or more amino acid substitutions may be conservative substitutions, and substitution of amino acids with non-genetically encoded amino acids or synthetic amino acids.
  • HCAb heavy chain-only antibody in which the sdAb is fused to an Fc fragment.
  • the HCAb comprises an amino acid sequence represented by any one of SEQ ID NOs: 24-46.
  • the HCAb may be monomeric or multimeric.
  • sdAb may be fused to the Fc fragment via a peptide linker, and the Fc fragment may be human IgG1, IgG2, IgG3 or IgG4.
  • the HCAb may comprise at least one or more amino acid substitutions, wherein the at least one or more amino acid substitutions may be conservative substitutions, and substitution of amino acids with non-genetically encoded amino acids or synthetic amino acids.
  • a first antigen binding moiety comprising the sdAb; and (b) a second antigen binding moiety that specifically binds to a second epitope.
  • the antibody may be bispecific or multispecific.
  • the second antigen-binding moiety may be fused to each other via a peptide linker with the first antigen-binding moiety, wherein the second antigen-binding moiety is a full-length antibody, Fab, Fab', (Fab')2, Fv, single chain Fv (scFv), scFv-scFv, minibody, diabody or a second sdAb.
  • sdAb has neutralizing ability against SARS-CoV-2 or a mutant virus thereof.
  • the mutant virus comprises (i) G204R mutation at amino acid position 204 of SARS-CoV-2 spike protein; (ii) a D614G mutation at amino acid position 614 of the SARS-CoV-2 spike protein; (iii) Q57H mutation at the 57th amino acid position of SARS-CoV-2 NS3 (ORF3a coding protein); and/or (iv) SARS-CoV-2 may have a G251V mutation at amino acid position 251 of NS3 (ORF3a coding protein).
  • an immunomodulatory agent, cytokine, cytotoxic agent, chemotherapeutic agent, diagnostic agent, antiviral agent, antimicrobial agent or drug may be conjugated.
  • the present invention provides an antibody conjugate comprising the antibody or antigen-binding fragment thereof conjugated to an immunomodulatory agent, cytokine, cytotoxic agent, chemotherapeutic agent, diagnostic agent, antiviral agent, antimicrobial agent or drug.
  • the present invention also provides a nucleic acid molecule encoding the antibody or antigen-binding fragment thereof.
  • the present invention provides an expression vector comprising the nucleic acid molecule.
  • the present invention provides a host cell transformed with the expression vector.
  • It provides a method for producing an antibody or antigen-binding fragment thereof, comprising a.
  • the present invention provides a pharmaceutical composition for preventing or treating coronavirus infection-19 (COVID-19), containing the antibody or antigen-binding fragment thereof, or the antibody conjugate as an active ingredient;
  • a method for preventing or treating coronavirus infection-19 comprising administering to a subject a pharmaceutically effective amount of the antibody or antigen-binding fragment thereof, or the antibody conjugate; and the use of the antibody or antigen-binding fragment thereof, or the antibody conjugate for use in the prophylaxis or treatment of Coronavirus Infectious Disease-19.
  • the present invention provides a kit for diagnosing coronavirus infection-19 comprising the antibody or antigen-binding fragment thereof; A method for diagnosing coronavirus infection-19, comprising contacting the antibody or antigen-binding fragment thereof with a subject sample; and the use of the antibody or antigen-binding fragment thereof for use in diagnosing Coronavirus Infectious Disease-19.
  • a single domain antibody (sdAb) that specifically binds to the receptor binding domain (RBD) of SARS-CoV-2 spike glycoprotein was prepared, and its RBD Since it was confirmed that affinity and excellent in vitro and in vivo neutralizing ability for SARS-CoV-2 virus were confirmed, the antibody or antigen-binding fragment thereof comprising the single domain antibody is an active ingredient of a pharmaceutical composition for preventing or treating COVID-19 can be used easily. In addition, the antibody or antigen-binding fragment thereof comprising the single domain antibody may be usefully used for diagnosing COVID-19.
  • RBD receptor binding domain
  • FIG. 2 shows phage clones having RBD-specific single domain antibodies of SARS-CoV-2 spike glycoprotein selected by phage screening using FACS.
  • 3A to 3F show the degree of binding between the RBD-specific single domain antibody of the SARS-CoV-2 spike glycoprotein prepared according to an embodiment of the present invention and the immune antigen (RBD) was confirmed through ELISA. will be.
  • 4A and 4B show the degree of binding between the RBD-specific single domain antibody of SARS-CoV-2 spike glycoprotein prepared according to an embodiment of the present invention and cells expressing SARS-CoV-2 spike glycoprotein through FACS analysis. it has been confirmed
  • FIG 5 shows the in vitro neutralizing ability of the RBD-specific single domain antibody of the SARS-CoV-2 spike glycoprotein prepared according to an embodiment of the present invention against SARS-CoV-2 virus.
  • FIG. 6 is an RBD-specific single domain antibody clone Anti-SARS-CoV-2_Nb_#2 of SARS-CoV-2 spike glycoprotein prepared according to an embodiment of the present invention and SARS-CoV-2 spike glycoprotein-expressing cells The degree of binding was measured by FACS analysis.
  • FIG. 7 is a virus in VeroE6 cells infected with RBD-specific single domain antibody clone Anti-SARS-CoV-2_Nb_#2 and SARS-CoV-2 prepared according to an embodiment of the present invention. The degree of binding was confirmed by the IFA experiment.
  • Figure 8 is a schematic diagram of a method of challenge inoculation with SARS-CoV-2 in a Syrian hamster model.
  • SARS-CoV-2 spike glycoprotein prepared according to an embodiment of the present invention of the RBD-specific single domain antibody clone Anti-SARS-CoV-2_Nb_#2 against SARS-CoV-2 virus. This is to confirm the change in the weight of the experimental animal for performance verification.
  • Figure 10a shows in vivo neutralization of SARS-CoV-2 spike glycoprotein prepared according to an embodiment of the present invention against SARS-CoV-2 virus of RBD-specific single domain antibody clone Anti-SARS-CoV-2_Nb_#2; performance was confirmed by measurement of the TCID 50 value.
  • Figure 10b shows the in vivo neutralization of the RBD-specific single domain antibody clone Anti-SARS-CoV-2_Nb_#2 of SARS-CoV-2 spike glycoprotein prepared according to an embodiment of the present invention against SARS-CoV-2 virus. It was confirmed by measuring the RNA level using the RT-PCR method.
  • FIG. 11 shows in vivo neutralization of the RBD-specific single domain antibody clone Anti-SARS-CoV-2_Nb_#2 of SARS-CoV-2 spike glycoprotein prepared according to an embodiment of the present invention against SARS-CoV-2 virus.
  • the performance was confirmed by observation of lung lesions in 7 dpi experimental animals:
  • V virus administration group
  • TL virus+therapeutic low-dose group (0.002 mg).
  • TH Virus+therapeutic high-dose group (0.02 mg).
  • Figure 12a shows the in vivo neutralization of the RBD-specific single domain antibody clone Anti-SARS-CoV-2_Nb_#2 against SARS-CoV-2 virus of SARS-CoV-2 spike glycoprotein prepared according to an embodiment of the present invention; It is the histopathological result confirming the performance. 2, 7 dpi The degree of infiltration of inflammatory cells in the lung tissue of the experimental animal was confirmed by pathological scoring.
  • Figure 12b shows the SARS-CoV-2 spike glycoprotein prepared according to an embodiment of the present invention in vivo neutralization of the RBD-specific single domain antibody clone Anti-SARS-CoV-2_Nb_#2 against SARS-CoV-2 virus. It is the histopathological result confirming the performance. 2, 7 dpi The degree of edema of the experimental animal lung tissue was confirmed by pathological scoring.
  • 12c is a histopathology result confirming the in vivo neutralizing ability of Anti-SARS-CoV-2_Nb_#2 prepared according to an embodiment of the present invention against SARS-CoV-2 virus. 2, 7 dpi The degree of capillary dilatation of the lung tissue of the experimental animal was confirmed by pathological scoring.
  • Figure 13a shows the RBD-specific single domain antibody clone Anti-SARS-CoV-2_Nb_#2 and SARS-CoV-2 virus of SARS-CoV-2 spike glycoprotein prepared according to an embodiment of the present invention by test group administered A representative tissue photograph of the lung of an experimental animal at 2 dpi is shown.
  • 13b shows the RBD-specific single domain antibody clone Anti-SARS-CoV-2_Nb_#2 and SARS-CoV-2 virus of SARS-CoV-2 spike glycoprotein prepared according to an embodiment of the present invention for each test group administered A representative tissue photograph of a 7 dpi experimental animal lung is shown.
  • epitope refers to a protein determinant capable of specific binding to an antibody.
  • Epitopes generally consist of chemically active surface groupings of molecules, such as amino acids or sugar side chains, and generally have specific three-dimensional structural characteristics, as well as specific charge characteristics.
  • treatment refers to slowing, stopping, stopping, controlling, arresting, or alleviating the symptoms or complications of a disorder or disease disclosed herein, for example, SARS-CoV-2 infection or COVID-19 disease. It refers to any process that may improve or ameliorate, or reverse its progression, but does not necessarily represent the complete elimination of all symptoms of a disease or disorder.
  • prevention means prophylactic treatment of a disease or disorder, eg, a SARS-CoV-2 infection or a COVID-19 disease, or delaying the onset or progression of the disease or disorder.
  • subject refers to a mammal, including but not limited to humans, bovines, horses, cats, dogs, rodents, or primates. In some embodiments, the subject is a human.
  • antibody is used in its broadest sense and includes, but is not limited to, monoclonal antibodies, polyclonal antibodies, multispecific antibodies (eg, bispecific antibodies), full-length antibodies, so long as they exhibit the desired antigen-binding activity. It encompasses a variety of antibody structures, including antibodies and antigen-binding fragments thereof.
  • antibody includes conventional four-chain antibodies, single domain antibodies, and antigen-binding fragments thereof.
  • the basic four-chain antibody unit is a heterotetrameric glycoprotein composed of two identical light (L) chains and two identical heavy (H) chains.
  • IgM antibodies consist of 5 of the basic heterotetrameric units and contain 10 antigen-binding sites with an additional polypeptide called the J chain, whereas IgA antibodies will polymerize in combination with the J chain to form a multivalent aggregate. 2-5 of the possible basic 4-chain units.
  • a four-chain unit is generally about 150,000 daltons.
  • Each L chain is linked to the H chain by one covalent disulfide bond, while the two H chains are linked to each other by one or more disulfide bonds, depending on the H chain isotype.
  • Each H and L chain also has regularly spaced interchain disulfide bridges.
  • Each H chain has, at the N-terminus, a variable domain (VH) for each of the ⁇ and ⁇ chains, followed by 3 constant domains (CH) and 4 CH domains for the ⁇ and ⁇ isotypes.
  • Each L chain has at its N-terminus a variable domain (VL) followed by a constant domain at its other end. VL is aligned with VH and CL is aligned with the first constant domain of the heavy chain (CH1). Mating of VH and VL together forms a single antigen-binding site.
  • immunoglobulins can be assigned to different classes or isotypes. There are five classes of immunoglobulins: ⁇ , ⁇ , ⁇ , ⁇ and ⁇ , each with a heavy chain designated as IgA, IgD, IgE, IgG and IgM.
  • the ⁇ and ⁇ classes are further divided into subclasses based on relatively few differences in CH sequence and function, for example, humans express the following subclasses: IgG1, IgG2A, IgG2B, IgG3, IgG4, IgA1 and IgA2.
  • HCAb heavy chain-only antibody
  • single-domain antibody refers to a single antigen-binding polypeptide having three complementarity determining regions (CDRs).
  • CDRs complementarity determining regions
  • single-domain antibodies are engineered from camelid HCAbs, and their heavy chain variable domains are referred to herein as “VHH” (the variable domain of the heavy chain of a heavy chain antibody).
  • the basic VHH has the following structure from N-terminus to C-terminus: FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4, wherein FR1-FR4 refer to framework regions 1-4 respectively, and CDR1-CDR3 denotes complementarity determining regions 1-3.
  • variable region refers to the amino-terminal domain of the heavy or light chain of an antibody.
  • the variable domains of the heavy and light chains may be referred to as “VH” and “VL” respectively. These domains are generally the most variable portion of an antibody (relative to other antibodies of the same class) and contain the antigen binding site.
  • Heavy chain-only antibodies from the Camelidae species have a single heavy chain variable region referred to as “VHH”.
  • variable refers to the fact that certain segments of variable domains differ widely in sequence among antibodies.
  • the V domain mediates antigen binding and defines the specificity of a particular antibody for its particular antigen.
  • variability is not evenly distributed over the entire range of the variable domain. Instead, it is enriched in three segments called complementarity determining regions (CDRs) or hypervariable regions (HVRs) in both the heavy and light chain variable domains.
  • CDRs complementarity determining regions
  • HVRs hypervariable regions
  • the more highly conserved portions of variable domains are called framework regions (FR).
  • the variable domains of the native heavy and light chains each comprise four FR regions, which are joined by three CDRs, which form loop linkages, predominantly adopt a beta-sheet configuration, and in some cases form part of the beta-sheet structure.
  • the CDRs in each chain are held together in close proximity by the FR regions, and the CDRs from the other chain contribute to the formation of the antigen binding site of the antibody (Kabat, Elvin A., Sequence of Immunological Interest, Fifth Edition, National Institute of Health, Bethesda, Md. (1991)).
  • the constant domains are not directly involved in the binding of an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody-dependent cytotoxicity.
  • constant domain refers to the portion of an immunoglobulin molecule that has a more conserved amino acid sequence compared to the other portion of the immunoglobulin, the variable domain, which contains the antigen-binding site.
  • the constant domains contain the CH1, CH2 and CH3 domains of the heavy chain (collectively, CH) and the CHL (or CL) domain of the light chain.
  • full length antibody “intact antibody”, or “whole antibody” are used interchangeably to refer to an antibody in its substantially intact form, as opposed to an antibody fragment.
  • full-length four-chain antibodies include those with heavy and light chains comprising an Fc region.
  • a full length heavy chain-only antibody comprises a heavy chain variable domain (eg VHH) and an Fc region.
  • the constant domain may be a native sequence constant domain (eg, a human native sequence constant domain) or an amino acid sequence variant thereof.
  • an intact antibody may have more than one effector function.
  • antibody fragment or “antigen-binding fragment” comprises a portion of an intact antibody, preferably the antigen-binding and/or variable regions of an intact antibody.
  • antibody fragments include, but are not limited to, Fab, Fab', F(ab')2 and Fv fragments; diabody; linear antibody; single-chain antibody (scFv) molecules; single domain antibodies (such as VHH), and multispecific antibodies formed from antibody fragments.
  • Fv is the smallest antibody fragment containing a complete antigen-recognition and -binding site. This fragment consists of a dimer of one heavy and one light chain variable region domain in tight, non-covalent association.
  • Single-chain Fv also abbreviated “sFv” or “scFv” is an antibody fragment comprising VH and VL antibody domains linked to a single polypeptide chain.
  • the scFv polypeptide further comprises a polypeptide linker between the VH and VL domains which enables the scFv to form the desired structure for antigen binding.
  • “Diabodies” are sFv fragments with a short linker (approximately 5-10 residues) between the VH and VL domains such that interchain pairing of the V domain is achieved, thereby bivalent fragments, i.e., two Refers to a small antibody fragment prepared by resulting in a fragment having an antigen-binding site.
  • Bispecific diabodies are heterodimers of two “crossover” sFv fragments in which the VH and VL domains of the two antibodies are present in different polypeptide chains.
  • humanized antibody is used as a subset of “chimeric antibody”.
  • Humanized forms of non-human (eg, llama or camelid) antibodies are chimeric antibodies that contain minimal sequence derived from non-human immunoglobulin.
  • a humanized antibody is a non-human species (donor antibody) such as mouse, rat, rabbit, wherein residues from the CDRs (defined below) of the recipient have the desired specificity, affinity, and/or capacity;
  • donor antibody such as mouse, rat, rabbit
  • residues from the CDRs (defined below) of the recipient have the desired specificity, affinity, and/or capacity
  • a human immunoglobulin (recipient antibody) that is replaced with residues from the CDRs of a camel, llama, alpaca, or non-human primate.
  • framework (“FR”) residues of a human immunoglobulin are replaced with corresponding non-human residues.
  • a humanized antibody may comprise residues that are not found in the recipient antibody or in the donor antibody. These modifications can be made to further improve antibody performance, such as binding affinity.
  • HVR hypervariable region
  • HVR3 HVR3
  • HVR3 displays the highest diversity of the three HVRs and plays a unique role in conferring microspecificity to antibodies. See, eg, Hamers-Casterman et al., Nature 363:446-448 (1993); Sheriff et al., Nature Struct. Biol. 3:733-736 (1996).
  • CDR complementarity determining region
  • Kabat Elvin A., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991). Kabat complementarity determining regions (CDRs) are based on sequence variability and are most commonly used.
  • framework or “FR” residues are variable-domain residues other than HVR residues as defined herein.
  • sdAb antigen binding protein
  • a native antibody for example, is monospecific.
  • multispecific means that an antigen binding protein has polyepitope specificity (ie, capable of specifically binding to two, three, or more, different, different epitopes in one biological molecule, or capable of specifically binding to an epitope in two, three, or more, different biological molecules).
  • Bispecific refers to an antigen binding protein having two different antigen-binding specificities.
  • the term “monospecific,” as used herein, refers to an antigen binding protein having one or more binding sites each of which binds the same epitope of the same antigen.
  • A refers to the presence of a specified number of binding sites in an antigen binding protein.
  • bivalent “trivalent”, “tetravalent”, “pentavalent” and “hexavalent” refer to two binding sites, three binding sites, four binding sites, five a binding site, and the presence of six binding sites.
  • Antibody effector functions refer to those biological activities attributable to the Fc region (native sequence Fc region or amino acid sequence variant Fc region) of an antibody, and vary by antibody isotype. Examples of antibody effector functions include: Clq binding and complement dependent cytotoxicity; Fc receptor binding; antibody-dependent cell-mediated cytotoxicity (ADCC); phagocytosis; down regulation of cell surface receptors (eg, B cell receptors); and B cell activation.
  • “Complement dependent cytotoxicity” or “CDC” refers to lysis of a target cell in the presence of complement. Activation of the classical complement pathway is initiated by the binding of the first component (C1q) of the complement system to antibodies (of the appropriate subclass) that bind to their cognate antigen.
  • ADCC antibody-dependent cell-mediated cytotoxicity
  • FcRs Fc receptors
  • cytotoxic cells eg, natural killer (NK) cells, neutrophils and macrophages
  • NK natural killer
  • cytotoxin a form of cytotoxicity that specifically binds these cytotoxic effector cells to antigen-bearing target cells and subsequently kills the target cells with a cytotoxin.
  • Fc region or “fragment crystallizable region” is used herein to define the C-terminal region of an immunoglobulin heavy chain, comprising a native-sequence Fc region and a variant Fc region.
  • Suitable native-sequence Fc regions for use in the antibodies described herein include human IgG1, IgG2 (IgG2A, IgG2B), IgG3 and IgG4.
  • Binding affinity generally refers to the strength of the sum total of non-covalent interactions between a single binding site of a molecule (eg, an antibody) and its binding partner (eg, an antigen). Unless otherwise specified, as used herein, "binding affinity” refers to intrinsic binding affinity that reflects a 1:1 interaction between members of a binding pair. Binding affinity can be expressed as K d , K off , K on , or K a . As used herein, the term equilibrium dissociation constant “K D ” or “K d ” refers to the dissociation constant of a particular antibody-antigen interaction and is the dichotomy of all antibody-binding domains present in solution of an antibody molecule at equilibrium.
  • K D concentration of antigen required to occupy work of
  • M concentration of antigen required to occupy work of
  • K D concentration of antigen required to occupy work of
  • M concentration of antigen required to occupy work of
  • K D concentration of antigen required to occupy work of
  • K d concentration of antigen required to occupy work of
  • the dissociation constant (K D or K d ) is used as an indicator of the affinity of an antibody for an antigen.
  • K D or K d is used as an indicator of the affinity of an antibody for an antigen.
  • easy analysis can be carried out by the Scatchard method using antibodies marked with various marker agents, as well as by the use of over-the-counter, measurement kits, according to the user's manual and experimental operating methods attached to the kit. It is possible.
  • the K D values that can be derived using these methods are expressed in units of M (Mols).
  • Percent (%) amino acid sequence identity and “homology” with respect to a peptide, polypeptide or antibody sequence are, if necessary, after sequence alignments and gap introductions, and as part of sequence identity, optional to achieve maximum percent sequence identity. It is defined as the percentage of amino acid residues in a candidate sequence that are identical to amino acid residues in a specific peptide or polypeptide sequence, without consideration of conservative substitutions. Alignment for purposes of determining percent amino acid sequence identity may be accomplished in a variety of ways that are within the skill in the art, for example, using publicly available computer software such as BLAST, BLAST-2, ALIGN or MEGALIGNTM (DNATAR) software. can Those skilled in the art can determine suitable parameters for measuring alignment, including any algorithms necessary to achieve maximal alignment over the full length of the sequences being compared.
  • the present invention specifically relates to the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein (hereinafter referred to as "anti-SARS-CoV-2 sdAb”).
  • An antibody or antigen-binding fragment thereof such as an anti-SARS-CoV-2 sdAb, an anti-SARS-CoV-2 heavy chain-only antibody (HCAb) (eg, a human anti-SARS-CoV-2 sdAb-Fc fusion protein in which an anti-SARS-CoV-2 sdAb is fused to a crystalline fragment (Fc fragment) of immunoglobulin G (IgG), or another sdAb, a full-length 4-chain antibody or It relates to a multispecific antigen-binding protein in which an anti-SARS-CoV-2 sdAb is fused to an antigen-binding fragment thereof (eg, Fab or scFv), and the preparation and use thereof.
  • HCAb
  • the present invention provides an antibody or antigen-binding fragment thereof comprising an anti-SARS-CoV-2 sdAb.
  • the anti-SARS-CoV-2 sdAb-containing antibody or antigen-binding fragment thereof may be an anti-SARS-CoV-2 sdAb or antigen-binding fragment thereof.
  • the anti-SARS-CoV-2 sdAb is CDR1 consisting of the amino acid sequence shown in any one of SEQ ID NOs: 47 to 63; CDR2 consisting of the amino acid sequence shown in any one of SEQ ID NOs: 64 to 83; and a CDR3 consisting of an amino acid sequence represented by any one of SEQ ID NOs: 84 to 106.
  • the CDR sequences are provided in Table 9.
  • the CDRs can be combined in any combination to generate multiple anti-SARS-CoV-2 sdAbs.
  • the anti-SARS-CoV-2 sdAb may comprise a CDR of any one of the following:
  • CDR1 consisting of an amino acid sequence represented by any one of SEQ ID NOs: 48, 56, 57 and 60;
  • CDR2 consisting of the amino acid sequence shown in any one of SEQ ID NOs: 65, 74, 75 and 78;
  • CDR3 consisting of an amino acid sequence represented by any one of SEQ ID NOs: 85, 88, 92, 96, 97, 100 and 105;
  • CDR1 consisting of an amino acid sequence represented by any one of SEQ ID NOs: 48, 51, 52 and 61;
  • CDR2 consisting of an amino acid sequence represented by any one of SEQ ID NOs: 68 to 70, 79 and 80;
  • CDR3 consisting of the amino acid sequence shown in any one of SEQ ID NOs: 89 to 91, 101 and 102;
  • CDR1 consisting of the amino acid sequence shown in any one of SEQ ID NOs: 53, 54 and 62;
  • CDR2 consisting of the amino acid sequence shown in any one of SEQ ID NOs: 71, 72 and 81;
  • CDR3 consisting of the amino acid sequence shown in any one of SEQ ID NOs: 93, 94 and 103; or
  • CDR1 consisting of an amino acid sequence represented by any one of SEQ ID NOs: 49, 50, 55, 58 and 63;
  • CDR2 consisting of an amino acid sequence represented by any one of SEQ ID NOs: 66, 67, 73, 76 and 82;
  • CDR3 consisting of the amino acid sequence shown in any one of SEQ ID NOs: 86, 87, 95, 98 and 104.
  • the anti-SARS-CoV-2 sdAb may comprise any one of the following CDRs:
  • CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 65;
  • CDR3 consisting of the amino acid sequence shown in any one of SEQ ID NOs: 85, 88, 92 and 105;
  • CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 74;
  • CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 96;
  • CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 75;
  • CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 97; or
  • CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 78;
  • CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 100.
  • the anti-SARS-CoV-2 sdAb may comprise any one of the following CDRs:
  • CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 68;
  • CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 89;
  • CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 69;
  • CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 90;
  • CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 70;
  • CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 91;
  • CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 79;
  • CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 101; or
  • CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 80;
  • CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 102.
  • the anti-SARS-CoV-2 sdAb may comprise any one of the following CDRs:
  • CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 71;
  • CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 93;
  • CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 72;
  • CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 94; or
  • CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 81;
  • CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 103.
  • the anti-SARS-CoV-2 sdAb may comprise any one of the following CDRs:
  • CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 66;
  • CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 86;
  • CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 67;
  • CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 87;
  • CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 73;
  • CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 95;
  • CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 76;
  • CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 98; or
  • CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 82;
  • CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 104.
  • the anti-SARS-CoV-2 sdAb may include any suitable sequence for the FR region.
  • the FR sequence may be an amino acid sequence shown in Tables 1 to 4 below.
  • the anti-SARS-CoV-2 sdAb may include the following FR1, FR2, FR3 and FR4: (1) FR1 consisting of an amino acid sequence represented by any one of SEQ ID NOs: 107 to 121;
  • FR2 consisting of an amino acid sequence represented by any one of SEQ ID NOs: 122 to 137;
  • FR3 consisting of an amino acid sequence represented by any one of SEQ ID NOs: 138 to 157;
  • FR4 consisting of the amino acid sequence shown in any one of SEQ ID NOs: 158 to 166.
  • the anti-SARS-CoV-2 sdAb may include a VHH domain including the FR region.
  • the anti-SARS-CoV-2 sdAb has an amino acid sequence represented by any one of SEQ ID NOs: 2, 5, 9, 13, 14, 17 and 22, or at least 80% (eg, at least any 80 %, 58%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99%) sequence homology.
  • the anti-SARS-CoV-2 sdAb is an amino acid sequence represented by any one of SEQ ID NOs: 6 to 8, 18 and 19, or at least 80% (eg, at least any 80%, 88%, 90% of the amino acid sequence) , 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99%) variants thereof having sequence homology.
  • the anti-SARS-CoV-2 sdAb has an amino acid sequence represented by any one of SEQ ID NOs: 10, 11 and 20, or at least 80% (eg, at least any 80%, 88%, 90%, 91 of the amino acid sequence). %, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99%) sequence homology.
  • the anti-SARS-CoV-2 sdAb is an amino acid sequence represented by any one of SEQ ID NOs: 3, 4, 12, 15 and 21, or at least 80% (such as at least any 80%, 88%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99%) sequence homology.
  • the anti-SARS-CoV-2 sdAb may bind to RBD of SARS-CoV-2 spike glycoprotein or a variant thereof.
  • the variant is, for example, a V341I mutation at amino acid position 341, A435S mutation at amino acid position 435, L452R mutation at amino acid position 452, K458Q mutation at amino acid position 458, and 476 amino acid of the SARS-CoV-2 spike glycoprotein, for example. It may have a G476S mutation at the position 483, a V483A mutation at the 483 amino acid position, and/or a N501Y mutation at the 501st amino acid position.
  • the KD of the binding between the anti-SARS-CoV-2 sdAb and the RBD of the SARS-CoV-2 spike glycoprotein is 10 -6 M to 10 -12 M, 10 -6 M to 10 -11 M, 10 ⁇ 6 M to 10 -10 M, 10 -6 M to 10 -9 M, or 10 -6 M to 10 -8 M.
  • the EC 50 of the anti-SARS-CoV-2 sdAb may be less than 500 nM in FACS analysis, specifically 0.1 nM to 500 nM, 0.1 nM to 400 nM, 0.1 nM to 300 nM, 0.1 nM to 200 nM, 0.1 nM to 100 nM, 0.1 to 50 nM, 0.1 to 10 nM, 1 nM to 500 nM, 1 nM to 400 nM, 1 nM to 300 nM, 1 nM to 200 nM, 1 nM to 100 nM, 1 to 50 nM or 1 to 10 nM.
  • the anti-SARS-CoV-2 sdAb has neutralizing ability against SARS-CoV-2 or a mutant virus thereof.
  • the mutant virus may have, for example, any one or more of the following mutations:
  • a single domain antibody (sdAb) comprises a heavy chain variable domain from a heavy chain-only antibody (e.g., VHH (variable domain of heavy chain of a heavy chain antibody) in camelidae), a light chain derived from a conventional four-chain antibody, Binding molecules that naturally lack a single domain (such as VH or VL), humanized heavy chain single antibodies, human single domain antibodies produced by transgenic mice or rats expressing human heavy chain segments, and manipulations other than those derived from antibodies domains and single domain scaffolds.
  • the sdAb can be derived from any species, including but not limited to mouse, rat, human, camel, llama, lamprey, fish, shark, goat, rabbit, and bovine. It may also contain naturally occurring sdAb molecules from species other than Camelidae.
  • sdAbs are derived from naturally occurring single domain antigen binding molecules known as heavy chain antibodies that lack a light chain. Such single domain molecules are disclosed, for example, in WO 94/04678 and in Hamers-Casterman, et al., (1993) Nature 363:446-448.
  • VHHs Variable domains derived from heavy chain molecules that naturally lack a light chain are known herein as VHHs to distinguish them from the conventional VHs of four chain immunoglobulins.
  • VHH molecules may be derived from antibodies produced in camelid species such as camel, llama, vicuna, dromedary, alpaca and guanaco.
  • Species other than Camelidae can produce heavy chain molecules that naturally lack light chains, and such VHHs are within the scope of the present application.
  • sdAbs can be recombinant, CDR-grafted, humanized, camelized, de-immunized and/or generated in vitro (eg, selected by phage display).
  • the amino acid sequence of a framework region may be altered by “camelization” of specific amino acid residues in the framework region. Camelization is the replacement or substitution of one or more amino acid residues in the amino acid sequence of the (naturally occurring) VH domain from a conventional four-chain antibody by one or more of the amino acid residues occurring at the corresponding position(s) in the VHH domain of the heavy chain antibody. and may be performed in a manner known in the art.
  • the sdAb may also be a human sdAb produced by a transgenic mouse or rat expressing a human heavy chain segment. See, for example, patents US20090307787A1, US8,754,287, US20150289489A1, US20100122358A1, and WO2004049794.
  • VHH domains for a particular antigen or target can be obtained from (na ⁇ ve or immune) libraries of camelid VHH sequences. Such methods may or may not involve screening such libraries using said antigen or target, or at least a portion, fragment, antigenic determinant or epitope thereof, using one or more screening techniques known per se. Such libraries and techniques are described, for example, in patents WO99/37681, WO 01/90190, WO 03/025020 and WO 03/035694.
  • VHH libraries obtained from (na ⁇ ve or immune) VHH libraries, such as by techniques such as random mutagenesis and/or CDR shuffling, as described for example in patent WO 00/43507
  • a VHH library obtained from a (na ⁇ ve or immunized) VHH library can be used.
  • sdAbs can be generated from conventional four-chain antibodies. See, for example, Ward et al., Nature 1989 Oct. 12; 341 (6242): 544-6, Holt et al., Trends Biotechnol., 2003, 21(11):484-490; Patent WO 06/030220; and WO06/003388.
  • the sdAB according to the present invention may be a chimeric antibody.
  • Certain chimeric antibodies are described, for example, in patent US4,816,567; and Morrison et al., Proc. Natl. Acad. Sci. USA, 81:6851-6855 (1984)).
  • a chimeric antibody may comprise a non-human variable region (eg, a variable region derived from a camelid species, such as a llama) and a human constant region.
  • chimeric antibodies can be humanized. Typically, non-human antibodies are humanized to reduce immunogenicity to humans, while retaining the specificity and affinity of the parental non-human antibody.
  • a humanized antibody comprises one or more variable domains in which HVRs, eg, CDRs, (or portions thereof) are derived from a non-human antibody, and FRs (or portions thereof) are derived from human antibody sequences.
  • a humanized antibody will optionally also comprise at least a portion of a human constant region.
  • some FR residues are converted to corresponding FR residues from a non-human antibody (eg, the antibody from which the HVR residues are derived), eg, to restore or improve antibody specificity or affinity. substituted with a residue.
  • the anti-SARS-CoV-2 sdAb-containing antibody or antigen-binding fragment thereof may be an anti-SARS-CoV-2 HCAb or antigen-binding fragment thereof.
  • an anti-SARS-CoV-2 HCAb is one in which an anti-SARS-CoV-2 sdAb described herein is fused to one or more CH2 and/or CH3 domains, eg, an Fc fragment.
  • the CH2 and/or CH3 domain is derived from an immunoglobulin.
  • the immunoglobulin may be IgA, IgD, IgE, IgG or IgM, and specifically may be IgG.
  • the anti-SARS-CoV-2 HCAb may comprise an Fc fragment of an IgG, such as an IgG1, an IgG2, an IgG3 or an IgG4, wherein the Fc fragment is a human Fc, such as a human IgG1 (hIgG1) Fc, hIgG2 Fc, hIgG3 Fc or hIgG4 Fc.
  • the anti-SARS-CoV-2 HCAb may be monomeric or multimeric.
  • it can be multispecific and multivalent (such as bispecific and bivalent), including, for example, two or more different anti-SARS-CoV-2 sdAbs described herein, or It can be monospecific and multivalent (eg, bivalent), comprising two or more copies of the same anti-SARS-CoV-2 sdAb.
  • the anti-SARS-CoV-2 sdAb and CH2 and/or CH3 domains, specifically the Fc fragment may be fused to a peptide linker.
  • the length, degree of flexibility and/or other properties of the peptide linker may have some effect on properties, including but not limited to affinity, specificity or ability to bind one or more particular antigens or epitopes. For example, a longer peptide linker can be selected to ensure that two adjacent domains do not sterically interfere with each other.
  • peptide linkers include flexible moieties (eg, glycine and serine) such that adjacent domains are free to move relative to each other.
  • a glycine-serine doublet may be a suitable peptide linker.
  • the peptide linker may be of any suitable length.
  • the peptide linker is at least about any of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 50, 75, 100 or more amino acids in length.
  • the peptide linker may have a naturally occurring sequence, or a non-naturally occurring sequence.
  • a sequence derived from the hinge region of a heavy chain-only antibody can be used as a linker. See, for example, patent WO1996/34103.
  • the peptide linker may be hIgG1 hinge, hIgG2 hinge, hIgG3 hinge, hIgG4 hinge or a variant thereof.
  • the anti-SARS-CoV-2 HCAb is an amino acid sequence represented by any one of SEQ ID NOs: 24-46, or at least 80% (eg, at least any 80%, 88%, 90%, 91 of the amino acid sequence) %, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99%) sequence homology.
  • the anti-SARS-CoV-2 sdAb-containing antibody or antigen-binding fragment thereof is a multiple sdAb in which the anti-SARS-CoV-2 sdAb is fused to another sdAb, a full-length 4-chain antibody or antigen-binding fragment thereof.
  • Specific antigen binding protein eg, bispecific antigen binding protein (BABP) fused with anti-SARS-CoV-2 sdAb (hereinafter referred to as anti-SARS-CoV-2 BABP)
  • BABP bispecific antigen binding protein fused with anti-SARS-CoV-2 sdAb
  • anti-SARS-CoV-2 BABP antigen-binding fragment thereof.
  • the anti-SARS-CoV-2 BABP comprises (a) a first antigen binding moiety comprising an anti-SARS-CoV-2 sdAb described herein; and (b) a second antigen binding moiety that specifically binds to a second epitope.
  • the second epitope may be an antigen other than the RBD of the SARS-CoV-2 spike glycoprotein, or a second epitope in the RBD of the SARS-CoV-2 spike glycoprotein.
  • the second antigen binding moiety may be a full length antibody, Fab, Fab', (Fab')2, Fv, single chain Fv (scFv), scFv-scFv, minibody, diabody or a second sdAb.
  • the second antigen binding moiety may comprise a heavy chain comprising a VH and a light chain comprising a VL.
  • the first antigen binding moiety is fused to a second antigen binding moiety at the N-terminus of the heavy chain, at the N-terminus of the light chain, at the N-terminus of the Fc region, at the C-terminus of the heavy chain, or at the C-terminus of the light chain.
  • the second antigen binding moiety may comprise a Fab or scFv.
  • the first antigen binding moiety may be fused to the second antigen binding moiety at the C-terminus of the Fab or scFv.
  • the second antigen binding moiety may comprise a full length four-chain antibody.
  • the first antigen binding moiety may be fused to the second antigen binding moiety via a peptide linker.
  • the second antigen binding moiety may comprise an Fc region, such as an IgG1 Fc, an IgG2 Fc, an IgG3 Fc or an IgG4 Fc.
  • the anti-SARS-CoV-2 MABP comprises at least two antigen binding moieties that specifically bind at least two different epitopes. Some of the at least two antigen binding moieties may be the same as long as the MABP has binding sites for two different epitopes.
  • the anti-SARS-CoV-2 MABP may be selected from among 1, 2, 3, 4, 5, 6, 7, 8 or more different antigen binding moieties each comprising an anti-SARS-CoV-2 sdAb described herein. may include any one.
  • the anti-SARS-CoV-2 MABP may have any suitable number of valences, and any suitable number of specificities for the RBD and/or second epitope of the SARS-CoV-2 spike glycoprotein.
  • the anti-SARS-CoV-2 MABP can be bivalent, trivalent, tetravalent, pentavalent, hexavalent, or higher with respect to the RBD of the SARS-CoV-2 spike glycoprotein.
  • the MABP may be trispecific and may be tetraspecific.
  • Techniques for the production of multispecific antibodies include, but are not limited to, recombinant co-expression of two immunoglobulin heavy chain-light chain pairs with different specificities (eg, Milstein and Cuello, Nature 305: 537 (1983)). ); WO 93/08829; Traunecker et al., EMBO J. 10: 3655 (1991)), and “knob-in-hole” engineering (eg, patent US5731168).
  • Multi-specific antibodies may also be used for the manipulation of electrostatic steering effects for the preparation of antibody Fc-heterodimeric molecules (WO 2009/089004A1); crosslinking of two or more antibodies or fragments (eg, patent US4676980, and Brennan et al., Science, 229:81 (1985)); the use of leucine zippers to produce bi-specific antibodies (eg, Kostelny et al., J. Immunol., 148(5):1547-1553 (1992)); the use of “diabody” technology for making bispecific antibody fragments (eg, Hollinger et al., Proc. Natl. Acad. Sci.
  • the anti-SARS-CoV-2 sdAb-containing antibody or antigen-binding fragment thereof includes an amino acid sequence variant.
  • Amino acid sequence variants of an antibody can be prepared by introducing appropriate modifications into the nucleic acid sequence encoding the antibody, or by peptide synthesis. Such modifications include, for example, deletions, and/or insertions and/or substitutions of residues within the amino acid sequence of the antibody. Any combination of deletions, insertions, and substitutions can be made to lead to the final construct, provided that the final construct retains the desired characteristics, eg, antigen-binding.
  • substitutions, insertions, or deletions may occur within one or more hypervariable regions (HVRs) so long as such alterations do not substantially reduce the ability of the antibody to bind antigen.
  • HVRs hypervariable regions
  • conservative alterations that do not substantially reduce binding affinity can be made in HVRs. Such changes may be outside of HVR “hotspots” or CDRs.
  • the amino acid substitution may be at least 1 (eg, any 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10) amino acid substitution.
  • the at least one amino acid substitution may be a conservative substitution, a substitution with a non-genetically encoded amino acid or a synthetic amino acid.
  • the amino acid substitution may be in a CDR region and may comprise at least 1 (eg, any 1, 2, 3, or 4) amino acid substitution in CDR1, CDR2 and/or CDR3.
  • the amino acid substitution may be in the FR region and at least 1 (eg, any 1, 2, 3, 4, 5 or 6) amino acid substitution in FR1, FR2, FR3 and/or FR4. may include
  • Such amino acid sequence insertions also include amino- and/or carboxyl-terminal fusions ranging in length from one residue to polypeptides containing 100 or more residues, as well as intrasequence insertions of single or multiple amino acid residues.
  • terminal insertions include antibodies with an N-terminal methionyl residue.
  • Other insertional variants of the antibody molecule may include a fusion to the N- or C-terminus of the antibody to a polypeptide or (eg, in the case of ADEPT) enzyme that increases the serum half-life of the antibody.
  • one or more amino acid modifications may be made to an antibody or antigen-binding fragment thereof, including an anti-SARS-CoV-2 sdAb provided herein (eg, an anti-SARS-CoV-2 HCAb, or an anti-SARS-CoV-2 MABP). ) to the Fc region, thereby generating Fc region variants.
  • An Fc region variant may comprise a human Fc region sequence (eg a human IgG1, IgG2, IgG3 or IgG4 Fc) comprising amino acid modifications (eg substitutions) at one or more amino acid positions.
  • the antibody or antigen-binding fragment thereof comprising the anti-SARS-CoV-2 sdAb is linked to, fused to, or conjugated to a diagnostic moiety or biocompatibility modulator (eg, covalently or non-covalently) -shared), or otherwise associated with it.
  • a diagnostic moiety or biocompatibility modulator eg, covalently or non-covalently
  • biocompatibility modulator eg, covalently or non-covalently
  • proteins, polymers, nucleic acid molecules, small molecules, mimetics, synthetic drugs, inorganic molecules, organic molecules, or radioisotopes are conjugated or can be assembled.
  • the antibody or antigen-binding fragment thereof comprising the anti-SARS-CoV-2 sdAb is a diagnostic or detection agent, which may be a biological molecule (eg, a peptide or nucleotide), a small molecule, a fluorophore, or a radioisotope. It may be conjugated or associated with a possible agent, marker or reporter. Labeled modulators are clinical trial procedures that monitor the development or progression of SARS-CoV-2 infection, or determine the efficacy of a particular therapy comprising an antibody disclosed herein (i.e., theragnosis), or determine future course of treatment. It can be useful as part of Such markers or reporters may also be useful in purifying the antibodies disclosed herein.
  • the anti-SARS-CoV-2 sdAb-containing antibody or antigen-binding fragment thereof may be conjugated to an immunomodulatory agent, cytokine, cytotoxic agent, chemotherapeutic agent, diagnostic agent, antiviral agent, antimicrobial agent or drug.
  • the present invention relates to an antibody comprising the anti-SARS-CoV-2 sdAb according to the present invention conjugated to an immunomodulatory agent, cytokine, cytotoxic agent, chemotherapeutic agent, diagnostic agent, antiviral agent, antimicrobial agent or drug or a drug thereof
  • Antibody conjugates comprising antigen-binding fragments are provided.
  • the present invention also provides a nucleic acid molecule encoding an antibody or antigen-binding fragment thereof comprising an anti-SARS-CoV-2 sdAb disclosed herein, an expression vector comprising the nucleic acid molecule, and a host cell transformed with the expression vector.
  • the present invention comprises the steps of (a) culturing the host cell under conditions such that the antibody is expressed; and (b) recovering the expressed antibody or antigen-binding fragment thereof.
  • DNA encoding an antibody or antigen-binding fragment thereof comprising an anti-SARS-CoV-2 sdAb disclosed herein is prepared using conventional procedures (eg, to genes encoding antibody heavy and light chains). by using oligonucleotide probes capable of specifically binding) and can be readily isolated and sequenced. Isolated and subcloned hybridoma cells (or phage or yeast-derived colonies) can serve as a preferred source of such DNA. More particularly, isolated DNA (which may be modified) can be used to clone constant and variable region sequences for the production of antibodies.
  • RNA from selected cells conversion to cDNA, and amplification by PCR using antibody specific primers.
  • Suitable primers are well known in the art and are readily available from many commercial sources as exemplified herein.
  • DNA encoding the antibody is cloned into a recombinant expression vector and host including mammalian cells, insect cells, plant cells, yeast, and bacteria. introduced into the cell.
  • modulators are introduced into and expressed by monkey COS cells, NS0 cells, Chinese hamster ovary (CHO) cells or myeloma cells that do not otherwise produce the desired construct.
  • the nucleic acid molecule is present in a vector, where appropriate, together with a promoter controlling the expression of the nucleic acid.
  • Said vector is used in its most general sense and includes any intermediate vehicle for a nucleic acid which enables the nucleic acid to be introduced into, for example, prokaryotic and/or eukaryotic cells and, where appropriate, integrated into the genome.
  • Vectors of this kind are preferably replicated and/or expressed in cells.
  • a vector may comprise a plasmid, phagemid, bacteriophage or viral genome.
  • Such plasmids generally relate to constructs of extrachromosomal genetic material capable of replicating independently of chromosomal DNA, usually circular DNA duplexes.
  • the host cell or recombinant host cell refers to a cell into which the expression vector is introduced.
  • Recombinant host cells and host cells refer to the particular subject cell as well as the progeny of such cells. As certain modifications may occur in subsequent generations due to mutation or environmental influences, such progeny may not be identical in nature to the parent cell, but are still included within the scope of the term host cell as used herein.
  • Such cells may comprise a vector as described above.
  • nucleic acid molecules encoding such antibodies can be integrated into well-known and commercially available protein production systems, including various types of host cells, to provide the desired pharmaceutical product in preclinical, clinical, or commercial quantities.
  • a nucleic acid molecule encoding an antibody is engineered into a vector or expression vector that provides for efficient integration into a selected host cell and subsequent high expression levels of the antibody.
  • Nucleic acid molecules encoding the antibodies disclosed herein preferably and vectors comprising these nucleic acid molecules may be used for transfection of suitable mammalian, plant, bacterial or yeast host cells, although prokaryotic systems may also be used. Transfection can be accomplished by any known method for introducing a polynucleotide into a host cell. Methods for introducing heterologous polynucleotides into mammalian cells are well known in the art and include dextran-mediated transfection, calcium phosphate precipitation, polybrene-mediated transfection, protoplast fusion, electroporation, polynucleotides in liposomes ( ), and direct microinjection of DNA into the nucleus.
  • Nucleic acid molecules can also be introduced into mammalian cells by viral vectors.
  • Methods for transforming mammalian cells are well known in the art.
  • Methods of transforming plant cells are also well known in the art and include, for example, Agrobacterium-mediated transformation, biolistic transformation, direct injection, electroporation, and viral transformation.
  • Methods for transforming bacterial and yeast cells are also well known in the art.
  • host-expression vector systems can be used to express the antibodies disclosed herein.
  • Such host-expression systems represent a vehicle in which the coding sequence of interest can be expressed and subsequently purified, as well as cells capable of expressing the molecules of the invention in situ when transformed or transfected with the appropriate nucleotide coding sequence.
  • Such systems include microorganisms such as bacteria (e.g., E. coli, B. subtilis (B) transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing modulator coding sequences.
  • subtilis subtilis
  • Streptomyces yeast
  • yeast eg, Saccharomyces, Pichia
  • insect cell systems infected with recombinant viral expression vectors eg, baculoviruses
  • Plant cell systems infected with a recombinant viral expression vector eg, cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV
  • a recombinant plasmid expression vector eg, Ti plasmid
  • a modulator coding sequence for example, Nicotiana (Nicotiana), Arabidopsis (Arabidopsis), silverfish rice, corn, wheat, potato, etc.
  • recombinant expression containing a promoter derived from the genome of a mammalian cell eg, the metallothionein promoter
  • a mammalian virus eg, adeno
  • an antibody disclosed herein has been produced by recombinant expression or any of the other techniques disclosed herein, it can be produced by any method known in the art for the purification of immunoglobulins, or more generally by any method for the purification of proteins. can be purified by other standard techniques.
  • the present invention provides an antibody or antigen-binding fragment thereof comprising the anti-SARS-CoV-2 sdAb disclosed herein, or an antibody conjugate comprising the antibody or antigen-binding fragment thereof, as an active ingredient, a coronavirus It provides a pharmaceutical composition for preventing or treating Infectious Disease-19 (COVID-19).
  • the present invention also provides a pharmaceutical composition comprising an antibody or antigen-binding fragment thereof comprising a pharmaceutically effective amount of an anti-SARS-CoV-2 sdAb disclosed herein, or an antibody conjugate comprising said antibody or antigen-binding fragment thereof. It provides a method for preventing or treating Coronavirus Infectious Disease-19, comprising administering a composition to an individual.
  • the present invention also provides an antibody or antigen-binding fragment thereof comprising an anti-SARS-CoV-2 sdAb disclosed herein for use in the prophylaxis or treatment of coronavirus infection-19, or the antibody or antigen-binding fragment thereof Provided is the use of an antibody conjugate comprising
  • the contents of the antibody or antigen-binding fragment thereof comprising the anti-SARS-CoV-2 sdAb, or the antibody conjugate comprising the antibody or antigen-binding fragment thereof are the same as described above, so specifically The description refers to the above, and below, only the specific composition of the pharmaceutical composition and use will be described.
  • the pharmaceutical composition according to the present invention comprises an antibody or antigen-binding fragment thereof comprising one or more (eg, two or three) anti-SARS-CoV-2 sdAbs described herein, or said antibody or antigen thereof -binding fragments, which neutralize the SARS-CoV-2 spike glycoprotein.
  • the patient may have moderate to severe COVID-19, but not be hospitalized, or may have mild to moderate COVID-19.
  • a patient with mild COVID-19 can have an individual who does not have any of a variety of signs and symptoms, such as fever, cough, sore throat, malaise, headache, muscle pain, shortness of breath, dyspnea, or abnormal imaging.
  • may include Moderate COVID-19 patients can include individuals with evidence of lower respiratory tract disease by clinical assessment or imaging and an oxygen saturation (SaO 2 ) of greater than 93% (>) in room air at sea level. Additionally, patients are at risk of contracting COVID-19.
  • the patient has a positive SARS-CoV-2 virus test result.
  • the patient may also be an adult, or a pediatric patient over 12 years of age and weighing at least 40 kg.
  • the patient is at high risk of developing severe COVID-19 and/or hospitalization, eg, the patient is (i) 65 years of age or older; (ii) have a body mass index (BMI) of 35 or greater; (iii) have chronic kidney disease; (iv) have diabetes; (v) has an immunosuppressive disease, or (vi) is undergoing immunosuppressive treatment; (vii) is 55 years of age or older and has cardiovascular disease, hypertension, chronic obstructive pulmonary disease, or other chronic respiratory disease; or (viii) 12 - 17 years of age and has a BMI ⁇ 85% for his age and sex, or sickle cell disease, congenital or acquired heart disease, neurodevelopmental disorders (e.g., cerebral palsy), medical-related skill dependence (e.g., have asthma, reactive airway or other chronic respiratory disease that requires daily dosing for control (eg, tracheost
  • compositions according to the present invention may be formulated as desired using art recognized techniques, depending on the type of antibody described herein, the intended mode of delivery, and numerous other variables.
  • suitable pharmaceutically acceptable carriers which include excipients and adjuvants, which are relatively inert substances well known in the art and which facilitate administration or aid in processing the active compound into pharmaceutically optimized formulations for delivery, are also included. It can be formulated to contain.
  • a variety of pharmaceutically acceptable carriers including, for example, vehicles, adjuvants, and diluents, are readily available from numerous commercial sources.
  • a class of pharmaceutically acceptable auxiliary substances such as pH adjusters and buffers, tonicity adjusters, stabilizers, wetting agents and the like are also available.
  • Certain non-limiting exemplary carriers include saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof.
  • compositions according to the present invention may be formulated for enteral, parenteral or topical administration.
  • all three types of agents can be used simultaneously to achieve systemic administration of the active ingredient.
  • Excipients as well as formulations for parenteral and non-parenteral drug delivery are known in the art.
  • Formulations suitable for parenteral administration include aqueous solutions of the active compounds in water-soluble form, for example, water-soluble salts.
  • Suspensions of the active compound suitable for oily injection suspensions may also be administered.
  • Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters such as ethyl oleate or triglycerides.
  • Aqueous injection suspensions may contain substances which increase the viscosity of the suspension and include, for example, sodium carboxymethyl cellulose, sorbitol, and/or dextran.
  • the suspension may also contain stabilizers.
  • Liposomes can also be used to encapsulate agents for delivery to cells.
  • Formulations suitable for enteral administration include hard or soft gelatin capsules, pills, tablets including coated tablets, elixirs, suspensions, syrups or inhalants and controlled release forms thereof.
  • the antibodies described herein can be adsorbed onto red blood cells to facilitate preferential delivery to the lungs, thereby preventing shortening of half-life through processing in the liver and spleen and providing higher concentrations in the lungs.
  • the antibodies disclosed herein are administered orally, intravenously, intraarterially, subcutaneously, parenterally, intranasally, intramuscularly, intracardiac, intraventricularly, intratracheally, buccal, rectal, intraperitoneal, intradermal, to a subject in need thereof. , topical, transdermal, and intrathecal, or otherwise by implantation or inhalation. Appropriate formulations and routes of administration can be selected depending on the intended use and treatment regimen.
  • the pharmaceutical composition according to the present invention is administered in a pharmaceutically effective amount for the treatment or prevention of SARS-CoV-2 infection.
  • the pharmaceutically effective amount refers to the amount of an antibody or pharmaceutical composition comprising the same that will elicit a biological or medical response in a subject, which is sought by a physician or other clinician.
  • multiple doses of the antibody or pharmaceutical composition comprising the same may be administered at a specific frequency to achieve an amount of therapy having a prophylactic and/or therapeutic effect.
  • the pharmaceutically effective amount typically depends on the weight of the subject being treated, his physical condition, the breadth of the condition being treated, and the age of the subject being treated.
  • the antibodies disclosed herein range from about 10 ng/kg body weight to about 100 mg/kg body weight, from about 50 ⁇ g/kg body weight to about 5 mg/kg body weight, from about 100 ⁇ g/kg body weight to about 10 mg body weight per dose.
  • /kg body weight range about 100 ⁇ g/kg body weight to about 20 mg/kg body weight range, may be administered in an amount ranging from 0.5 mg/kg body weight to about 20 mg/kg body weight, but is not limited thereto.
  • the antibody may be at least about 100 ⁇ g/kg body weight, at least about 250 ⁇ g/kg body weight, at least about 750 ⁇ g/kg body weight, at least about 3 mg/kg body weight, at least about 5 mg/kg body weight, or at least about 10 mg/kg body weight It may be administered in a dose of kg body weight, but is not limited thereto.
  • the pharmaceutical composition according to the present invention has a dose of about 100 mg to about 10,000 mg, a dose of about 200 mg to about 9,000 mg, a dose of about 300 mg to about 8,000 mg, a dose of about 400 mg to 7,000 mg, and a dose of 500 mg to It may be administered intravenously or subcutaneously to a patient at a dose of 5,000 mg, but is not limited thereto.
  • the pharmaceutical composition according to the present invention is usually administered to a patient multiple times.
  • Exemplary treatment regimens entail administration once every two weeks, once a month, or once every 3 to 6 months.
  • the patient may receive the antibody (eg, as an intravenous formulation) every 4 weeks as a cycle, eg, once every 28 days.
  • Dosing frequency can be adjusted according to the pharmacokinetic profile of the antibody in the patient. For example, the half-life of an antibody may require a dosing frequency of two weeks.
  • two or more antibodies with different binding specificities may be administered simultaneously, in which case the dosage of each antibody administered falls within the ranges given.
  • Dosage and frequency depend on the half-life of the antibody in the patient. In general, human antibodies exhibit the longest half-life, followed by humanized antibodies, chimeric antibodies, and non-human antibodies. The dosage and frequency of administration may vary depending on whether the treatment is prophylactic or therapeutic.
  • the duration of a treatment regimen depends on the disease being treated, the age and condition of the patient, the stage and type of the patient's disease, how the patient responds to treatment, and the like.
  • the clinician can closely monitor the effect of the therapy and make any adjustments as necessary.
  • the agents are used in combination, the two or more therapeutic agents are administered simultaneously or sequentially in any order, ie, the antibody disclosed herein is administered prior to, concurrently with, or with the second therapeutic agent. It may be administered subsequent to the administration of
  • the present invention provides a kit for diagnosing coronavirus infection-19 comprising an antibody or antigen-binding fragment thereof comprising an anti-SARS-CoV-2 sdAb disclosed herein.
  • the present invention also provides a method for diagnosing COVID-19, comprising contacting an antibody or antigen-binding fragment thereof comprising an anti-SARS-CoV-2 sdAb disclosed herein to a subject sample.
  • the present invention provides the use of an antibody or antigen-binding fragment thereof comprising an anti-SARS-CoV-2 sdAb disclosed herein for use in the diagnosis of Coronavirus Infectious Disease-19.
  • the content of the anti-SARS-CoV-2 sdAb-containing antibody or antigen-binding fragment thereof is the same as described above, so the detailed description will refer to the above content, and below, the specific configuration of the diagnostic kit to be explained only.
  • the diagnostic kit provides an in vitro or in vivo method for detecting, diagnosing or monitoring SARS-CoV-2 infection, and cells from a patient currently infected with SARS-CoV-2, or recovering from a previous SARS-CoV-2 infection.
  • monitoring the progression of a SARS-CoV-2 infection comprising identifying an individual infected with SARS-CoV-2 for treatment, contacting the patient or a sample obtained from the patient with an antibody disclosed herein and detecting the presence or absence, or level of association, of an antibody to the SARS-CoV-2 antigen in the sample.
  • a patient sample eg, plasma or blood
  • the method may further comprise comparing the level of binding to a control.
  • Other diagnostic or theragnosis methods compatible with the teachings herein are well known in the art and can be practiced using commercial materials, such as dedicated reporting systems.
  • Exemplary compatibility assay methods include radioimmunoassays, enzyme immunoassays, competitive-binding assays, fluorescence immunoassays, immunoblot assays, Western blot analysis, flow cytometry assays, and ELISA assays. More generally, detection of a virus in a biological sample can be accomplished using any art-known assay.
  • Compatible in vivo theragnosis or diagnostics are art-recognized imaging or monitoring techniques such as magnetic resonance imaging (MRI), computed tomography (eg CAT scan), positron tomography (eg, PET scan) radiation This may include imaging, ultrasound, and the like.
  • MRI magnetic resonance imaging
  • CAT scan computed tomography
  • positron tomography eg, PET scan
  • a diagnostic kit according to the present invention may comprise an antibody described herein and a reagent for detecting the effect of the antibody described herein on a sample from a patient.
  • the receptor binding domain (RBD) protein (223 of the spike glycoprotein) in the spike glycoprotein of the immune antigen SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2, NCBI accession number: QHD43416.1) Dog amino acid sequence region) was mixed with ISA51 adjuvant, and two alpacas were each immunized through intramuscular injection twice as shown in [Table 5].
  • One immune antigen immune adjuvant Immune method blood draw One 500 ⁇ g/alpaca ISA51 intramuscular injection 10 ml/alpaca 14 250 ⁇ g/alpaca ISA51 intramuscular injection 10 ml/alpaca 21 10 ml/alpaca
  • the immune antigen at a concentration of 1 ⁇ g/ml was dispensed onto a microplate and coated at 4° C. overnight.
  • the microplate was washed 3 times with PBST, and then treated with 5% skim milk and blocked at room temperature for 2 hours.
  • the serum samples obtained before immunization (1 day), 14 days after primary immunization, and 7 days after secondary immunization were treated with step-by-step dilution concentrations.
  • antibodies bound to immune antigens were detected using goat anti-Llama IgG HRP antibody.
  • PBMCs Peripheral blood mononuclear cells
  • Ficoll for amplification of a gene encoding a single domain antibody binding to an immune antigen identified in ⁇ Example 1>.
  • a gene fragment encoding a single domain antibody was amplified from total RNA extracted from the isolated PBMC using a specific primer, and cloned into the pComb3x vector.
  • Table 6 the size of the prepared immune library was 2.60 ⁇ 10 8 , and it was confirmed that the insertion rate and diversity were 100%.
  • the immune library prepared in ⁇ Example 2> was transformed into the XL1-blue strain.
  • the transformed XL1-blue strain was added to 10 ml of 2x YT medium containing 2% glucose and 100 ⁇ g/ml ampicillin and cultured in a shaker at 37°C. Culture was performed at OD 600 until the absorbance became 0.5, and M13K07 phage (Invitrogen) was added to 1 ⁇ 10 11 pfu/ml. After stationary incubation at 37°C for 30 minutes, further incubation was performed for 30 minutes at 200 rpm in a shaking stirrer at 37°C. The culture medium was centrifuged at room temperature and 4000 rpm for 15 minutes to remove the supernatant.
  • the immune antigen was dispensed on a microplate at a concentration of 1 to 10 ⁇ g/ml and coated at 4° C. overnight.
  • the library to be used in the experiment for screening single-domain antibodies (the library of Example 3 above) was dispensed into a 96-well microplate and reacted at room temperature for 30 minutes. Thereafter, the non-specific binding rate of the library was reduced by transferring the library to a new well and reacting at room temperature for 30 minutes 4 times. Libraries were transferred to 1.7 ml tubes and stored at 4° C. until use.
  • the microplate coated with the immune antigen was washed 5 times with PBST and then blocked with 5% skim milk at room temperature for 2 hours.
  • the library with reduced non-specific binding rate was dispensed with a binding solution (2.5% skim milk, solution containing surfactant) at 5 ⁇ 10 12 virions/well and reacted at room temperature for 30 minutes. After washing 10 times with a washing solution (solution containing a surfactant), additional washing was performed 3 times with PBST.
  • the single domain antibody specifically bound to the immune antigen was selectively eluted by adding 5 ⁇ g of the immune antigen per well and then reacting at room temperature for 30 minutes at 500 rpm. The eluted phages were infected with XL-1 blue cells in the logarithmic growth phase, and then plated on 2x YT agar medium. Panning for the second selection was repeated under the same conditions as above.
  • Input phage (cfu/ml) negative phage (cfu/ml) Positive phage (cfu/ml) Ratio (Positive phage/ negative phage) Ratio (Output phage/ input phage) enrichment ratio (ratio/ 1 round ratio) 1 round 1.52 ⁇ 10 12 7.97 ⁇ 10 3 2.41 ⁇ 10 6 302.51 1.59 ⁇ 10 -6 1.00 2 rounds 2.58 ⁇ 10 12 2.50 ⁇ 10 3 3.25 ⁇ 10 7 12992.00 1.26 ⁇ 10 -5 7.92
  • a gene encoding the SARS-CoV-2 spike glycoprotein was inserted into the pCMV6-GFP vector to induce pCMV6-SARS-CoV-2 spike- A GFP plasmid was constructed.
  • Expi-CHO cells were washed with DPBS and centrifuged for 3 minutes at room temperature and 1200 rpm. The supernatant was removed and the cells were resuspended in 2% skim milk and blocked at 4°C for 30 minutes.
  • the cells were centrifuged at room temperature for 3 minutes at 1200 rpm to remove the supernatant, washed twice with DPBS, and aliquoted to 3 ⁇ 10 5 cells/100 ⁇ l/well in a 96-well microplate. Monoclonal phage was added to each well, reacted at 4° C. for 1 hour, and washed twice with DPBS. M13 major coat protein Alexa Flour 647 (Santacruz) was dispensed into the cells and reacted at 4°C for 30 minutes while blocking light. Cells were washed twice with DPBS, resuspended in DPBS, and analyzed by FACS using an Accuri C6 (BD) instrument. As shown in FIG. 2 , the clones screened using the FACS system were selected from 23 clones having different sequences through sequencing. The nucleotide sequences of the selected clones are shown in [Table 8] and [Table 9] below.
  • the clones selected in ⁇ Example 5> were cloned into a TGEX-Fc expression vector to prepare a single domain antibody clone fused with a human IgG Fc fragment.
  • the nucleotide sequence of the single domain antibody clone fused with the Human IgG Fc fragment is shown in Table 10 below.
  • Expi-CHO cells with a survival rate of 95 to 99% were counted, and 7 ⁇ 10 6 cells were added to 25 ml of Expi-CHO expression medium (Gibco). and incubated overnight at 125 rpm in a shaking incubator at 37° C. in which 8% CO 2 is maintained.
  • plasmid DNA and 1 ml of OptiPROTM medium were added to 80 ⁇ l of ExpiFectamineTM CHO Reagent (Gibco, 100033021) and 920 ⁇ l of OptiPROTM medium, reacted at room temperature for 5 minutes, and then added to the cultured cells. did Cells were cultured for 20 hours at 125 rpm in a shaker incubator maintained in 8% CO 2 . Then, 150 ⁇ l of ExpiFectamine TM CHO enhancer (Gibco) and 6 ml of ExpiCHO Feed (Gibco) were put, and 5% CO 2 was maintained at 32° C.
  • the cultured cells were centrifuged at 4000 rpm at 4° C. for 30 minutes, and the supernatant was filtered using a 0.2 ⁇ m syringe filter. Thereafter, the supernatant was loaded onto a HiTrap protein G HP column (GE Healthcare), washed with PBS, and then a single domain antibody fused with a human IgG Fc fragment was separated from the column using an IgG elution buffer (Thermo). The eluted sample was neutralized by adding 1M Tris-HCl (pH 9.0) and stored at 4°C until use.
  • the immune antigen was dispensed at a concentration of 1 ⁇ g/ml on a microplate and coated overnight at 4°C. Then, it was washed 3 times with PBST and blocked with 2% skim milk at room temperature for 2 hours. After washing 3 times with PBST, the purified monoclonal antibody was treated by concentration and reacted at room temperature for 1 hour. The plate was washed three times with PBST, treated with Anti-Human IgG HRP (Jackson ImmunoResearch), and reacted at room temperature for 1 hour.
  • Expi-CHO cells overexpressing SARS-CoV-2 spike glycoprotein in ⁇ Example 5> were washed with DPBS and centrifuged at room temperature at 1200 rpm for 3 minutes. The supernatant was removed and the cells were resuspended in 2% skim milk and blocked at 4°C for 30 minutes. The cells were centrifuged at room temperature, 1200 rpm for 3 minutes to remove the supernatant, and then washed twice with DPBS.
  • K D Affinity (K D ) of the single domain antibody clones purified in ⁇ Example 6> to the SARS-CoV-2 immune antigen was measured using Octet RED 96e (ForteBio) equipment.
  • the anti-human Fc-coated biosensor tip (Fortebio) was saturated to a level of 1.5 nm in a 96-well microplate (Greiner) in which 5 ⁇ g/ml of single domain antibody was dispensed.
  • Immune antigen protein was diluted stepwise in 2-fold using 1X kinetic buffer (ForteBio) to 10 ⁇ 400 nM and reacted with stirring at 30°C and 1000 rpm.
  • the association and dissociation reactions of the samples were analyzed for 200 and 400 seconds, respectively.
  • the resulting data were analyzed using a 1:1 interaction model (Global fitting) method. The analysis results are shown in [Table 11].
  • Vero E6 cells were seeded on a microplate at 2 ⁇ 10 4 cells/well and cultured overnight. Then, each of the single-domain antibody clones purified in ⁇ Example 6> diluted step by step and SARS-CoV-2 virus (400 TCID 50 /well) were mixed and reacted at 37° C. for 1 hour. Cells were treated with the mixed solution and observed for 5 days to confirm CPE and to analyze neutralizing ability. The analysis results are shown in [Table 12] and FIG. 5 .
  • Expi-CHO cells overexpressing SARS-CoV-2 spike glycoprotein in ⁇ Example 5> were washed with DPBS and centrifuged at room temperature at 1200 rpm for 3 minutes. The supernatant was removed and the cells were resuspended in 2% skim milk and blocked at 4°C for 30 minutes. The cells were centrifuged at room temperature at 1200 rpm for 3 minutes to remove the supernatant, and then washed twice with DPBS.
  • Anti-SRAS-CoV2 spike antibody (40150-R007, Sinobiology) was used as a control.
  • the degree of cell binding was expressed as EC 50 using Mean Fluorescent Intensity (MFI) values.
  • MFI Mean Fluorescent Intensity
  • Vero E6 cells cultured as a monolayer on a chamber slide were prepared.
  • the virus was inoculated to obtain an MOI (multiplicity of infection) of 0.01 TCID 50 /cell, washed with PBS 24 hours later, and fixed with 10% formalin solution for 10 minutes. After fixation, formalin was removed and washed twice with DPBS.
  • MOI multiple of infection
  • the chamber slides were blocked with 2% skim milk at room temperature for 30 minutes, and then washed twice with DPBS. Then, the single domain antibody clone purified in ⁇ Example 6> was treated with Anti-SARS-CoV-2_Nb_#2, reacted at room temperature for 1 hour, washed twice with DPBS, and then Goat anti-Llama IgG ( BETHYL) antibody was reacted at room temperature for 1 hour and then washed twice with DPBS. In the next step, Donkey anti-Goat IgG Alexa Fluor 594 (Thermo) antibody was treated and reacted at 4°C for 30 minutes while blocking light. Finally, DAPI staining was performed after washing with DPBS twice, and the intensity of fluorescence was observed using a fluorescence microscope (Eclipse Ti2-U, Nikon).
  • the human serum used as a control did not bind to VeroE6 cells infected with SARS-CoV-2 virus, whereas Anti-SARS-CoV-2_Nb_#2 was SARS-CoV-2 virus. was confirmed to bind only to infected VeroE6 cells.
  • Ni-NTA biosensor tip (Fortebio) was saturated to a level of 2.0 nm in a 96-well microplate (Greiner) dispensed with 2 ⁇ g/ml of SARS-CoV-2 virus mutant antigens shown in Table 14 below. made it The single domain antibody clone Anti-SARS-CoV-2_Nb_#2 purified in ⁇ Example 6> was diluted stepwise in 2 folds using 1X kinetic buffer (ForteBio) at 0.78-25 nM, and at 30°C, 1000 rpm. Antigen-saturated Ni-NTA biosensor tips were reacted. The association and dissociation reactions of the samples were analyzed for 200 and 800 seconds, respectively. The resulting data were analyzed using a 1:1 interaction model (Global fitting) method.
  • Anti-SARS-CoV-2_Nb_#2 was confirmed to have an excellent binding force of nM or less to the SARS-CoV-2 virus mutant antigen.
  • Anti-SARS-CoV-2_Nb_#2 was confirmed to have an excellent neutralizing ability at a level of nM or less even against the SARS-CoV-2 mutant virus.
  • the body weight of each test group was measured during the test. As a result, as shown in FIG. 9 , the body weight of the Anti-SARS-CoV-2_Nb_#2 administration group decreased up to 5 dpi, and then the body weight recovered. showed
  • the animal model was euthanized and lung tissue was obtained.
  • the obtained tissue was emulsified, RNA was extracted, and the virus titer in the lung tissue was compared through realtime-PCR and TCID 50 test. Seegene's Allplex TM 2019-nCoV Assay kit was used for titer comparison at the gene level.
  • TCID 50 test 2 ⁇ 10 4 cells were prepared per well, the lung emulsion was diluted 10-fold, and each dilution was inoculated into 5 wells. CPE was confirmed by observation for 5 days, and TCID 50 was calculated using the speraman-karber method.
  • the Anti-SARS-CoV-2_Nb_#2 high-dose (0.02 mg) administration group was significantly higher at 7 dpi than the virus inoculation group. It was confirmed that the virus titer decreased.
  • the animal model On the 7th day after virus infection, the animal model was euthanized to obtain lungs, and lesions that can be visually confirmed were compared.
  • the low-dose Anti-SARS-CoV-2_Nb_#2 treatment group showed mild lung lesions compared to the negative control group, and the high concentration treatment group showed similar findings to the negative control group. Confirmed.
  • the animal model was euthanized and lung tissue was obtained.
  • the obtained lung tissue was stained with hematoxylin-eosin (H&E), and the degree of infiltration of inflammatory cells in the lung tissue, the degree of edema, and the degree of capillary dilatation were confirmed through pathological scoring.
  • H&E hematoxylin-eosin
  • the obtained lung tissue is fixed with 10% formalin, a paraffin section is made, and then the paraffin that has penetrated into the tissue is removed.
  • Xylene is reacted 3 times for 3 minutes each, followed by a 100% ethanol solution. Twice, they were reacted in 95, 90, and 70% ethanol solutions for 3 minutes each, and after the 70% ethanol process was completed, they were washed with distilled water for 3 minutes.
  • the nucleus was stained by reaction with hematoxylin solution for 7 minutes, reacted with HCl solution (800 ml of 70% ethanol + 20 ml of 1N concentration HCl; 0.1% HCl) for 5 seconds, washed with distilled water for 8 minutes, Reacted with ammonia water for 5 seconds, washed with distilled water for 5 minutes, and reacted with 95% ethanol for 1 minute.
  • the cytoplasm was stained by reacting with an eosin solution for 6 minutes and reacted twice with 95% ethanol solution for 5 seconds and 100% ethanol solution for 3 minutes each.
  • FIGS. 12A to 12C and 13A and 13B in the case of the virus inoculated group, a large number of inflammatory cells were found throughout the interstitial tissue in the multiple infiltration pattern (2 dpi) of inflammatory cells around the blood vessels and bronchi. Progressive interstitial pneumonia with multiple or diffuse infiltration (7 dpi) was confirmed.
  • the Anti-SARS-CoV-2_Nb_#2 low-dose and high-dose treatment group lesions of inflammatory cell infiltration, edema, and capillary dilatation were reduced at 7 dpi compared to the virus inoculation group.
  • a single domain antibody that specifically binds to the receptor binding domain (RBD) of SARS-CoV-2 spike glycoprotein was prepared, and its affinity for RBD And SARS-CoV-2 Since it was confirmed that the virus has excellent in vitro and in vivo neutralizing ability, the antibody or antigen-binding fragment thereof comprising the single domain antibody of the present invention is COVID-19 prevention or treatment, or COVID-19 diagnosis can be usefully used for

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Analytical Chemistry (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Pulmonology (AREA)
  • Communicable Diseases (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명은 SARS-CoV-2에 대한 단일 도메인 항체 및 이의 용도에 관한 것으로, 구체적으로 SARS-CoV-2 스파이크 당단백질(spike glycoprotein)의 수용체 결합 도메인(receptor binding domain; RBD)에 특이적으로 결합하는 단일 도메인 항체(single domain antibody)를 제작하였고, 이의 RBD에 대한 친화성 및 SARS-CoV-2 바이러스에 대한 in vitro 및 in vivo 중화능이 우수함을 확인하였으므로, 본 발명의 단일 도메인 항체를 포함하는 항체 또는 이의 항원-결합 단편은 COVID-19 예방 또는 치료용 약학 조성물의 유효성분으로 용이하게 이용될 수 있다. 또한, 상기 단일 도메인 항체를 포함하는 항체 또는 이의 항원-결합 단편은 COVID-19 진단을 위해 유용하게 이용될 수 있다.

Description

SARS-COV-2에 대한 단일 도메인 항체 및 이의 용도
본 발명은 SARS-CoV-2(Severe acute respiratory syndrome coronavirus 2)에 대한 단일 도메인 항체(single domain antibody) 및 이의 용도에 관한 것으로, 보다 상세하게는 SARS-CoV-2 스파이크 당단백질(spike glycoprotein)의 RBD(receptor binding domain)에 특이적으로 결합하는 단일 도메인 항체(sdAb)를 포함하는 항체 또는 이의 항원-결합 단편 및 이의 용도에 관한 것이다.
신종 코로나바이러스인 SARS-CoV-2(Severe acute respiratory syndrome coronavirus 2)는 2019년에 처음 알려진 급성 중증 호흡기 질환 코로나바이러스 2로서, 양의 방향 단일 사슬 RNA 바이러스(positive-sense single-stranded RNA virus)로 분류된다. 이 바이러스에 감염된 질환을 코로나바이러스감염증-19(Coronavirus disease 2019)로 명명하였으며, 줄여서 COVID-19라고 부르고 있다. 세계보건기구(World Health Organization, WHO)에서는 코로나바이러스 대유행(Coronavirus pandemic)을 공식 발표하였으며, 전세계 약 2억4천만명이 감염된 것으로 조사되고 있다. SARS-Cov-2는 현재 역사상 가장 심각한 코로나바이러스 발병이다. MERS-CoV 및 SARS-CoV와는 달리, SARS-CoV-2는 세계적으로 급속하게 확산되고 있으며, 지금까지 90개국이 넘는 국가에서 사례가 확인되었다. 또한, 최근에는 전파력 증가 또는 역학적으로 부정적 변화가 확인되고, 병원성 증가 또는 임상적으로 질환 중증도 변화가 확인되거나, 진단, 백신, 치료제 등의 유효성 저하가 확인된 변이 바이러스들이 확산되고 있다. 질병관리청 모니터링에 따르면, 2021년 10월 현재 주요 SARS-CoV-2 변이 바이러스로 알파형, 베타형, 감마형, 델타형 등이 있으며, 이들의 전파력은 기존 야생형 대비 최소 1.5배 이상으로 나타나고, 사망율 또는 입원율이 높은 편이다.
SARS-CoV-2는 스파이크 당단백질(spike glycoprotein)의 수용체 결합 도메인(receptor binding domain; RBD)과 숙주 세포의 안지오텐신 전환 효소 2(angiotensin converting enzyme 2; ACE2) 사이의 상호 작용을 통해 숙주 세포로 감염된다. 2020년 미국 식약처(FDA)가 긴급사용승인으로 허가한 COVID-19 치료제는 총 5가지로, 이 중 보편적으로 사용할 수 있는 제품은 에볼라 바이러스 치료제인 렘데시비르(Remdesivir)가 유일하다. 그러나, 렘데시비르도 치료 기간 단축에는 유의미한 통계적 데이터를 확보하였으나, 사망률 개선 등의 지표에서는 아직 큰 효과를 보이지 않고 있어, 여전히 새로운 치료제의 개발이 필요한 실정이다. 이와 관련하여 현재 단일클론 중화항체 2종(릴리의 LY-Cov555와 리제네론의 REGN-CoV2)이 SARS-CoV-2 치료에 대한 FDA 긴급 사용 승인을 받은 바 있다,
한편 기존의 단일클론 중화항체 개발의 경우, 단일 클론 항체(150 kDa)의 분자 질량은 상대적으로 커서, 조직 침투가 어렵고, 투여 부위 주변으로의 확산이 쉽지 않아, 치료 효과가 불충분해지기 쉬우며, 면역원성 발생의 위험성 또한 높은 것으로 알려져 있다. 그리로 또 한편으로는 이러한 문제 극복을 위해 완전 인간화를 추구하고 있는데, 이 경우 기존 항체보다 긴 개발 기간 및 높은 생산 단가의 문제가 있으며, 항체 자체의 새로운 안정성 이슈가 발생하는 등 여러 가지 요인으로 인해 개발이 쉽지 않은 상황이다.
이러한 기존 항체 치료제의 대안으로 새롭게 연구되고 있는 것으로 나노바디(Nanobody, VHH, Nb)가 있다. 나노바디는 낙타과 동물 등에서 발견되는 중쇄 전용 항체(hcAb)의 항원 인식 가변 부위(variable region)를 말한다. 특히 기존 단일 클론 항체와 비교하여 나노바디는 구조적으로 높은 항원 친화성 및 항원 특이성을 가지면서, 더 작은 크기(기존 단일클론 항체의 1/10 크기, 15 kDa)를 가지고 있어 조직 침투성이 상대적으로 높은 특성을 가지고 있다. 아울러 인간 항체와의 유사성(homology)이 높아 면역원성 위험성도 낮다는 장점이 있다. 산업적 활용에 있어서도 나노바디 구조는 높은 열 안정성을 가지고 있어서, 진단키트 제작에의 활용에 용이하고, 항체 제품으로 제작시 완제품에 대한 보관 및 사용에서 높은 편의성을 제공한다.
이에, 본 발명자들은 나노바디 제작 기술에 기반한, SARS-CoV-2를 표적화하는 신규 나노바디를 개발함으로써, 본 출원에 이르렀다.
[선행기술문헌]
Y Huang et al., Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacologica Sinica (2020) 41:1141-1149.
본 발명의 목적은 SARS-CoV-2(Severe acute respiratory syndrome coronavirus 2)에 대한 단일 도메인 항체(single domain antibody; sdAb) 및 이의 용도를 제공하는 것이다.
본 발명의 목적을 달성하기 위하여, 본 발명은 SARS-CoV-2(Severe acute respiratory syndrome coronavirus 2) 스파이크 당단백질(spike glycoprotein)의 RBD(receptor binding domain)에 특이적으로 결합하는 단일 도메인 항체(single domain antibody; sdAb)를 포함하는 항체 또는 이의 항원-결합 단편으로서,
상기 sdAb가 서열번호 47 내지 63 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR1; 서열번호 64 내지 83 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR2; 및 서열번호 84 내지 106 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR3을 포함하는, 항체 또는 이의 항원-결합 단편을 제공한다.
본 발명의 일 양태에서, 상기 sdAb는 서열번호 48, 56, 57 및 60 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR1; 서열번호 65, 74, 75 및 78 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR2; 및 서열번호 85, 88, 92, 96, 97, 100 및 105 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR3를 포함할 수 있고, 보다 구체적으로 (1) 서열번호 48로 표시되는 아미노산 서열로 이루어진 CDR1; 서열번호 65으로 표시되는 아미노산 서열로 이루어진 CDR2; 및 서열번호 85, 88, 92 및 105 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR3; (2) 서열번호 56으로 표시되는 아미노산 서열로 이루어진 CDR1; 서열번호 74로 표시되는 아미노산 서열로 이루어진 CDR2; 및 서열번호 96로 표시되는 아미노산 서열로 이루어진 CDR3; (3) 서열번호 57로 표시되는 아미노산 서열로 이루어진 CDR1; 서열번호 75로 표시되는 아미노산 서열로 이루어진 CDR2; 및 서열번호 97로 표시되는 아미노산 서열로 이루어진 CDR3; 또는 (4) 서열번호 60으로 표시되는 아미노산 서열로 이루어진 CDR1; 서열번호 78로 표시되는 아미노산 서열로 이루어진 CDR2; 및 서열번호 100으로 표시되는 아미노산 서열로 이루어진 CDR3을 포함할 수 있다.
또한, 상기 sdAb는 서열번호 107 내지 121 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR1; 서열번호 122 내지 137 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR2; 서열번호 138 내지 157 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR3; 및 서열번호 158 내지 166 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR4를 포함하는 VHH 도메인을 포함할 수 있고, 일부 구현예에서, 서열번호 2, 5, 9, 13, 14, 17 및 22 중 어느 하나로 표시되는 아미노산 서열을 포함한다.
본 발명의 일 양태에서, 상기 sdAb는 서열번호 48, 51, 52 및 61 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR1; 서열번호 68 내지 70, 79 및 80 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR2; 및 서열번호 89 내지 91, 101 및 102 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR3을 포함할 수 있고, 보다 구체적으로 (1) 서열번호 51로 표시되는 아미노산 서열로 이루어진 CDR1; 서열번호 68로 표시되는 아미노산 서열로 이루어진 CDR2; 및 서열번호 89로 표시되는 아미노산 서열로 이루어진 CDR3; (2) 서열번호 52로 표시되는 아미노산 서열로 이루어진 CDR1; 서열번호 69로 표시되는 아미노산 서열로 이루어진 CDR2; 및 서열번호 90으로 표시되는 아미노산 서열로 이루어진 CDR3; (3) 서열번호 48로 표시되는 아미노산 서열로 이루어진 CDR1; 서열번호 70으로 표시되는 아미노산 서열로 이루어진 CDR2; 및 서열번호 91로 표시되는 아미노산 서열로 이루어진 CDR3; (4) 서열번호 61로 표시되는 아미노산 서열로 이루어진 CDR1; 서열번호 79로 표시되는 아미노산 서열로 이루어진 CDR2; 및 서열번호 101로 표시되는 아미노산 서열로 이루어진 CDR3; 또는 (5) 서열번호 48으로 표시되는 아미노산 서열로 이루어진 CDR1; 서열번호 80으로 표시되는 아미노산 서열로 이루어진 CDR2; 및 서열번호 102로 표시되는 아미노산 서열로 이루어진 CDR3을 포함할 수 있다.
또한, 상기 sdAb는 서열번호 107 내지 121 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR1; 서열번호 122 내지 137 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR2; 서열번호 138 내지 157 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR3; 및 서열번호 158 내지 166 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR4를 포함하는 VHH 도메인을 포함할 수 있고, 일부 구현예에서 서열번호 6 내지 8, 18 및 19 중 어느 하나로 표시되는 아미노산 서열을 포함한다.
본 발명의 일 양태에서, 상기 sdAb는 서열번호 53, 54 및 62 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR1; 서열번호 71, 72 및 81 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR2; 및 서열번호 93, 94 및 103 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR3을 포함할 수 있고, 보다 구체적으로 (1) 서열번호 53으로 표시되는 아미노산 서열로 이루어진 CDR1; 서열번호 71로 표시되는 아미노산 서열로 이루어진 CDR2; 및 서열번호 93으로 표시되는 아미노산 서열로 이루어진 CDR3; (2) 서열번호 54로 표시되는 아미노산 서열로 이루어진 CDR1; 서열번호 72로로 표시되는 아미노산 서열로 이루어진 CDR2; 및 서열번호 94로 표시되는 아미노산 서열로 이루어진 CDR3; 또는 (3) 서열번호 62로 표시되는 아미노산 서열로 이루어진 CDR1; 서열번호 81로 표시되는 아미노산 서열로 이루어진 CDR2; 및 서열번호 103으로 표시되는 아미노산 서열로 이루어진 CDR3을 포함할 수 있다.
또한, 상기 sdAb는 서열번호 107 내지 121 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR1; 서열번호 122 내지 137 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR2; 서열번호 138 내지 157 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR3; 및 서열번호 158 내지 166 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR4를 포함하는 VHH 도메인을 포함할 수 있고, 일부 구현예에서 서열번호 10, 11 및 20 중 어느 하나로 표시되는 아미노산 서열을 포함한다.
본 발명의 일 양태에서, 상기 sdAb는 서열번호 49, 50, 55, 58 및 63 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR1; 서열번호 66, 67, 73, 76 및 82 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR2; 및 서열번호 86, 87, 95, 98 및 104 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR3을 포함할 수 있고, 보다 구체적으로 (1) 서열번호 49로 표시되는 아미노산 서열로 이루어진 CDR1; 서열번호 66으로 표시되는 아미노산 서열로 이루어진 CDR2; 및 서열번호 86으로 표시되는 아미노산 서열로 이루어진 CDR3; (2) 서열번호 50으로 표시되는 아미노산 서열로 이루어진 CDR1; 서열번호 67로 표시되는 아미노산 서열로 이루어진 CDR2; 및 서열번호 87로 표시되는 아미노산 서열로 이루어진 CDR3; (3) 서열번호 55로 표시되는 아미노산 서열로 이루어진 CDR1; 서열번호 73으로 표시되는 아미노산 서열로 이루어진 CDR2; 및 서열번호 95로 표시되는 아미노산 서열로 이루어진 CDR3; (4) 서열번호 58로 표시되는 아미노산 서열로 이루어진 CDR1; 서열번호 76으로 표시되는 아미노산 서열로 이루어진 CDR2; 및 서열번호 98로 표시되는 아미노산 서열로 이루어진 CDR3; 또는 (5) 서열번호 63으로 표시되는 아미노산 서열로 이루어진 CDR1; 서열번호 82로 표시되는 아미노산 서열로 이루어진 CDR2; 및 서열번호 104로 표시되는 아미노산 서열로 이루어진 CDR3을 포함할 수 있다.
또한, 상기 sdAb는 서열번호 107 내지 121 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR1; 서열번호 122 내지 137 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR2; 서열번호 138 내지 157 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR3; 및 서열번호 158 내지 166 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR4를 포함하는 VHH 도메인을 포함할 수 있고, 일부 구현예에서 서열번호 3, 4, 12, 15 및 21 중 어느 하나로 표시되는 아미노산 서열을 포함한다.
본 발명의 일 양태에서, 상기 sdAb는 적어도 1개 이상의 아미노산 치환을 포함할 수 있고, 상기 적어도 1개 이상의 아미노산 치환이 보존적 치환일 수 있으며, 아미노산의 비-유전자 코딩 아미노산 또는 합성 아미노산으로의 치환일 수 있다.
본 발명의 일 양태에서, 상기 sdAb가 Fc 단편에 융합된 중쇄-단독 항체(HCAb)를 제공한다. 일부 구현예에서, 상기 HCAb는 서열번호 24 내지 46 중 어느 하나로 표시되는 아미노산 서열을 포함한다.
본 발명의 일 양태에서, 상기 HCAb는 단량체성 또는 다량체성일 수 있다.
본 발명의 일 양태에서, 상기 Fc 단편에 sdAb가 펩티드 링커를 통해 융합될 수 있고, 상기 Fc 단편은 인간 IgG1, IgG2, IgG3 또는 IgG4일 수 있다.
본 발명의 일 양태에서, 상기 HCAb는 적어도 1개 이상의 아미노산 치환을 포함할 수 있고, 상기 적어도 1개 이상의 아미노산 치환이 보존적 치환일 수 있으며, 아미노산의 비-유전자 코딩 아미노산 또는 합성 아미노산으로의 치환일 수 있다.
본 발명의 일 양태에서, (a) 상기 sdAb를 포함하는 제 1 항원 결합 부분; 및 (b) 제 2 에피토프에 특이적으로 결합하는 제 2 항원 결합 부분을 포함하는 항체를 제공한다.
본 발명의 일 양태에서, 상기 항체는 이중특이적 또는 다중특이적일 수 있다.
본 발명의 일 양태에서, 상기 제 2 항원 결합 부분는 제 1 항원 결합 부분과 펩티드 링커를 통해 서로 융합될 수 있고, 상기 제 2 항원 결합 부분은 전장 항체, Fab, Fab', (Fab')2, Fv, 단일쇄 Fv(scFv), scFv-scFv, 미니바디, 디아바디 또는 제 2 sdAb일 수 있다.
본 발명의 일 양태에서, sdAb는 SARS-CoV-2 또는 이의 변이 바이러스에 중화능이 있다.
또한, 상기 변이 바이러스는 (i) SARS-CoV-2 스파이크 단백질의 204번째 아미노산 위치에서 G204R 변이; (ii) SARS-CoV-2 스파이크 단백질의 614번째 아미노산 위치에서 D614G 변이; (iii) SARS-CoV-2 NS3(ORF3a coding protein)의 57번째 아미노산 위치에서 Q57H 변이; 및/또는 (iv) SARS-CoV-2 NS3(ORF3a coding protein)의 251번째 아미노산 위치에서 G251V 변이를 갖을 수 있다.
본 발명의 일 양태에서, 면역조정제, 사이토카인, 세포독성제, 화학요법제, 진단제, 항바이러스제, 항미생물제 또는 약물이 접합될 수 있다. 이에, 본 발명은 면역조정제, 사이토카인, 세포독성제, 화학요법제, 진단제, 항바이러스제, 항미생물제 또는 약물에 접합된 상기 항체 또는 그의 항원-결합 단편을 포함하는 항체 접합체를 제공한다.
또한, 본 발명은 상기 항체 또는 이의 항원-결합 단편을 암호화하는, 핵산 분자를 제공한다.
또한, 본 발명은 상기 핵산 분자를 포함하는, 발현 벡터를 제공한다.
또한, 본 발명은 상기 발현 벡터로 형질전환된 숙주 세포를 제공한다.
또한, 본 발명은
(a) 항체가 발현되도록 하는 조건 하에 상기 숙주 세포를 배양하는 단계; 및
(b) 발현된 항체 또는 이의 항원-결합 단편을 회수하는 단계
를 포함하는, 항체 또는 이의 항원-결합 단편을 생산하는 방법을 제공한다.
또한, 본 발명은 상기 항체 또는 이의 항원-결합 단편, 또는 상기 항체 접합체를 유효성분으로 함유하는, 코로나바이러스감염증-19(COVID-19)의 예방 또는 치료용 약학적 조성물; 약학적으로 유효한 양의 상기 항체 또는 이의 항원-결합 단편, 또는 상기 항체 접합체를 개체에 투여하는 단계를 포함하는, 코로나바이러스감염증-19의 예방 또는 치료 방법; 및 코로나바이러스감염증-19의 예방 또는 치료에 사용하기 위한 상기 항체 또는 이의 항원-결합 단편, 또는 상기 항체 접합체의 용도를 제공한다.
아울러, 본 발명은 상기 항체 또는 이의 항원-결합 단편을 포함하는 코로나바이러스감염증-19 진단용 키트; 상기 항체 또는 이의 항원-결합 단편을 개체 샘플에 접촉하는 단계를 포함하는, 코로나바이러스감염증-19 진단 방법; 및 코로나바이러스감염증-19 진단에 사용하기 위한 상기 항체 또는 이의 항원-결합 단편의 용도를 제공한다.
본 발명에서는 SARS-CoV-2 스파이크 당단백질(spike glycoprotein)의 수용체 결합 도메인(receptor binding domain; RBD)에 특이적으로 결합하는 단일 도메인 항체(single domain antibody; sdAb)를 제작하였고, 이의 RBD에 대한 친화성 및 SARS-CoV-2 바이러스에 대한 in vitro 및 in vivo 중화능이 우수함을 확인하였으므로, 상기 단일 도메인 항체를 포함하는 항체 또는 이의 항원-결합 단편은 COVID-19 예방 또는 치료용 약학 조성물의 유효성분으로 용이하게 이용될 수 있다. 또한, 상기 단일 도메인 항체를 포함하는 항체 또는 이의 항원-결합 단편는 COVID-19 진단을 위해 유용하게 이용될 수 있다.
도 1은 SARS-CoV-2(Severe acute respiratory syndrome coronavirus 2) 스파이크 당단백질(spike glycoprotein)의 수용체 결합 도메인(receptor binding domain; RBD) 단백질을 2마리의 알파카에 면역 후, 항체 생성 여부를 확인한 것이다.
도 2는 FACS를 이용한 파아지 스크리닝으로 선별한 SARS-CoV-2 스파이크 당단백질의 RBD 특이적 단일 도메인 항체를 가진 파아지 클론들을 나타낸 것이다.
도 3a 내지 도 3f는 본 발명의 일 실시예에 따라 제조한 SARS-CoV-2 스파이크 당단백질의 RBD 특이적 단일 도메인 항체(single domain antibody)와 면역 항원(RBD)의 결합 정도를 ELISA를 통해 확인한 것이다.
도 4a 및 도 4b는 본 발명의 일 실시예에 따라 제조한 SARS-CoV-2 스파이크 당단백질의 RBD 특이적 단일 도메인 항체와 SARS-CoV-2 스파이크 당단백질 발현 세포의 결합 정도를 FACS 분석을 통해 확인한 것이다.
도 5는 본 발명의 일 실시예에 따라 제조한 SARS-CoV-2 스파이크 당단백질의 RBD 특이적 단일 도메인 항체의 SARS-CoV-2 바이러스에 대한 in vitro 중화능을 확인한 것이다.
도 6은 본 발명의 일 실시예에 따라 제조한 SARS-CoV-2 스파이크 당단백질의 RBD 특이적 단일 도메인 항체 클론 Anti-SARS-CoV-2_Nb_#2와 SARS-CoV-2 스파이크 당단백질 발현 세포의 결합 정도를 FACS 분석을 통해 측정한 것이다.
도 7은 본 발명의 일 실시예에 따라 제조한 SARS-CoV-2 스파이크 당단백질의 RBD 특이적 단일 도메인 항체 클론 Anti-SARS-CoV-2_Nb_#2와 SARS-CoV-2 감염된 VeroE6 세포에서의 바이러스 결합 정도를 IFA 실험으로 확인한 것이다.
도 8은 시리안 햄스터(syrian hamster) 모델에 SARS-CoV-2를 공격접종하는 방법을 모식화한 것이다.
도 9는 본 발명의 일 실시예에 따라 제조한 SARS-CoV-2 스파이크 당단백질의 RBD 특이적 단일 도메인 항체 클론 Anti-SARS-CoV-2_Nb_#2의 SARS-CoV-2 바이러스에 대한 in vivo 중화능 검증을 위한 실험 동물의 체중 변화를 확인한 것이다.
도 10a는 본 발명의 일 실시예에 따라 제조한 SARS-CoV-2 스파이크 당단백질의 RBD 특이적 단일 도메인 항체 클론 Anti-SARS-CoV-2_Nb_#2의 SARS-CoV-2 바이러스에 대한 in vivo 중화능을 TCID50 값의 측정으로 확인한 것이다.
도 10b는 본 발명의 일 실시예에 따라 제조한 SARS-CoV-2 스파이크 당단백질의 RBD 특이적 단일 도메인 항체 클론 Anti-SARS-CoV-2_Nb_#2의 SARS-CoV-2 바이러스에 대한 in vivo 중화능을 RT-PCR 방법을 이용한 RNA level 측정으로 확인한 것이다.
도 11은 본 발명의 일 실시예에 따라 제조한 SARS-CoV-2 스파이크 당단백질의 RBD 특이적 단일 도메인 항체 클론 Anti-SARS-CoV-2_Nb_#2의 SARS-CoV-2 바이러스에 대한 in vivo 중화능을 7 dpi 실험 동물의 폐 병변 관찰로 확인한 것이다:
N: 바이러스 비투여군;
V: 바이러스 투여군;
TL: 바이러스+치료제 저용량 투여군(0.002 mg); 및
TH: 바이러스+치료제 고용량 투여군(0.02 mg).
도 12a는 본 발명의 일 실시예에 따라 제조한 SARS-CoV-2 스파이크 당단백질의 RBD 특이적 단일 도메인 항체 클론 Anti-SARS-CoV-2_Nb_#2의 SARS-CoV-2 바이러스에 대한 in vivo 중화능을 확인한 조직병리 결과이다. 2, 7 dpi 실험 동물 폐조직의 염증세포 침윤 정도를 pathological scoring하여 확인하였다.
도 12b는 본 발명의 일 실시예에 따라 제조한 SARS-CoV-2 스파이크 당단백질의 RBD 특이적 단일 도메인 항체 클론 Anti-SARS-CoV-2_Nb_#2의 SARS-CoV-2 바이러스에 대한 in vivo 중화능을 확인한 조직병리 결과이다. 2, 7 dpi 실험 동물 폐조직의 부종 정도를 pathological scoring하여 확인하였다.
도 12c는 본 발명의 일 실시예에 따라 제조한 Anti-SARS-CoV-2_Nb_#2의 SARS-CoV-2 바이러스에 대한 in vivo 중화능을 확인한 조직병리 결과이다. 2, 7 dpi 실험 동물 폐조직의 모세혈관 확장 정도를 pathological scoring하여 확인하였다.
도 13a는 본 발명의 일 실시예에 따라 제조한 SARS-CoV-2 스파이크 당단백질의 RBD 특이적 단일 도메인 항체 클론 Anti-SARS-CoV-2_Nb_#2 및 SARS-CoV-2 바이러스를 투여한 시험군별 2 dpi 실험 동물 폐의 대표 조직 사진을 나타낸 것이다.
도 13b는 본 발명의 일 실시예에 따라 제조한 SARS-CoV-2 스파이크 당단백질의 RBD 특이적 단일 도메인 항체 클론 Anti-SARS-CoV-2_Nb_#2 및 SARS-CoV-2 바이러스를 투여한 시험군별 7 dpi 실험 동물 폐의 대표 조직 사진을 나타낸 것이다.
이하, 본 발명을 실시예에 의해 상세히 설명한다.
단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
본 발명에서, 용어 "에피토프"는 항체에 특이적 결합을 할 수 있는 단백질 결정요인을 의미한다. 에피토프는 일반적으로 분자, 예컨대 아미노산 또는 당 측쇄의 화학적 활성 표면 그룹화로 이루어지고 일반적으로 특이적 3차원 구조 특징, 뿐만 아니라 특이적 전하 특징을 갖는다.
용어 "치료"는 본원에 개시된 장애 또는 질환, 예를 들어 SARS-CoV-2 감염 또는 COVID-19 질환의 증상 또는 합병증을 늦추거나, 중단시키거나, 중지시키거나, 제어하거나, 정지시키거나, 완화하거나 또는 개선하는 것, 또는 그의 진행을 역전시키는 것일 수 있지만, 반드시 모든 질환 또는 장애 증상의 완전한 제거를 나타내는 것은 아닌 모든 과정을 의미한다.
용어 "예방"은 질환 또는 장애, 예를 들어 SARS-CoV-2 감염 또는 COVID-19 질환의 예방적 치료, 또는 질환 또는 장애의 발병 또는 진행을 지연시키는 것을 의미한다.
용어 "개체" 또는 "대상체"는, 비제한적으로, 인간, 소과, 말, 고양이, 개, 설치류, 또는 영장류를 포함하는, 포유동물을 지칭한다. 일부 구현예에서, 개체는 인간이다.
용어 "항체"는 이의 가장 넓은 의미로 사용되고, 이들이 원하는 항원-결합 활성을 나타내는 한, 비제한적으로 단클론성 항체, 다클론성 항체, 다중특이적 항체 (예를 들면, 이중특이적 항체), 전장 항체 및 이의 항원-결합 단편을 포함하는, 다양한 항체 구조를 포괄한다. 용어 "항체"는 종래의 4-쇄 항체, 단일 도메인 항체, 및 이의 항원-결합 단편을 포함한다.
기본 4-쇄 항체 유닛은 2개의 동일한 경 (L) 쇄 및 2개의 동일한 중 (H) 쇄로 구성된 헤테로사량체성 당단백질이다. IgM 항체는 J 쇄로 불리는 추가의 폴리펩티드와 함께 기본 헤테로사량체 유닛들 중 5개로 이루어지고, 10개의 항원-결합 부위를 함유하는 반면, IgA 항체는 J 쇄와 조합으로 다가 집합체를 형성하기 위해 중합화할 수 있는 기본 4-쇄 유닛들 중 2-5개를 포함한다. IgG의 경우에, 4-쇄 유닛은 일반적으로 약 150,000 달톤이다. 각각의 L 쇄는 1개의 공유 디설파이드 결합에 의해 H 쇄에 연결되는 반면, 2개의 H 쇄는 H 쇄 아이소타입에 의존하여 하나 이상의 디설파이드 결합에 의해 서로에 연결된다. 각각의 H 및 L 쇄는 또한 규칙적으로 이격된 쇄간 디설파이드 브릿지를 갖는다. 각각의 H 쇄는 N-말단에서, α 및 γ 쇄의 각각에 대하여 가변 도메인 (VH) 이어서 3개의 불변 도메인 (CH) 그리고 μ 및 ε 아이소타입에 대하여 4개의 CH 도메인을 갖는다. 각각의 L 쇄는 N-말단에서, 이의 다른 단부에 가변 도메인 (VL) 이어서 불변 도메인을 갖는다. VL은 VH와 정렬되고 CL은 중쇄의 제1 불변 도메인 (CH1)과 정렬된다. VH 및 VL의 짝짓기는 단일 항원-결합 부위를 함께 형성한다. 임의의 척추동물 종으로부터 L 쇄는, 그들의 불변 도메인의 아미노산 서열에 기반하여, 카파 및 람다로 불리는, 2개의 분명히 구별되는 유형들 중 하나로 배정될 수 있다. 그들의 중쇄의 불변 도메인 (CH)의 아미노산 서열에 의존하여, 면역글로불린은 상이한 클래스 또는 아이소타입으로 배정될 수 있다. 면역글로불린의 5개의 클래스가 있다: α, δ, ε, γ 및 μ, 각각으로 지정된 중쇄를 갖는, IgA, IgD, IgE, IgG 및 IgM. γ 및 α 클래스는 CH 서열 및 기능에서 상대적으로 소수의 차이에 근거하여 서브클래스로 추가 분할되고, 예를 들면, 인간은 하기 서브클래스를 발현시킨다: IgG1, IgG2A, IgG2B, IgG3, IgG4, IgA1 및 IgA2.
용어 "중쇄-단독 항체" 또는 "HCAb"는, 중쇄를 포함하지만 4-쇄 항체에서 일반적으로 발견된 경쇄가 부족한 기능성 항체를 지칭한다.
용어 "단일-도메인 항체", "나노바디" 또는 "sdAb"는 3개의 상보성 결정 영역 (CDR)를 갖는 단일 항원-결합 폴리펩티드를 지칭한다. sdAb 단독은 상응하는 CDR-함유 폴리펩티드와 짝짓기 없이 항원에 결합할 수 있다. 일부 경우에, 단일-도메인 항체는 낙타과 HCAb로부터 조작되고, 그들의 중쇄 가변 도메인은 "VHH" (중쇄 항체의 중쇄의 가변 도메인)으로서 본원에서 지칭된다. 기본 VHH는 N-말단부터 C-말단까지 하기 구조를 갖는다: FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4, 여기에서 FR1 내지 FR4는 프레임워크 영역 1 내지 4 각각을 지칭하고, CDR1 내지 CDR3은 상보성 결정 영역 1 내지 3을 지칭한다.
항체의 "가변 영역" 또는 "가변 도메인"은 항체의 중쇄 또는 경쇄의 아미노-말단 도메인을 지칭한다. 중쇄 및 경쇄의 가변 도메인은 "VH" 및 "VL" 각각으로서 지칭될 수 있다. 이들 도메인은 일반적으로 (동일한 클래스의 다른 항체에 비하여) 항체의 최대 가변성 부분이고 항원 결합 부위를 함유한다. 낙타과 종으로부터 중쇄-단독 항체는 "VHH"로서 지칭되는 단일 중쇄 가변 영역을 갖는다.
용어 "가변"은 가변 도메인의 특정한 분절이 항체들 중 서열에서 광범위하게 상이하다는 사실을 지칭한다. V 도메인은 항원 결합을 매개하고 이의 특정 항원에 대하여 특정 항체의 특이성을 정의한다. 하지만, 가변성은 가변 도메인의 전체 범위에 걸쳐서 고르게 분포되지 않는다. 대신에, 중쇄 및 경쇄 가변 도메인 둘 모두에서 상보성 결정 영역 (CDR) 또는 초가변 영역 (HVR)로 불리는 3개의 분절에서 농축된다. 가변 도메인의 더욱 고도로 보존된 부분은 프레임워크 영역 (FR)로 불린다. 천연 중쇄 및 경쇄 각각의 가변 도메인은, 루프 연결을 형성하는, 3개의 CDR로 연결된, 베타-시트 구성을 주로 채택하는, 그리고 일부 경우에 베타-시트 구조의 일부를 형성하는, 4개의 FR 영역을 포함한다. 각각의 쇄에서 CDR는 FR 영역에 의해 아주 근접하여 함께 유지되고, 다른 쇄로부터 CDR는 항체의 항원 결합 부위의 형성에 기여한다 (Kabat, Elvin A., Sequence of Immunological Interest, Fifth Edition, National Institute of Health, Bethesda, Md. (1991)을 참고한다). 불변 도메인은 항원에 대한 항체의 결합에 직접적으로 관여되지 않지만, 다양한 이펙터 기능, 예컨대 항체-의존적 세포 독성에서 항체의 참여를 나타낸다.
용어 "불변 도메인"은, 항원-결합 부위를 함유하는, 면역글로불린의 다른 부분, 가변 도메인에 비하여 더 많은 보존된 아미노산 서열을 가지고 있는 면역글로불린 분자의 부분을 지칭한다. 불변 도메인은 중쇄의 CH1, CH2 및 CH3 도메인 (집합적으로, CH) 및 경쇄의 CHL (또는 CL) 도메인을 함유한다.
용어 "전장 항체", "온전한 항체", 또는 "전체의 항체"는, 항체 단편과 대조적으로, 이의 실질적으로 온전한 형태로 항체를 지칭하기 위해 호환적으로 사용된다. 특이적으로, 전장 4-쇄 항체는 Fc 영역을 포함하는 중쇄 및 경쇄를 가진 것들을 포함한다. 전장 중쇄-단독 항체는 중쇄 가변 도메인 (예컨대 VHH) 및 Fc 영역을 포함한다. 불변 도메인은 천연 서열 불변 도메인 (예를 들면, 인간 천연 서열 불변 도메인) 또는 이의 아미노산 서열 변이체일 수 있다. 일부 경우에, 온전한 항체는 하나 이상의 이펙터 기능을 가질 수 있다.
"항체 단편" 또는 "항원-결합 단편"은 온전한 항체의 한 부분, 바람직하게는 온전한 항체의 항원 결합 및/또는 가변 영역을 포함한다. 항체 단편의 예는 비제한적으로 Fab, Fab', F(ab')2 및 Fv 단편; 디아바디; 선형 항체; 단일-쇄 항체 (scFv) 분자; 단일 도메인 항체 (예컨대 VHH), 및 항체 단편으로부터 형성된 다중특이적 항체를 포함한다. "Fv"는 완전 항원-인식 및 -결합 부위를 함유하는 최소 항체 단편이다. 이 단편은 치밀한, 비-공유 회합에서 1개의 중쇄 및 1개의 경쇄 가변 영역 도메인의 이량체로 이루어진다. "단일-쇄 Fv" 또한 약칭 "sFv" 또는 "scFv"는 단일 폴리펩티드 쇄에 연결된 VH 및 VL 항체 도메인을 포함하는 항체 단편이다. 바람직하게는, scFv 폴리펩티드는 scFv가 항원 결합을 위하여 원하는 구조를 형성할 수 있도록 하는 VH와 VL 도메인 사이의 폴리펩티드 링커를 추가로 포함한다. "디아바디"는 V 도메인의 쇄내가 아닌 쇄간 짝짓기가 달성되도록 VH와 VL 도메인 사이의 짧은 링커 (약 5-10개의 잔기)를 가진 sFv 단편을 작제하고, 그것에 의해 2가 단편, 즉, 2개의 항원-결합 부위를 갖는 단편을 초래함으로써 제조된 작은 항체 단편을 지칭한다. 이중특이적 디아바디는 2개의 항체의 VH 및 VL 도메인이 상이한 폴리펩티드 쇄에서 존재하는 2개의 "교차" sFv 단편의 헤테로이량체이다.
용어 "인간화된 항체"는 "키메라 항체"의 서브셋으로서 사용된다.
비-인간 (예를 들면, 라마 또는 낙타과) 항체의 "인간화된" 형태는 비-인간 면역글로불린으로부터 유래된 최소 서열을 함유하는 키메라 항체이다. 일부 구현예에서, 인간화된 항체는 수령체의 (이하에서 정의된) CDR로부터의 잔기가 원하는 특이성, 친화성, 및/또는 수용력을 갖는 비-인간 종 (공여체 항체) 예컨대 마우스, 랫트, 토끼, 낙타, 라마, 알파카, 또는 비-인간 영장류의 CDR로부터의 잔기로 대체되는 인간 면역글로불린 (수령체 항체)이다.
일부 사례에서, 인간 면역글로불린의 프레임워크 ("FR") 잔기는 상응하는 비-인간 잔기로 대체된다. 또한, 인간화된 항체는 수령체 항체에서 또는 공여체 항체에서 발견되지 않는 잔기를 포함할 수 있다. 이들 변형은 항체 성능, 예컨대 결합 친화성을 추가로 개선하기 위해 실시될 수 있다.
용어 "초가변 영역", "HVR", 또는 "HV"는, 본원에서 사용된 경우 서열에서 초가변성이고/거나 구조적으로 정의된 루프를 형성하는 항체 가변 도메인의 영역을 지칭한다. 일반적으로, 단일 도메인 항체는 3개의 HVR (또는 CDR): HVR1 (또는 CDR1), HVR2 (또는 CDR2), 및 HVR3 (또는 CDR3)을 포함한다. HVR3 (또는 CDR3)은 3개의 HVR의 최고 다양성을 표시하고, 항체에 미세 특이성 부여에서 고유의 역할을 한다고 알려져 있다. 예를 들면, Hamers-Casterman et al., Nature 363:446-448 (1993); Sheriff et al., Nature Struct. Biol. 3:733-736 (1996)을 참고한다.
용어 "상보성 결정 영역" 또는 "CDR"은 카밧 시스템에 의해 정의된 바와 같이 초가변 영역을 지칭하는데 사용된다. Kabat, Elvin A., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)을 참고한다. 카밧 상보성 결정 영역 (CDR)는 서열 가변성에 근거하고 가장 흔하게 사용된다.
용어 "프레임워크" 또는 "FR" 잔기는 본원에서 정의된 바와 같이 HVR 잔기 이외의 가변-도메인 잔기이다.
용어 "특이적"은 항원의 특정 에피토프에 대하여 항원 결합 단백질 (예컨대 sdAb)의 선택적 인식을 지칭한다.
천연 항체는, 예를 들어, 단일특이적이다. 본원에서 사용된 바와 같이 용어 "다중특이적"은 항원 결합 단백질이 폴리에피토프 특이성을 갖는 (즉, 1개의 생물학적 분자에서 2개의, 3개의, 또는 초과의, 상이한 에피토프에 특이적으로 결합할 수 있거나 2개의, 3개의, 또는 초과의, 상이한 생물학적 분자에서 에피토프에 특이적으로 결합할 수 있는) 것을 나타낸다. 본원에서 사용된 바와 같이 "이중특이적"은 항원 결합 단백질이 2개의 상이한 항원-결합 특이성을 갖는 것을 나타낸다.
본원에서 사용된 바와 같이 용어 "단일특이적"은 동일한 항원의 동일한 에피토프를 결합시키는 하나 이상의 결합 부위 각각을 갖는 항원 결합 단백질을 나타낸다.
용어 "가"는 항원 결합 단백질에서 결합 부위의 명시된 수의 존재를 나타낸다. 예를 들어, 용어 "2가" "3가", "4가", "5가" 및 "6가"는 항원 결합 단백질에서 2개의 결합 부위, 3개의 결합 부위, 4개의 결합 부위, 5개의 결합 부위, 및 6개의 결합 부위의 존재를 나타낸다.
"항체 이펙터 기능"은 항체의 Fc 영역 (천연 서열 Fc 영역 또는 아미노산 서열 변이체 Fc 영역)에 기인하는 그들 생물학적 활성을 지칭하고, 항체 아이소타입으로 다양하다. 항체 이펙터 기능의 예는 하기를 포함한다: C1q 결합 및 보체 의존적 세포독성; Fc 수용체 결합; 항체-의존적 세포-매개된 세포독성 (ADCC); 식균작용; 세포 표면 수용체 (예를 들면, B 세포 수용체)의 하향 조절; 및 B 세포 활성화. "보체 의존적 세포독성" 또는 "CDC"는 보체의 존재 하에서 표적 세포의 용해를 지칭한다. 고전적 보체 경로의 활성화는 보체 시스템의 제 1 성분 (C1q)의 그들의 동족 항원에 결합되는 (적당한 서브클래스의) 항체에 대한 결합에 의해 개시된다. "항체-의존적 세포-매개된 세포독성" 또는 ADCC는 특정한 세포독성 세포 (예를 들면, 자연 살해 (NK) 세포, 중성구 및 대식세포)에 존재하는 Fc 수용체 (FcR)에 결합되어 있는 분비된 Ig가 이들 세포독성 이펙터 세포를 항원-보유 표적 세포에 특이적으로 결합시키고 후속으로 표적 세포를 세포독소로 사멸시키는 세포독성의 한 형태를 지칭한다.
본원에서 용어 "Fc 영역" 또는 "단편 결정화가능 영역"은, 천연-서열 Fc 영역 및 변이체 Fc 영역을 포함하는, 면역글로불린 중쇄의 C-말단 영역을 정의하는데 사용된다. 본원에서 기재된 항체에서 사용하기 위한 적합한 천연-서열 Fc 영역은 인간 IgG1, IgG2 (IgG2A, IgG2B), IgG3 및 IgG4를 포함한다.
"결합 친화성"은 일반적으로 분자 (예를 들면, 항체)의 단일 결합 부위와 이의 결합 파트너 (예를 들면, 항원) 사이의 비-공유 상호작용의 총계의 강도를 지칭한다. 달리 명시되지 않는 한, 본원에서 사용된 바와 같이, "결합 친화성"은 결합 쌍의 구성원 사이의 1:1 상호작용을 반영하는 고유 결합 친화성을 지칭한다. 결합 친화성은 Kd, Koff, Kon, 또는 Ka로 표시될 수 있다. 본원에서 사용된 바와 같이, 용어 평형 해리 상수 "KD" 또는 "Kd"는 특정 항체-항원 상호작용의 해리 상수를 지칭하고, 평형에서 항체 분자의 용액에 존재하는 모든 항체-결합 도메인의 이분의 일을 차지하는데 필요한 항원의 농도를 기재하고, M의 단위로 표현된다. KD의 측정은 모든 결합 제제가 용액내인 것을 전제한다. 해리 상수 (KD 또는 Kd)는 항원에 대한 항체의 친화성을 나타내는 지표로서 사용된다. 예를 들어, 쉬운 분석은 다양한 마커 제제들로 마킹된 항체를 이용하는 스캐차드(Scatchard) 방법에 의해, 뿐만 아니라 키트에 부착된 사용자의 매뉴얼 및 실험 작동 방법에 따른, 일반의약품, 측정 키트 이용에 의해 가능하다. 이들 방법을 사용하여 유래될 수 있는 KD 값은 M (Mols)의 단위로 표현된다.
펩티드, 폴리펩티드 또는 항체 서열에 대하여 "퍼센트 (%) 아미노산 서열 동일성" 및 "상동성"은, 최대 퍼센트 서열 동일성을 달성하기 위해, 필요하면, 서열 정렬 및 갭 도입 후, 그리고 서열 동일성의 일부로서 임의의 보존적 치환 고려 없이, 특이적 펩티드 또는 폴리펩티드 서열에서 아미노산 잔기와 동일한 후보 서열에서 아미노산 잔기의 백분율로서 정의된다. 퍼센트 아미노산 서열 동일성의 결정 목적을 위한 정렬은 당업계에서 기술 내에 있는 다양한 방식으로, 예를 들어, 공공연하게 이용가능한 컴퓨터 소프트웨어 예컨대 BLAST, BLAST-2, ALIGN 또는 MEGALIGNTM (DNATAR) 소프트웨어를 사용하여 달성될 수 있다. 당업계에서 숙련가는, 비교될 서열의 전장에 걸쳐 최대 정렬을 달성하는데 필요한 임의의 알고리즘을 비롯하여 정렬 측정을 위한 적당한 파라미터를 결정할 수 있다.
본 발명은 (이후 "항-SARS-CoV-2 sdAb"로 지칭되는) SARS-CoV-2(Severe acute respiratory syndrome coronavirus 2) 스파이크 당단백질(spike glycoprotein)의 RBD(receptor binding domain)에 특이적으로 결합하는 단일 도메인 항체(sdAb)를 포함하는 항체 또는 이의 항원-결합 단편, 예컨대, 항-SARS-CoV-2 sdAb, 항-SARS-CoV-2 중쇄-단독 항체(HCAb) (예를 들면, 인간 면역글로불린 G (IgG)의 결정성 단편(Fc 단편)에 항-SARS-CoV-2 sdAb가 융합된 항-SARS-CoV-2 sdAb-Fc 융합 단백질), 또는 다른 sdAb, 전장 4-쇄 항체 또는 이의 항원 결합 단편(예를 들면, Fab 또는 scFv)에 항-SARS-CoV-2 sdAb가 융합된 다중특이적 항원 결합 단백질, 그리고 이의 제조 및 용도에 관한 것이다.
이에, 본 발명은 항-SARS-CoV-2 sdAb를 포함하는 항체 또는 이의 항원-결합 단편을 제공한다.
본 발명에서, 상기 항-SARS-CoV-2 sdAb를 포함하는 항체 또는 이의 항원-결합 단편은 항-SARS-CoV-2 sdAb 또는 이의 항원-결합 단편일 수 있다.
본 발명에서, 상기 항-SARS-CoV-2 sdAb는 서열번호 47 내지 63 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR1; 서열번호 64 내지 83 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR2; 및 서열번호 84 내지 106 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR3을 포함한다.
상기 CDR 서열은 표 9에서 제공된다. 또한, 상기 CDR은 다수의 항-SARS-CoV-2 sdAb를 생성하기 위해 임의의 조합으로 조합될 수 있다.
구체적으로,
상기 항-SARS-CoV-2 sdAb는 하기 중 어느 하나의 CDR을 포함할 수 있다:
(1) 서열번호 48, 56, 57 및 60 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR1;
서열번호 65, 74, 75 및 78 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR2; 및
서열번호 85, 88, 92, 96, 97, 100 및 105 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR3;
(2) 서열번호 48, 51, 52 및 61 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR1;
서열번호 68 내지 70, 79 및 80 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR2; 및
서열번호 89 내지 91, 101 및 102 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR3;
(3) 서열번호 53, 54 및 62 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR1;
서열번호 71, 72 및 81 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR2; 및
서열번호 93, 94 및 103 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR3; 또는
(4) 서열번호 49, 50, 55, 58 및 63 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR1;
서열번호 66, 67, 73, 76 및 82 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR2; 및
서열번호 86, 87, 95, 98 및 104 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR3.
보다 구체적으로,
상기 항-SARS-CoV-2 sdAb는 하기 중 어느 하나의 CDR을 포함할 수 있다:
(1-1) 서열번호 48로 표시되는 아미노산 서열로 이루어진 CDR1;
서열번호 65으로 표시되는 아미노산 서열로 이루어진 CDR2; 및
서열번호 85, 88, 92 및 105 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR3;
(1-2) 서열번호 56으로 표시되는 아미노산 서열로 이루어진 CDR1;
서열번호 74로 표시되는 아미노산 서열로 이루어진 CDR2; 및
서열번호 96로 표시되는 아미노산 서열로 이루어진 CDR3;
(1-3) 서열번호 57로 표시되는 아미노산 서열로 이루어진 CDR1;
서열번호 75로 표시되는 아미노산 서열로 이루어진 CDR2; 및
서열번호 97로 표시되는 아미노산 서열로 이루어진 CDR3; 또는
(1-4) 서열번호 60으로 표시되는 아미노산 서열로 이루어진 CDR1;
서열번호 78로 표시되는 아미노산 서열로 이루어진 CDR2; 및
서열번호 100으로 표시되는 아미노산 서열로 이루어진 CDR3.
또는, 상기 항-SARS-CoV-2 sdAb는 하기 중 어느 하나의 CDR을 포함할 수 있다:
(2-1) 서열번호 51로 표시되는 아미노산 서열로 이루어진 CDR1;
서열번호 68로 표시되는 아미노산 서열로 이루어진 CDR2; 및
서열번호 89로 표시되는 아미노산 서열로 이루어진 CDR3;
(2-2) 서열번호 52로 표시되는 아미노산 서열로 이루어진 CDR1;
서열번호 69로 표시되는 아미노산 서열로 이루어진 CDR2; 및
서열번호 90으로 표시되는 아미노산 서열로 이루어진 CDR3;
(2-3) 서열번호 48로 표시되는 아미노산 서열로 이루어진 CDR1;
서열번호 70으로 표시되는 아미노산 서열로 이루어진 CDR2; 및
서열번호 91로 표시되는 아미노산 서열로 이루어진 CDR3;
(2-4) 서열번호 61로 표시되는 아미노산 서열로 이루어진 CDR1;
서열번호 79로 표시되는 아미노산 서열로 이루어진 CDR2; 및
서열번호 101로 표시되는 아미노산 서열로 이루어진 CDR3; 또는
(2-5) 서열번호 48으로 표시되는 아미노산 서열로 이루어진 CDR1;
서열번호 80으로 표시되는 아미노산 서열로 이루어진 CDR2; 및
서열번호 102로 표시되는 아미노산 서열로 이루어진 CDR3.
또는, 상기 항-SARS-CoV-2 sdAb는 하기 중 어느 하나의 CDR을 포함할 수 있다:
(3-1) 서열번호 53으로 표시되는 아미노산 서열로 이루어진 CDR1;
서열번호 71로 표시되는 아미노산 서열로 이루어진 CDR2; 및
서열번호 93으로 표시되는 아미노산 서열로 이루어진 CDR3;
(3-2) 서열번호 54로 표시되는 아미노산 서열로 이루어진 CDR1;
서열번호 72로로 표시되는 아미노산 서열로 이루어진 CDR2; 및
서열번호 94로 표시되는 아미노산 서열로 이루어진 CDR3; 또는
(3-3) 서열번호 62로 표시되는 아미노산 서열로 이루어진 CDR1;
서열번호 81로 표시되는 아미노산 서열로 이루어진 CDR2; 및
서열번호 103으로 표시되는 아미노산 서열로 이루어진 CDR3.
또는, 상기 항-SARS-CoV-2 sdAb는 하기 중 어느 하나의 CDR을 포함할 수 있다:
(4-1) 서열번호 49로 표시되는 아미노산 서열로 이루어진 CDR1;
서열번호 66으로 표시되는 아미노산 서열로 이루어진 CDR2; 및
서열번호 86으로 표시되는 아미노산 서열로 이루어진 CDR3;
(4-2) 서열번호 50으로 표시되는 아미노산 서열로 이루어진 CDR1;
서열번호 67로 표시되는 아미노산 서열로 이루어진 CDR2; 및
서열번호 87로 표시되는 아미노산 서열로 이루어진 CDR3;
(4-3) 서열번호 55로 표시되는 아미노산 서열로 이루어진 CDR1;
서열번호 73으로 표시되는 아미노산 서열로 이루어진 CDR2; 및
서열번호 95로 표시되는 아미노산 서열로 이루어진 CDR3;
(4-4) 서열번호 58로 표시되는 아미노산 서열로 이루어진 CDR1;
서열번호 76으로 표시되는 아미노산 서열로 이루어진 CDR2; 및
서열번호 98로 표시되는 아미노산 서열로 이루어진 CDR3; 또는
(4-5) 서열번호 63으로 표시되는 아미노산 서열로 이루어진 CDR1;
서열번호 82로 표시되는 아미노산 서열로 이루어진 CDR2; 및
서열번호 104로 표시되는 아미노산 서열로 이루어진 CDR3.
본 발명에서, 상기 항-SARS-CoV-2 sdAb는 FR 영역에 대하여 임의의 적합한 서열을 포함할 수 있다. 구체적으로, 상기 FR 서열은 하기 표 1 내지 표 4로 표시되는 아미노산 서열일 수 있다.
No FR1 서열번호
1 QVQLVESGGGLVQPGGSLRLSCAAS 107
2 QLQLVESGGGLVQPGGSLRLSCAAS 108
3 QVQLVESGGGLVQAGGSLRLSCAAS 109
4 QVQLVESGGGLVQAGGALRLSCAAS 110
5 QLQLVESGGGLVQSGGSLRLSCATS 111
6 QLQLVNSGGDLVQPGGSLRLSCSAS 112
7 QLQLVESGGGLVQTGGSLRLSCTAS 113
8 QLQLVESGGGLVQPGESLRLSCAAS 114
9 QVQLLESGGGLVQAGGSLRLSCAAS 115
10 QVQLVESGGGLVQPGGSLRLSCTAS 116
11 QVQLEETGGRLVQPGGSLRLSCAAS 117
12 QLQLAESGGGLVQPGGSLRLSCAVA 118
13 QLQLVESGGGLVQPGGSLRLSCAVS 119
14 QLQLVESGGGLVQPGGSLRLSCGAS 120
15 QLQLVEYVGGLAQHGGYLRLSCTAS 121
No FR2 서열번호
1 MGWYRQAPGKQRELVAH 122
2 IGWFRQAPGKEREGVSC 123
3 IGWFRQAPGKEREGISC 124
4 LGWFRQAPGKEREFVAT 125
5 MAWYRQAPGKQRELVAS 126
6 MGWYRQASGKEREFVAT 127
7 IGWFRQAPGKEREGILC 128
8 MNWVRQAPGKGPEW 129
9 VGWFRQAPGKEREVVSC 130
10 MAWYRQVPGKERRFVAV 131
11 MGWYRQAPGKERELAAT 132
12 MGWYRQTPEKGREFVAG 133
13 MGWFRQAPGKEREFVAA 134
14 IGWFRQAPGKERKGVSC 135
15 IGWFRQAPGKEREGVSF 136
16 IAWFRQAPGKEREGVSC 137
No FR3 서열번호
1 NYADSVKGRFTISRDNVKNTVYLQMNSLKPEDTAVYYC 138
2 YYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYC 139
3 HYSDSVKGRFTITRDNTKNTVYLQMNSLKPEDTADYHC 140
4 TYANSAKGRFTISRNNANNEVDLQMSTLKPEDTAIYYC 141
5 YYGPSVRGRFTISRDGAKNTMYLQMNSLKPEDTAVYYC 142
6 SYANSVKGRFTISRDNAKNTMYLEMNSLKPEDTAIYYC 143
7 KYADSVKARFTVSRDNAKNTVYLQMNDLKPEDTAVYYC 144
8 KYADSVKGRFLISRDNAKNTVYLQMNNLKPEDTAVYYC 145
9 SYADFVKGRFAISRDNAKNTLYLQMNNLEPEDTALYYC 146
10 NYADSVKGRSSISRDDAKNTIYLHVNSLKPEDTAVYYC 147
11 SYTDSVKGRFTISRDSAKNTVFLQMNGLKPEDTAIYYC 148
12 LYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYC 149
13 HYAGSVKGRFTISRDNAKNTVYLQMNSLKPDDTAIYYC 150
14 YYVDSVKDRFTVSRDNAKNTVYLRMNSLKPEDTADYYC 151
15 DYADSVKGRFTISRDNAKNTVYLQMNSLKPEESAVYYC 152
16 VYADSVKGRFTISRDNAKNMVYLQMNRLKPKDTAVYYC 153
17 NYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYC 154
18 DYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTGVYYC 155
19 KYLDSVKGRFTISRDNAKNTVFLQMNSLKPEDTAVYYC 156
20 NYVDSVKDRFTVSRVNAKNTVYSQINSMNPEDPAVYYC 157
No FR4 서열번호
1 WGRGTQVTVSS 158
2 WGQGTLVTVSS 159
3 WGQGTQVTVSS 160
4 WGKGTQVTVSS 161
5 WGNGTQVTVSS 162
6 WGQGIQVTVSS 163
7 RGQGTLVTVSS 164
8 WGQGTTVTVSS 165
9 WGQGTLLTVSS 166
보다 구체적으로, 상기 항-SARS-CoV-2 sdAb는 하기 FR1, FR2, FR3 및 FR4를 포함할 수 있다:(1) 서열번호 107 내지 121 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR1;
(2) 서열번호 122 내지 137 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR2;
(3) 서열번호 138 내지 157 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR3; 및
(4) 서열번호 158 내지 166 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR4.
본 발명에서, 상기 항-SARS-CoV-2 sdAb는 상기 FR 영역을 포함하는 VHH 도메인을 포함할 수 있다.
구체적으로, 상기 항-SARS-CoV-2 sdAb는 서열번호 2, 5, 9, 13, 14, 17 및 22 중 어느 하나로 표시되는 아미노산 서열, 또는 상기 아미노산 서열에 적어도 80%(예컨대 적어도 임의의 80%, 58%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% 또는 99%) 서열 상동성을 갖는 이의 변이체를 포함할 수 있다.
또는, 상기 항-SARS-CoV-2 sdAb는 서열번호 6 내지 8, 18 및 19 중 어느 하나로 표시되는 아미노산 서열, 또는 상기 아미노산 서열에 적어도 80%(예컨대 적어도 임의의 80%, 88%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% 또는 99%) 서열 상동성을 갖는 이의 변이체를 포함할 수 있다.
또는, 상기 항-SARS-CoV-2 sdAb는 서열번호 10, 11 및 20 중 어느 하나로 표시되는 아미노산 서열, 또는 상기 아미노산 서열에 적어도 80%(예컨대 적어도 임의의 80%, 88%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% 또는 99%) 서열 상동성을 갖는 이의 변이체를 포함할 수 있다.
또는, 상기 항-SARS-CoV-2 sdAb는 서열번호 3, 4, 12, 15 및 21 중 어느 하나로 표시되는 아미노산 서열, 또는 상기 아미노산 서열에 적어도 80%(예컨대 적어도 임의의 80%, 88%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% 또는 99%) 서열 상동성을 갖는 이의 변이체를 포함할 수 있다.
본 발명에서, 상기 항-SARS-CoV-2 sdAb는 SARS-CoV-2 스파이크 당단백질의 RBD 또는 이의 변이체에 결합할 수 있다. 상기 변이체는 예를 들어 SARS-CoV-2 스파이크 당단백질의 341번째 아미노산 위치에서 V341I 변이, 435번째 아미노산 위치에서 A435S 변이, 452번째 아미노산 위치에서 L452R 변이, 458번째 아미노산 위치에서 K458Q 변이, 476번째 아미노산 위치에서 G476S 변이, 483번째 아미노산 위치에서 V483A 변이 및/또는 501번째 아미노산 위치에서 N501Y 변이를 갖을 수 있다.
또한, 상기 항-SARS-CoV-2 sdAb와 SARS-CoV-2 스파이크 당단백질의 RBD 사이의 결합의 KD는 10-6 M 내지 10-12 M, 10-6 M 내지 10-11 M, 10-6 M 내지 10-10 M, 10-6 M 내지 10-9 M, 또는 10-6 M 내지 10-8 M일 수 있다.
또한, 상기 항-SARS-CoV-2 sdAb의 EC50은 FACS 분석에서 500 nM 미만일 수 있고, 구체적으로 0.1 nM 내지 500 nM, 0.1 nM 내지 400 nM, 0.1 nM 내지 300 nM, 0.1 nM 내지 200 nM, 0.1 nM 내지 100 nM, 0.1 내지 50 nM, 0.1 내지 10 nM, 1 nM 내지 500 nM, 1 nM 내지 400 nM, 1 nM 내지 300 nM, 1 nM 내지 200 nM, 1 nM 내지 100 nM, 1 내지 50 nM 또는 1 내지 10 nM일 수 있다.
본 발명에서, 상기 항-SARS-CoV-2 sdAb는 SARS-CoV-2 또는 이의 변이 바이러스에 중화능을 갖는다. 또한, 상기 변이 바이러스는 예를 들어 하기 중 어느 하나 이상의 변이를 갖는 것일 수 있다:
(i) SARS-CoV-2 스파이크 단백질의 204번째 아미노산 위치에서 G204R 변이;
(ii) SARS-CoV-2 스파이크 단백질의 614번째 아미노산 위치에서 D614G 변이;
(iii) SARS-CoV-2 NS3(ORF3a coding protein)의 57번째 아미노산 위치에서 Q57H 변이; 및
(iv) SARS-CoV-2 NS3(ORF3a coding protein)의 251번째 아미노산 위치에서 G251V 변이.
본 발명에 따른 단일 도메인 항체(sdAb)는 중쇄-단독 항체로부터의 중쇄 가변 도메인 (예를 들면, 낙타과에서 VHH (중쇄 항체의 중쇄의 가변 도메인)), 종래의 4-쇄 항체로부터 유래된 경쇄, 단일 도메인 (예컨대 VH 또는 VL)이 자연적으로 결여된 결합 분자, 인간화된 중쇄 단독 항체, 인간 중쇄 분절을 발현시키는 유전자이식 마우스 또는 랫트에 의해 생산된 인간 단일 도메인 항체, 및 항체로부터 유래된 것들 이외 조작된 도메인 및 단일 도메인 스캐폴드를 비제한적으로 포함할 수 있다. sdAb는 마우스, 랫트, 인간, 낙타, 라마, 칠성장어, 어류, 상어, 염소, 토끼, 및 소과를 비제한적으로 포함하는 임의의 종으로부터 유래될 수 있다. 또한 낙타과 이외 종으로부터의 자연 발생 sdAb 분자를 포함할 수 있다.
또한, sdAb는 경쇄가 결여된 중쇄 항체로서 공지된 자연 발생 단일 도메인 항원 결합 분자로부터 유래된다. 그와 같은 단일 도메인 분자는, 예를 들어 WO 94/04678 및 Hamers-Casterman, et al., (1993) Nature 363:446-448에서 개시된다. 경쇄가 자연적으로 결여된 중쇄 분자로부터 유래된 가변 도메인은 본원에서 VHH로서 공지되어 이것을 4개의 쇄 면역글로불린의 종래의 VH와 구별시킨다. 그와 같은 VHH 분자는 낙타과 종, 예를 들어, 낙타, 라마, 비쿠냐, 단봉 낙타, 알파카 및 과나코에서 생성된 항체로부터 유래될 수 있다. 낙타과 이외의 다른 종은 경쇄가 자연적으로 결여된 중쇄 분자를 생산할 수 있고, 그와 같은 VHH는 본원의 범위 내이다
또한, sdAb는 재조합, CDR-그라프팅, 인간화, 낙타화, 탈-면역화 및/또는 시험관내 생성될 수 있다 (예를 들면, 파아지 디스플레이에 의해 선택된다). 일부 구현예에서, 프레임워크 영역의 아미노산 서열은 프레임워크 영역에서 특이적 아미노산 잔기의 "낙타화"에 의해 변경될 수 있다. 낙타화는 중쇄 항체의 VHH 도메인에서 상응하는 위치(들)에 발생하는 아미노산 잔기의 하나 이상에 의해 종래의 4-쇄 항체로부터 (자연 발생) VH 도메인의 아미노산 서열에서 아미노산 잔기의 하나 이상의 대체 또는 치환을 지칭하며, 당업계에 공지된 방식으로 수행될 수 있다.
또한, sdAb는 인간 중쇄 분절을 발현시키는 유전자이식 마우스 또는 랫트에 의해 생산된 인간 sdAb일 수 있다. 예를 들면, 특허 US20090307787A1, US8,754,287, US20150289489A1, US20100122358A1, 및 WO2004049794를 참고한다.
또한, 특정 항원 또는 표적에 대한 자연 발생 VHH 도메인은 낙타과 VHH 서열의 (미접촉 또는 면역) 라이브러리로부터 수득될 수 있다. 그와 같은 방법은 상기 항원 또는 표적을 이용하는 그와 같은 라이브러리, 또는 그 자체로 공지된 하나 이상의 스크리닝 기술을 이용하는 이의 적어도 일부분, 단편, 항원성 결정요인 또는 에피토프 스크리닝을 관여시킬 수 있거나 아닐 수 있다. 그와 같은 라이브러리 및 기술은 예를 들어 특허 WO99/37681, WO 01/90190, WO 03/025020 및 WO 03/035694에서 기재된다. 대안적으로, (미접촉 또는 면역) VHH 라이브러리로부터 유래된 개선된 합성 또는 반-합성 라이브러리, 예컨대 예를 들어 특허 WO 00/43507에서 기재된 바와 같이, 기술 예컨대 무작위 돌연변이유발 및/또는 CDR 셔플링에 의해 (미접촉 또는 면역) VHH 라이브러리로부터 수득된 VHH 라이브러리는 사용될 수 있다.
또한, sdAb는 종래의 4-쇄 항체로부터 생성될 수 있다. 예를 들어, Ward et al., Nature 1989 Oct. 12; 341 (6242): 544-6, Holt et al., Trends Biotechnol., 2003, 21(11):484-490; 특허 WO 06/030220; 및 WO06/003388를 참고한다.
또한, 본 발명에 따른 sdAB는 키메라 항체일 수 있다. 특정한 키메라 항체는, 예를 들면, 특허 US4,816,567; 및 Morrison et al., Proc. Natl. Acad. Sci. USA, 81:6851-6855 (1984))에서 기재된다. 일부 구현예에서, 키메라 항체는 비-인간 가변 영역 (예를 들면, 낙타과 종, 예컨대 라마로부터 유래된 가변 영역) 및 인간 불변 영역을 포함할 수 있다. 또한, 키메라 항체는 인간화될 수 있다. 전형적으로, 비-인간 항체는 인간화되어 인간에 대한 면역원성을 감소시키는 반면, 친계 비-인간 항체의 특이성 및 친화성을 유지시킨다. 일반적으로, 인간화된 항체는 HVR, 예를 들면, CDR, (또는 이의 부분)이 비-인간 항체로부터 유래되고, FR (또는 이의 부분)이 인간 항체 서열로부터 유래되는 하나 이상의 가변 도메인을 포함한다. 인간화된 항체는 임의로 또한 인간 불변 영역의 적어도 한 부분을 포함할 것이다. 일부 구현예에서, 인간화된 항체에 있어서 일부 FR 잔기는, 예를 들면, 항체 특이성 또는 친화성을 회복 또는 개선하기 위해, 비-인간 항체 (예를 들면, HVR 잔기가 유래되는 항체)로부터 상응하는 잔기로 치환된다.
본 발명에서, 상기 항-SARS-CoV-2 sdAb를 포함하는 항체 또는 이의 항원-결합 단편은 항-SARS-CoV-2 HCAb 또는 이의 항원-결합 단편일 수 있다.
구체적으로, 항-SARS-CoV-2 HCAb는 본원에 기재된 항-SARS-CoV-2 sdAb가 하나 이상의 CH2 및/또는 CH3 도메인, 예를 들면 Fc 단편에 융합된 것이다.
상기 CH2 및/또는 CH3 도메인은 면역글로불린으로부터 유래된다. 상기 면역글로불린은 IgA, IgD, IgE, IgG 또는 IgM일 수 있고, 구체적으로 IgG 일 수 있다. 일부 구현예에서, 항-SARS-CoV-2 HCAb는 IgG, 예컨대, IgG1, IgG2, IgG3 또는 IgG4의 Fc 단편을 포함할 수 있고, 상기 Fc 단편은 인간 Fc, 예컨대 인간 IgG1 (hIgG1) Fc, hIgG2 Fc, hIgG3 Fc 또는 hIgG4 Fc일 수 있다.
상기 항-SARS-CoV-2 HCAb는 단량체성 또는 다량체성일 수 있다. 또한, 다량체성일 경우, 예를 들면, 본원에서 기재된 2개 이상의 상이한 항-SARS-CoV-2 sdAb를 포함하는, 다중특이적 및 다가 (예컨대 이중특이적 및 2가)일 수 있고, 또는, 동일한 항-SARS-CoV-2 sdAb의 2개 이상의 카피를 포함하는, 단일특이적 및 다가 (예를 들면, 2가)일 수 있다.
본 발명에서, 상기 항-SARS-CoV-2 sdAb 및 CH2 및/또는 CH3 도메인, 구체적으로 Fc 단편은 펩티드 링커를 융합될 수 있다. 상기 펩티드 링커의 길이, 가요성 정도 및/또는 다른 특성은, 하나 이상의 특정 항원 또는 에피토프에 대하여 비제한적으로 친화성, 특이성 또는 결합능을 포함하는, 특성에서 일부 영향을 미칠 수 있다. 예를 들어, 더 긴 펩티드 링커는 2개의 인접한 도메인이 서로를 입체적으로 방해하지 않는다는 것을 보장하도록 선택될 수 있다. 일부 구현예에서, 펩티드 링커는 인접한 도메인이 서로에 대하여 자유롭게 움직이도록 가요성 잔기 (예컨대 글리신 및 세린)을 포함한다. 예를 들어, 글리신-세린 더블릿은 적합한 펩티드 링커일 수 있다. 또한, 펩티드 링커는 임의의 적합한 길이일 수 있다. 일부 구현예에서, 펩티드 링커는 적어도 약 임의의 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 50, 75, 100개 또는 더 많은 아미노산 길이이다.
또한, 상기 펩티드 링커는 자연 발생 서열, 또는 비-자연 발생 서열을 가질 수 있다. 예를 들어, 중쇄-단독 항체의 힌지 영역으로부터 유래된 서열dl 링커로서 사용될 수 있다. 예를 들어, 특허 WO1996/34103를 참고한다. 일부 구현예에서, 상기 펩티드 링커는 hIgG1 힌지, hIgG2 힌지, hIgG3 힌지, hIgG4 힌지 또는 이들의 변이체일 수 있다.
본 발명에서, 상기 항-SARS-CoV-2 HCAb는 서열번호 24 내지 46 중 어느 하나로 표시되는 아미노산 서열, 또는 상기 아미노산 서열에 적어도 80%(예컨대 적어도 임의의 80%, 88%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% 또는 99%) 서열 상동성을 갖는 이의 변이체를 포함할 수 있다.
본 발명에서, 상기 항-SARS-CoV-2 sdAb를 포함하는 항체 또는 이의 항원-결합 단편은 다른 sdAb, 전장 4-쇄 항체 또는 이의 항원 결합 단편에 항-SARS-CoV-2 sdAb가 융합된 다중특이적 항원 결합 단백질(MABP) (예를 들어, (이하, 항-SARS-CoV-2 BABP로 지칭되는) 항-SARS-CoV-2 sdAb가 융합된 이중특이적 항원 결합 단백질(BABP)) 또는 이의 항원-결합 단편일 수 있다.
상기 항-SARS-CoV-2 BABP는 (a) 본원에 기재된 항-SARS-CoV-2 sdAb를 포함하는 제 1 항원 결합 부분; 및 (b) 제 2 에피토프에 특이적으로 결합하는 제 2 항원 결합 부분을 포함한다.
상기 제 2 에피토프는 SARS-CoV-2 스파이크 당단백질의 RBD 이외 항원, 또는 SARS-CoV-2 스파이크 당단백질의 RBD에서의 제 2 에피토프일 수 있다.
상기 제 2 항원 결합 부분은 전장 항체, Fab, Fab', (Fab')2, Fv, 단일쇄 Fv(scFv), scFv-scFv, 미니바디, 디아바디 또는 제 2 sdAb일 수 있다. 또한, 제 2 항원 결합 부분은 VH를 포함하는 중쇄 및 VL을 포함하는 경쇄를 포함할 수 있다. 일부 구현예에서, 제 1 항원 결합 부분은 중쇄의 N-말단, 경쇄의 N-말단, Fc 영역의 N-말단, 중쇄의 C-말단, 또는 경쇄의 C-말단에서 제2 항원 결합 부분에 융합될 수 있다. 일부 구현예에서, 제 2 항원 결합 부분은 Fab 또는 scFv를 포함할 수 있다. 일부 구현예에서, 제 1 항원 결합 부분은 Fab 또는 scFv의 C-말단에서 제 2 항원 결합 부분에 융합될 수 있다. 일부 구현예에서, 제2 항원 결합 부분은 전장 4-쇄 항체를 포함할 수 있다. 일부 구현예에서, 제1 항원 결합 부분은 펩티드 링커를 통해 제 2 항원 결합 부분에 융합될 수 있다. 일부 구현예에서, 제 2 항원 결합 부분은 Fc 영역, 예컨대 IgG1 Fc, IgG2 Fc, IgG3 Fc 또는 IgG4 Fc을 포함할 수 있다.
상기 항-SARS-CoV-2 MABP는 적어도 2개의 상이한 에피토프를 특이적으로 결합시키는 적어도 2개의 항원 결합 부분을 포함한다. 적어도 2개의 항원 결합 부분 중 일부는, MABP가 2개의 상이한 에피토프용 결합 부위를 갖는 한, 동일할 수 있다. 또한, 항-SARS-CoV-2 MABP는 본원에서 기재된 항-SARS-CoV-2 sdAb를 각각 포함하는 1, 2, 3, 4, 5, 6, 7, 8개 또는 초과의 상이한 항원 결합 부분 중 어느 하나를 포함할 수 있다.
또한, 항-SARS-CoV-2 MABP는 SARS-CoV-2 스파이크 당단백질의 RBD 및/또는 제2 에피토프에 대하여 가수의 임의의 적합한 수, 및 특이성의 임의의 적합한 수를 가질 수 있다. 일부 구현예에서, 항-SARS-CoV-2 MABP는 SARS-CoV-2 스파이크 당단백질의 RBD에 대하여 2가, 3가, 4가, 5가, 6가, 또는 더 높은 가수일 수 있다. 일부 구현예에서, MABP는 삼중특이적일 수 있고, 사중특이적일 수 있다.
본 발명에 따른 다중특이적 항체의 제조 기술은, 비제한적으로, 상이한 특이성을 갖는 2개의 면역글로불린 중쇄-경쇄 쌍의 재조합 공-발현 (예를 들면, Milstein and Cuello, Nature 305: 537 (1983)); WO 93/08829; Traunecker et al., EMBO J. 10: 3655 (1991)), 및 "놉-인-홀" 엔지니어링 (예를 들면, 특허 US5731168)을 포함한다. 다중-특이적 항체는 또한 항체 Fc-헤테로이량체성 분자 제조용 정전기 조향 효과의 조작 (WO 2009/089004A1); 2개 이상의 항체 또는 단편의 가교결합 (예를 들면, 특허 US4676980, 및 Brennan et al., Science, 229: 81 (1985)); 이중-특이적 항체를 생산하기 위한 류신 지퍼의 이용 (예를 들면, Kostelny et al., J. Immunol., 148(5):1547-1553 (1992)); 이중특이적 항체 단편 제조용 "디아바디" 기술의 이용 (예를 들면, Hollinger et al., Proc. Natl. Acad. Sci. USA, 90:6444-6448 (1993)); 및 단일-쇄 Fv (sFv) 이량체의 이용(예를 들면, Gruber et al., J. Immunol., 152:5368 (1994)); 및, 예를 들면, Tutt et al., J. Immunol. 147: 60 (1991)에서 기재된 바와 같이 삼중특이적 항체의 제조; 및 탠덤 단일-도메인 항체를 포함하는 폴리펩티드의 창출 (예를 들면, 특허 US20110028695; 및 Conrath et al., J. Biol. Chem., 2001; 276(10):7346-50)에 의해 실시될 수 있다.
본 발명에서, 상기 항-SARS-CoV-2 sdAb를 포함한 항체 또는 이의 항원-결합 단편은 아미노산 서열 변이체를 포함한다. 항체의 아미노산 서열 변이체는 항체를 인코딩하는 핵산 서열에의 적당한 변형 도입에 의해, 또는 펩티드 합성에 의해 제조될 수 있다. 그와 같은 변형은, 예를 들어, 항체의 아미노산 서열 내에서 잔기의 결실, 및/또는 삽입 및/또는 치환을 포함한다. 결실, 삽입, 및 치환의 임의의 조합은 최종 작제물에 이르도록 만들어질 수 있고, 단 최종 작제물은 원하는 특징, 예를 들면, 항원-결합을 보유한다. 일부 구현예에서, 치환, 삽입, 또는 결실은 그와 같은 변경이 항원을 결합시키는 항체의 능력을 실질적으로 감소시키지 않는 한 하나 이상의 초가변 영역(HVR) 내에서 발생할 수 있다. 예를 들어, 결합 친화성을 실질적으로 감소시키지 않는 보존적 변경은 HVR에서 실시될 수 있다. 그와 같은 변경은 HVR "핫스팟" 또는 CDR의 외부일 수 있다.
또한, 상기 아미노산 치환은 적어도 1개(예컨대, 임의의 1, 2, 3, 4, 5, 6, 7, 8, 9, 또는 10개)의 아미노산 치환일 수 있다. 또한, 상기 적어도 1개의 아미노산 치환은 보존적 치환일 수 있고, 비-유전자 코딩 아미노산 또는 합성 아미노산으로의 치환일 수 있다. 일부 구현예에서, 상기 아미노산 치환은 CDR 영역에 있을 수 있고, CDR1, CDR2 및/또는 CDR3에서 적어도 1개(예컨대, 임의의 1, 2, 3, 또는 4개)의 아미노산 치환을 포함할 수 있다. 일부 구현예에서, 상기 아미노산 치환은 FR 영역에 있을 수 있고, FR1, FR2, FR3 및/또는 FR4에서 적어도 1개(예컨대, 임의의 1, 2, 3, 4, 5 또는 6개)의 아미노산 치환을 포함할 수 있다.
또한, 상기 아미노산 서열 삽입은 1개의 잔기부터 100개 이상의 잔기를 함유하는 폴리펩티드까지 길이 범위의 아미노- 및/또는 카복실-말단 융합, 뿐만 아니라 단일 또는 다중 아미노산 잔기의 서열내 삽입을 포함한다. 말단 삽입의 예는 N-말단 메티오닐 잔기를 가진 항체를 포함한다. 항체 분자의 다른 삽입 변이체는 항체의 혈청 반감기를 증가시키는 폴리펩티드 또는 (예를 들면, ADEPT의 경우) 효소에 대한 항체의 N- 또는 C-말단에의 융합을 포함할 수 있다.
또한, 하나 이상의 아미노산 변형은 본원에서 제공된 항-SARS-CoV-2 sdAb를 포함한 항체 또는 이의 항원-결합 단편 (예를 들면, 항-SARS-CoV-2 HCAb, 또는 항-SARS-CoV-2 MABP)의 Fc 영역에 도입되어, 그것에 의해 Fc 영역 변이체를 생성할 수 있다. Fc 영역 변이체는 하나 이상의 아미노산 위치에서 아미노산 변형 (예를 들면 치환)을 포함하는 인간 Fc 영역 서열 (예를 들면, 인간 IgG1, IgG2, IgG3 또는 IgG4 Fc)을 포함할 수 있다.
본 발명에서, 상기 항-SARS-CoV-2 sdAb를 포함하는 항체 또는 이의 항원-결합 단편은 진단 모이어티 또는 생체적합성 조절제와 연결되거나, 그에 융합되거나, 그에 접합되거나 (예를 들어, 공유 또는 비-공유), 또는 달리 그와 회합될 수 있다. 예를 들어, 펩티드 또는 폴리펩티드(예를 들어, 생물독소, 바이오마커, 정제 태그 등), 단백질, 중합체, 핵산 분자, 소분자, 모방제, 합성 약물, 무기 분자, 유기 분자 또는 방사성동위원소가 접합 또는 회합될 수 있다.
또한, 상기 항-SARS-CoV-2 sdAb를 포함하는 항체 또는 이의 항원-결합 단편은 생물학적 분자(예를 들어, 펩티드 또는 뉴클레오티드), 소분자, 형광단, 또는 방사성동위원소일 수 있는 진단제 또는 검출가능한 작용제, 마커 또는 리포터에 접합 또는 회합될 수 있다. 표지된 조정자는 SARS-CoV-2 감염의 발생 또는 진행을 모니터링하는데, 또는 본원에 개시된 항체를 포함하는 특정한 요법의 효능을 결정하거나 (즉 테라그노시스), 또는 향후의 치료 과정을 결정하는 임상 시험 절차의 일부로서 유용할 수 있다. 이러한 마커 또는 리포터는 또한 본원에 개시된 항체를 정제하는데 유용할 수 있다.
또한, 상기 항-SARS-CoV-2 sdAb를 포함하는 항체 또는 이의 항원-결합 단편은 면역조정제, 사이토카인, 세포독성제, 화학요법제, 진단제, 항바이러스제, 항미생물제 또는 약물에 접합될 수 있다. 이에, 본 발명은 면역조정제, 사이토카인, 세포독성제, 화학요법제, 진단제, 항바이러스제, 항미생물제 또는 약물에 접합된 본 발명에 따른 항-SARS-CoV-2 sdAb를 포함하는 항체 또는 이의 항원-결합 단편을 포함하는 항체 접합체을 제공한다.
또한, 본 발명은 본원에 개시된 항-SARS-CoV-2 sdAb를 포함하는 항체 또는 이의 항원-결합 단편을 암호화하는 핵산 분자, 상기 핵산 분자를 포함하는 발현 벡터, 상기 발현 벡터로 형질전환된 숙주 세포를 제공한다.
또한, 본 발명은 (a) 항체가 발현되도록 하는 조건 하에 상기 숙주 세포를 배양하는 단계; 및 (b) 발현된 항체 또는 이의 항원-결합 단편을 회수하는 단계를 포함하는, 항체 또는 이의 항원-결합 단편을 생산하는 방법을 제공한다.
본 발명에서, 본원에 개시된 항-SARS-CoV-2 sdAb를 포함하는 항체 또는 이의 항원-결합 단편을 코딩하는 DNA는 통상적인 절차를 사용하여 (예를 들어, 항체 중쇄 및 경쇄를 코딩하는 유전자에 특이적으로 결합할 수 있는 올리고뉴클레오티드 프로브를 사용함으로써) 용이하게 단리되고 서열분석될 수 있다. 단리되고 서브클로닝된 하이브리도마 세포 (또는 파지 또는 효모 유래 콜로니)는 이러한 DNA의 바람직한 공급원으로서의 역할을 할 수 있다. 보다 특히, 단리된 DNA (변형될 수 있음)는 항체의 제조를 위해 불변 및 가변 영역 서열을 클로닝하는데 사용될 수 있다.
하나의 예시적인 방법은 선택된 세포로부터의 RNA의 추출, cDNA로의 전환, 및 항체 특이적 프라이머를 사용한 PCR에 의한 증폭을 수반한다. 적합한 프라이머는 관련 기술분야에 널리 공지되어 있고, 본원에 예시된 바와 같이 많은 상업적 공급원으로부터 용이하게 이용가능하다. 조합 라이브러리의 스크리닝에 의해 단리된 재조합 인간 또는 비-인간 항체를 발현시키기 위해, 항체를 코딩하는 DNA를 재조합 발현 벡터 내로 클로닝하고, 포유동물 세포, 곤충 세포, 식물 세포, 효모, 및 박테리아를 포함한 숙주 세포 내에 도입된다. 일부 구현예에서, 달리 목적하는 구축물을 생산하지 않는 원숭이 COS 세포, NS0 세포, 차이니즈 햄스터 난소(CHO) 세포 또는 골수종 세포 내로 조정자가 도입되어 그에 의해 발현된다.
본 발명에서, 상기 핵산 분자는 벡터 내에, 적절한 경우에 핵산의 발현을 제어하는 프로모터와 함께 존재한다. 상기 벡터는 그의 가장 일반적인 의미로 사용되고, 핵산이 예를 들어 원핵 및/또는 진핵 세포 내로 도입되고 적절한 경우에 게놈 내로 통합될 수 있게 하는, 핵산을 위한 임의의 중간 비히클을 포함한다. 이러한 종류의 벡터는 바람직하게는 세포 내에서 복제되고/거나 발현된다. 벡터는 플라스미드, 파지미드, 박테리오파지 또는 바이러스 게놈을 포함할 수 있다. 상기 플라스미드는 일반적으로 염색체 DNA와 독립적으로 복제할 수 있는 염색체외 유전 물질 구축물, 통상적으로 원형 DNA 듀플렉스에 관한 것이다.
관련 기술분야의 통상의 기술자에게 널리 공지된 방법을 사용하여 항체 코딩 서열 및 적절한 전사 및 번역 제어 신호를 포함하는 발현 벡터를 구축할 수 있다. 이들 방법은, 예를 들어, 시험관내 재조합 DNA 기술, 합성 기술, 및 생체내 유전자 재조합을 포함한다.
본 발명에서, 상기 숙주 세포 또는 재조합 숙주 세포는 발현 벡터가 도입된 세포를 의미한다. 재조합 숙주 세포 및 숙주 세포는 특정한 대상 세포뿐만 아니라 이러한 세포의 자손도 의미한다. 돌연변이 또는 환경적 영향으로 인해 후속 세대에서 특정 변형이 발생할 수 있기 때문에, 이러한 자손은 사실상 모세포와 동일하지 않을 수 있지만, 여전히 본원에 사용된 용어 숙주 세포의 범주 내에 포함된다. 이러한 세포는 상기 기재된 바와 같은 벡터를 포함할 수 있다.
또한, 관련 기술분야에서 인식되는 분자 생물학 기술 및 현재의 단백질 발현 방법론을 사용하여, 본원에 개시된 항체의 실질적인 양이 생산될 수 있다. 보다 구체적으로, 이러한 항체를 코딩하는 핵산 분자는 다양한 유형의 숙주 세포를 포함한 널리 공지되고 상업적으로 입수가능한 단백질 생산 시스템 내로 통합되어, 전임상, 임상, 또는 상업적인 양의 목적하는 제약 제품을 제공할 수 있다. 일부 구현예에서, 항체를 코딩하는 핵산 분자는 선택된 숙주 세포 내로의 효율적인 통합 및 후속적인 항체의 높은 발현 수준을 제공하는 벡터 또는 발현 벡터 내로 조작된다.
바람직하게는 본원에 개시된 항체를 코딩하는 핵산 분자 및 이들 핵산 분자를 포함하는 벡터는 적합한 포유동물, 식물, 박테리아 또는 효모 숙주 세포의 형질감염에 사용될 수 있지만, 원핵 시스템이 또한 사용될 수 있다. 형질감염은 폴리뉴클레오티드를 숙주 세포 내로 도입하기 위한 임의의 공지된 방법에 의해 이루어질 수 있다. 이종 폴리뉴클레오티드를 포유동물 세포 내로 도입하는 방법은 관련 기술분야에 널리 공지되어 있고, 덱스트란-매개 형질감염, 인산칼슘 침전, 폴리브렌-매개 형질감염, 원형질체 융합, 전기천공, 리포솜 내 폴리뉴클레오티드(들)의 캡슐화, 및 DNA의 핵 내로의 직접 미세주사를 포함한다. 또한, 핵산 분자를 바이러스 벡터에 의해 포유동물 세포 내로 도입할 수 있다. 포유동물 세포를 형질전환하는 방법은 관련 기술분야에 널리 공지되어 있다. 식물 세포를 형질전환하는 방법이 또한 관련 기술분야에 널리 공지되어 있고, 예를 들어, 아그로박테리움-매개 형질전환, 바이오리스틱 형질전환, 직접 주사, 전기천공, 및 바이러스 형질전환을 포함한다. 박테리아 및 효모 세포를 형질전환하는 방법이 또한 관련 기술분야에 널리 공지되어 있다.
많은 상업적으로 입수가능한 다양한 숙주-발현 벡터 시스템이 본원에 개시된 항체를 발현시키는데 사용될 수 있다. 이러한 숙주-발현 시스템은 관심 코딩 서열이 발현되고 후속해서 정제될 수 있는 비히클을 나타낼 뿐만 아니라, 적절한 뉴클레오티드 코딩 서열로 형질전환되거나 형질감염된 경우에 본 발명의 분자를 계내 발현할 수 있는 세포를 나타낸다. 이러한 시스템은 조정자 코딩 서열을 함유하는 재조합 박테리오파지 DNA, 플라스미드 DNA 또는 코스미드 DNA 발현 벡터로 형질전환된 미생물, 예컨대 박테리아 (예를 들어, 이. 콜라이(E. coli), 비. 서브틸리스(B. subtilis), 스트렙토미세스(streptomyces)); 조정자 코딩 서열을 함유하는 재조합 효모 발현 벡터로 형질감염된 효모 (예를 들어, 사카로미세스(Saccharomyces), 피키아(Pichia)); 조정자 코딩 서열을 함유하는 재조합 바이러스 발현 벡터 (예를 들어, 바큘로바이러스)로 감염된 곤충 세포 시스템; 재조합 바이러스 발현 벡터 (예를 들어, 콜리플라워 모자이크 바이러스, CaMV; 담배 모자이크 바이러스, TMV)로 감염되거나 또는 조정자 코딩 서열을 함유하는 재조합 플라스미드 발현 벡터 (예를 들어, Ti 플라스미드)로 형질감염된 식물 세포 시스템 (예를 들어, 니코티아나(Nicotiana), 아라비돕시스(Arabidopsis), 좀개구리밥, 옥수수, 밀, 감자 등); 또는 포유동물 세포의 게놈으로부터 유래되거나 (예를 들어, 메탈로티오네인 프로모터) 또는 포유동물 바이러스로부터 유래된 (예를 들어, 아데노바이러스 후기 프로모터; 백시니아 바이러스 7.5K 프로모터) 프로모터를 함유하는 재조합 발현 구축물을 보유하는 포유동물 세포 시스템 (예를 들어, COS, CHO, BHK, 293, 3T3 세포)을 포함하나, 이에 제한되지는 않는다.
본원에 개시된 항체가 재조합 발현 또는 본원에 개시된 다른 기술 중 어느 하나에 의해 생산되었으면, 이는 면역글로불린의 정제에 대해 관련 기술분야에 공지된 임의의 방법에 의해, 또는 보다 일반적으로 단백질의 정제에 대한 임의의 다른 표준 기술에 의해 정제될 수 있다.
또한, 본 발명은 본원에 개시된 항-SARS-CoV-2 sdAb를 포함하는 항체 또는 이의 항원-결합 단편, 또는 상기 항체 또는 이의 항원-결합 단편을 포함하는 항체 접합체를 유효성분으로 함유하는, 코로나바이러스감염증-19(COVID-19)의 예방 또는 치료용 약학적 조성물을 제공한다.
또한, 본 발명은 약학적으로 유효량의 본원에 개시된 항-SARS-CoV-2 sdAb를 포함하는 항체 또는 이의 항원-결합 단편, 또는 상기 항체 또는 이의 항원-결합 단편을 포함하는 항체 접합체를 포함하는 약학적 조성물을 개체에게 투여하는 단계를 포함하는, 코로나바이러스감염증-19의 예방 또는 치료 방법을 제공한다.
또한, 본 발명은 코로나바이러스감염증-19의 예방 또는 치료에 사용하기 위한 본원에 개시된 항-SARS-CoV-2 sdAb를 포함하는 항체 또는 이의 항원-결합 단편, 또는 상기 항체 또는 이의 항원-결합 단편을 포함하는 항체 접합체의 용도를 제공한다.
본 발명에서, 상기 항-SARS-CoV-2 sdAb를 포함하는 항체 또는 이의 항원-결합 단편, 또는 상기 항체 또는 이의 항원-결합 단편을 포함하는 항체 접합체에 대한 내용은 전술한 바와 동일하므로, 구체적은 설명은 상기 내용을 원용하고, 이하에서는 약학적 조성물 및 용도의 특유한 구성에 대해서만 설명하도록 한다.
본 발명에 따른 약학적 조성물은 본원에 기재된 1종 이상 (예를 들어, 2 또는 3종)의 항-SARS-CoV-2 sdAb를 포함하는 항체 또는 이의 항원-결합 단편, 또는 상기 항체 또는 이의 항원-결합 단편을 포함할 수 있고, 이들은 SARS-CoV-2 스파이크 당단백질을 중화한다.
본 발명에 따른 약학적 조성물을 개체, 구체적으로 COVID-19 환자 또는 COVID-19에 걸릴 위험이 있는 환자에 투여함으로써, COVID-19를 예방 또는 치료할 수 있고, 환자의 COVID-19 관련 입원 또는 ER 방문을 감소시킬 수 있다.
상기 환자는 중등도 내지 중증 COVID-19를 갖지만, 입원하지는 않을 수 있고, 또는 경도 내지 중등도 COVID-19를 갖을 수 있다. 예를 들어, 경도 COVID-19 환자는 다양한 징후 및 증상 중 임의의 것, 예를 들어 열, 기침, 인후통, 권태감, 두통, 근육 통증을 갖고, 숨가쁨, 호흡곤란, 또는 비정상적 영상화는 갖지 않는 개체를 포함할 수 있다. 중등도 COVID-19 환자는 임상 평가 또는 영상화에 의해 하기도 질환의 증거 및 해수면에서 실내 공기 중 93% 초과 (>)의 산소 포화도 (SaO2)를 갖는 개체를 포함할 수 있다. 또한, 환자는 COVID-19에 걸릴 위험이 있다. 상기 환자는 양성 SARS-CoV-2 바이러스 검사 결과를 갖는다. 또한, 환자는 성인, 또는 12세 이상이고 체중이 적어도 40 kg인 소아과 환자일 수 있다. 또한, 환자는 중증 COVID-19로 진행되고/거나 입원할 위험이 높고, 예를 들어, 환자는 (i) 65세 이상이거나; (ii) 35 이상의 체질량 지수 (BMI)를 갖거나; (iii) 만성 신장 질환을 갖거나; (iv) 당뇨병을 갖거나; (v) 면역억제 질환을 갖거나, (vi) 면역억제 치료를 받고 있거나; (vii) 55세 이상이고, 심혈관 질환, 고혈압, 만성 폐쇄성 폐 질환, 또는 다른 만성 호흡기 질환을 갖거나; 또는 (viii) 12 - 17세이고, 그의 연령 및 성별에 대해 BMI ≥85%, 또는 겸상 적혈구 질환, 선천성 또는 후천성 심장 질환, 신경발달 장애 (예를 들어, 뇌성 마비), 의료-관련 기술 의존 (예를 들어, 기관절개술, 위루술, 또는 COVID-19와 관련되지 않은 양압 환기), 또는 제어를 위해 매일 투약을 필요로 하는 천식, 반응성 기도 또는 다른 만성 호흡기 질환을 갖는다.
또한, 본 발명에 따른 약학적 조성물은 본원에 기재된 항체의 형태, 의도된 전달 방식, 및 수많은 다른 변수에 따라, 관련 기술분야에서 인식되는 기술을 사용하여 목적하는 바와 같이 제제화될 수 있다. 또한, 관련 기술분야에 널리 공지되어 있고 투여를 용이하게 하거나 또는 전달을 위해 제약상 최적화된 제제로 활성 화합물을 가공하는 것을 보조하는 비교적 불활성 물질인 부형제 및 보조제를 포함하는 적합한 제약상 허용되는 담체를 함유하도록 제제화될 수 있다. 예를 들어, 비히클, 보조제, 및 희석제를 포함한 다양한 제약상 허용되는 담체는 수많은 상업적 공급원으로부터 용이하게 입수가능하다. 또한, 제약상 허용되는 보조 물질 분류, 예컨대 pH 조정제 및 완충제, 장성 조정제, 안정화제, 습윤제 등이 또한 입수가능하다. 특정의 비제한적 예시적인 담체는 염수, 완충 염수, 덱스트로스, 물, 글리세롤, 에탄올, 및 그의 조합을 포함한다.
또한, 본 발명에 따른 약학적 조성물은 경장, 비경구 또는 국소 투여를 위해 제제화될 수 있다. 사실상, 모든 3가지 유형의 제제를 동시에 사용하여 활성 성분의 전신 투여를 달성할 수 있다. 비경구 및 비-비경구 약물 전달을 위한 부형제 뿐만 아니라 제제가 관련 기술분야에 공지되어 있다. 비경구 투여에 적합한 제제는 수용성 형태의 활성 화합물, 예를 들어, 수용성 염의 수용액을 포함한다. 또한, 유성 주사 현탁액에 적절한 활성 화합물의 현탁액이 투여될 수 있다. 적합한 친지성 용매 또는 비히클은 지방 오일, 예를 들어, 참깨 오일, 또는 합성 지방산 에스테르, 예를 들어, 에틸 올레에이트 또는 트리글리세리드를 포함한다. 수성 주사 현탁액은 현탁액의 점도를 증가시키는 물질을 함유할 수 있고, 예를 들어, 소듐 카르복시메틸 셀룰로오스, 소르비톨, 및/또는 덱스트란을 포함한다. 임의로, 현탁액은 또한 안정화제를 함유할 수 있다. 또한 리포솜을 사용하여 세포로의 전달을 위해 작용제를 캡슐화할 수 있다.
경장 투여에 적합한 제제는 경질 또는 연질 젤라틴 캡슐, 환제, 코팅된 정제를 비롯한 정제, 엘릭시르, 현탁액, 시럽 또는 흡입제 및 그의 제어 방출 형태를 포함한다.
또한, 본원 기재된 항체를 적혈구 상에 흡착시켜 폐로의 우선적 전달을 용이하게 함으로써 간 및 비장에서의 프로세싱을 통한 반감기 단축을 방지하고 폐에서의 보다 높은 농도를 제공할 수 있다.
일반적으로, 본원에 개시된 항체는 이를 필요로 하는 대상체에게 경구, 정맥내, 동맥내, 피하, 비경구, 비강내, 근육내, 심장내, 뇌실내, 기관내, 협측, 직장, 복강내, 피내, 국소, 경피, 및 척추강내, 또는 달리 이식 또는 흡입에 의한 것을 포함하나 이에 제한되지는 않는 다양한 경로에 의해 생체내 투여될 수 있다. 투여의 적절한 제제 및 경로는 의도된 용도 및 치료 요법에 따라 선택될 수 있다.
본 발명에 따른 약학적 조성물은 SARS-CoV-2 감염의 치료 또는 예방을 위한 약학적으로 유효량으로 투여된다. 상기 약학적으로 유효량은 의사 또는 다른 임상의에 의해 추구되는, 대상체에서 생물학적 또는 의학적 반응을 도출할 항체 또는 이를 포함하는 약학적 조성물의 양을 의미한다. 또한, 예방 및/또는 치료 효과를 갖는 요법의 양을 달성하기 위해 특정 빈도로 다중 용량의 항체 또는 이를 포함하는 약학적 조성물을 투여할 수 있다.
상기 약학적으로 유효량은 전형적으로 치료될 대상체의 체중, 그의 신체 상태, 치료될 상태의 광범위함, 및 치료될 대상체의 연령에 따라 좌우된다. 일반적으로, 본원에 개시된 항체는 용량당 약 10 ng/kg 체중 내지 약 100 mg/kg 체중 범위, 약 50 μg/kg 체중 내지 약 5 mg/kg 체중 범위, 약 100 μg/kg 체중 내지 약 10 mg/kg 체중 범위, 약 100 μg/kg 체중 내지 약 20 mg/kg 체중 범위, 0.5 mg/kg 체중 내지 약 20 mg/kg 체중 범위의 양으로 투여될 수 있으나, 이에 제한되는 것은 아니다. 또한, 항체는 적어도 약 100 μg/kg 체중, 적어도 약 250 μg/kg 체중, 적어도 약 750 μg/kg 체중, 적어도 약 3 mg/kg 체중, 적어도 약 5 mg/kg 체중, 또는 적어도 약 10 mg/kg 체중의 용량으로 투여될 수 있으나, 이에 제한되는 것은 아니다.
또한, 본 발명에 따른 약학적 조성물은 약 100 mg 내지 약 10,000 mg의 용량, 약 200 mg 내지 약 9,000 mg의 용량, 약 300 mg 내지 약 8,000 mg 용량, 약 400 mg 내지 7,000 mg 용량, 500 mg 내지 5,000 mg 용량으로 환자에게 정맥내로 또는 피하로 투여될 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 따른 약학적 조성물은 통상적으로 환자에게 다수회 투여된다. 예시적인 치료 요법은 2주마다 1회, 1개월 1회, 또는 3 내지 6개월마다 1회 투여를 수반한다. 예를 들어, 환자는 사이클로서 4주마다, 예를 들어 28일마다 1회 항체를 (예를 들어, 정맥내 제제로서) 제공받을 수 있다. 투여 빈도는 환자에서의 항체의 약동학적 프로파일에 따라 조정될 수 있다. 예를 들어, 항체의 반감기는 2주 투여 빈도를 필요로 할 수 있다. 일부 방법에서, 상이한 결합 특이성을 갖는 2종 이상의 항체가 동시에 투여될 수 있고, 이러한 경우에 투여되는 각각의 항체의 투여량은 제시된 범위 내에 속한다.
투여량 및 빈도는 환자에서의 항체의 반감기에 따라 달라진다. 일반적으로, 인간 항체가 가장 긴 반감기를 나타내고, 그 다음으로 인간화 항체, 키메라 항체, 및 비인간 항체이다. 투여량 및 투여 빈도는 치료가 예방적인지 또는 치료적인지에 따라 달라질 수 있다.
치료 요법의 지속기간은 치료될 질환, 환자의 연령 및 상태, 환자의 질환의 병기 및 유형, 환자가 치료에 어떻게 반응하는지 등에 좌우된다. 임상의는 요법의 효과를 면밀하게 관찰하고 필요에 따라 임의의 조정을 행할 수 있다. 작용제가 조합되어 사용되는 경우에, 2종 이상의 치료제는 동시에 또는 임의의 순서로 순차적으로 투여되고, 즉 본원에 개시된 항체는 제2 치료제를 투여하기 전에, 제2 치료제와 공동으로, 또는 제2 치료제의 투여에 후속하여 투여될 수 있다.
또한, 본 발명은 본원에 개시된 항-SARS-CoV-2 sdAb를 포함하는 항체 또는 이의 항원-결합 단편을 포함하는 코로나바이러스감염증-19 진단용 키트를 제공한다.
또한, 본 발명은 본원에 개시된 항-SARS-CoV-2 sdAb를 포함하는 항체 또는 이의 항원-결합 단편을 개체 샘플에 접촉하는 단계를 포함하는, 코로나바이러스감염증-19 진단 방법을 제공한다.
아울러, 본 발명은 코로나바이러스감염증-19 진단에 사용하기 위한 본원에 개시된 항-SARS-CoV-2 sdAb를 포함하는 항체 또는 이의 항원-결합 단편의 용도를 제공한다.
본 발명에서, 상기 항-SARS-CoV-2 sdAb를 포함하는 항체 또는 이의 항원-결합 단편에 대한 내용은 전술한 바와 동일하므로, 구체적은 설명은 상기 내용을 원용하고, 이하에서는 진단용 키트의 특유한 구성에 대해서만 설명하도록 한다.
본원에 따른 진단용 키트는 SARS-CoV-2 감염을 검출, 진단 또는 모니터링하는 시험관내 또는 생체내 방법, 및 현재 SARS-CoV-2에 감염된 환자로부터의 세포, 또는 과거 SARS-CoV-2 감염으로부터 회복된 환자로부터의 세포를 포함한 SARS-CoV-2 감염된 세포를 확인하기 위해 환자로부터 세포의 스크리닝에 이용할 수 있다. 일부 구현예에서, 치료를 위한 SARS-CoV-2에 감염된 개체를 확인하는 단계, 환자 또는 환자로부터 수득된 샘플을 본원에 개시된 항체와 접촉시키는 것을 포함하는 SARS-CoV-2 감염의 진행을 모니터링하는 단계, 및 샘플 내 SARS-CoV-2 항원에 대한 항체의 존재 또는 부재, 또는 회합 수준을 검출하는 단계를 포함한다. 또는, 환자 샘플 (예를 들어, 혈장 또는 혈액)에서 바이러스 수준을 검출 및 정량화하는데 사용될 수 있다. 상기 방법은 결합 수준을 대조군과 비교하는 단계를 추가로 포함할 수 있다. 본원의 교시와 상용성인 다른 진단 또는 테라그노시스 방법이 관련 기술분야에 널리 공지되어 있고, 전용 보고 시스템과 같은 상업적 물질을 사용하여 실시될 수 있다.
예시적인 상용성 검정 방법은 방사선면역검정, 효소 면역검정, 경쟁적-결합 검정, 형광 면역검정, 이뮤노블롯 검정, 웨스턴 블롯 분석, 유동 세포측정 검정, 및 ELISA 검정을 포함한다. 보다 일반적으로 생물학적 샘플 내의 바이러스의 검출은 임의의 관련 기술분야에 공지된 검정을 사용하여 달성될 수 있다. 상용성 생체내 테라그노시스 또는 진단은 관련 기술분야에서 인식되는 영상화 또는 모니터링 기술 예컨대 자기 공명 영상화(MRI), 컴퓨터 단층촬영 (예를 들어 CAT 스캔), 양전자 단층촬영 (예를 들어, PET 스캔) 방사선촬영, 초음파 등을 포함할 수 있다. 관련 기술분야의 통상의 기술자는 장애의 병인, 병리학적 징후, 또는 임상 진행에 기초하여 적절한 검출, 모니터링 또는 영상화 기술 (종종 상업적으로 입수가능한 공급원을 포함함)을 용이하게 인식하고 구현할 수 있다.
또한, 본 발명에 따른 진단용 키트는 본원에 기재된 항체, 및 환자로부터의 샘플에 대한 본원에 기재된 항체의 효과를 검출하기 위한 시약을 포함할 수 있다.
이하, 본 발명을 실시예에 의해 상세히 설명한다.
단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
<실시예 1> 알파카 면역 및 SARS-CoV-2에 대한 항체 형성 확인
<1-1> 알파카 면역
면역 항원인 SARS-CoV-2(Severe acute respiratory syndrome coronavirus 2, NCBI accession number: QHD43416.1)의 스파이크 당단백질(spike glycoprotein) 내 수용체 결합 도메인(receptor binding domain; RBD) 단백질(스파이크 당단백질의 223개 아미노산 서열 부위)을 ISA51 면역보조제와 혼합하여 2마리의 알파카에 [표 5]에 나타낸 바와 같이 2회에 걸쳐 근육주사를 통해 각각 면역하였다.
면역 항원 면역 보조제 면역 방법 채혈
1 500 ㎍/알파카 ISA51 근육주사 10 ㎖/알파카
14 250 ㎍/알파카 ISA51 근육주사 10 ㎖/알파카
21 10 ㎖/알파카
<1-2> ELISA를 이용한 면역 반응 분석
2차 면역 후, 7일째 알파카로부터 10 ㎖씩 채혈하여 ELISA를 통해 면역 반응을 분석하였다.
구체적으로, 1 ㎍/㎖의 농도로 면역 항원을 마이크로플레이트에 분주하여 4℃에서 하룻밤 동안 코팅하였다. 마이크로플레이트는 PBST로 3회 세척 후, 5% 스킴밀크(skim milk)를 처리하여 상온에서 2시간 동안 블로킹(blocking)하였다. 이후 PBST로 3회 세척 후, 면역 전(1일), 1차 면역 후 14일 뒤, 2차 면역 후 7일 뒤에 확보한 혈청 시료를 단계별 희석 농도로 처리하였다. 이후 PBST로 5회 세척 후, goat anti-Llama IgG HRP 항체를 이용하여 면역 항원에 결합된 항체를 검출하였다.
그 결과, 도 1에 나타낸 바와 같이, 시험 결과 1차 면역 후 14일 뒤 채혈한 혈청 시료와 이후 2차 면역 후 7일 뒤 채혈한 혈청 시료에서 면역 항원에 대한 항체가 생성되는 것을 확인하였으며, 2차 면역 후 항체 형성이 추가로 증가함을 확인하였다.
<실시예 2> 나노바디 라이브러리 제작 및 평가
상기 <실시예 1>에서 확인한 면역 항원에 결합하는 단일 도메인 항체를 코딩하는 유전자 증폭을 위해 혈액으로부터 피콜(Ficoll)을 이용하여 말초혈액 단핵세포(PBMC)를 분리하였다. 분리된 PBMC로부터 추출한 총 RNA로부터 특이 프라이머(specific primer)를 이용하여 단일 도메인 항체를 코딩하는 유전자 단편을 증폭하고, pComb3x vector에 클로닝하였다. 하기 [표 6]에 나타낸 바와 같이 제작된 면역 라이브러리의 크기는 2.60×108이었으며, 삽입율(insert)과 다양성(diversity)은 100%임을 확인하였다.
total library size(cfu) Insert Diversity
pComb3x-SARS-CoV-2 library 2.60×108 20/20(100%) 20/20(100%)
<실시예 3> 나노바디 라이브러리 증폭
상기 <실시예 2>에서 제작한 면역 라이브러리를 XL1-blue 균주에 형질전환(transformation)하였다. 형질전환한 XL1-blue 균주는 2% 글루코스, 100 ㎍/㎖ 암피실린을 함유한 10 ㎖의 2x YT 배지에 첨가하여 37℃ 진탕교반기에서 배양하였다. OD600에서 흡광도가 0.5가 될 때까지 배양하고 M13K07 phage(Invitrogen)를 1×1011 pfu/㎖이 되도록 첨가하였다. 이후 37℃에서 30분간 정치배양 후 37℃ 진탕교반기에서 200 rpm으로 30분 추가 배양하였다. 배양액은 상온, 4000 rpm에서 15분간 원심분리하여 상등액을 제거하였다. 이후 100 ㎍/㎖ 암피실린, 50 ㎍/㎖ 카나마이신을 함유한 2x YT 배지 10 ㎖를 첨가하여 배양액의 펠렛을 재부유하고 30℃ 진탕배양기에서 250 rpm으로 하룻밤 동안 배양하였다. 이후 4℃, 4000 rpm에서 30분간 원심분리하였다. 상등액은 PEG 침전법을 이용하여 침전하였고 4℃, 12,000 rpm에서 30분간 원심분리하였다. 펠렛은 PBS로 재부유하였으며 4℃, 13,000 rpm에서 5분간 원심분리 하여 상등액을 새로운 튜브에 옮겨 사용하기 전까지 4℃에서 보관하였다.
<실시예 4> 바이오패닝(bio-panning)
면역 항원에 특이적인 단일 도메인 항체를 선별하기 위해 마이크로플레이트에 1 ~ 10 ㎍/㎖의 농도로 면역 항원을 분주하여 4℃에서 하룻밤 동안 코팅하였다. 단일 도메인 항체를 선별하기 위한 실험에 사용될 라이브러리(상기 <실시예 3>의 라이브러리)는 96-웰 마이크로플레이트에 분주하여 상온에서 30분간 반응하였다. 이후 새로운 웰에 라이브러리를 옮기고 상온에서 30분간 반응하는 작업을 4회 반복하여 라이브러리의 비특이적 결합율을 감소시켰다. 라이브러리는 1.7 ㎖ 튜브에 옮기고 사용하기 전까지 4℃에서 보관하였다. 면역 항원이 코팅된 마이크로플레이트는 PBST로 5회 세척한뒤 5% 스킴 밀크를 첨가하여 상온에서 2시간 동안 블로킹하였다. 이후 PBST로 5회 세척한 뒤 비특이적 결합률이 감소된 라이브러리를 바인딩 용액(2.5% 스킴 밀크, 계면활성제 포함 용액)과 함께 5×1012 virions/well으로 분주하여 상온에서 30분간 반응하였다. 이후 세척 용액(계면활성제 포함 용액)으로 10회 세척 후 PBST로 3회 추가 세척하였다. 면역 항원에 특이적으로 결합된 단일 도메인 항체는 웰당 5 ㎍ 면역 항원을 첨가한 뒤 상온, 500 rpm으로 30분간 반응하여 선택적으로 용출시켰다. 용출된 파아지는 대수증식기의 XL-1 blue 세포에 감염시킨 뒤, 2x YT 한천 배지에 도말하였다. 두 번째 선별을 위한 패닝을 위해 위와 동일한 조건 하에서 반복하였다.
그 결과, 표 7에 나타낸 바와 같이, 1단계 패닝을 통해 확보한 선별된 파아지는 2단계 패닝을 거쳐 7.92배 증폭되는 것을 확인하였다.
Input
phage
(cfu/㎖)
Negative
phage
(cfu/㎖)
Positive
phage
(cfu/㎖)
Ratio
(Positive phage/
negative phage)
Ratio
(Output phage/
Input phage)
Enrichment ratio
(ratio/
1 round ratio)
1 round 1.52×1012 7.97×103 2.41×106 302.51 1.59×10-6 1.00
2 round 2.58×1012 2.50×103 3.25×107 12992.00 1.26×10-5 7.92
한천배지에 생성된 단일 파아지 클론은 각각 증폭하여 FACS를 이용하여 스크리닝하였다.
<실시예 5> SARS-CoV-2에 대한 단일 도메인 항체의 선별
Expi-CHO 세포에서 SARS-CoV-2의 스파이크 당단백질의 일시적 과발현을 유도하기 위해 SARS-CoV-2 스파이크 당단백질을 암호화하는 유전자를 pCMV6-GFP vector에 삽입하여 pCMV6-SARS-CoV-2 spike-GFP 플라스미드를 구축하였다. Expi-CHO 세포는 DPBS로 세척한 뒤 상온, 1200 rpm에서 3분간 원심분리하였다. 상등액을 제거하고 2% 스킴 밀크로 세포를 재부유하여 4℃에서 30분간 블로킹하였다. 세포는 상온, 1200 rpm에서 3분간 원심분리하여 상등액을 제거한 뒤 DPBS로 2회 세척하였고, 96 웰 마이크로플레이트에 3×105 cells/100 ㎕/well이 되도록 분주하였다. 각 웰에 단일클론 파아지를 첨가하여 4℃에서 1시간 동안 반응한 뒤 DPBS로 2회 세척하였다. 세포에 M13 major coat protein Alexa Flour 647(Santacruz)를 분주하고 빛을 차단한 채로 4℃에서 30분간 반응하였다. 세포는 DPBS로 2회 세척 후 DPBS로 재부유하여 Accuri C6(BD) 장비를 이용하여 FACS 분석하였다. 도 2와 같이 FACS 시스템을 이용하여 스크리닝된 클론은 염기서열분석을 통해 서로 다른 서열을 가지는 23개의 클론을 선별하였다. 상기 선별한 클론의 염기서열은 하기 [표 8] 및 [표 9]에 나타내었다.
단일 도메인 항체 클론 단일 도메인 항체 서열 서열번호
Anti-SARS-CoV-2_Nb_#1 QVQLVESGGGLVQPGGSLRLSCAASGSIFSINAMGWYRQAPGKQRELVAHITGGGSTNYADSVKGRFTISRDNVKNTVYLQMNSLKPEDTAVYYCNAVLVQFKSLETLERDHVAYDYWGRGTQVTVSS 1
Anti-SARS-CoV-2_Nb_#2 QVQLVESGGGLVQPGGSLRLSCAASGFTLDYYAIGWFRQAPGKEREGVSCISSSDGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCATGPLTYYSGSYYAQCTTDFGSWGQGTLVTVSS 2
Anti-SARS-CoV-2_Nb_#3 QLQLVESGGGLVQPGGSLRLSCAASGFTFDSYAIGWFRQAPGKEREGISCISGRDGSTHYSDSVKGRFTITRDNTKNTVYLQMNSLKPEDTADYHCAADRITAVQAMCRMTWGYDVWGQGTLVTVSS 3
Anti-SARS-CoV-2_Nb_#4 QVQLVESGGGLVQAGGSLRLSCAASIRPFDAFSNYNLGWFRQAPGKEREFVATISTRGTITYANSAKGRFTISRNNANNEVDLQMSTLKPEDTAIYYCYAAGVTVETSGDYWGQGTQVTVSS 4
Anti-SARS-CoV-2_Nb_#5 QVQLVESGGGLVQPGGSLRLSCAASGFTLDYYAIGWFRQAPGKEREGVSCISSSDGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCATRPLTYYSGSYYSGCPKRGMDYWGKGTQVTVSS 5
Anti-SARS-CoV-2_Nb_#6 QLQLVESGGGLVQPGGSLRLSCAASGSLGSINFMAWYRQAPGKQRELVASITTDVNTYYGPSVRGRFTISRDGAKNTMYLQMNSLKPEDTAVYYCNYRSIRRVAGGGSDYWGQGTQVTVSS 6
Anti-SARS-CoV-2_Nb_#7 QVQLVESGGGLVQAGGALRLSCAASGNNINVYDMGWYRQASGKEREFVATINWSGRATSYANSVKGRFTISRDNAKNTMYLEMNSLKPEDTAIYYCNAIIATMVDHVGYGMDYWGNGTQVTVSS 7
Anti-SARS-CoV-2_Nb_#8 QLQLVESGGGLVQSGGSLRLSCATSGFTLDYYAIGWFRQAPGKEREGILCISNSGGSTKYADSVKARFTVSRDNAKNTVYLQMNDLKPEDTAVYYCAADAGNFFCDYQNPTLYDYWGQGIQVTVSS 8
Anti-SARS-CoV-2_Nb_#9 QVQLVESGGGLVQPGGSLRLSCAASGFTLDYYAIGWFRQAPGKEREGVSCISSSDGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAMGPMTAYGSSWYFPYEYDYWGQGTLVTVSS 9
Anti-SARS-CoV-2_Nb_#10 QLQLVNSGGDLVQPGGSLRLSCSASASTLDSYAIGWFRQAPGKEREGVSCISSGSSTKYADSVKGRFLISRDNAKNTVYLQMNNLKPEDTAVYYCAANRAAYYYCSHYVSEYEYWGQGTQVTVSS 10
Anti-SARS-CoV-2_Nb_#11 QLQLVESGGGLVQTGGSLRLSCTASGFTFSSVYMNWVRQAPGKGPEWISYISPHSTTTSYADFVKGRFAISRDNAKNTLYLQMNNLEPEDTALYYCAIGRSFTVTSVRGQGTLVTVSS 11
Anti-SARS-CoV-2_Nb_#12 QLQLVESGGGLVQPGESLRLSCAASGFTLVYYGVGWFRQAPGKEREVVSCISPSGRKTNYADSVKGRSSISRDDAKNTIYLHVNSLKPEDTAVYYCAAATPSYNFCSVYAHEYDVWGQGTQVTVSS 12
Anti-SARS-CoV-2_Nb_#13 QVQLLESGGGLVQAGGSLRLSCAASGRTFTIHHMAWYRQVPGKERRFVAVINWSDDSTSYTDSVKGRFTISRDSAKNTVFLQMNGLKPEDTAIYYCHALISGTAGTYDYWGQGTQVTVSS 13
Anti-SARS-CoV-2_Nb_#14 QLQLVESGGGLVQPGGSLRLSCAASGTIFSINRMGWYRQAPGKERELAATTTSSGTPLYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCHIHGGYSDYDALSWDEYDYWGQGTLVTVSS 14
Anti-SARS-CoV-2_Nb_#15 QVQLVESGGGLVQAGGSLRLSCAASTRTFSNFQMGWYRQTPEKGREFVAGDNWDDGRSHYAGSVKGRFTISRDNAKNTVYLQMNSLKPDDTAIYYCHAVDLVHGGDFWGQGTTVTVSS 15
Anti-SARS-CoV-2_Nb_#16 QVQLVESGGGLVQPGGSLRLSCTASGFSLGDHAIGWFRQAPGKEREGVSCISRSGYSTYYVDSVKDRFTVSRDNAKNTVYLRMNSLKPEDTADYYCAAGALNQCLPGDPPLSTSSWIDWGQGTLLTVSS 16
Anti-SARS-CoV-2_Nb_#17 QVQLEETGGRLVQPGGSLRLSCAASGRTFSSYVMGWFRQAPGKEREFVAAISWSGESLDYADSVKGRFTISRDNAKNTVYLQMNSLKPEESAVYYCAADRGYSLRHFIPTEYEYWGQGTLVTVSS 17
Anti-SARS-CoV-2_Nb_#18 QLQLAESGGGLVQPGGSLRLSCAVAGFTLDDYPIGWFRQAPGKEREGVSCISSVDGSKVYADSVKGRFTISRDNAKNMVYLQMNRLKPKDTAVYYCATDLFCGKGTVVAGTFIGAYDRYDTWGQGTLVTVSS 18
Anti-SARS-CoV-2_Nb_#19 QVQLVESGGGLVQPGGSLRLSCAASGFTLDYYAIGWFRQAPGKEREGVSCISSSGGSTNYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAALTGSYYYTSLHPHEYDYWGQGTLVTVSS 19
Anti-SARS-CoV-2_Nb_#20 QLQLVESGGGLVQPGGSLRLSCAVSGFTLGDYVIGWFRQAPGKERKGVSCMLSGGATDYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTGVYYCAAGGTWYSLTCPYDYDYWGQGTQVTVSS 20
Anti-SARS-CoV-2_Nb_#21 QLQLVESGGGLVQPGGSLRLSCGASGFTLDHYAIGWFRQAPGKEREGVSFISSGGAIRKYLDSVKGRFTISRDNAKNTVFLQMNSLKPEDTAVYYCAAGRFLGYSDLVNDYDYWGQGTQVTVSS 21
Anti-SARS-CoV-2_Nb_#22 QVQLVESGGGLVQPGGSLRLSCAASGFTLDYYAIGWFRQAPGKEREGVSCISSSDGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAAGPQTYYSGSYYIPRNPLQYDYWGQGTLVTVSS 22
Anti-SARS-CoV-2_Nb_#23 QLQLVEYVGGLAQHGGYLRLSCTASGFSLGDHAIAWFRQAPGKEREGVSCIIRSGYSTNYVDSVKDRFTVSRVNAKNTVYSQINSMNPEDPAVYYCAAGAVNQCLPGDPPQSMSSWFDWGQGTLVTVSS 23
단일 도메인 항체 클론 CDR1 서열
번호
CDR2 서열
번호
CDR3 서열
번호
Anti-SARS-CoV-2_Nb_#1 GSIFSINA 47 ITGGGST 64 NAVLVQFKSLETLERDHVAYDY 84
Anti-SARS-CoV-2_Nb_#2 GFTLDYYA 48 ISSSDGST 65 ATGPLTYYSGSYYAQCTTDFGS 85
Anti-SARS-CoV-2_Nb_#3 GFTFDSYA 49 ISGRDGST 66 AADRITAVQAMCRMTWGYDV 86
Anti-SARS-CoV-2_Nb_#4 IRPFDAFSNYN 50 ISTRGTI 67 YAAGVTVETSGDY 87
Anti-SARS-CoV-2_Nb_#5 GFTLDYYA 48 ISSSDGST 65 ATRPLTYYSGSYYSGCPKRGMDY 88
Anti-SARS-CoV-2_Nb_#6 GSLGSINF 51 ITTDVNT 68 NYRSIRRVAGGGSDY 89
Anti-SARS-CoV-2_Nb_#7 GNNINVYD 52 INWSGRAT 69 NAIIATMVDHVGYGMDY 90
Anti-SARS-CoV-2_Nb_#8 GFTLDYYA 48 ISNSGGST 70 AADAGNFFCDYQNPTLYDY 91
Anti-SARS-CoV-2_Nb_#9 GFTLDYYA 48 ISSSDGST 65 AMGPMTAYGSSWYFPYEYDY 92
Anti-SARS-CoV-2_Nb_#10 ASTLDSYA 53 ISSGSST 71 AANRAAYYYCSHYVSEYEY 93
Anti-SARS-CoV-2_Nb_#11 GFTFSSVY 54 ISYISPHSTTT 72 AIGRSFTVTSV 94
Anti-SARS-CoV-2_Nb_#12 GFTLVYYG 55 ISPSGRKT 73 AAATPSYNFCSVYAHEYDV 95
Anti-SARS-CoV-2_Nb_#13 GRTFTIHH 56 INWSDDST 74 HALISGTAGTYDY 96
Anti-SARS-CoV-2_Nb_#14 GTIFSINR 57 TTSSGTP 75 HIHGGYSDYDALSWDEYDY 97
Anti-SARS-CoV-2_Nb_#15 TRTFSNFQ 58 DNWDDGRS 76 HAVDLVHGGDF 98
Anti-SARS-CoV-2_Nb_#16 GFSLGDHA 59 ISRSGYST 77 AAGALNQCLPGDPPLSTSSWID 99
Anti-SARS-CoV-2_Nb_#17 GRTFSSYV 60 ISWSGESL 78 AADRGYSLRHFIPTEYEY 100
Anti-SARS-CoV-2_Nb_#18 GFTLDDYP 61 ISSVDGSK 79 ATDLFCGKGTVVAGTFIGAYDRYDT 101
Anti-SARS-CoV-2_Nb_#19 GFTLDYYA 48 ISSSGGST 80 AALTGSYYYTSLHPHEYDY 102
Anti-SARS-CoV-2_Nb_#20 GFTLGDYV 62 MLSGGAT 81 AAGGTWYSLTCPYDYDY 103
Anti-SARS-CoV-2_Nb_#21 GFTLDHYA 63 ISSGGAIR 82 AAGRFLGYSDLVNDYDY 104
Anti-SARS-CoV-2_Nb_#22 GFTLDYYA 48 ISSSDGST 65 AAGPQTYYSGSYYIPRNPLQYDY 105
Anti-SARS-CoV-2_Nb_#23 GFSLGDHA 59 IIRSGYST 83 AAGAVNQCLPGDPPQSMSSWFD 106
<실시예 6> 단일 도메인 항체의 생산 및 정제
상기 <실시예 5>에서 선별한 클론은 TGEX-Fc 발현 벡터에 클로닝하여 Human IgG Fc 단편이 융합된 단일 도메인 항체 클론을 제작하였다. 상기 Human IgG Fc 단편이 융합된 단일 도메인 항체 클론의 염기서열은 하기 [표 10]에 나타내었다. 그 다음, 상기 Human IgG Fc 단편이 융합된 단일 도메인 항체의 발현을 위해 생존률 95~99%의 Expi-CHO 세포를 계수하여 7×106 세포를 25 ㎖의 Expi-CHO expression medium (Gibco)에 첨가하였고, 8% CO2가 유지되는 37℃ 진탕 배양기에서 125 rpm으로 하룻밤 동안 배양하였다. 이후 80 ㎕의 ExpiFectamine™ CHO Reagent(Gibco, 100033021)와 920 ㎕의 OptiPRO™ medium 혼합액에 20 ㎍의 플라스미드 DNA와 1 ㎖의 OptiPRO™ medium 혼합액을 첨가하여 상온에서 5분간 반응한 뒤 배양된 세포에 첨가하였다. 세포는 8% CO2가 유지되는 진탕배양기에서 125 rpm으로 20시간 배양하였다. 이후 150 ㎕의 ExpiFectamineTM CHO enhancer(Gibco)와 6 ㎖의 ExpiCHO Feed(Gibco)를 넣고 5% CO2가 유지되는 32℃ 진탕배양기에서 125 rpm으로 5일간 배양하였다. 배양된 세포는 4℃에서 4000 rpm으로 30분간 원심분리하였고, 상등액을 0.2 ㎛ 실린지 필터를 이용하여 필터링하였다. 이후 HiTrap protein G HP column(GE Healthcare)에 상등액을 로딩하고, PBS로 세척한 뒤 IgG elution buffer(Thermo)를 이용하여 Human IgG Fc 단편이 융합된 단일 도메인 항체를 column으로 부터 분리하였다. 용리된 시료는 1M Tris-HCl(pH 9.0)을 첨가하여 중화한 뒤 사용하기 전까지 4℃에서 보관하였다.
단일 도메인 항체 클론 단일 도메인 항체 + Human IgG Fc 서열 서열번호
Anti-SARS-CoV-2_Nb_#1 QVQLVESGGGLVQPGGSLRLSCAASGSIFSINAMGWYRQAPGKQRELVAHITGGGSTNYADSVKGRFTISRDNVKNTVYLQMNSLKPEDTAVYYCNAVLVQFKSLETLERDHVAYDYWGRGTQVTVSSGPGGPEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 24
Anti-SARS-CoV-2_Nb_#2 QVQLVESGGGLVQPGGSLRLSCAASGFTLDYYAIGWFRQAPGKEREGVSCISSSDGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCATGPLTYYSGSYYAQCTTDFGSWGQGTLVTVSSGPGGPEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 25
Anti-SARS-CoV-2_Nb_#3 QLQLVESGGGLVQPGGSLRLSCAASGFTFDSYAIGWFRQAPGKEREGISCISGRDGSTHYSDSVKGRFTITRDNTKNTVYLQMNSLKPEDTADYHCAADRITAVQAMCRMTWGYDVWGQGTLVTVSSGPGGPEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 26
Anti-SARS-CoV-2_Nb_#4 QVQLVESGGGLVQAGGSLRLSCAASIRPFDAFSNYNLGWFRQAPGKEREFVATISTRGTITYANSAKGRFTISRNNANNEVDLQMSTLKPEDTAIYYCYAAGVTVETSGDYWGQGTQVTVSSGPGGPEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 27
Anti-SARS-CoV-2_Nb_#5 QVQLVESGGGLVQPGGSLRLSCAASGFTLDYYAIGWFRQAPGKEREGVSCISSSDGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCATRPLTYYSGSYYSGCPKRGMDYWGKGTQVTVSSGPGGPEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 28
Anti-SARS-CoV-2_Nb_#6 QLQLVESGGGLVQPGGSLRLSCAASGSLGSINFMAWYRQAPGKQRELVASITTDVNTYYGPSVRGRFTISRDGAKNTMYLQMNSLKPEDTAVYYCNYRSIRRVAGGGSDYWGQGTQVTVSSGPGGPEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 29
Anti-SARS-CoV-2_Nb_#7 QVQLVESGGGLVQAGGALRLSCAASGNNINVYDMGWYRQASGKEREFVATINWSGRATSYANSVKGRFTISRDNAKNTMYLEMNSLKPEDTAIYYCNAIIATMVDHVGYGMDYWGNGTQVTVSSGPGGPEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 30
Anti-SARS-CoV-2_Nb_#8 QLQLVESGGGLVQSGGSLRLSCATSGFTLDYYAIGWFRQAPGKEREGILCISNSGGSTKYADSVKARFTVSRDNAKNTVYLQMNDLKPEDTAVYYCAADAGNFFCDYQNPTLYDYWGQGIQVTVSSGPGGPEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 31
Anti-SARS-CoV-2_Nb_#9 QVQLVESGGGLVQPGGSLRLSCAASGFTLDYYAIGWFRQAPGKEREGVSCISSSDGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAMGPMTAYGSSWYFPYEYDYWGQGTLVTVSSGPGGPEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 32
Anti-SARS-CoV-2_Nb_#10 QLQLVNSGGDLVQPGGSLRLSCSASASTLDSYAIGWFRQAPGKEREGVSCISSGSSTKYADSVKGRFLISRDNAKNTVYLQMNNLKPEDTAVYYCAANRAAYYYCSHYVSEYEYWGQGTQVTVSSGPGGPEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 33
Anti-SARS-CoV-2_Nb_#11 QLQLVESGGGLVQTGGSLRLSCTASGFTFSSVYMNWVRQAPGKGPEWISYISPHSTTTSYADFVKGRFAISRDNAKNTLYLQMNNLEPEDTALYYCAIGRSFTVTSVRGQGTLVTVSSGPGGPEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 34
Anti-SARS-CoV-2_Nb_#12 QLQLVESGGGLVQPGESLRLSCAASGFTLVYYGVGWFRQAPGKEREVVSCISPSGRKTNYADSVKGRSSISRDDAKNTIYLHVNSLKPEDTAVYYCAAATPSYNFCSVYAHEYDVWGQGTQVTVSSGPGGPEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 35
Anti-SARS-CoV-2_Nb_#13 QVQLLESGGGLVQAGGSLRLSCAASGRTFTIHHMAWYRQVPGKERRFVAVINWSDDSTSYTDSVKGRFTISRDSAKNTVFLQMNGLKPEDTAIYYCHALISGTAGTYDYWGQGTQVTVSSGPGGPEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 36
Anti-SARS-CoV-2_Nb_#14 QLQLVESGGGLVQPGGSLRLSCAASGTIFSINRMGWYRQAPGKERELAATTTSSGTPLYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCHIHGGYSDYDALSWDEYDYWGQGTLVTVSSGPGGPEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 37
Anti-SARS-CoV-2_Nb_#15 QVQLVESGGGLVQAGGSLRLSCAASTRTFSNFQMGWYRQTPEKGREFVAGDNWDDGRSHYAGSVKGRFTISRDNAKNTVYLQMNSLKPDDTAIYYCHAVDLVHGGDFWGQGTTVTVSSGPGGPEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 38
Anti-SARS-CoV-2_Nb_#16 QVQLVESGGGLVQPGGSLRLSCTASGFSLGDHAIGWFRQAPGKEREGVSCISRSGYSTYYVDSVKDRFTVSRDNAKNTVYLRMNSLKPEDTADYYCAAGALNQCLPGDPPLSTSSWIDWGQGTLLTVSSGPGGPEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 39
Anti-SARS-CoV-2_Nb_#17 QVQLEETGGRLVQPGGSLRLSCAASGRTFSSYVMGWFRQAPGKEREFVAAISWSGESLDYADSVKGRFTISRDNAKNTVYLQMNSLKPEESAVYYCAADRGYSLRHFIPTEYEYWGQGTLVTVSSGPGGPEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 40
Anti-SARS-CoV-2_Nb_#18 QLQLAESGGGLVQPGGSLRLSCAVAGFTLDDYPIGWFRQAPGKEREGVSCISSVDGSKVYADSVKGRFTISRDNAKNMVYLQMNRLKPKDTAVYYCATDLFCGKGTVVAGTFIGAYDRYDTWGQGTLVTVSSGPGGPEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 41
Anti-SARS-CoV-2_Nb_#19 QVQLVESGGGLVQPGGSLRLSCAASGFTLDYYAIGWFRQAPGKEREGVSCISSSGGSTNYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAALTGSYYYTSLHPHEYDYWGQGTLVTVSSGPGGPEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 42
Anti-SARS-CoV-2_Nb_#20 QLQLVESGGGLVQPGGSLRLSCAVSGFTLGDYVIGWFRQAPGKERKGVSCMLSGGATDYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTGVYYCAAGGTWYSLTCPYDYDYWGQGTQVTVSSGPGGPEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 43
Anti-SARS-CoV-2_Nb_#21 QLQLVESGGGLVQPGGSLRLSCGASGFTLDHYAIGWFRQAPGKEREGVSFISSGGAIRKYLDSVKGRFTISRDNAKNTVFLQMNSLKPEDTAVYYCAAGRFLGYSDLVNDYDYWGQGTQVTVSSGPGGPEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 44
Anti-SARS-CoV-2_Nb_#22 QVQLVESGGGLVQPGGSLRLSCAASGFTLDYYAIGWFRQAPGKEREGVSCISSSDGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAAGPQTYYSGSYYIPRNPLQYDYWGQGTLVTVSSGPGGPEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 45
Anti-SARS-CoV-2_Nb_#23 QLQLVEYVGGLAQHGGYLRLSCTASGFSLGDHAIAWFRQAPGKEREGVSCIIRSGYSTNYVDSVKDRFTVSRVNAKNTVYSQINSMNPEDPAVYYCAAGAVNQCLPGDPPQSMSSWFDWGQGTLVTVSSGPGGPEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 46
<실시예 7> SARS-CoV-2 면역항원에 대한 단일 도메인 항체의 결합력 검증
상기 <실시예 6>에서 정제한 단일 도메인 항체 클론들과 면역 항원의 결합을 확인하기 위해 마이크로플레이트에 1 ㎍/㎖의 농도로 면역 항원을 분주하여 4℃에서 하룻밤 동안 코팅하였다. 이후 PBST로 3회 세척하고 2% 스킴 밀크로 상온에서 2시간 동안 블로킹하였다. 이후 PBST로 3회 세척하고 정제된 단일클론 항체를 농도별로 처리하여 상온에서 1시간 동안 반응하였다. 상기 플레이트는 PBST로 3회 세척하고 Anti-Human IgG HRP(Jackson ImmunoResearch)를 처리하고 상온에서 1시간 동안 반응하였다. 이후 PBST로 3회 세척 후 TMB substrate(Biolegend)를 첨가하고 상온에서 10분 동안 반응 후 450 nm에서 검출하였다. 양성 대조군(PC)은 SARS-CoV-2 spike MAb (Sinobiological)를 1차 항체로 사용하였고, 음성 대조군(NC)은 항체 처리 없이 스킴밀크를 처리하였다.
그 결과, 도 3a 내지 도 3f에 나타낸 바와 같이, 선별한 23개의 단일 도메인 항체 클론과 면역 항원이 결합함을 확인하였다.
<실시예 8> 세포 표면 SARS-CoV-2 스파이크 당단백질에 대한 단일 도메인 항체의 결합력 검증
상기 <실시예 6>에서 정제한 단일 도메인 항체 클론들과 SARS-CoV-2 스파이크 당단백질의 결합을 FACS를 통해 확인하였다. 상기 <실시예 5>에서 SARS-CoV-2 스파이크 당단백질을 과발현한 Expi-CHO 세포는 DPBS로 세척한 뒤 상온, 1200 rpm에서 3분간 원심분리하였다. 상등액을 제거하고 2% 스킴 밀크로 세포를 재부유하여 4℃에서 30분간 블로킹하였다. 세포는 상온, 1200 rpm에서 3분간 원심분리하여 상등액을 제거한 뒤 DPBS로 2회 세척하였다. 이후 각 웰에 3×105 cells/100 ㎕/well로 세포를 분주하였고, 단일 도메인 항체를 농도별로 처리하였다. 세포는 4℃에서 1시간 동안 반응한 뒤, DPBS로 2회 세척하였다. 이후, Anti-human IgG Fc APC (Biolegend)항체를 처리하고 빛을 차단한 채로 4℃에서 30분간 반응하였다. 세포는 DPBS로 2회 세척 후 100 ul의 DPBS로 재부유하여 Accuri C6 (BD) 장비를 이용하여 FACS 분석하였다.
그 결과, 도 4a 및 도 4b에 나타낸 바와 같이, Anti-SARS-CoV-2_Nb_#1, #16 및 #23을 제외한 20개의 단일 도메인 항체 클론이 SARS-CoV-2 스파크 당단백질 발현 세포와 강한 결합을 나타냄을 확인하였다.
<실시예 9> SARS-CoV-2 면역 항원에 대한 단일 도메인 항체의 친화도 측정
Octet RED 96e (ForteBio) 장비를 이용하여 SARS-CoV-2 면역 항원에 대한 상기 <실시예 6>에서 정제한 단일 도메인 항체 클론들의 친화도(KD)를 측정하였다.
구체적으로, anti-human Fc가 코팅된 바이오센서팁(Fortebio)을 5 ㎍/㎖의 단일 도메인 항체가 분주된 96-웰 마이크로플레이트(Greiner)에서 1.5 nm 수준으로 포화시켰다. 면역 항원 단백질은 10 ~ 400 nM로 1X kinetic buffer(ForteBio)를 이용하여 2배수로 단계별 희석하였으며 30℃, 1000 rpm으로 교반하면서 반응하였다. 시료의 결합과 해리 반응은 각각 200, 400초 동안 분석하였다. 결과 데이터는 1:1 상호작용 모델 (Global fitting) 방법을 이용하여 분석하였다. 분석 결과는 [표 11]에 나타내었다.
단일 도메인 항체 항원 친화력(M)
Anti-SARS-CoV-2_Nb_#1 ND
Anti-SARS-CoV-2_Nb_#2 4.41E-08
Anti-SARS-CoV-2_Nb_#3 1.03E-07
Anti-SARS-CoV-2_Nb_#4 1.60E-07
Anti-SARS-CoV-2_Nb_#5 1.07E-07
Anti-SARS-CoV-2_Nb_#6 6.50E-08
Anti-SARS-CoV-2_Nb_#7 4.50E-08
Anti-SARS-CoV-2_Nb_#8 1.00E-07
Anti-SARS-CoV-2_Nb_#9 9.00E-09
Anti-SARS-CoV-2_Nb_#10 1.00E-07
Anti-SARS-CoV-2_Nb_#11 6.06E-08
Anti-SARS-CoV-2_Nb_#12 5.00E-08
Anti-SARS-CoV-2_Nb_#13 5.58E-09
Anti-SARS-CoV-2_Nb_#14 1.29E-08
Anti-SARS-CoV-2_Nb_#15 5.33E-08
Anti-SARS-CoV-2_Nb_#16 ND
Anti-SARS-CoV-2_Nb_#17 7.03E-08
Anti-SARS-CoV-2_Nb_#18 1.33E-07
Anti-SARS-CoV-2_Nb_#19 9.08E-08
Anti-SARS-CoV-2_Nb_#20 1.14E-07
Anti-SARS-CoV-2_Nb_#21 2.13E-07
Anti-SARS-CoV-2_Nb_#22 5.50E-08
Anti-SARS-CoV-2_Nb_#23 ND
그 결과, 표 11에 나타낸 바와 같이, Anti-SARS-CoV-2_Nb_#1, #16 및 #23을 제외한 20개의 단일 도메인 항체 클론에서 면역 항원과의 친화력이 우수함을 확인하였다.
<실시예 10> SARS-CoV-2에 대한 단일 도메인 항체의 in vitro 중화능 확인
SARS-CoV-2에 대한 상기 <실시예 6>에서 정제한 단일 도메인 항체 클론들의 in vitro 중화능을 확인하였다.
구체적으로, Vero E6 세포를 마이크로플레이트에 2×104 cell/well 분주하여 하룻밤 동안 배양하였다. 이후 단계별로 희석한 상기 <실시예 6>에서 정제한 단일 도메인 항체 클론들 각각과 SARS-CoV-2 바이러스(400 TCID50/well)를 혼합하고 37℃에서 1시간 동안 반응하였다. 혼합액을 세포에 처리하여 5일 동안 관찰하면서 CPE를 확인하였으며 중화능을 분석하였다. 분석 결과는 [표 12] 및 도 5에 나타내었다.
단일 도메인 항체 클론 중화능 (nM)
Anti-SARS-CoV-2_Nb_#1 ND
Anti-SARS-CoV-2_Nb_#2 < 0.3
Anti-SARS-CoV-2_Nb_#3 113.6
Anti-SARS-CoV-2_Nb_#4 187.6
Anti-SARS-CoV-2_Nb_#5 1.2
Anti-SARS-CoV-2_Nb_#6 20.8
Anti-SARS-CoV-2_Nb_#7 26.4
Anti-SARS-CoV-2_Nb_#8 42.8
Anti-SARS-CoV-2_Nb_#9 2.4
Anti-SARS-CoV-2_Nb_#10 62.4
Anti-SARS-CoV-2_Nb_#11 62.8
Anti-SARS-CoV-2_Nb_#12 233.9
Anti-SARS-CoV-2_Nb_#13 2.6
Anti-SARS-CoV-2_Nb_#14 4.4
Anti-SARS-CoV-2_Nb_#15 161.5
Anti-SARS-CoV-2_Nb_#16 ND
Anti-SARS-CoV-2_Nb_#17 9.7
Anti-SARS-CoV-2_Nb_#18 33.1
Anti-SARS-CoV-2_Nb_#19 24.1
Anti-SARS-CoV-2_Nb_#20 78.8
Anti-SARS-CoV-2_Nb_#21 315.4
Anti-SARS-CoV-2_Nb_#22 0.8
Anti-SARS-CoV-2_Nb_#23 ND
그 결과, 표 12 및 도 5에 나타낸 바와 같이, Anti-SARS-CoV-2_Nb_#1, #16 및 #23을 제외한 20개의 단일 도메인 항체 클론에서 SARS-CoV-2 바이러스에 대한 중화능이 우수함을 확인하였다. 특히 Anti-SARS-CoV-2_Nb_#2 클론은 0.3 nM 항체 농도에서 바이러스를 100% 중화하여 강력한 중화능을 보였기 때문에 중화능 값이 0.3 nM 보다 더욱 낮아질 것으로 예측할 수 있다.
<실시예 11> 세포표면 SARS-CoV-2 스파이크 당단백질에 대한 Anti-SARS-CoV-2_Nb_#2의 결합능 측정
상기 <실시예 10>에서 중화능이 우수한 클론들 중 1종으로 상기 <실시예 6>에서 정제한 단일 도메인 항체 클론 Anti-SARS-CoV-2_Nb_#2의 세포표면 SARS-CoV-2 스파이크 당단백질에 대한 결합능을 재차 확인하였다.
구체적으로, 상기 <실시예 5>에서 SARS-CoV-2 스파이크 당단백질을 과발현한 Expi-CHO 세포를 DPBS로 세척한 뒤 상온, 1200 rpm에서 3분간 원심분리 하였다. 상등액을 제거하고 2% 스킴 밀크로 세포를 재부유하여 4℃에서 30분간 블로킹하였다. 세포는 상온, 1200 rpm에서 3분간 원심분리 하여 상등액을 제거한 뒤 DPBS로 2회 세척하였다. 이후 각 웰에 3×105 cells/100 ㎕로 세포를 분주하였고, 상기 <실시예 6>에서 정제한 단일 도메인 항체 클론 Anti-SARS-CoV-2_Nb_#2를 농도별 (80~0.16 nM)로 처리하였다. 세포는 4℃에서 1시간 동안 반응한 뒤, DPBS로 2회 세척하였다. 이후, Anti-human IgG Fc APC (Biolegend) 항체를 처리하고 빛을 차단한 채로 4℃에서 30분간 반응하였다. 세포는 DPBS로 2회 세척 후 100 ul의 DPBS로 재부유하여 Accuri C6 (BD) 장비를 이용하여 FACS 분석하였다. 이때 대조군으로 Anti-SRAS-CoV2 spike 항체(40150-R007, Sinobiology)를 이용하였다. 분석 결과는 MFI (Mean fluorescent intensity)값을 이용하여 세포 결합 정도를 EC50로 표기하였다.
그 결과, 표 13 및 도 6에서 나타낸 바와 같이, 대조군으로 사용된 상업용 항체는 118.10 nM의 EC50값을 나타낸 반면, Anti-SARS-CoV-2_Nb_#2는 7.07 nM의 EC50 값을 나타내는 것을 확인하였다.
Anti-SARS-CoV-2_Nb_#2 Anti-SARS-CoV-2 spike mAb
EC50 value (nM) 7.07 118.10
<실시예 12> SARS-CoV-2 감염된 VeroE6 세포에 대한 Anti-SARS-CoV-2_Nb_#2의 바이러스 결합 확인
상기 <실시예 10>에서 중화능이 우수한 클론들 중 1종으로 상기 <실시예 6>에서 정제한 단일 도메인 항체 클론 Anti-SARS-CoV-2_Nb_#2와 SARS-CoV-2 바이러스의 결합을 IFA(Immunofluorescence assay) 실험으로 확인하였다.
구체적으로, 챔버 슬라이드에 monolayer로 배양한 Vero E6 세포를 준비하였다. 0.01 TCID50/cell의 MOI(multiplicity of infection)가 되도록 바이러스를 접종한 뒤 24시간 후 PBS로 세척하고 10% 포르말린 용액으로 10분간 고정하였다. 고정 후 포르말린을 제거하고 DPBS로 2회 세척하였다.
세포 고정이 완료된 챔버 슬라이드를 2% 스킴 밀크로 상온에서 30분간 블로킹한 뒤, DPBS로 2회 세척하였다. 그 다음, 상기 <실시예 6>에서 정제한 단일 도메인 항체 클론 Anti-SARS-CoV-2_Nb_#2를 처리하고 상온에서 1시간 동안 반응한 뒤 DPBS로 2회 세척한 후, Goat anti-Llama IgG (BETHYL) 항체를 상온에서 1시간 동안 반응한 뒤 DPBS로 2회 세척하였다. 다음 단계로 Donkey anti-Goat IgG Alexa Fluor 594 (Thermo) 항체를 처리하고 빛을 차단한 채로 4℃에서 30분간 반응하였다. 마지막으로 DPBS 2회 세척 후 DAPI 염색을 진행하였으며, 현광현미경 (Eclipse Ti2-U, Nikon)을 이용하여 형광의 세기를 관찰하였다.
그 결과, 도 7에서 나타낸 바와 같이, 대조군으로 사용된 인간 혈청은 SARS-CoV-2 바이러스가 감염된 VeroE6 세포에 결합을 하지 못하는 반면, Anti-SARS-CoV-2_Nb_#2는 SARS-CoV-2 바이러스가 감염된 VeroE6 세포에만 결합하는 것을 확인하였다.
<실시예 13> SARS-CoV-2 변이 항원들에 대한 Anti-SARS-CoV-2_Nb_#2의 친화도 측정
상기 <실시예 10>에서 중화능이 우수한 클론들 중 1종으로 상기 <실시예 6>에서 정제한 단일 도메인 항체 클론 Anti-SARS-CoV-2_Nb_#2와 SARS-CoV-2 바이러스 변이 항원과의 친화도(KD)를 Octet RED 96e(ForteBio) 장비를 이용하여 측정하였다.
구체적으로, 하기 [표 14]에 나타낸 SARS-CoV-2 바이러스 변이 항원들 2 ㎍/㎖가 분주된 96-웰 마이크로플레이트(Greiner)에서 Ni-NTA 바이오센서팁(Fortebio)을 2.0 nm 수준으로 포화시켰다. 상기 <실시예 6>에서 정제한 단일 도메인 항체 클론 Anti-SARS-CoV-2_Nb_#2는 0.78~25 nM로 1X kinetic buffer(ForteBio)를 이용하여 2배수로 단계별 희석하였으며, 30℃, 1000 rpm 조건에서 항원이 포화된 Ni-NTA 바이오센서팁과 반응하였다. 시료의 결합과 해리 반응을 각각 200, 800초 동안 분석하였다. 결과 데이터는 1:1 상호작용 모델 (Global fitting) 방법을 이용하여 분석하였다.
Antigen Source
SARS-CoV-2
Spike S1-His
Wild type Sinobiological, 40591-V08H
HV69-70 del, Y144del, N501Y, A570D, D614G, P681H (U.K variant) Sinobiological, 40591-V08H12
K417N, E484K, N501Y, D614G
(South Africa variant)
Sinobiological, 40591-V08H10
HV67-70 del, Y453F, D614G
(Denmark variant)
Sinobiological, 40591-V08H8
SARS-CoV-2
Spike RBD-His
Wild type Sinobiological, 40592-V08B
V341I Sinobiological, 40592-V08H11
A435S Sinobiological, 40592-V08H4
L452R Sinobiological, 40592-V08H28
K458Q Sinobiological, 40592-V08H69
G476S Sinobiological, 40592-V08H8
V483A Sinobiological, 40592-V08H
N501Y Sinobiological, 40592-V08H82
그 결과, 표 15에서 나타낸 바와 같이, Anti-SARS-CoV-2_Nb_#2는 SARS-CoV-2 바이러스 변이 항원에 대해 nM 이하 수준의 우수한 결합력을 갖는 것으로 확인되었다.
Antigen Anti-SARS-CoV-2_Nb_#2
KD (M) kon (1/Ms) koff (1/s)
SARS-CoV-2
Spike S1-His
Wild type 3.60E-10 3.10E+05 1.12E-04
HV69-70 del, Y144del, N501Y, A570D, D614G, P681H (U.K variant) 3.15E-10 1.63E+05 5.14E-05
K417N, E484K, N501Y, D614G
(South Africa variant)
8.18E-09 3.18E+05 2.60E-03
HV67-70 del, Y453F, D614G
(Denmark variant)
9.98E-10 2.04E+05 2.04E-04
SARS-CoV-2
Spike RBD-His
Wild type 2.17E-10 1.50E+05 3.26E-05
V341I 3.10E-10 1.42E+05 4.40E-05
A435S 5.20E-10 1.30E+05 6.76E-05
L452R 9.75E-09 7.58E+04 7.40E-04
K458Q 3.12E-10 1.34E+05 4.19E-05
G476S 5.25E-10 1.31E+05 6.89E-05
V483A 6.03E-10 1.40E+05 8.45E-05
N501Y 2.51E-10 1.32E+05 3.30E-05
<실시예 14> SARS-CoV-2 변이 바이러스에 대한 Anti-SARS-CoV-2_Nb_#2의 in vitro 중화능 확인
상기 <실시예 10>에서 중화능이 우수한 클론들 중 1종으로 상기 <실시예 6>에서 정제한 단일 도메인 항체 클론 Anti-SARS-CoV-2_Nb_#2의 SARS-CoV-2 변이 바이러스에 대한 in vitro 중화능을 확인하였다.
구체적으로, SARS-CoV-2 변이 바이러스로 우한 S type, 영국 GR, 남아공 GH, V clade, GR clade, G clade 및 GH clade에 대해 상기 <실시예 6>에서 정제한 단일 도메인 항체 클론 Anti-SARS-CoV-2_Nb_#2의 in vitro 중화능을 상기 <실시예 10>에 기재된 방법과 동일한 방법으로 확인하였다.
그 결과, 표 16에서 나타낸 바와 같이, Anti-SARS-CoV-2_Nb_#2는 SARS-CoV-2 변이 바이러스에 대해서도 nM 이하 수준의 우수한 중화능을 갖는 것으로 확인되었다.
No Strain No. Type SN test result (nM)
1 Original 우한 S type <0.26
2 #81 영국 GR (B.1.1.7) <0.26
3 #82 남아공 GH (B.1.351) 8.25
4 #43342 V clade 0.52
5 #43343 GR clade <0.26
6 #43344 G clade 65.97
7 #43345 GH clade <0.26
<실시예 15> Anti-SARS-CoV-2_Nb_#2의 비임상 시험
상기 <실시예 10>에서 중화능이 우수한 클론들 중 1종으로 상기 <실시예 6>에 따라 정제한 단일 도메인 항체 클론 Anti-SARS-CoV-2_Nb_#2의 비임상 시험을 진행하였다.
<15-1> 동물 모델에 SARS-CoV-2 바이러스 및 Anti-SARS-CoV-2_Nb_#2 투여
도 8의 모식도와 같이 14주령 햄스터에 105.5TCID50의 SARS-CoV-2 바이러스를 감염시킨 후 5일간 치료제로 상기 <실시예 6>에서 정제한 단일 도메인 항체 클론 Anti-SARS-CoV-2_Nb_#2를 저용량 투여군은 0.002 mg/dose로, 고용량 투여군은 0.02 mg/dose로 복강 내 투여(IP injection)하였다. 시험물질, 바이러스, 실험군에 대한 정보를 [표 17]에 나타내었다.
항목 상세항목 내용
시험물질 실험종류 치료제
물질유형 신규
투여량 (치료제 고용량 투여군) Anti-SARS-CoV-2_Nb_#2: 0.02mg,
(치료제 저용량 투여군) Anti-SARS-CoV-2_Nb_#2: 0.002mg
투여경로 IP
투여횟수 5
바이러스 바이러스 균주 NCCP 43326
투여량 1×105.5 PFU
투여경로 IN
투여횟수 1
시험군 시험 동물 모델 Syrian hamster, SLC
바이러스 비투여군(N) 9 마리
바이러스 투여군 (V) 9 마리
바이러스+치료제 저용량 투여군 (TL) 9 마리
바이러스+치료제 고용량 투여군 (TH) 9 마리
또한, 시험이 진행되는 동안 각 시험군의 체중을 측정하였다.그 결과, 도 9에 나타낸 바와 같이, Anti-SARS-CoV-2_Nb_#2 투여군은 5 dpi까지 체중이 감소하다가 이후 체중이 회복되는 양상을 보였다.
<15-2> 바이러스 역가 측정
바이러스 감염 후 2일과 7일차에 동물모델을 안락사하고 폐 조직을 확보하였다. 확보된 조직은 유제하여 RNA를 추출하고 realtime-PCR과 TCID50 test을 통해 폐 조직내 바이러스의 역가를 비교하였다. 유전자 레벨에서의 역가 비교를 위하여 seegene사의 AllplexTM 2019-nCoV Assay kit를 사용하였다. TCID50 test를 위하여 웰당 2×104의 세포를 준비하고 폐 유제액을 10배씩 희석하여 각각의 희석액을 5 웰씩 접종하였다. 5일간 관찰하여 CPE를 확인하고 speraman-karber법을 사용하여 TCID50을 계산하였다.
그 결과, 도 10a 및 10b에서 나타낸 바와 같이, TCID50과 RT-PCR을 이용한 바이러스 역가 측정 시 Anti-SARS-CoV-2_Nb_#2 고용량(0.02mg) 투여군은 바이러스 접종군에 비해 7 dpi에서 유의미하게 바이러스 역가가 감소하는 것을 확인하였다.
<15-3> 육안적 병변(Gross lesion) 확인
바이러스 감염 후 7일차에 동물모델을 안락사하여 폐를 확보하고 육안으로 확인 가능한 병변을 비교하였다.
그 결과, 도 11에서 나타낸 바와 같이, Anti-SARS-CoV-2_Nb_#2 저용량 처리군의 경우 음성대조군 대비 경미한 폐병변(consolidation) 소견을 보이고, 고농도 처리군의 경우 음성대조군과 유사한 소견을 보이는 것을 확인하였다.
<15-4> 조직병리학적 분석
바이러스 감염 후 2일과 7일차에 동물모델을 안락사하고 폐 조직을 확보하였다. 확보된 폐 조직은 H&E(hematoxylin-eosin) 염색을 수행한 후 pathological scoring을 통해 폐 조직의 염증세포 침윤 정도, 부종 정도, 모세혈관 확장 정도를 확인하였다.
구체적으로, 확보된 폐 조직을 10% 포르말린으로 고정 후 파라핀 섹션을 만든 후 조직 내에 침투된 파라핀을 제거하는 과정으로 자일렌(Xylene)을 3분씩 3번 반응시키는 과정을 거치고, 100% 에탄올 용액에 두 번, 95, 90, 70% 에탄올 용액에 각각 3분씩 반응시켰으며, 70% 에탄올 과정이 끝나면 증류수로 3분 동안 세척하였다. 그 다음, 헤마톡실린(hematoxylin) 용액으로 7분간 반응시켜 핵을 염색하고, HCl 용액(70% 에탄올 800 ml + 1N 농도 HCl 20 ml; 0.1% HCl)으로 5초간 반응, 증류수로 8분간 세척, 암모니아수로 5초간 반응, 증류수로 5분간 세척, 95% 에탄올로 1분간 반응시켰다. 그런 뒤 에오신(eosin) 용액에 6분간 반응시켜 세포질을 염색하고 95% 에탄올 용액에 5초, 100% 에탄올 용액으로 3분씩 두 번 반응시켰다. 마지막으로 자일렌 용액에 3분간 반응시킨 후, 마운팅 용액을 한 방울 떨어트린 후 커버 슬라이드를 덮고 현미경으로 관찰하였다. 또한, pathological scoring을 통해 폐 조직의 염증세포 침윤 정도, 부종 정도, 모세혈관 확장 정도를 확인하였다.
그 결과, 도 12a 내지 도 12c, 및 도 13a 및 도 13b에 나타낸 바와 같이, 바이러스 접종군의 경우 혈관 및 기관지 주변으로 염증세포의 다발성 침윤 양상(2 dpi)에서 간질 조직 전반으로 다수의 염증 세포가 다발성 혹은 미만성으로 침윤되는 양상(7 dpi)으로 확산되는 진행성 간질성 폐렴 소견을 확인하였다. 반면, Anti-SARS-CoV-2_Nb_#2 저용량 및 고용량 처리군의 경우 바이러스 접종군에 비해 7 dpi에서 염증세포 침윤, 부종, 모세혈관 확장의 병변 감소를 확인하였다.
본 발명에서는 SARS-CoV-2 스파이크 당단백질(spike glycoprotein)의 수용체 결합 도메인(receptor binding domain; RBD)에 특이적으로 결합하는 단일 도메인 항체(single domain antibody)를 제작하였고, 이의 RBD에 대한 친화성 및 SARS-CoV-2 바이러스에 대한 in vitro 및 in vivo 중화능이 우수함을 확인하였으므로, 본 발명의 단일 도메인 항체를 포함하는 항체 또는 이의 항원-결합 단편은 COVID-19 예방 또는 치료, 또는 COVID-19 진단을 위해 유용하게 이용될 수 있다.

Claims (43)

  1. SARS-CoV-2(Severe acute respiratory syndrome coronavirus 2) 스파이크 당단백질(spike glycoprotein)의 RBD(receptor binding domain)에 특이적으로 결합하는 단일 도메인 항체(sdAb)를 포함하는 항체 또는 이의 항원-결합 단편으로서,
    상기 sdAb가 서열번호 47 내지 63 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR1; 서열번호 64 내지 83 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR2; 및 서열번호 84 내지 106 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR3을 포함하는, 항체 또는 이의 항원-결합 단편.
  2. 제 1항에 있어서, 상기 sdAb는 하기 중 어느 하나를 포함하는, 항체 또는 이의 항원-결합 단편:
    (1) 서열번호 48, 56, 57 및 60 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR1;
    서열번호 65, 74, 75 및 78 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR2; 및
    서열번호 85, 88, 92, 96, 97, 100 및 105 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR3;
    (2) 서열번호 48, 51, 52 및 61 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR1;
    서열번호 68 내지 70, 79 및 80 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR2; 및
    서열번호 89 내지 91, 101 및 102 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR3;
    (3) 서열번호 53, 54 및 62 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR1;
    서열번호 71, 72 및 81 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR2; 및
    서열번호 93, 94 및 103 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR3; 또는
    (4) 서열번호 49, 50, 55, 58 및 63 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR1;
    서열번호 66, 67, 73, 76 및 82 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR2; 및
    서열번호 86, 87, 95, 98 및 104 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR3.
  3. 제 2항에 있어서, 상기 sdAb는 하기 중 어느 하나를 포함하는, 항체 또는 이의 항원-결합 단편:
    (1) 서열번호 48로 표시되는 아미노산 서열로 이루어진 CDR1;
    서열번호 65으로 표시되는 아미노산 서열로 이루어진 CDR2; 및
    서열번호 85, 88, 92 및 105 중 어느 하나로 표시되는 아미노산 서열로 이루어진 CDR3;
    (2) 서열번호 56으로 표시되는 아미노산 서열로 이루어진 CDR1;
    서열번호 74로 표시되는 아미노산 서열로 이루어진 CDR2; 및
    서열번호 96로 표시되는 아미노산 서열로 이루어진 CDR3;
    (3) 서열번호 57로 표시되는 아미노산 서열로 이루어진 CDR1;
    서열번호 75로 표시되는 아미노산 서열로 이루어진 CDR2; 및
    서열번호 97로 표시되는 아미노산 서열로 이루어진 CDR3; 또는
    (4) 서열번호 60으로 표시되는 아미노산 서열로 이루어진 CDR1;
    서열번호 78로 표시되는 아미노산 서열로 이루어진 CDR2; 및
    서열번호 100으로 표시되는 아미노산 서열로 이루어진 CDR3.
  4. 제 3항에 있어서, 상기 sdAb는 하기를 포함하는 VHH 도메인을 포함하는, 항체 또는 이의 항원-결합 단편:
    (1) 서열번호 107 내지 121 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR1;
    (2) 서열번호 122 내지 137 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR2;
    (3) 서열번호 138 내지 157 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR3; 및
    (4) 서열번호 158 내지 166 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR4.
  5. 제 4항에 있어서, 상기 sdAb는 서열번호 2, 5, 9, 13, 14, 17 및 22 중 어느 하나로 표시되는 아미노산 서열을 포함하는, 항체 또는 이의 항원-결합 단편.
  6. 제 2항에 있어서, 상기 sdAb는 하기 중 어느 하나를 포함하는, 항체 또는 이의 항원-결합 단편:
    (1) 서열번호 51로 표시되는 아미노산 서열로 이루어진 CDR1;
    서열번호 68로 표시되는 아미노산 서열로 이루어진 CDR2; 및
    서열번호 89로 표시되는 아미노산 서열로 이루어진 CDR3;
    (2) 서열번호 52로 표시되는 아미노산 서열로 이루어진 CDR1;
    서열번호 69로 표시되는 아미노산 서열로 이루어진 CDR2; 및
    서열번호 90으로 표시되는 아미노산 서열로 이루어진 CDR3;
    (3) 서열번호 48로 표시되는 아미노산 서열로 이루어진 CDR1;
    서열번호 70으로 표시되는 아미노산 서열로 이루어진 CDR2; 및
    서열번호 91로 표시되는 아미노산 서열로 이루어진 CDR3;
    (4) 서열번호 61로 표시되는 아미노산 서열로 이루어진 CDR1;
    서열번호 79로 표시되는 아미노산 서열로 이루어진 CDR2; 및
    서열번호 101로 표시되는 아미노산 서열로 이루어진 CDR3; 또는
    (5) 서열번호 48으로 표시되는 아미노산 서열로 이루어진 CDR1;
    서열번호 80으로 표시되는 아미노산 서열로 이루어진 CDR2; 및
    서열번호 102로 표시되는 아미노산 서열로 이루어진 CDR3.
  7. 제 6항에 있어서, 상기 sdAb는 하기를 포함하는 VHH 도메인을 포함하는, 항체 또는 이의 항원-결합 단편:
    (1) 서열번호 107 내지 121 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR1;
    (2) 서열번호 122 내지 137 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR2;
    (3) 서열번호 138 내지 157 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR3; 및
    (4) 서열번호 158 내지 166 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR4.
  8. 제 7항에 있어서, 상기 sdAb는 서열번호 6 내지 8, 18 및 19 중 어느 하나로 표시되는 아미노산 서열을 포함하는, 항체 또는 이의 항원-결합 단편.
  9. 제 2항에 있어서, 상기 sdAb는 하기 중 어느 하나를 포함하는, 항체 또는 이의 항원-결합 단편:
    (1) 서열번호 53으로 표시되는 아미노산 서열로 이루어진 CDR1;
    서열번호 71로 표시되는 아미노산 서열로 이루어진 CDR2; 및
    서열번호 93으로 표시되는 아미노산 서열로 이루어진 CDR3;
    (2) 서열번호 54로 표시되는 아미노산 서열로 이루어진 CDR1;
    서열번호 72로로 표시되는 아미노산 서열로 이루어진 CDR2; 및
    서열번호 94로 표시되는 아미노산 서열로 이루어진 CDR3; 또는
    (3) 서열번호 62로 표시되는 아미노산 서열로 이루어진 CDR1;
    서열번호 81로 표시되는 아미노산 서열로 이루어진 CDR2; 및
    서열번호 103으로 표시되는 아미노산 서열로 이루어진 CDR3.
  10. 제 9항에 있어서, 상기 sdAb는 하기를 포함하는 VHH 도메인을 포함하는, 항체 또는 이의 항원-결합 단편;
    (1) 서열번호 107 내지 121 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR1;
    (2) 서열번호 122 내지 137 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR2;
    (3) 서열번호 138 내지 157 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR3; 및
    (4) 서열번호 158 내지 166 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR4.
  11. 제 10항에 있어서, 상기 상기 sdAb는 서열번호 10, 11 및 20 중 어느 하나로 표시되는 아미노산 서열을 포함하는, 항체 또는 이의 항원-결합 단편.
  12. 제 2항에 있어서, 상기 sdAb는 하기 중 어느 하나를 포함하는, 항체 또는 이의 항원-결합 단편:
    (1) 서열번호 49로 표시되는 아미노산 서열로 이루어진 CDR1;
    서열번호 66으로 표시되는 아미노산 서열로 이루어진 CDR2; 및
    서열번호 86으로 표시되는 아미노산 서열로 이루어진 CDR3;
    (2) 서열번호 50으로 표시되는 아미노산 서열로 이루어진 CDR1;
    서열번호 67로 표시되는 아미노산 서열로 이루어진 CDR2; 및
    서열번호 87로 표시되는 아미노산 서열로 이루어진 CDR3;
    (3) 서열번호 55로 표시되는 아미노산 서열로 이루어진 CDR1;
    서열번호 73으로 표시되는 아미노산 서열로 이루어진 CDR2; 및
    서열번호 95로 표시되는 아미노산 서열로 이루어진 CDR3;
    (4) 서열번호 58로 표시되는 아미노산 서열로 이루어진 CDR1;
    서열번호 76으로 표시되는 아미노산 서열로 이루어진 CDR2; 및
    서열번호 98로 표시되는 아미노산 서열로 이루어진 CDR3; 또는
    (5) 서열번호 63으로 표시되는 아미노산 서열로 이루어진 CDR1;
    서열번호 82로 표시되는 아미노산 서열로 이루어진 CDR2; 및
    서열번호 104로 표시되는 아미노산 서열로 이루어진 CDR3.
  13. 제 12항에 있어서, 상기 sdAb는 하기를 포함하는 VHH 도메인을 포함하는, 항체 또는 이의 항원-결합 단편:
    (1) 서열번호 107 내지 121 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR1;
    (2) 서열번호 122 내지 137 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR2;
    (3) 서열번호 138 내지 157 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR3; 및
    (4) 서열번호 158 내지 166 중 어느 하나로 표시되는 아미노산 서열로 이루어진 FR4.
  14. 제 13항에 있어서, 상기 sdAb는 서열번호 3, 4, 12, 15 및 21 중 어느 하나로 표시되는 아미노산 서열을 포함하는, 항체 또는 이의 항원-결합 단편.
  15. 제 1항 내지 제 14항 중 어느 한 항에 있어서, 적어도 1개 이상의 아미노산 치환을 포함하는, 항체 또는 이의 항원-결합 단편.
  16. 제 15항에 있어서, 적어도 1개 이상의 아미노산 치환이 보존적 치환인, 항체 또는 이의 항원-결합 단편.
  17. 제 16항에 있어서, 적어도 1개의 아미노산 치환이 아미노산의 비-유전자 코딩 아미노산 또는 합성 아미노산으로의 치환인, 항체 또는 이의 항원-결합 단편.
  18. 제 1항 내지 제 14항 중 어느 한 항에 있어서, 상기 sdAb가 Fc 단편에 융합된 중쇄-단독 항체(HCAb)인, 항체 또는 이의 항원-결합 단편.
  19. 제 18항에 있어서, 상기 HCAb는 단량체성 또는 다량체성인, 항체 또는 이의 항원-결합 단편.
  20. 제 18항에 있어서, 상기 Fc 단편은 인간 IgG1, IgG2, IgG3 또는 IgG4인, 항체 또는 이의 항원-결합 단편.
  21. 제 18항에 있어서, 상기 sdAb가 펩티드 링커를 통해 Fc 단편에 융합되는, 항체 또는 이의 항원-결합 단편.
  22. 제 18항에 있어서, 상기 HCAb는 서열번호 24 내지 46 중 어느 하나로 표시되는 아미노산 서열로 이루어진, 항체 또는 이의 항원-결합 단편.
  23. 제 22항에 있어서, 적어도 1개 이상의 아미노산 치환을 포함하는, 항체 또는 이의 항원-결합 단편.
  24. 제 23항에 있어서, 적어도 1개 이상의 아미노산 치환이 보존적 치환인, 항체 또는 이의 항원-결합 단편.
  25. 제 24항에 있어서, 적어도 1개의 아미노산 치환이 아미노산의 비-유전자 코딩 아미노산 또는 합성 아미노산으로의 치환인, 항체 또는 이의 항원-결합 단편.
  26. 제 1항에 있어서, (a) 상기 sdAb를 포함하는 제 1 항원 결합 부분; 및 (b) 제 2 에피토프에 특이적으로 결합하는 제 2 항원 결합 부분을 포함하는, 항체 또는 이의 항원-결합 단편.
  27. 제 26항에 있어서, 상기 제 2 항원 결합 부분은 전장 항체, Fab, Fab', (Fab')2, Fv, 단일쇄 Fv(scFv), scFv-scFv, 미니바디, 디아바디 또는 제 2 sdAb인, 항체 또는 이의 항원-결합 단편.
  28. 제 26항에 있어서, 상기 제 1 항원 결합 부분 및 제 2 항원 결합 부분은 펩티드 링커를 통해 서로 융합되는 것인, 항체 또는 이의 항원-결합 단편.
  29. 제 1항에 있어서, 상기 sdAb는 SARS-CoV-2 또는 이의 변이 바이러스에 중화능이 있는 것인, 항체 또는 이의 항원-결합 단편.
  30. 제 29항에 있어서, 상기 변이 바이러스는 하기 중 어느 하나 이상의 변이를 갖는 것인, 항체 또는 이의 항원-결합 단편:
    (i) SARS-CoV-2 스파이크 단백질의 204번째 아미노산 위치에서 G204R 변이;
    (ii) SARS-CoV-2 스파이크 단백질의 614번째 아미노산 위치에서 D614G 변이;
    (iii) SARS-CoV-2 NS3(ORF3a coding protein)의 57번째 아미노산 위치에서 Q57H 변이; 및
    (iv) SARS-CoV-2 NS3(ORF3a coding protein)의 251번째 아미노산 위치에서 G251V 변이.
  31. 제 1항에 있어서, 면역조정제, 사이토카인, 세포독성제, 화학요법제, 진단제, 항바이러스제, 항미생물제 또는 약물에 접합된 항체 또는 이의 항원-결합 단편.
  32. 면역조정제, 사이토카인, 세포독성제, 화학요법제, 진단제, 항바이러스제, 항미생물제 또는 약물에 접합된 제1항의 항체 또는 그의 항원-결합 단편을 포함하는 항체 접합체.
  33. 제 1항의 항체 또는 이의 항원-결합 단편을 암호화하는 핵산 분자.
  34. 제 33항의 핵산 분자를 포함하는 발현 벡터.
  35. 제 34항의 발현 벡터로 형질전환된 숙주 세포.
  36. (a) 항체가 발현되도록 하는 조건 하에 제 35항의 숙주 세포를 배양하는 단계; 및
    (b) 발현된 항체 또는 이의 항원-결합 단편을 회수하는 단계
    를 포함하는, 항체 또는 이의 항원-결합 단편을 생산하는 방법.
  37. 제 1항의 항체 또는 이의 항원-결합 단편, 또는 제 32항의 항체 접합체를 유효성분으로 함유하는, 코로나바이러스감염증-19의 예방 또는 치료용 약학적 조성물.
  38. 제 1항의 항체 또는 이의 항원-결합 단편을 포함하는 코로나바이러스감염증-19 진단용 키트.
  39. 약학적으로 유효한 양의 제 1항의 항체 또는 이의 항원-결합 단편, 또는 제 32항의 항체 접합체를 개체에 투여하는 단계를 포함하는, 코로나바이러스감염증-19의 예방 방법.
  40. 약학적으로 유효한 양의 제 1항의 항체 또는 이의 항원-결합 단편, 또는 제 32항의 항체 접합체를 개체에 투여하는 단계를 포함하는, 코로나바이러스감염증-19의 치료 방법.
  41. 제 1항의 항체 또는 이의 항원-결합 단편을 개체 샘플에 접촉하는 단계를 포함하는, 코로나바이러스감염증-19의 진단 방법.
  42. 코로나바이러스감염증-19의 예방 또는 치료에 사용하기 위한 제 1항의 항체 또는 이의 항원-결합 단편, 또는 제 32항의 항체 접합체의 용도.
  43. 코로나바이러스감염증-19 진단에 사용하기 위한 제 1항의 항체 또는 이의 항원-결합 단편의 용도.
PCT/KR2021/095101 2020-11-10 2021-11-10 Sars-cov-2에 대한 단일 도메인 항체 및 이의 용도 WO2022103245A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200149699 2020-11-10
KR10-2020-0149699 2020-11-10

Publications (1)

Publication Number Publication Date
WO2022103245A1 true WO2022103245A1 (ko) 2022-05-19

Family

ID=81602584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/095101 WO2022103245A1 (ko) 2020-11-10 2021-11-10 Sars-cov-2에 대한 단일 도메인 항체 및 이의 용도

Country Status (2)

Country Link
KR (1) KR20220064331A (ko)
WO (1) WO2022103245A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024058987A3 (en) * 2022-09-14 2024-04-25 Merck Sharp & Dohme Llc Polypeptides effective against multiple coronaviruses

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116444675B (zh) * 2023-05-11 2023-12-22 亲和(武汉)生命科技有限责任公司 一种Pfu DNA聚合酶纳米抗体及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111825762A (zh) * 2020-06-17 2020-10-27 武汉华美生物工程有限公司 抗sars-cov-2病毒s蛋白rbd结构域的纳米抗体及其用途

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111825762A (zh) * 2020-06-17 2020-10-27 武汉华美生物工程有限公司 抗sars-cov-2病毒s蛋白rbd结构域的纳米抗体及其用途

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHI XIAOJING, LIU XIUYING, WANG CONGHUI, ZHANG XINHUI, LI XIANG, HOU JIANHUA, REN LILI, JIN QI, WANG JIANWEI, YANG WEI: "Humanized single domain antibodies neutralize SARS-CoV-2 by targeting the spike receptor binding domain", NATURE COMMUNICATIONS, vol. 11, no. 1, 1 December 2020 (2020-12-01), XP055788434, DOI: 10.1038/s41467-020-18387-8 *
DANIEL WRAPP, DE VLIEGER DORIEN, CORBETT KIZZMEKIA S., TORRES GRETEL M., WANG NIANSHUANG, VAN BREEDAM WANDER, ROOSE KENNY, VAN SCH: "Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies", CELL, ELSEVIER, AMSTERDAM NL, vol. 181, no. 5, 28 May 2020 (2020-05-28), Amsterdam NL , pages 1004 - 1015.e15, XP055764639, ISSN: 0092-8674, DOI: 10.1016/j.cell.2020.04.031 *
DATABASE PROTEIN 20 September 2020 (2020-09-20), ANONYMOUS : "anti-SARS-CoV-2 immunoglobulin heavy chain variable region, partial [Lama glama] ", XP055930070, retrieved from NCBI Database accession no. QNS17504 *
WU YANLING; LI CHENG; XIA SHUAI; TIAN XIAOLONG; KONG YU; WANG ZHI; GU CHENJIAN; ZHANG RONG; TU CHAO; XIE YOUHUA; YANG ZHENLIN; LU : "Identification of Human Single-Domain Antibodies against SARS-CoV-2", CELL HOST & MICROBE, ELSEVIER, NL, vol. 27, no. 6, 14 May 2020 (2020-05-14), NL , pages 891, XP086178478, ISSN: 1931-3128, DOI: 10.1016/j.chom.2020.04.023 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024058987A3 (en) * 2022-09-14 2024-04-25 Merck Sharp & Dohme Llc Polypeptides effective against multiple coronaviruses

Also Published As

Publication number Publication date
KR20220064331A (ko) 2022-05-18

Similar Documents

Publication Publication Date Title
AU2019386549B2 (en) Anti-4-1BB antibody and use thereof
WO2020096381A1 (ko) 인간 il-4 수용체 알파에 대한 고친화도 인간 항체 및 이의 용도
WO2019225777A1 (ko) 항-ror1 항체 및 그 용도
WO2019225787A1 (ko) 항-b7-h3 항체 및 그 용도
WO2022103245A1 (ko) Sars-cov-2에 대한 단일 도메인 항체 및 이의 용도
WO2022177394A1 (ko) Pd-l1 및 cd47에 대한 이중특이적 단일 도메인 항체 및 이의 용도
WO2016137108A1 (en) Novel antibody binding to tfpi and composition comprising the same
WO2022039490A1 (en) Anti-b7-h4/anti-4-1bb bispecific antibodies and use thereof
WO2014077648A1 (ko) 인간 및 마우스 l1cam 단백질에 특이적으로 결합하는 항체 및 이의 용도
WO2014090053A1 (zh) 拮抗抑制血管内皮细胞生长因子与其受体结合的单克隆抗体及其编码序列与用途
WO2018128454A1 (ko) 항 α-SYN 항체 및 그 용도
WO2016200189A1 (ko) 광견병 바이러스 g 단백질의 에피토프 및 이에 특이적으로 결합하는 광견병 바이러스 중화 결합 분자
WO2020251316A1 (ko) α-SYN/IGF1R에 대한 이중 특이 항체 및 그 용도
WO2019078699A2 (ko) 항-vista 항체 및 이의 용도
WO2020101365A1 (ko) 안정성이 향상된 항 c-met 항체 또는 그의 항원 결합 단편
WO2022085905A1 (ko) SARS-CoV-2 스파이크 단백질에 특이적으로 결합하는 항체 및 이의 용도
WO2022177392A1 (ko) Cd47에 대한 단일 도메인 항체 및 이의 용도
WO2021020845A1 (en) Anti-egfr/anti-4-1bb bispecific antibody and use thereof
WO2022240159A1 (ko) 항-tigit 항체 및 이의 용도
WO2023287212A1 (ko) 조절 t 세포 표면 항원의 에피토프 및 이에 특이적으로 결합하는 항체
WO2022055299A1 (ko) 인터루킨-4 수용체 알파 서브유닛과 인터루킨-5 수용체 알파 서브유닛에 동시에 결합하는 이중특이항체 및 이의 용도
WO2021261762A1 (ko) 항-rsv 항체 및 이를 포함하는 약학적 조성물
WO2022177393A1 (ko) Pd-l1에 대한 단일 도메인 항체 및 이의 용도
WO2015088256A1 (ko) 광견병 바이러스를 중화시킬 수 있는 결합 분자
WO2023224412A1 (ko) Pd-l1 및 cd47에 대한 이중특이적 인간화 단일 도메인 항체 및 이의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21892412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21892412

Country of ref document: EP

Kind code of ref document: A1