WO2022103213A1 - 배터리 진단 장치 및 방법 - Google Patents

배터리 진단 장치 및 방법 Download PDF

Info

Publication number
WO2022103213A1
WO2022103213A1 PCT/KR2021/016581 KR2021016581W WO2022103213A1 WO 2022103213 A1 WO2022103213 A1 WO 2022103213A1 KR 2021016581 W KR2021016581 W KR 2021016581W WO 2022103213 A1 WO2022103213 A1 WO 2022103213A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
voltage
profile
side reaction
differential
Prior art date
Application number
PCT/KR2021/016581
Other languages
English (en)
French (fr)
Inventor
차아밍
배윤정
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to US17/920,863 priority Critical patent/US20230160971A1/en
Priority to EP21892380.3A priority patent/EP4141462A4/en
Priority to CN202180034605.0A priority patent/CN115552265A/zh
Priority to JP2022562374A priority patent/JP7419647B2/ja
Publication of WO2022103213A1 publication Critical patent/WO2022103213A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0038Circuits for comparing several input signals and for indicating the result of this comparison, e.g. equal, different, greater, smaller (comparing pulses or pulse trains according to amplitude)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/30Measuring the maximum or the minimum value of current or voltage reached in a time interval
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an apparatus and method for diagnosing a battery, and more particularly, to an apparatus and method for diagnosing a battery capable of diagnosing whether a side reaction occurs in a battery.
  • Such batteries may be gradually degraded due to side reactions occurring as the batteries are exposed to low or high temperatures for a long time, or as charging and discharging are repeated.
  • the present invention has been devised to solve the above problems, and by diagnosing whether a side reaction has occurred in the battery and the cause of the generated side reaction, a battery diagnosis apparatus and method capable of controlling a usage condition optimized for a battery aim to do
  • a battery diagnosis apparatus obtains a battery profile indicating a correspondence relationship between a voltage and a capacity of a battery, and generates a differential profile indicating a correspondence relationship between the voltage and a differential capacity of the voltage based on the obtained battery profile a profile generating unit configured to do so; and receiving the differential profile from the profile generator, determining a target peak in the differential profile, comparing a voltage between a reference peak of a reference profile preset for the battery and the determined target peak, and based on the comparison result It may include a control unit configured to determine whether a side reaction to the battery occurs.
  • the control unit may be configured to compare magnitudes of voltages between the reference peak and the target peak, and to determine whether a negative side reaction or a positive side reaction occurs in the battery according to the comparison result.
  • the controller may be configured to determine that the negative side reaction has occurred in the battery when the voltage of the target peak exceeds the voltage of the reference peak.
  • the controller may be configured to determine that the anode side reaction has occurred in the battery when the voltage of the target peak is less than the voltage of the reference peak.
  • the control unit may be configured to determine that a portion of the electrolyte included in the battery is decomposed when it is determined that the negative electrode side reaction or the positive side reaction has occurred.
  • control unit may be configured to change a usage condition including at least one of a charging C-rate for the battery, an available SOC, and an upper limit temperature.
  • the controller may be configured to decrease an upper limit of a charging C-rate for the battery when it is determined that the negative side reaction has occurred.
  • the control unit may be configured to decrease the upper limit of the available SOC for the battery when it is determined that the positive side reaction has occurred.
  • the controller may be configured to decrease an upper limit temperature of the battery when it is determined that the side reaction has occurred in the battery.
  • the controller may be configured to determine the target peak within a predetermined voltage range based on the voltage of the reference peak in the differential profile.
  • a battery pack according to another aspect of the present invention may include the battery diagnosis apparatus according to an aspect of the present invention.
  • a battery test apparatus may include the battery diagnosis apparatus according to an aspect of the present invention.
  • a battery diagnosis method includes: obtaining a battery profile obtaining a battery profile indicating a correspondence relationship between voltage and capacity of a battery; a differential profile generating step of generating a differential profile representing a correspondence between the voltage and a differential capacity of the voltage based on the battery profile acquired in the battery profile acquiring step; a target peak determining step of determining a target peak from the differential profile generated in the differential profile generating step; a voltage comparison step of comparing a voltage between a reference peak of a reference profile preset for the battery and the determined target peak; and determining whether a side reaction occurs in the battery based on the comparison result of the voltage comparison step.
  • the present invention based on the behavior of one peak included in the differential profile, there is an advantage in that it is possible to quickly diagnose whether a side reaction has occurred and the type of side reaction to the battery.
  • FIG. 1 is a diagram schematically illustrating an apparatus for diagnosing a battery according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically illustrating a first differential profile and a reference profile according to an embodiment of the present invention.
  • FIG. 3 is a diagram schematically illustrating a second differential profile and a reference profile according to an embodiment of the present invention.
  • FIG. 4 is a diagram schematically illustrating a battery profile corresponding to a first differential profile according to an embodiment of the present invention.
  • FIG. 5 is a diagram schematically illustrating a battery profile corresponding to a second differential profile according to an embodiment of the present invention.
  • FIG. 6 is a diagram schematically illustrating a method for diagnosing a battery according to another exemplary embodiment of the present invention.
  • a term such as a control unit described in the specification means a unit for processing at least one function or operation, which may be implemented as hardware or software, or a combination of hardware and software.
  • FIG. 1 is a diagram schematically illustrating a battery diagnosis apparatus 100 according to an embodiment of the present invention.
  • the battery diagnosis apparatus 100 may include a profile generator 110 and a controller 120 .
  • the profile generator 110 may be configured to obtain a battery profile indicating a correspondence relationship between a voltage and a capacity of a battery.
  • the battery includes a negative terminal and a positive terminal, and refers to one physically separable independent cell.
  • one pouch-type lithium polymer cell may be regarded as a battery.
  • the battery profile obtained by the profile generator 110 may be a profile generated so that the corresponding voltage and capacity of the battery are mapped.
  • the profile generator 110 may be configured to generate a differential profile indicating a correspondence between the voltage and a differential capacity with respect to the voltage based on the obtained battery profile.
  • the profile generator 110 may calculate the differential capacity (dQ/dV) by differentiating the capacity of the battery based on the voltage of the battery. In addition, the profile generator 110 may map the voltage and the differential capacity of the corresponding battery to each other to generate a differential profile indicating a correspondence relationship between the voltage and the differential capacity.
  • FIG. 2 is a diagram schematically illustrating a first differential profile DP1 and a reference profile R according to an embodiment of the present invention.
  • 3 is a diagram schematically illustrating a second differential profile DP2 and a reference profile R according to an embodiment of the present invention.
  • the first differential profile DP1 and the second differential profile DP2 generated by the profile generator 110 have X as a voltage and Y as a differential capacitance. It can be expressed as an X-Y graph of the case.
  • the controller 120 may be configured to receive the differential profile from the profile generator 110 .
  • controller 120 and the profile generator 110 may be connected to each other to enable communication.
  • the profile generator 110 may transmit the generated differential profile to the controller 120 , and the controller 120 may receive the differential profile from the profile generator 110 .
  • the controller 120 may be configured to determine a target peak in the differential profile.
  • the differential profile may include a plurality of peaks.
  • the peak is a point at which the instantaneous rate of change of the differential capacitance with respect to voltage is 0, and may be a point at which the instantaneous rate of change changes from positive to negative based on the peak. That is, the peak may be a point having an upward convex opening in the differential profile.
  • the controller 120 may determine any one of a plurality of peaks included in the differential profile as a target peak.
  • the controller 120 may be configured to determine the target peak within a predetermined voltage range based on the voltage of the reference peak RP in the differential profile. For example, the controller 120 may determine the target peak within a range of -0.1V to +0.1V based on the voltage of the reference peak RP. That is, if the voltage of the reference peak RP is 3.45V, the target peak may be determined within the range of 3.35V to 3.55V.
  • the controller 120 may determine a plurality of peaks in the first differential profile DP1.
  • the controller 120 may determine the first target peak TP1 in which the voltage is included in a predetermined voltage section based on the voltage of the reference peak RP among the plurality of determined peaks.
  • the controller 120 may determine a plurality of peaks in the second differential profile DP2. In addition, the controller 120 may determine the second target peak TP2 in which the voltage is included in a predetermined voltage section based on the voltage of the reference peak RP among the plurality of determined peaks.
  • the control unit 120 may be configured to compare a voltage between a reference peak RP of a preset reference profile R for the battery and the determined target peak.
  • the controller 120 may compare the magnitude of the voltage corresponding to the reference peak RP and the voltage corresponding to the target peak.
  • the controller 120 may determine whether the voltage of the target peak differs from the voltage of the reference peak RP by more than a preset reference voltage. For example, when the voltage and capacity of the battery are measured, an error may occur between the voltage of the target peak and the actual voltage due to a measurement error due to noise or the like. Accordingly, the controller 120 may determine whether the voltage of the target peak is greater than or equal to the reference voltage than the voltage of the reference peak RP in consideration of this error.
  • the controller 120 compares the magnitudes of the voltages of the reference peak RP and the first target peak TP1 so that the voltage of the first target peak TP1 is the reference peak RP. can be judged to be greater than the voltage of
  • the controller 120 compares the magnitudes of the voltages of the reference peak RP and the second target peak TP2 so that the voltage of the second target peak TP1 is the reference peak RP ) can be determined to be less than the voltage of
  • the control unit 120 may be configured to determine whether a side reaction to the battery occurs based on the comparison result.
  • the controller 120 may be configured to determine whether a negative side reaction or a positive side reaction occurs in the battery according to a result of comparing the magnitude of the voltage between the reference peak and the target peak.
  • the controller 120 may be configured to determine that the negative side reaction has occurred in the battery.
  • the controller 120 may be configured to determine that the anode side reaction has occurred in the battery.
  • the voltage of the first target peak TP1 may exceed the voltage of the reference peak RP. Accordingly, the controller 120 may determine that the negative side reaction has occurred in the battery corresponding to the first differential profile DP1 .
  • the voltage of the second target peak TP2 may be less than the voltage of the reference peak RP. Accordingly, the controller 120 may determine that the positive side reaction has occurred in the battery corresponding to the second differential profile DP2.
  • the battery diagnosis apparatus 100 non-destructively determines whether a side reaction occurs and the type of side reaction (positive side reaction or negative side reaction) to the battery based on the behavior of one peak included in the differential profile. It has the advantage of being able to diagnose quickly.
  • the controller 120 included in the battery diagnosis apparatus 100 includes a processor, an application-specific integrated circuit (ASIC), other chipsets, logic circuits, and registers known in the art to execute various control logics performed in the present invention.
  • ASIC application-specific integrated circuit
  • the controller 120 may be implemented as a set of program modules.
  • the program module may be stored in the memory and executed by the controller 120 .
  • the memory may be inside or outside the control unit 120 , and may be connected to the control unit 120 by various well-known means.
  • the battery diagnosis apparatus 100 may further include a storage unit 130 .
  • the storage unit 130 may store data necessary for each component of the battery diagnosis apparatus 100 to perform an operation and function, a program or data generated while an operation and a function are performed.
  • the storage unit 130 is not particularly limited in its type as long as it is a known information storage means capable of writing, erasing, updating and reading data.
  • the information storage means may include RAM, flash memory, ROM, EEPROM, registers, and the like.
  • the storage unit 130 may store program codes in which processes executable by the control unit 120 are defined.
  • the storage unit 130 may store the battery profile obtained by the profile generation unit 110 and the differential profile generated by the profile generation unit 110 .
  • the controller 120 may directly receive the differential profile from the profile generator 110 , or may access the storage 130 to obtain the differential profile.
  • control unit 120 specifically diagnoses the cause of the side reaction generated in the battery will be described.
  • control unit 120 may be configured to determine that some of the electrolytes included in the battery have been decomposed.
  • control unit 120 may determine that a portion of the electrolyte included in the battery is reduced and decomposed, and a negative side reaction has occurred.
  • control unit 120 may be configured to determine that lithium is deposited on the negative electrode of the battery by decomposing some of the electrolyte. That is, when it is determined that the negative electrode side reaction has occurred, the control unit 120 may be configured to determine that lithium is deposited on the negative electrode of the battery.
  • the control unit 120 When the voltage of the target peak exceeds the voltage of the reference peak (RP), the control unit 120 generates a negative side reaction in the battery, and the negative side reaction is caused by lithium plating according to the reduction and decomposition of some of the electrolyte. can be judged to be
  • the negative electrode capacity when lithium plating occurs on the negative electrode of the battery, the negative electrode capacity may be lost in a high SOC section (eg, SOC 90% to 100% section) of the battery. That is, metallic lithium may be deposited on the negative electrode of the battery, and the negative electrode capacity may be lost in the high SOC section.
  • the capacity of the low SOC section eg, SOC 0% to 10% section
  • the voltage corresponding to the target peak may be shifted toward the high voltage and may be greater than the reference voltage.
  • the shape of the battery profile may be changed due to the occurrence of negative side reactions. Also, the voltage corresponding to the target peak included in the differential profile corresponding to the modified battery profile may be shifted to the high voltage side.
  • FIG. 4 is a diagram schematically illustrating a battery profile corresponding to the first differential profile DP1 according to an embodiment of the present invention.
  • the first battery profile BP1 , the first negative profile NP1 , and the first positive profile PP1 may be profiles for a battery in a beginning of life (BOL) state.
  • the second battery profile BP2 and the second positive electrode profile PP2 may be profiles for a battery in a middle of life (MOL) state. That is, when lithium plating occurs on the negative electrode of the battery, the first positive electrode profile PP1 is changed to the second positive electrode profile PP2 due to the negative electrode capacity loss in the high SOC section R1 of the battery, and the second positive electrode profile PP2 is changed.
  • the first battery profile BP1 may be changed like the second battery profile BP2 .
  • the first SOC ( S1 ) may be the SOC for the target peak corresponding to the battery in the BOL state and the MOL state.
  • the first voltage V1 may be a voltage with respect to a target peak corresponding to the battery in the BOL state
  • the second voltage V2 may be a voltage with respect to the target peak corresponding to the battery in the MOL state.
  • the voltage of the first battery profile BP1 corresponding to the first SOC(S1) is the first voltage V1
  • the voltage of the second battery profile BP2 corresponding to the first SOC(S1) is the second voltage. It may be a voltage V2.
  • the first voltage V1 of FIG. 4 is a voltage corresponding to the reference peak RP of FIG. 2
  • the second voltage V2 is the first target peak of FIG. 2
  • It may be a voltage corresponding to (TP1). That is, when lithium plating occurs on the negative electrode of the battery, the voltage corresponding to the first target peak TP1 is shifted to the high voltage side, so that the voltage of the first target peak TP1 is greater than the voltage of the reference peak RP.
  • the controller 120 can determine that the negative electrode side reaction has occurred in the battery, and specifically diagnoses the cause of the negative electrode side reaction by the lithium plating generated on the negative electrode. can do.
  • control unit 120 may be configured to determine that some of the electrolytes included in the battery have been decomposed.
  • control unit 120 may determine that a part of the electrolyte included in the battery is oxidatively decomposed, and thus an anode side reaction has occurred.
  • an electrolyte included in the battery may be decomposed, and lithium ions may be supplied to the positive electrode from the decomposed electrolyte.
  • the positive electrode may receive lithium ions from the negative electrode and the decomposed electrolyte. Therefore, by supplying lithium ions from the negative electrode and the decomposed electrolyte, the capacity of the positive electrode high voltage side of the battery may not be used.
  • control unit 120 may be configured to determine that the non-use capacity of the positive electrode of the battery is increased because some of the electrolyte is decomposed.
  • lithium ions released from the decomposed electrolyte may be supplied to the positive electrode.
  • the positive electrode self-discharges in the high SOC section (eg, the SOC 90% to 100% section)
  • an anode side reaction in which the high SOC section of the positive electrode cannot be used during battery charging may occur.
  • the positive electrode cannot be used in the high SOC section due to the anode side reaction
  • the low SOC section of the positive electrode can be further used for voltage compensation when charging the battery. Therefore, the shape of the battery profile may be changed by the anode side reaction.
  • the voltage corresponding to the target peak included in the differential profile corresponding to the modified battery profile may be shifted to the low voltage side.
  • FIG. 5 is a diagram schematically illustrating a battery profile corresponding to the second differential profile DP2 according to an embodiment of the present invention.
  • the first battery profile BP1 , the first negative profile NP1 , and the first positive profile PP1 may be profiles for a battery in a BOL state.
  • the second battery profile BP2 , the second negative profile NP2 , and the second positive profile PP2 may be profiles for the battery in the MOL state. That is, when the positive side reaction of the battery occurs, the positive electrode in the high SOC section R2 is not used, so that the first positive electrode profile PP1 is changed to the second positive electrode profile PP2, and the first negative electrode profile NP1 may be changed like the second negative electrode profile NP2 , and the first battery profile BP1 may be changed like the second battery profile BP2 .
  • the first SOC ( S1 ) and the first voltage ( V1 ) are the SOC and voltage for the target peak corresponding to the battery in the BOL state
  • the second SOC ( S2 ) and the second voltage ( V2 ) may be the SOC and voltage for the target peak corresponding to the battery in the MOL state.
  • the high SOC section R2 in the high SOC section R2 , the second positive electrode profile PP2 , the second negative electrode profile NP2 , and the second battery profile BP2 are indicated by dotted lines, the high SOC section R2 . ) indicates that the anode is not used.
  • the voltage of the first battery profile BP1 corresponding to the first SOC(S1) is the first voltage V1
  • the voltage of the second battery profile BP2 corresponding to the second SOC(S2) is the second voltage. It may be a voltage V2.
  • the first voltage V1 of FIG. 5 is a voltage corresponding to the reference peak RP of FIG. 3
  • the second voltage V2 is the second target peak of FIG. 3 . It may be a voltage corresponding to (TP2). That is, when a side reaction occurs in the positive electrode of the battery, the voltage corresponding to the second target peak TP2 is shifted to the low voltage side, so the voltage of the second target peak TP2 may be smaller than the voltage of the reference peak RP. .
  • control unit 120 can determine that the anode side reaction has occurred in the battery, and the cause of the anode side reaction is that some of the electrolyte contained in the battery is oxidized and decomposed. can be specifically diagnosed.
  • the battery diagnosis apparatus 100 may further include a temperature measuring unit 140 .
  • the temperature measuring unit 140 may be configured to measure the temperature of the battery. For example, the temperature measuring unit 140 may measure the temperature of the battery periodically, and when a temperature measuring signal is input, the temperature of the battery may be measured even if it is not a temperature measuring period.
  • the temperature information of the battery measured by the temperature measuring unit 140 may be accumulated and stored in the storage unit 130 .
  • the controller 120 may determine whether the battery has been exposed to a high temperature for a long period of time in consideration of the temperature information of the battery stored in the storage unit 130 . If the battery maintains a state equal to or higher than the reference temperature for a long period of time, the controller 120 may determine that the cause of the anode side reaction generated in the battery is based on the decomposition of the electrolyte due to exposure to high temperature.
  • control unit may be configured to change the usage conditions including at least one of a charging C-rate (Current rate), an available SOC, and an upper limit temperature for the battery.
  • a charging C-rate Current rate
  • SOC available SOC
  • an upper limit temperature for the battery there is.
  • control unit 120 may be configured to decrease the upper limit of the charging C-rate for the battery.
  • the controller 120 may determine that the cause of the negative negative reaction is lithium plating on the negative electrode of the battery. Accordingly, the controller 120 may reduce the upper limit of the charging C-rate for the battery in order to prevent further negative plating from occurring.
  • the controller 120 may reduce not only the upper limit of the charging C-rate of the battery but also the upper limit of the discharging C-rate of the battery.
  • control unit 120 may be configured to decrease the upper limit of the available SOC for the battery.
  • control unit 120 may determine that the cause of the anode side reaction is oxidative decomposition of the electrolyte included in the battery. Accordingly, the controller 120 may reduce the upper limit of the usable SOC of the battery in order to prevent further decomposition of the electrolyte.
  • the controller 120 may be configured to decrease the upper limit temperature of the battery.
  • the controller 120 may be configured to decrease the upper limit temperature of the battery in order to suppress the occurrence of the side reaction.
  • the battery diagnosis apparatus 100 has the advantage of diagnosing in detail whether a side reaction has occurred and the type of side reaction to the battery, and setting the optimal use condition for the battery according to the diagnosis result. .
  • the battery diagnosis apparatus 100 When the battery is operated under the usage conditions set by the battery diagnosis apparatus 100 , the occurrence of a side reaction in the battery may be suppressed (or delayed), and consequently, the lifespan of the battery may be increased.
  • the battery diagnosis apparatus 100 may be applied to a battery management system (BMS). That is, the BMS according to the present invention may include the battery diagnosis apparatus 100 described above. In this configuration, at least some of the respective components of the battery diagnosis apparatus 100 may be implemented by supplementing or adding functions of components included in the conventional BMS. For example, the profile generation unit 110 , the control unit 120 , the storage unit 130 , and the temperature measurement unit 140 of the battery diagnosis apparatus 100 may be implemented as components of the BMS.
  • the battery diagnosis apparatus 100 may be provided in a battery pack. That is, the battery pack according to the present invention may include the above-described battery diagnosis apparatus 100 and one or more battery cells. In addition, the battery pack may further include electrical equipment (relays, fuses, etc.) and a case.
  • an optimal use condition for the battery may be set by the battery diagnosis apparatus 100 included in the battery pack, and the battery included in the battery pack may be operated according to the set use condition. Accordingly, a side reaction is prevented from occurring in the battery, and the lifespan of the battery can be increased.
  • the battery diagnosis apparatus 100 may be included in the battery test apparatus.
  • the battery test apparatus may diagnose whether a side reaction occurs with respect to the battery and the type of side reaction, and may set an optimal use condition for the battery.
  • the usage conditions set by the battery test apparatus may be stored in the server and/or the BMS of the battery pack to which the battery is to be provided. Accordingly, the battery may be operated according to the set usage conditions.
  • FIG. 6 is a diagram schematically illustrating a method for diagnosing a battery according to another exemplary embodiment of the present invention.
  • each step of the battery diagnosis method may be performed by the battery diagnosis apparatus 100 .
  • the content overlapping with the previously described content will be omitted or briefly described.
  • the battery diagnosis method includes a battery profile acquisition step (S100), a differential profile generation step (S200), a target peak determination step (S300), a voltage comparison step (S400), a side reaction determination step (S500) and It may include a battery use condition setting step (S600).
  • the battery profile obtaining step ( S100 ) is a step of obtaining a battery profile indicating a correspondence relationship between a voltage and a capacity of a battery, and may be performed by the profile generating unit 110 .
  • the profile generator 110 may acquire the second battery profile BP2 .
  • the profile generator 110 may acquire the second battery profile BP2 .
  • the differential profile generating step ( S200 ) is a step of generating a differential profile representing a correspondence between the voltage and the differential capacity with respect to the voltage based on the battery profile obtained in the battery profile obtaining step ( S100 ). ) can be done by
  • the profile generator 110 may generate the first differential profile DP1 based on the acquired battery profile.
  • the profile generator 110 may generate the second differential profile DP2 based on the acquired battery profile.
  • the target peak determining step ( S300 ) is a step of determining a target peak from the differential profile generated in the differential profile generating step ( S200 ), and may be performed by the controller 120 .
  • the controller 120 may determine the first target peak TP1 within a predetermined voltage range from the voltage of the reference peak RP in the first differential profile DP1 .
  • the controller 120 may determine the second target peak TP2 within a predetermined voltage range from the voltage of the reference peak RP in the second differential profile DP2 .
  • the voltage comparison step S400 is a step of comparing a voltage between a reference peak RP of a preset reference profile R for the battery and the determined target peak, and may be performed by the controller 120 .
  • the controller 120 may determine that the voltage corresponding to the first target peak TP1 is greater than the voltage corresponding to the reference peak RP.
  • the controller 120 may determine that the voltage corresponding to the second target peak TP2 is smaller than the voltage corresponding to the reference peak RP.
  • the step of determining whether a side reaction occurs is a step of determining whether a negative side reaction or a positive side reaction occurs with respect to the battery based on the comparison result of the voltage comparison step (S400), and may be performed by the control unit 120 there is.
  • the controller 120 may determine that a negative side reaction has occurred in the battery. Conversely, when the voltage of the target peak is less than the voltage of the reference peak, the controller 120 may determine that an anode side reaction has occurred in the battery.
  • the controller 120 may determine that a negative side reaction has occurred in the battery.
  • the controller 120 may determine that a negative pole side reaction has occurred in the battery.
  • a step of setting battery usage conditions may be further included.
  • the battery usage condition setting step ( S600 ) is a step of setting usage conditions for the battery when it is determined that a side reaction to the battery has occurred, and may be performed by the controller 120 .
  • the controller 120 may change the usage conditions including at least one of a charging C-rate for the battery, an available SOC, and an upper limit temperature. Accordingly, by operating the battery according to the changed usage conditions, the lifespan of the battery may be increased.
  • the embodiment of the present invention described above is not implemented only through the apparatus and method, and may be implemented through a program for realizing a function corresponding to the configuration of the embodiment of the present invention or a recording medium in which the program is recorded.
  • the implementation can be easily implemented by those skilled in the art to which the present invention pertains from the description of the above-described embodiments.
  • control unit 120 control unit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

본 발명의 일 실시예에 따른 배터리 진단 장치는 배터리의 전압 및 용량 간의 대응 관계를 나타내는 배터리 프로파일 획득하고, 획득된 배터리 프로파일에 기반하여 상기 전압과 상기 전압에 대한 미분 용량 간의 대응 관계를 나타내는 미분 프로파일 생성하도록 구성된 프로파일 생성부; 및 상기 프로파일 생성부로부터 상기 미분 프로파일을 수신하고, 상기 미분 프로파일에서 타겟 피크를 결정하며, 상기 배터리에 대해 미리 설정된 기준 프로파일의 기준 피크와 상기 결정된 타겟 피크 간의 전압을 비교하고, 비교 결과에 기반하여 상기 배터리에 대한 부반응 발생 여부를 판단하도록 구성된 제어부를 포함한다.

Description

배터리 진단 장치 및 방법
본 출원은 2020년 11월 13일 자로 출원된 한국 특허 출원번호 제10-2020-0152317호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
본 발명은 배터리 진단 장치 및 방법에 관한 것으로서, 보다 상세하게는, 배터리에 부반응 발생 여부를 진단할 수 있는 배터리 진단 장치 및 방법에 관한 것이다.
최근, 노트북, 비디오 카메라, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 전기 자동차, 에너지 저장용 축전지, 로봇, 위성 등의 개발이 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 배터리에 대한 연구가 활발히 진행되고 있다.
현재 상용화된 배터리로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 배터리 등이 있는데, 이 중에서 리튬 배터리는 니켈 계열의 배터리에 비해 메모리 효과가 거의 일어나지 않아 충방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
이러한 배터리는 저온 또는 고온에 장시간 노출되거나, 충전 및 방전이 반복될수록 부반응이 발생되어 점차 퇴화될 수 있다.
부반응은 배터리의 양극 및 음극에서 발생될 수 있으며, 발생 원인이 다양하다. 따라서, 배터리의 수명을 증대시키기 위해서는, 배터리의 부반응 발생 여부 및 발생 원인을 확인하고, 이에 따라 배터리의 사용 조건을 적절히 제어하는 것이 중요하다.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 배터리에 부반응이 발생되었는지 여부 및 발생된 부반응의 원인을 진단함으로써, 배터리에 최적화된 사용 조건을 제어할 수 있는 배터리 진단 장치 및 방법을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타난 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명의 일 측면에 따른 배터리 진단 장치는 배터리의 전압 및 용량 간의 대응 관계를 나타내는 배터리 프로파일 획득하고, 획득된 배터리 프로파일에 기반하여 상기 전압과 상기 전압에 대한 미분 용량 간의 대응 관계를 나타내는 미분 프로파일 생성하도록 구성된 프로파일 생성부; 및 상기 프로파일 생성부로부터 상기 미분 프로파일을 수신하고, 상기 미분 프로파일에서 타겟 피크를 결정하며, 상기 배터리에 대해 미리 설정된 기준 프로파일의 기준 피크와 상기 결정된 타겟 피크 간의 전압을 비교하고, 비교 결과에 기반하여 상기 배터리에 대한 부반응 발생 여부를 판단하도록 구성된 제어부를 포함할 수 있다.
상기 제어부는, 상기 기준 피크와 상기 타겟 피크 간의 전압의 대소를 비교하고, 비교 결과에 따라 상기 배터리에 음극 부반응 발생 여부 또는 양극 부반응 발생 여부를 판단하도록 구성될 수 있다.
상기 제어부는, 상기 타겟 피크의 전압이 상기 기준 피크의 전압을 초과하는 경우, 상기 배터리에 상기 음극 부반응이 발생된 것으로 판단하도록 구성될 수 있다.
상기 제어부는, 상기 타겟 피크의 전압이 상기 기준 피크의 전압 미만인 경우, 상기 배터리에 상기 양극 부반응이 발생된 것으로 판단하도록 구성될 수 있다.
상기 제어부는, 상기 음극 부반응 또는 상기 양극 부반응이 발생된 것으로 판단된 경우, 상기 배터리에 포함된 전해질 중 일부가 분해된 것으로 판단하도록 구성될 수 있다.
상기 제어부는, 상기 배터리에 부반응이 발생된 것으로 판단된 경우, 상기 배터리에 대한 충전 C-rate, 가용 SOC 및 상한 온도 중 적어도 하나를 포함하는 사용 조건을 변경하도록 구성될 수 있다.
상기 제어부는, 상기 음극 부반응이 발생된 것으로 판단된 경우, 상기 배터리에 대한 충전 C-rate의 상한을 감소시키도록 구성될 수 있다.
상기 제어부는, 상기 양극 부반응이 발생된 것으로 판단된 경우, 상기 배터리에 대한 가용 SOC의 상한을 감소시키도록 구성될 수 있다.
상기 제어부는, 상기 배터리에 상기 부반응이 발생된 것으로 판단된 경우, 상기 배터리에 대한 상한 온도를 감소시키도록 구성될 수 있다.
상기 제어부는, 상기 미분 프로파일에서 상기 기준 피크의 전압을 기준으로 소정의 전압 구간 내에서 상기 타겟 피크를 결정하도록 구성될 수 있다.
본 발명의 다른 측면에 따른 배터리 팩은 본 발명의 일 측면에 따른 배터리 진단 장치를 포함할 수 있다.
본 발명의 또 다른 측면에 따른 배터리 검사 장치는 본 발명의 일 측면에 따른 배터리 진단 장치를 포함할 수 있다.
본 발명의 또 다른 측면에 따른 배터리 진단 방법은 배터리의 전압 및 용량 간의 대응 관계를 나타내는 배터리 프로파일 획득하는 배터리 프로파일 획득 단계; 상기 배터리 프로파일 획득 단계에서 획득된 배터리 프로파일에 기반하여 상기 전압과 상기 전압에 대한 미분 용량 간의 대응 관계를 나타내는 미분 프로파일 생성하는 미분 프로파일 생성 단계; 상기 미분 프로파일 생성 단계에서 생성된 상기 미분 프로파일에서 타겟 피크를 결정하는 타겟 피크 결정 단계; 상기 배터리에 대해 미리 설정된 기준 프로파일의 기준 피크와 상기 결정된 타겟 피크 간의 전압을 비교하는 전압 비교 단계; 및 상기 전압 비교 단계의 비교 결과에 기반하여 상기 배터리에 대한 부반응 발생 여부를 부반응 발생 여부 판단 단계를 포함할 수 있다.
본 발명의 일 측면에 따르면, 미분 프로파일에 포함된 하나의 피크의 거동에 기반하여, 배터리에 대한 부반응 발생 여부 및 부반응의 종류을 신속하게 진단할 수 있는 장점이 있다.
또한, 본 발명의 일 측면에 따르면, 부반응이 발생된 배터리에 대한 적절한 사용 조건이 설정됨으로써, 배터리의 기대 수명을 증대시킬 수 있는 장점이 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 다음의 도면들은 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시예에 따른 배터리 진단 장치를 개략적으로 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 제1 미분 프로파일 및 기준 프로파일을 개략적으로 도시한 도면이다.
도 3은 본 발명의 일 실시예에 따른 제2 미분 프로파일 및 기준 프로파일을 개략적으로 도시한 도면이다.
도 4는 본 발명의 일 실시예에 따른 제1 미분 프로파일에 대응되는 배터리 프로파일을 개략적으로 도시한 도면이다.
도 5는 본 발명의 일 실시에에 따른 제2 미분 프로파일에 대응되는 배터리 프로파일을 개략적으로 도시한 도면이다.
도 6은 본 발명의 다른 실시예에 따른 배터리 진단 방법을 개략적으로 도시한 도면이다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
또한, 본 발명을 설명함에 있어 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
제1, 제2 등과 같이 서수를 포함하는 용어들은, 다양한 구성요소들 중 어느 하나를 나머지와 구별하는 목적으로 사용되는 것이고, 그러한 용어들에 의해 구성요소들을 한정하기 위해 사용되는 것은 아니다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
또한, 명세서에 기재된 제어부와 같은 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어, 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다.
이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 배터리 진단 장치(100)를 개략적으로 도시한 도면이다.
도 1을 참조하면, 배터리 진단 장치(100)는 프로파일 생성부(110) 및 제어부(120)를 포함할 수 있다.
프로파일 생성부(110)는 배터리의 전압 및 용량 간의 대응 관계를 나타내는 배터리 프로파일 획득하도록 구성될 수 있다.
여기서, 배터리는 음극 단자와 양극 단자를 구비하며, 물리적으로 분리 가능한 하나의 독립된 셀을 의미한다. 일 예로, 파우치형 리튬 폴리머 셀 하나가 배터리로 간주될 수 있다.
예컨대, 프로파일 생성부(110)가 획득하는 배터리 프로파일은 배터리의 대응되는 전압과 용량이 맵핑되도록 생성된 프로파일일 수 있다.
프로파일 생성부(110)는 획득된 배터리 프로파일에 기반하여 상기 전압과 상기 전압에 대한 미분 용량 간의 대응 관계를 나타내는 미분 프로파일 생성하도록 구성될 수 있다.
프로파일 생성부(110)는 배터리의 전압을 기준으로 배터리의 용량을 미분하여 미분 용량(dQ/dV)를 산출할 수 있다. 그리고, 프로파일 생성부(110)는 대응되는 배터리의 전압과 미분 용량을 서로 맵핑하여, 전압과 미분 용량 간의 대응 관계를 나타내는 미분 프로파일을 생성할 수 있다.
도 2는 본 발명의 일 실시예에 따른 제1 미분 프로파일(DP1) 및 기준 프로파일(R)을 개략적으로 도시한 도면이다. 도 3은 본 발명의 일 실시예에 따른 제2 미분 프로파일(DP2) 및 기준 프로파일(R)을 개략적으로 도시한 도면이다.
예컨대, 도 2 및 도 3을 참조하면, 프로파일 생성부(110)에 의해 생성되는 제1 미분 프로파일(DP1) 및 제2 미분 프로파일(DP2)은 X를 전압으로 설정하고 Y를 미분 용량으로 설정한 경우의 X-Y 그래프로 표현될 수 있다.
제어부(120)는 상기 프로파일 생성부(110)로부터 상기 미분 프로파일을 수신하도록 구성될 수 있다.
예컨대, 제어부(120)와 프로파일 생성부(110)는 통신 가능하도록 서로 연결될 수 있다. 프로파일 생성부(110)는 생성한 미분 프로파일을 제어부(120)로 송신하고, 제어부(120)는 프로파일 생성부(110)로부터 미분 프로파일 수신할 수 있다.
제어부(120)는 상기 미분 프로파일에서 타겟 피크를 결정하도록 구성될 수 있다.
구체적으로, 미분 프로파일에는 복수의 피크가 포함될 수 있다. 여기서, 피크는 전압에 대한 미분 용량의 순간 변화율이 0인 지점으로, 피크를 기준으로 상기 순간 변화율이 양에서 음으로 변하는 지점일 수 있다. 즉, 피크는 미분 프로파일에서 위로 볼록한 개형을 띠는 지점일 수 있다.
제어부(120)는 미분 프로파일에 포함된 복수의 피크 중 어느 하나를 타겟 피크로 결정할 수 있다.
바람직하게, 상기 제어부(120)는, 상기 미분 프로파일에서 상기 기준 피크(RP)의 전압을 기준으로 소정의 전압 구간 내에서 상기 타겟 피크를 결정하도록 구성될 수 있다. 예컨대, 제어부(120)는 기준 피크(RP)의 전압을 기준으로 -0.1V 내지 +0.1V 구간 내에서 타겟 피크를 결정할 수 있다. 즉, 기준 피크(RP)의 전압이 3.45V라면, 3.35V 내지 3.55V 구간 내에서 타겟 피크를 결정할 수 있다.
예컨대, 도 2의 실시예에서, 제어부(120)는 제1 미분 프로파일(DP1)에서 복수의 피크를 결정할 수 있다. 그리고, 제어부(120)는 결정한 복수의 피크 중 전압이 기준 피크(RP)의 전압을 기준으로 소정의 전압 구간 내에 포함된 제1 타겟 피크(TP1)를 결정할 수 있다.
다른 예로, 도 3의 실시예에서, 제어부(120)는 제2 미분 프로파일(DP2)에서 복수의 피크를 결정할 수 있다. 그리고, 제어부(120)는 결정한 복수의 피크 중 전압이 기준 피크(RP)의 전압을 기준으로 소정의 전압 구간 내에 포함된 제2 타겟 피크(TP2)를 결정할 수 있다.
제어부(120)는 상기 배터리에 대해 미리 설정된 기준 프로파일(R)의 기준 피크(RP)와 상기 결정된 타겟 피크 간의 전압을 비교하도록 구성될 수 있다.
즉, 제어부(120)는 기준 피크(RP)에 대응되는 전압과 타겟 피크에 대응되는 전압의 대소를 비교할 수 있다.
바람직하게, 제어부(120)는 타겟 피크의 전압이 기준 피크(RP)의 전압보다 미리 설정된 기준 전압 이상 차이가 나는지 여부를 판단할 수 있다. 예컨대, 배터리의 전압 및 용량이 측정될 때, 노이즈 등으로 인한 측정 오차로 인해 타겟 피크의 전압과 실제 전압에 오차가 발생될 수 있다. 따라서, 제어부(120)는 이러한 오차를 감안하여, 타겟 피크의 전압이 기준 피크(RP)의 전압보다 기준 전압 이상인지 여부 또는 이하인지 여부를 판단할 수 있다.
예컨대, 도 2의 실시예에서, 제어부(120)는 기준 피크(RP)와 제1 타겟 피크(TP1)의 전압의 대소를 비교하여, 제1 타겟 피크(TP1)의 전압이 기준 피크(RP)의 전압보다 큰 것으로 판단할 수 있다.
다른 예로, 도 3의 실시예에서, 제어부(120)는 기준 피크(RP)와 제2 타겟 피크(TP2)의 전압의 대소를 비교하여, 제2 타겟 피크(TP1)의 전압이 기준 피크(RP)의 전압보다 작은 것으로 판단할 수 있다.
제어부(120)는 비교 결과에 기반하여 상기 배터리에 대한 부반응 발생 여부를 판단하도록 구성될 수 있다.
구체적으로, 제어부(120)는 기준 피크와 타겟 피크 간의 전압의 대소 비교 결과에 따라, 상기 배터리에 음극 부반응 발생 여부 또는 양극 부반응 발생 여부를 판단하도록 구성될 수 있다.
보다 구체적으로, 상기 타겟 피크의 전압이 상기 기준 피크의 전압을 초과하는 경우, 제어부(120)는 상기 배터리에 상기 음극 부반응이 발생된 것으로 판단하도록 구성될 수 있다.
반대로, 상기 타겟 피크의 전압이 상기 기준 피크의 전압 미만인 경우, 제어부(120)는 상기 배터리에 상기 양극 부반응이 발생된 것으로 판단하도록 구성될 수 있다.
예컨대, 도 2의 실시예에서, 제1 타겟 피크(TP1)의 전압은 기준 피크(RP)의 전압을 초과할 수 있다. 따라서, 제어부(120)는 제1 미분 프로파일(DP1)에 대응되는 배터리에 음극 부반응이 발생된 것으로 판단할 수 있다.
다른 예로, 도 3의 실시예에서, 제2 타겟 피크(TP2)의 전압은 기준 피크(RP)의 전압 미만일 수 있다. 따라서, 제어부(120)는 제2 미분 프로파일(DP2)에 대응되는 배터리에 양극 부반응이 발생된 것으로 판단할 수 있다.
본 발명의 일 실시예에 따른 배터리 진단 장치(100)는 미분 프로파일에 포함된 하나의 피크의 거동에 기반하여, 배터리에 대한 부반응 발생 여부 및 부반응의 종류(양극 부반응 또는 음극 부반응)를 비파괴적으로 신속하게 진단할 수 있는 장점이 있다.
한편, 배터리 진단 장치(100)에 구비된 제어부(120)는 본 발명에서 수행되는 다양한 제어 로직들을 실행하기 위해 당업계에 알려진 프로세서, ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 레지스터, 통신 모뎀, 데이터 처리 장치 등을 선택적으로 포함할 수 있다. 또한, 상기 제어 로직이 소프트웨어로 구현될 때, 상기 제어부(120)는 프로그램 모듈의 집합으로 구현될 수 있다. 이때, 프로그램 모듈은 메모리에 저장되고, 제어부(120)에 의해 실행될 수 있다. 상기 메모리는 제어부(120) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 제어부(120)와 연결될 수 있다.
또한, 배터리 진단 장치(100)는 저장부(130)를 더 포함할 수 있다. 저장부(130)는 배터리 진단 장치(100)의 각 구성요소가 동작 및 기능을 수행하는데 필요한 데이터나 프로그램 또는 동작 및 기능이 수행되는 과정에서 생성되는 데이터 등을 저장할 수 있다. 저장부(130)는 데이터를 기록, 소거, 갱신 및 독출할 수 있다고 알려진 공지의 정보 저장 수단이라면 그 종류에 특별한 제한이 없다. 일 예시로서, 정보 저장 수단에는 RAM, 플래쉬 메모리, ROM, EEPROM, 레지스터 등이 포함될 수 있다. 또한, 저장부(130)는 제어부(120)에 의해 실행 가능한 프로세스들이 정의된 프로그램 코드들을 저장할 수 있다.
예컨대, 저장부(130)는 프로파일 생성부(110)가 획득한 배터리 프로파일과 프로파일 생성부(110)에 의해 생성된 미분 프로파일을 저장할 수 있다. 그리고, 제어부(120)는 프로파일 생성부(110)로부터 미분 프로파일을 직접 수신할 수도 있고, 저장부(130)에 접근(Access)하여 미분 프로파일을 획득할 수도 있다.
이하에서는, 배터리에 부반응이 발생된 것으로 판단된 경우, 제어부(120)가 배터리에 발생된 부반응의 원인을 구체적으로 진단하는 내용에 대해 설명한다.
상기 제어부(120)는, 상기 음극 부반응이 발생된 것으로 판단된 경우, 상기 배터리에 포함된 전해질 중 일부가 분해된 것으로 판단하도록 구성될 수 있다.
구체적으로, 제어부(120)는 배터리에 포함된 전해질 중 일부가 환원 분해되어, 음극 부반응이 발생된 것으로 판단할 수 있다.
음극 부반응에 대한 일 실시예로, 상기 제어부(120)는, 상기 전해질 중 일부가 분해되어 상기 배터리의 음극에 리튬이 석출된 것으로 판단하도록 구성될 수 있다. 즉, 상기 제어부(120)는, 상기 음극 부반응이 발생된 것으로 판단된 경우, 상기 배터리의 음극에 리튬이 석출된 것으로 판단하도록 구성될 수 있다.
제어부(120)는 타겟 피크의 전압이 기준 피크(RP)의 전압을 초과한 경우, 배터리에 음극 부반응이 발생되었으며, 음극 부반응은 전해질 중 일부의 환원 분해에 따른 리튬 플레이팅(Lithium plating)이 원인인 것으로 판단할 수 있다.
구체적으로, 배터리의 음극에 리튬 플레이팅이 발생된 경우, 배터리의 고SOC 구간(예컨대, SOC 90% 내지 100% 구간)에서 음극 용량이 손실될 수 있다. 즉, 배터리의 음극에 금속 리튬이 석출되어, 고SOC 구간에서 음극 용량이 손실될 수 있다. 이 경우, 전압 보상을 위해(배터리의 전압을 유지하기 위해), 배터리를 충전하는 경우, 배터리의 음극의 저SOC 구간(예컨대, SOC 0% 내지 10% 구간)의 용량이 더 사용될 수 있다. 이러한 원인에 기인하여, 타겟 피크에 대응되는 전압은 고전압 측으로 시프트(Shift)되어, 기준 전압보다 클 수 있다.
즉, 음극 부반응의 발생으로 인하여 배터리 프로파일의 개형이 변경될 수 있다. 또한, 개형이 변형된 배터리 프로파일에 대응되는 미분 프로파일에 포함되는 타겟 피크에 대응되는 전압은 고전압 측으로 시프트될 수 있다.
도 4는 본 발명의 일 실시예에 따른 제1 미분 프로파일(DP1)에 대응되는 배터리 프로파일을 개략적으로 도시한 도면이다.
도 4의 실시예에서, 제1 배터리 프로파일(BP1), 제1 음극 프로파일(NP1) 및 제1 양극 프로파일(PP1)은 BOL(Beginning of life) 상태의 배터리에 대한 프로파일일 수 있다. 그리고, 제2 배터리 프로파일(BP2) 및 제2 양극 프로파일(PP2)은 MOL(Middle of life) 상태의 배터리에 대한 프로파일일 수 있다. 즉, 배터리의 음극에 리튬 플레이팅이 발생된 경우, 배터리의 고SOC 구간(R1)에서의 음극 용량 손실에 의해 제1 양극 프로파일(PP1)은 제2 양극 프로파일(PP2)과 같이 변경되고, 제1 배터리 프로파일(BP1)은 제2 배터리 프로파일(BP2)과 같이 변경될 수 있다.
그리고, 도 4의 실시예에서, 제1 SOC(S1)은 BOL 상태 및 MOL 상태의 배터리에 대응되는 타겟 피크에 대한 SOC일 수 있다. 또한, 제1 전압(V1)은 BOL 상태의 배터리에 대응되는 타겟 피크에 대한 전압이고, 제2 전압(V2)은 MOL 상태의 배터리에 대응되는 타겟 피크에 대한 전압일 수 있다.
즉, 제1 SOC(S1)에 대응되는 제1 배터리 프로파일(BP1)의 전압은 제1 전압(V1)이고, 제1 SOC(S1)에 대응되는 제2 배터리 프로파일(BP2)의 전압은 제2 전압(V2)일 수 있다.
구체적으로, 도 2 및 도 4를 참조하면, 도 4의 제1 전압(V1)은 도 2의 기준 피크(RP)에 대응되는 전압이고, 제2 전압(V2)은 도 2의 제1 타겟 피크(TP1)에 대응되는 전압일 수 있다. 즉, 배터리의 음극에 리튬 플레이팅이 발생되면, 제1 타겟 피크(TP1)에 대응되는 전압이 고전압 측으로 시프트되기 때문에, 제1 타겟 피크(TP1)의 전압이 기준 피크(RP)의 전압보다 클 수 있다.
따라서, 제어부(120)는 타겟 피크의 전압이 기준 전압을 초과하면, 배터리에 음극 부반응이 발생된 것으로 판단할 수 있음은 물론이고, 음극 부반응의 원인을 음극에 발생된 리튬 플레이팅으로 구체적으로 진단할 수 있다.
상기 제어부(120)는, 상기 양극 부반응이 발생된 것으로 판단된 경우, 상기 배터리에 포함된 전해질 중 일부가 분해된 것으로 판단하도록 구성될 수 있다.
구체적으로, 제어부(120)는 배터리에 포함된 전해질 중 일부가 산화 분해되어, 양극 부반응이 발생된 것으로 판단할 수 있다.
일반적으로, 배터리가 고온에 장기간 노출된 경우, 배터리에 포함된 전해질이 분해되고, 분해된 전해질로부터 양극 측으로 리튬 이온이 공급될 수 있다. 이 경우, 양극은 음극 및 분해된 전해질로부터 리튬 이온을 공급받을 수 있다. 따라서, 음극 및 분해된 전해질로부터의 리튬 이온 공급에 의해, 배터리의 양극 고전압 측의 용량이 사용되지 못할 수 있다.
양극 부반응에 대한 일 실시예로, 제어부(120)는 상기 전해질 중 일부가 분해되어 상기 배터리의 양극의 비사용 용량이 증가된 것으로 판단하도록 구성될 수 있다.
구체적으로, 배터리에 포함된 전해질의 일부가 산화 분해된 경우, 분해된 전해질에서 방출된 리튬 이온이 양극에 공급될 수 있다. 이 경우, 고SOC 구간(예컨대, SOC 90% 내지 100% 구간)에서 양극이 자가 방전되기 때문에, 배터리 충전 시 양극의 고SOC 구간이 사용되지 못하는 양극 부반응이 발생될 수 있다.
또한, 양극 부반응에 의해 고SOC 구간에서 양극이 사용되지 못하게 됨으로써, 배터리 충전 시, 전압 보상을 위하여 양극의 저SOC 구간이 더 사용될 수 있다. 따라서, 양극 부반응에 의해 배터리 프로파일의 개형이 변경될 수 있다. 또한, 개형이 변형된 배터리 프로파일에 대응되는 미분 프로파일에 포함되는 타겟 피크에 대응되는 전압이 저전압 측으로 시프트될 수 있다.
도 5는 본 발명의 일 실시에에 따른 제2 미분 프로파일(DP2)에 대응되는 배터리 프로파일을 개략적으로 도시한 도면이다.
도 5의 실시예에서, 제1 배터리 프로파일(BP1), 제1 음극 프로파일(NP1) 및 제1 양극 프로파일(PP1)은 BOL 상태의 배터리에 대한 프로파일일 수 있다. 그리고, 제2 배터리 프로파일(BP2), 제2 음극 프로파일(NP2) 및 제2 양극 프로파일(PP2)은 MOL 상태의 배터리에 대한 프로파일일 수 있다. 즉, 배터리의 양극 부반응이 발생된 경우, 고SOC 구간(R2)에서의 양극이 사용되지 못함으로써, 제1 양극 프로파일(PP1)은 제2 양극 프로파일(PP2)과 같이 변경되고, 제1 음극 프로파일(NP1)은 제2 음극 프로파일(NP2)과 같이 변경되며, 제1 배터리 프로파일(BP1)은 제2 배터리 프로파일(BP2)과 같이 변경될 수 있다.
도 5의 실시예에서, 제1 SOC(S1) 및 제1 전압(V1)은 BOL 상태의 배터리에 대응되는 타겟 피크에 대한 SOC 및 전압이고, 제2 SOC(S2) 및 제2 전압(V2)은 MOL 상태의 배터리에 대응되는 타겟 피크에 대한 SOC 및 전압일 수 있다.
한편, 도 5의 실시예에서, 고SOC 구간(R2)에서 제2 양극 프로파일(PP2), 제2 음극 프로파일(NP2) 및 제2 배터리 프로파일(BP2)이 점선으로 표시된 것은, 고SOC 구간(R2)에서 양극이 사용되지 못함을 나타내는 것이다.
즉, 제1 SOC(S1)에 대응되는 제1 배터리 프로파일(BP1)의 전압은 제1 전압(V1)이고, 제2 SOC(S2)에 대응되는 제2 배터리 프로파일(BP2)의 전압은 제2 전압(V2)일 수 있다.
구체적으로, 도 3 및 도 5를 참조하면, 도 5의 제1 전압(V1)은 도 3의 기준 피크(RP)에 대응되는 전압이고, 제2 전압(V2)은 도 3의 제2 타겟 피크(TP2)에 대응되는 전압일 수 있다. 즉, 배터리의 양극에 부반응이 발생되면, 제2 타겟 피크(TP2)에 대응되는 전압이 저전압 측으로 시프트되기 때문에, 제2 타겟 피크(TP2)의 전압이 기준 피크(RP)의 전압보다 작을 수 있다.
따라서, 제어부(120)는 타겟 피크의 전압이 기준 전압 미만이면, 배터리에 양극 부반응이 발생된 것으로 판단할 수 있음은 물론이고, 양극 부반응의 원인을 배터리에 포함된 전해질 중 일부가 산화 분해된 것으로 구체적으로 진단할 수 있다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 배터리 진단 장치(100)는 온도 측정부(140)를 더 포함할 수 있다.
온도 측정부(140)는 배터리의 온도를 측정하도록 구성될 수 있다. 예컨대, 온도 측정부(140)는 배터리의 온도를 주기적으로 측정하고, 온도 측정 신호가 입력되면 온도 측정 주기가 아니더라도 배터리의 온도를 측정할 수 있다.
온도 측정부(140)에 의해 측정된 배터리의 온도 정보는 저장부(130)에 누적 저장될 수 있다.
제어부(120)는 저장부(130)에 저장된 배터리의 온도 정보를 고려하여, 배터리가 장기간 고온에 노출되었는지 여부를 판단할 수 있다. 만약, 배터리가 장기간 기준 온도 이상인 상태를 유지한 경우, 제어부(120)는 배터리에 발생된 양극 부반응의 원인을 고온 노출에 따른 전해질의 분해에 기반한 것으로 판단할 수 있다.
한편, 상기 제어부는, 상기 배터리에 부반응이 발생된 것으로 판단된 경우, 상기 배터리에 대한 충전 C-rate(Current rate), 가용 SOC 및 상한 온도 중 적어도 하나를 포함하는 사용 조건을 변경하도록 구성될 수 있다.
구체적으로, 상기 음극 부반응이 발생된 것으로 판단된 경우, 상기 제어부(120)는 상기 배터리에 대한 충전 C-rate의 상한을 감소시키도록 구성될 수 있다.
앞서 설명한 바와 같이, 제어부(120)는 음극 부반응의 발생 원인을 배터리의 음극에 리튬 플레이팅이 발생된 것으로 판단할 수 있다. 따라서, 제어부(120)는 음극 플레이팅이 더 이상 발생되는 것을 방지하기 위하여, 배터리에 대한 충전 C-rate의 상한을 감소시킬 수 있다.
바람직하게, 상기 제어부(120)는 리튬 플레이팅이 발생되는 것을 방지하기 위하여, 상기 배터리에 대한 충전 C-rate의 상한뿐만 아니라, 방전 C-rate의 상한도 감소시킬 수도 있다.
또한, 상기 양극 부반응이 발생된 것으로 판단된 경우, 상기 제어부(120)는 상기 배터리에 대한 가용 SOC의 상한을 감소시키도록 구성될 수 있다.
앞서 설명한 바와 같이, 제어부(120)는 양극 부반응의 발생 원인을 배터리에 포함된 전해질의 산화 분해로 판단할 수 있다. 따라서, 제어부(120)는 전해액이 더 이상 분해되는 것을 방지하기 위하여, 배터리의 가용 SOC의 상한을 감소시킬 수 있다.
또한, 상기 배터리에 상기 부반응이 발생된 것으로 판단된 경우, 상기 제어부(120)는 상기 배터리에 대한 상한 온도를 감소시키도록 구성될 수 있다.
즉, 배터리에 음극 부반응 또는 양극 부반응이 발생된 것으로 판단된 경우, 제어부(120)는 부반응 발생을 억제하기 위하여 배터리에 대한 상한 온도를 감소시키도록 구성될 수 있다.
따라서, 본 발명의 일 실시예에 따른 배터리 진단 장치(100)는 배터리에 대한 부반응 발생 여부 및 부반응 종류를 구체적으로 진단하고, 진단 결과에 따라 배터리에 대한 최적의 사용 조건을 설정할 수 있는 장점이 있다. 배터리 진단 장치(100)에 의해 설정된 사용 조건으로 배터리가 운용되는 경우, 배터리에 부반응이 발생되는 것이 억제(또는 지연)될 수 있으므로, 결과적으로 배터리의 수명이 증대될 수 있다.
본 발명의 일 실시예에 따른 배터리 진단 장치(100)는, BMS(Battery Management System)에 적용될 수 있다. 즉, 본 발명에 따른 BMS는, 상술한 배터리 진단 장치(100)를 포함할 수 있다. 이러한 구성에 있어서, 배터리 진단 장치(100)의 각 구성요소 중 적어도 일부는, 종래 BMS에 포함된 구성의 기능을 보완하거나 추가함으로써 구현될 수 있다. 예를 들어, 배터리 진단 장치(100)의 프로파일 생성부(110), 제어부(120), 저장부(130) 및 온도 측정부(140)는 BMS의 구성요소로서 구현될 수 있다.
또한, 본 발명의 일 실시예에 따른 배터리 진단 장치(100)는, 배터리 팩에 구비될 수 있다. 즉, 본 발명에 따른 배터리 팩은, 상술한 배터리 진단 장치(100) 및 하나 이상의 배터리 셀을 포함할 수 있다. 또한, 배터리 팩은, 전장품(릴레이, 퓨즈 등) 및 케이스 등을 더 포함할 수 있다.
즉, 배터리 팩에 포함된 배터리 진단 장치(100)에 의해 배터리에 대한 최적의 사용 조건이 설정되고, 설정된 사용 조건에 따라 배터리 팩에 포함된 배터리가 운용될 수 있다. 따라서, 배터리에 부반응이 발생되는 것이 방지되어, 배터리의 수명이 증대될 수 있다.
또한, 본 발명의 일 실시예에 따른 배터리 진단 장치(100)는, 배터리 검사 장치에 포함될 수 있다. 배터리 검사 장치는 배터리에 대한 부반응 발생 여부 및 부반응 종류를 진단하고, 배터리에 대한 최적의 사용 조건을 설정할 수 있다. 배터리 검사 장치에 의해 설정된 사용 조건은 서버 및/또는 배터리가 구비될 배터리 팩의 BMS에 저장될 수 있다. 따라서, 배터리는 설정된 사용 조건에 따라 운용될 수 있다.
도 6은 본 발명의 다른 실시예에 따른 배터리 진단 방법을 개략적으로 도시한 도면이다.
바람직하게, 배터리 진단 방법의 각 단계는 배터리 진단 장치(100)에 의해 수행될 수 있다. 이하에서는, 설명의 편의를 위해, 앞서 설명한 내용과 중복되는 내용은 생략하거나 간략히 설명한다.
도 6을 참조하면, 배터리 진단 방법은 배터리 프로파일 획득 단계(S100), 미분 프로파일 생성 단계(S200), 타겟 피크 결정 단계(S300), 전압 비교 단계(S400), 부반응 발생 여부 판단 단계(S500) 및 배터리 사용 조건 설정 단계(S600)를 포함할 수 있다.
배터리 프로파일 획득 단계(S100)는 배터리의 전압 및 용량 간의 대응 관계를 나타내는 배터리 프로파일 획득하는 단계로서, 프로파일 생성부(110)에 의해 수행될 수 있다.
예컨대, 도 4의 실시예에서, 프로파일 생성부(110)는 제2 배터리 프로파일(BP2)을 획득할 수 있다.
다른 예로, 도 5의 실시예에서, 프로파일 생성부(110)는 제2 배터리 프로파일(BP2)을 획득할 수 있다.
미분 프로파일 생성 단계(S200)는 상기 배터리 프로파일 획득 단계(S100)에서 획득된 배터리 프로파일에 기반하여 상기 전압과 상기 전압에 대한 미분 용량 간의 대응 관계를 나타내는 미분 프로파일 생성하는 단계로서, 프로파일 생성부(110)에 의해 수행될 수 있다.
예컨대, 도 2의 실시예에서, 프로파일 생성부(110)는 획득한 배터리 프로파일에 기반하여, 제1 미분 프로파일(DP1)을 생성할 수 있다.
다른 예로, 도 3의 실시예에서, 프로파일 생성부(110)는 획득한 배터리 프로파일에 기반하여, 제2 미분 프로파일(DP2)을 생성할 수 있다.
타겟 피크 결정 단계(S300)는 상기 미분 프로파일 생성 단계(S200)에서 생성된 상기 미분 프로파일에서 타겟 피크를 결정하는 단계로서, 제어부(120)에 의해 수행될 수 있다.
예컨대, 도 2의 실시예에서, 제어부(120)는 제1 미분 프로파일(DP1)에서 기준 피크(RP)의 전압으로부터 소정의 전압 구간 내에서 제1 타겟 피크(TP1)를 결정할 수 있다.
다른 예로, 도 3의 실시예에서, 제어부(120)는 제2 미분 프로파일(DP2)에서 기준 피크(RP)의 전압으로부터 소정의 전압 구간 내에서 제2 타겟 피크(TP2)를 결정할 수 있다.
전압 비교 단계(S400)는 상기 배터리에 대해 미리 설정된 기준 프로파일(R)의 기준 피크(RP)와 상기 결정된 타겟 피크 간의 전압을 비교하는 단계로서, 제어부(120)에 의해 수행될 수 있다.
예컨대, 도 2의 실시예에서, 제어부(120)는 제1 타겟 피크(TP1)에 대응되는 전압이 기준 피크(RP)에 대응되는 전압보다 큰 것으로 판단할 수 있다.
다른 예로, 도 3의 실시예에서, 제어부(120)는 제2 타겟 피크(TP2)에 대응되는 전압이 기준 피크(RP)에 대응되는 전압보다 작은 것으로 판단할 수 있다.
부반응 발생 여부 판단 단계(S500)는 상기 전압 비교 단계(S400)의 비교 결과에 기반하여 상기 배터리에 대한 음극 부반응 발생 여부 또는 양극 부반응 발생 여부를 판단하는 단계로서, 제어부(120)에 의해 수행될 수 있다.
구체적으로, 제어부(120)는, 타겟 피크의 전압이 기준 피크의 전압을 초과하는 경우, 배터리에 음극 부반응이 발생된 것으로 판단할 수 있다. 반대로, 제어부(120)는 타겟 피크의 전압이 기준 피크의 전압 미만인 경우, 배터리에 양극 부반응이 발생된 것으로 판단할 수 있다.
예컨대, 도 2의 실시예에서, 제1 타겟 피크(TP1)의 전압이 기준 피크(RP)의 전압을 초과하였으므로, 제어부(120)는 배터리에 음극 부반응이 발생된 것으로 판단할 수 있다.
다른 예로, 도 3의 실시예에서, 제2 타겟 피크(TP2)의 전압이 기준 피크(RP)의 전압 미만이므로, 제어부(120)는 배터리에 양극 부반응이 발생된 것으로 판단할 수 있다.
부반응 발생 여부 판단 단계(S500) 이후, 배터리 사용 조건 설정 단계(S600)가 더 포함될 수 있다.
배터리 사용 조건 설정 단계(S600)는 상기 배터리에 대한 부반응이 발생된 것으로 판단된 경우, 상기 배터리에 대한 사용 조건을 설정하는 단계로서, 제어부(120)에 의해 수행될 수 있다.
구체적으로, 제어부(120)는, 배터리에 부반응이 발생된 것으로 판단된 경우, 배터리에 대한 충전 C-rate, 가용 SOC 및 상한 온도 중 적어도 하나를 포함하는 사용 조건을 변경할 수 있다. 따라서, 변경된 사용 조건에 따라 배터리가 운용됨으로써, 배터리의 수명이 증대될 수 있다.
이상에서 설명한 본 발명의 실시예는 장치 및 방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하는 프로그램 또는 그 프로그램이 기록된 기록 매체를 통해 구현될 수도 있으며, 이러한 구현은 앞서 설명한 실시예의 기재로부터 본 발명이 속하는 기술분야의 전문가라면 쉽게 구현할 수 있는 것이다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
또한, 이상에서 설명한 본 발명은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니라, 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수 있다.
(부호의 설명)
100: 배터리 진단 장치
110: 프로파일 생성부
120: 제어부
130: 저장부
140: 온도 측정부

Claims (11)

  1. 배터리의 전압 및 용량 간의 대응 관계를 나타내는 배터리 프로파일 획득하고, 획득된 배터리 프로파일에 기반하여 상기 전압과 상기 전압에 대한 미분 용량 간의 대응 관계를 나타내는 미분 프로파일 생성하도록 구성된 프로파일 생성부; 및
    상기 프로파일 생성부로부터 상기 미분 프로파일을 수신하고, 상기 미분 프로파일에서 타겟 피크를 결정하며, 상기 배터리에 대해 미리 설정된 기준 프로파일의 기준 피크와 상기 결정된 타겟 피크 간의 전압을 비교하고, 비교 결과에 기반하여 상기 배터리에 대한 부반응 발생 여부를 판단하도록 구성된 제어부를 포함하는 것을 특징으로 하는 배터리 진단 장치.
  2. 제1항에 있어서,
    상기 제어부는,
    상기 기준 피크와 상기 타겟 피크 간의 전압의 대소를 비교하고, 비교 결과에 따라 상기 배터리에 음극 부반응 발생 여부 또는 양극 부반응 발생 여부를 판단하도록 구성된 것을 특징으로 하는 배터리 진단 장치.
  3. 제2항에 있어서,
    상기 제어부는,
    상기 타겟 피크의 전압이 상기 기준 피크의 전압을 초과하는 경우, 상기 배터리에 상기 음극 부반응이 발생된 것으로 판단하고,
    상기 타겟 피크의 전압이 상기 기준 피크의 전압 미만인 경우, 상기 배터리에 상기 양극 부반응이 발생된 것으로 판단하도록 구성된 것을 특징으로 하는 배터리 진단 장치.
  4. 제2항에 있어서,
    상기 제어부는,
    상기 음극 부반응 또는 상기 양극 부반응이 발생된 것으로 판단된 경우, 상기 배터리에 포함된 전해질 중 일부가 분해된 것으로 판단하도록 구성된 것을 특징으로 하는 배터리 진단 장치.
  5. 제2항에 있어서,
    상기 제어부는,
    상기 배터리에 부반응이 발생된 것으로 판단된 경우, 상기 배터리에 대한 충전 C-rate, 가용 SOC 및 상한 온도 중 적어도 하나를 포함하는 사용 조건을 변경하도록 구성된 것을 특징으로 하는 배터리 진단 장치.
  6. 제5항에 있어서,
    상기 제어부는,
    상기 음극 부반응이 발생된 것으로 판단된 경우, 상기 배터리에 대한 충전 C-rate의 상한을 감소시키고,
    상기 양극 부반응이 발생된 것으로 판단된 경우, 상기 배터리에 대한 가용 SOC의 상한을 감소시키도록 구성된 것을 특징으로 하는 배터리 진단 장치.
  7. 제5항에 있어서,
    상기 제어부는,
    상기 배터리에 상기 부반응이 발생된 것으로 판단된 경우, 상기 배터리에 대한 상한 온도를 감소시키도록 구성된 것을 특징으로 하는 배터리 진단 장치.
  8. 제1항에 있어서,
    상기 제어부는,
    상기 미분 프로파일에서 상기 기준 피크의 전압을 기준으로 소정의 전압 구간 내에서 상기 타겟 피크를 결정하도록 구성된 것을 특징으로 하는 배터리 진단 장치.
  9. 제1항 내지 제8항 중 어느 한 항에 따른 배터리 진단 장치를 포함하는 배터리 팩.
  10. 제1항 내지 제8항 중 어느 한 항에 따른 배터리 진단 장치를 포함하는 배터리 검사 장치.
  11. 배터리의 전압 및 용량 간의 대응 관계를 나타내는 배터리 프로파일 획득하는 배터리 프로파일 획득 단계;
    상기 배터리 프로파일 획득 단계에서 획득된 배터리 프로파일에 기반하여 상기 전압과 상기 전압에 대한 미분 용량 간의 대응 관계를 나타내는 미분 프로파일 생성하는 미분 프로파일 생성 단계;
    상기 미분 프로파일 생성 단계에서 생성된 상기 미분 프로파일에서 타겟 피크를 결정하는 타겟 피크 결정 단계;
    상기 배터리에 대해 미리 설정된 기준 프로파일의 기준 피크와 상기 결정된 타겟 피크 간의 전압을 비교하는 전압 비교 단계; 및
    상기 전압 비교 단계의 비교 결과에 기반하여 상기 배터리에 대한 부반응 발생 여부를 부반응 발생 여부 판단 단계를 포함하는 것을 특징으로 하는 배터리 진단 방법.
PCT/KR2021/016581 2020-11-13 2021-11-12 배터리 진단 장치 및 방법 WO2022103213A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/920,863 US20230160971A1 (en) 2020-11-13 2021-11-12 Battery Diagnosing Apparatus and Method
EP21892380.3A EP4141462A4 (en) 2020-11-13 2021-11-12 BATTERY DIAGNOSTIC DEVICE AND BATTERY DIAGNOSTIC METHOD
CN202180034605.0A CN115552265A (zh) 2020-11-13 2021-11-12 电池诊断设备和方法
JP2022562374A JP7419647B2 (ja) 2020-11-13 2021-11-12 バッテリー診断装置及び方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0152317 2020-11-13
KR1020200152317A KR20220065604A (ko) 2020-11-13 2020-11-13 배터리 진단 장치 및 방법

Publications (1)

Publication Number Publication Date
WO2022103213A1 true WO2022103213A1 (ko) 2022-05-19

Family

ID=81601611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/016581 WO2022103213A1 (ko) 2020-11-13 2021-11-12 배터리 진단 장치 및 방법

Country Status (6)

Country Link
US (1) US20230160971A1 (ko)
EP (1) EP4141462A4 (ko)
JP (1) JP7419647B2 (ko)
KR (1) KR20220065604A (ko)
CN (1) CN115552265A (ko)
WO (1) WO2022103213A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102600139B1 (ko) * 2022-07-11 2023-11-08 주식회사 엘지에너지솔루션 배터리 관리 장치 및 방법
KR102694988B1 (ko) * 2022-11-01 2024-08-12 주식회사 엘지에너지솔루션 배터리 진단 장치 및 방법
KR102666899B1 (ko) * 2023-05-12 2024-05-17 주식회사 비엘비 전압의 특성 변화를 기반으로 하는 배터리 내적 상태 정밀 진단시스템 및 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130142884A (ko) * 2012-06-19 2013-12-30 가부시끼가이샤 히다치 세이사꾸쇼 이차전지의 검사 시스템, 충방전기, 및 검사 방법
KR20160026766A (ko) * 2014-09-01 2016-03-09 요코가와 덴키 가부시키가이샤 2차 전지 용량 측정 시스템 및 2차 전지 용량 측정 방법
JP2017133870A (ja) * 2016-01-26 2017-08-03 トヨタ自動車株式会社 リチウムイオン二次電池の異常劣化検知装置および異常劣化検知方法
KR20180057275A (ko) * 2016-11-22 2018-05-30 삼성전자주식회사 배터리 제어 방법 및 장치
CN109946616A (zh) * 2019-04-26 2019-06-28 厦门金龙联合汽车工业有限公司 一种磷酸铁锂电池系统容量不均衡程度的估算方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8653793B2 (en) * 2009-09-25 2014-02-18 Toyota Jidosha Kabushiki Kaisha Secondary battery system
JP2011228213A (ja) * 2010-04-22 2011-11-10 Toyota Motor Corp 二次電池の正極活物質割れ判定方法と二次電池の制御方法,および二次電池の正極活物質割れ判定装置と二次電池の制御装置,これらの装置を搭載する車両
EP2770575B1 (en) * 2011-10-20 2020-04-01 Toyota Jidosha Kabushiki Kaisha Apparatus and method for controlling lithium ion secondary battery
EP2990818B1 (en) * 2014-09-01 2019-11-27 Yokogawa Electric Corporation Secondary battery capacity measurement system and secondary battery capacity measurement method
JP6607167B2 (ja) * 2016-11-03 2019-11-20 トヨタ自動車株式会社 リチウムイオン二次電池の検査方法
JP6981208B2 (ja) * 2017-11-27 2021-12-15 トヨタ自動車株式会社 電池劣化判定システム
FR3101429B1 (fr) * 2019-10-01 2021-09-24 Powerup Procédé de détermination de l'état de santé d'une batterie lithium-ion.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130142884A (ko) * 2012-06-19 2013-12-30 가부시끼가이샤 히다치 세이사꾸쇼 이차전지의 검사 시스템, 충방전기, 및 검사 방법
KR20160026766A (ko) * 2014-09-01 2016-03-09 요코가와 덴키 가부시키가이샤 2차 전지 용량 측정 시스템 및 2차 전지 용량 측정 방법
JP2017133870A (ja) * 2016-01-26 2017-08-03 トヨタ自動車株式会社 リチウムイオン二次電池の異常劣化検知装置および異常劣化検知方法
KR20180057275A (ko) * 2016-11-22 2018-05-30 삼성전자주식회사 배터리 제어 방법 및 장치
CN109946616A (zh) * 2019-04-26 2019-06-28 厦门金龙联合汽车工业有限公司 一种磷酸铁锂电池系统容量不均衡程度的估算方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4141462A4

Also Published As

Publication number Publication date
KR20220065604A (ko) 2022-05-20
EP4141462A1 (en) 2023-03-01
CN115552265A (zh) 2022-12-30
EP4141462A4 (en) 2023-12-06
JP2023522605A (ja) 2023-05-31
JP7419647B2 (ja) 2024-01-23
US20230160971A1 (en) 2023-05-25

Similar Documents

Publication Publication Date Title
WO2022103213A1 (ko) 배터리 진단 장치 및 방법
WO2019199058A1 (ko) 배터리 진단 장치 및 방법
WO2019199057A1 (ko) 배터리 진단 장치 및 방법
WO2019098576A1 (ko) 배터리 여유 용량 추정 장치
WO2019098722A1 (ko) 배터리 저항 추정 장치 및 방법
WO2023008883A1 (ko) 배터리 관리 시스템, 배터리 팩, 전기 차량 및 배터리 관리 방법
WO2022265357A1 (ko) 배터리 soh 추정 장치 및 방법
WO2022158948A2 (ko) 배터리 관리 장치 및 방법
WO2022108344A1 (ko) 배터리 관리 장치 및 방법
WO2022098096A1 (ko) 배터리 진단 장치 및 방법
WO2022035032A1 (ko) 배터리 관리 장치 및 방법
WO2022145822A1 (ko) 배터리 관리 장치 및 방법
WO2021080219A1 (ko) 배터리 퇴화도 진단 장치 및 방법
WO2022145998A1 (ko) 배터리 진단 장치 및 방법
WO2022114826A1 (ko) 배터리 관리 장치 및 방법
WO2022215962A1 (ko) 배터리 진단 장치 및 방법
WO2022124773A1 (ko) 배터리 진단 장치 및 방법
WO2022250390A1 (ko) 배터리 모니터링 장치 및 방법
WO2022231150A1 (ko) 리튬 석출 검출 장치 및 방법
WO2022203322A1 (ko) 배터리 분류 장치 및 방법
WO2023033480A1 (ko) 배터리 진단 시스템 및 방법
WO2022177274A1 (ko) 배터리 상태 진단 장치 및 방법
WO2022154545A1 (ko) 배터리 관리 장치 및 방법
WO2022080746A1 (ko) 배터리 상태 진단 장치 및 방법
WO2022080835A1 (ko) 배터리 진단 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21892380

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022562374

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021892380

Country of ref document: EP

Effective date: 20221121

NENP Non-entry into the national phase

Ref country code: DE