WO2022102998A1 - 파우치셀 커팅 장치 및 파우치셀 제조 방법 - Google Patents

파우치셀 커팅 장치 및 파우치셀 제조 방법 Download PDF

Info

Publication number
WO2022102998A1
WO2022102998A1 PCT/KR2021/014437 KR2021014437W WO2022102998A1 WO 2022102998 A1 WO2022102998 A1 WO 2022102998A1 KR 2021014437 W KR2021014437 W KR 2021014437W WO 2022102998 A1 WO2022102998 A1 WO 2022102998A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
battery cell
cutting
pouch
battery
Prior art date
Application number
PCT/KR2021/014437
Other languages
English (en)
French (fr)
Inventor
김주형
박지수
박신영
박동혁
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to US17/919,690 priority Critical patent/US20230163379A1/en
Priority to CN202180022705.1A priority patent/CN115298883A/zh
Priority to EP21892168.2A priority patent/EP4123797A1/en
Publication of WO2022102998A1 publication Critical patent/WO2022102998A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/38Cutting-out; Stamping-out
    • B26F1/44Cutters therefor; Dies therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/394Gas-pervious parts or elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • H01M50/636Closing or sealing filling ports, e.g. using lids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/38Cutting-out; Stamping-out
    • B26F1/40Cutting-out; Stamping-out using a press, e.g. of the ram type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/38Cutting-out; Stamping-out
    • B26F1/44Cutters therefor; Dies therefor
    • B26F2001/4472Cutting edge section features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/38Cutting-out; Stamping-out
    • B26F1/44Cutters therefor; Dies therefor
    • B26F2001/4481Cutters therefor; Dies therefor having special lateral or edge outlines or special surface shapes, e.g. apertures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/38Cutting-out; Stamping-out
    • B26F1/44Cutters therefor; Dies therefor
    • B26F2001/449Cutters therefor; Dies therefor for shearing, e.g. with adjoining or abutting edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0009Cutting out
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a pouch cell cutting apparatus and a pouch cell manufacturing method, and more particularly, to a pouch cell cutting apparatus and a pouch cell manufacturing method in which the process is simplified.
  • lithium secondary batteries such as lithium ion batteries and lithium ion polymer batteries, which have advantages such as high energy density, discharge voltage, and output stability.
  • the secondary battery is classified into a cylindrical battery and a prismatic battery in which the electrode assembly is embedded in a cylindrical or prismatic metal can, and a pouch-type battery in which the electrode assembly is embedded in a cell case of an aluminum laminate sheet.
  • a vent may occur in the sealing portion of the cell case and the electrode lead due to a high temperature environment and a large amount of gas generated during a long-term cycle test. For this reason, the safety problem of a secondary battery is emerging. In order to reduce the safety problem, it is necessary to improve the sealing quality of the cell case and the electrode lead.
  • An object of the present invention is to provide a pouch cell cutting device and a pouch cell manufacturing method with a simplified process.
  • the pouch cell cutting apparatus includes a top knife and a bottom knife for cutting a sealing part of a battery cell including a cell case and an electrode assembly accommodated in the cell case, Both sides of the upper coat each include protrusions protruding toward the indentations formed on both sides of the lower coat, and the corners of the battery cells are cut by the protrusions.
  • a boundary portion between the upper coat and the lower coat may correspond to a sealing portion of the battery cell, a cut portion of the battery cell may be formed at the boundary portion, and a corner portion and a side portion of the battery cell may be simultaneously cut at the cut portion.
  • a shear angle may be formed in the top view by the protrusion, and a corner portion of the battery cell may be cut to correspond to the shear angle.
  • a side portion of the battery cell may correspond to a portion extending in the longitudinal direction of the battery cell, and an electrode lead protruding from the battery cell may protrude in the longitudinal direction of the battery cell.
  • the battery cell may include a cell body in which the electrode assembly is positioned and a gas pocket connected to the cell body, and the cut portion may include a portion in which the cell body and the gas pocket are connected.
  • a pouch cell manufacturing method comprises the steps of accommodating an electrode assembly in a cell case, injecting an electrolyte solution through a gas pocket portion of the cell case, and comprising: Forming a sealing part by sealing, and cutting the sealing part, wherein the cutting of the sealing part simultaneously cuts a corner part and a side part of the battery cell.
  • the method of manufacturing the pouch cell may further include fixing the position of the battery cell before the step of cutting the sealing part.
  • a side portion of the battery cell may correspond to a portion extending in the longitudinal direction of the battery cell, and an electrode lead protruding from the battery cell may protrude in the longitudinal direction of the battery cell.
  • the sealing part may include a part in which the gas pocket part and the cell body part in which the electrode assembly is located are connected.
  • a corner portion and a side portion of the battery cell may be simultaneously cut, and the corner portion of the battery cell may form an inclination angle with respect to the side portion of the battery cell.
  • the corner and side portions are not separately cut before the cell is side-folded, and the process is simplified by cutting at the same time, and the risk of generating scrap or breaking the insulation can be reduced.
  • FIG. 1 is an exploded perspective view showing a pouch-type battery cell according to an embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating the pouch-type battery cell of FIG. 1 assembled.
  • FIG. 3 is an enlarged cross-sectional view of region P of FIG. 1 .
  • FIGS. 4 and 5 are views illustrating a pouch cell cutting method according to a comparative example of the present invention.
  • FIGS. 6 and 7 are views illustrating a pouch cell cutting method according to an embodiment of the present invention.
  • FIG. 8 is a view showing a pouch cell cutting apparatus according to another embodiment of the present invention.
  • a part of a layer, film, region, plate, etc. when a part of a layer, film, region, plate, etc. is said to be “on” or “on” another part, it includes not only cases where it is “directly on” another part, but also cases where another part is in between. . Conversely, when we say that a part is “just above” another part, we mean that there is no other part in the middle.
  • the reference part means to be located above or below the reference part, and to necessarily mean to be located “on” or “on” in the direction opposite to the gravity not.
  • planar it means when the target part is viewed from above, and "cross-sectional” means when viewed from the side when a cross-section of the target part is vertically cut.
  • FIG. 1 is an exploded perspective view showing a pouch-type battery cell according to an embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating the pouch-type battery cell of FIG. 1 assembled.
  • FIG. 3 is an enlarged cross-sectional view of region P of FIG. 1 .
  • the pouch-type battery cell 100 may be manufactured by accommodating the electrode assembly 200 inside the cell case 300 and then sealing it.
  • the electrode assembly 200 may include a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode.
  • the electrode assembly 200 may be a stack type electrode assembly, a jelly roll type electrode assembly, or a stack/folding type electrode assembly.
  • Each of the positive and negative electrodes may include an electrode tab 210t, and electrode leads 210 and 220 respectively connected to the electrode tab 210t may be exposed to the outside of the cell case 300 .
  • the electrode leads 210 and 220 may be respectively positioned in the sealing part 300S while being covered with the lead film 400 .
  • the cell case 300 is made of a laminate sheet, and may include a resin layer for thermal fusion and a metal layer for preventing material penetration.
  • the cell case 300 may include an upper case 310 and a lower case 320 .
  • the upper case 310 may include an inner resin layer 310a for sealing, a metal layer 310b for preventing material penetration, and an outer resin layer 310c.
  • the layer structure of the upper case 310 described above may be equally applied to the lower case 320 .
  • the lower case 320 may include an inner resin layer, a metal layer, and an outer resin layer.
  • the outer resin layer 310c and the packaging sheet layer may have excellent tensile strength and weather resistance compared to their thickness and exhibit electrical insulation to protect the pouch-type secondary battery from the outside.
  • the outer resin layer 310c may include a polyethylene terephthalate (PET) resin or a nylon resin.
  • PET polyethylene terephthalate
  • the metal layer 310b may prevent air, moisture, etc. from flowing into the pouch-type battery cell 100 .
  • the metal layer 310b may include aluminum (Al).
  • the inner resin layer 310a may be thermally fused to each other by heat and pressure applied while the electrode assembly 200 is embedded.
  • the inner resin layer 310a may include casted polypropylene (CPP) or polypropylene (PP).
  • the concave housing 300ST in which the electrode assembly 200 can be seated may be formed in each of the upper case 310 and the lower case 320 .
  • Sealing parts 300S1 and 300S2 may be provided along the outer periphery of the accommodating part 300ST for each of the upper case 310 and the lower case 320 .
  • the sealing part 300S1 of the upper case 310 and the sealing part 300S2 of the lower case 320 may be thermally fused to each other to form the sealing part 300S, and the cell case 300 may be sealed.
  • one side of the upper case and one side of the lower case may be integrally connected to each other, and the remaining three sides may be thermally fused.
  • each of the plurality of positive electrodes and the plurality of negative electrodes included in the electrode assembly 200 may include a positive electrode tab and a negative electrode tab, and electrode leads 210 and 220 are connected thereto.
  • one of the electrode leads 210 and 220 may be a positive lead, and the other may be a negative lead.
  • one of the electrode leads 210 and 220 connected to the electrode assembly 200 protrudes from one end of the cell case 300 , is exposed to the outside of the cell case 300 , and the other of the electrode leads 210 and 220 .
  • One may protrude from the other end of the cell case 300 and be exposed to the outside of the cell case 300 .
  • the bidirectional electrode leads 210 and 220 have been described in this embodiment, the electrode leads 210 and 220 may protrude in one direction.
  • corner portion of the battery cell 100 is illustrated as having a right angle shape in FIG. 2 , the corner portion may have an inclined shape by pouch cell cutting, which will be described later.
  • FIGS. 4 and 5 are views illustrating a pouch cell cutting method according to a comparative example of the present invention.
  • the side portion of the battery cell may be folded after degassing during the pouch cell manufacturing process.
  • the side part 350S and the corner part 350C of the battery cell may be cut, and according to the comparative example, the side part 350S and the corner part 350C of the battery cell may be cut separately. there is.
  • the pouch cell cutting method according to the comparative example may include a positioning process, a corner part cutting process, a first wing press process, a side part cutting process, and a second wing press process.
  • the positioning process may be a process for properly fixing the position of the battery cell before cutting the battery cell
  • the wing press process may be a process of pressing the sealing part of the battery cell with a heating plate.
  • FIGS. 6 and 7 are views illustrating a pouch cell cutting method according to an embodiment of the present invention.
  • the battery cell according to the present embodiment may be a pouch cell in which an electrode assembly is accommodated in a pouch-type cell case.
  • the method of manufacturing a battery cell includes the steps of accommodating the electrode assembly 200 in the cell case 300 , the gas pocket portion of the cell case 300 ( 100GP), injecting an electrolyte solution, sealing the cell case 300 to form a sealing part 300S, and cutting the sealing part 300S.
  • the cutting of the sealing part 300S may include cutting the corner part 350C and the side part 350S of the battery cell 100 at the same time.
  • the sealing part 300S cut according to the present embodiment may include a portion in which the gas pocket part 100GP and the cell body part 100BP in which the electrode assembly 200 is located are connected.
  • a cut portion 300CP is formed in the side portion 350S of which the battery cell 100 corresponding to the portion where the gas pocket portion 100GP and the cell body portion 100BP are connected is located on the other side from the side portion 350S, respectively,
  • the corner part 350C and the side part 350S of the battery cell 100 may be simultaneously cut.
  • the side part 350S of the battery cell 100 corresponds to a portion extending in the longitudinal direction of the battery cell 100, and the electrode leads 210 and 220 protruding from the battery cell 100 are the battery cells ( 100) may protrude in the longitudinal direction.
  • the first electrode lead 210 may protrude from the front part 350F of the battery cell 100
  • the second electrode lead 220 may protrude from the rear part 350R of the battery cell 100 .
  • the side part 350S of the battery cell 100 connects the front part 350F and the rear part 350R of the battery cell 100 , and may correspond to an edge extending in the longitudinal direction of the battery cell 100 .
  • the pouch cell cutting method may include a positioning process, a simultaneous corner and side part cutting process, and a wing press process.
  • the positioning process may be a process for properly fixing the position of the battery cell before cutting the battery cell
  • the wing press process may be a process of pressing the sealing part of the battery cell with a heating plate.
  • the corner part 350C and the side part 350S of the battery cell 100 are simultaneously cut, so that the corner part 350C of the battery cell 100 is the side part 350S of the battery cell 100 as a reference.
  • An inclination angle can be formed.
  • the double-sided folding shape may be a shape formed by folding the sealing part of the cell case at least twice.
  • FIG. 8 is a view showing a pouch cell cutting apparatus according to another embodiment of the present invention.
  • the pouch cell cutting apparatus includes a top view 500 for cutting the sealing part 300S of the battery cell 100 including the cell case and the electrode assembly accommodated in the cell case. knife) and a lower knife 600 (bottom knife), and both sides of the upper knife 500 include protrusions 500P protruding toward the indentations 600D formed on both sides of the lower knife 600, respectively.
  • the corner part 350C of the battery cell 100 is cut by the protrusion part 500P.
  • the length of the upper coat 500 may be shorter than the length of the lower coat 600 .
  • the boundary portion between the upper coating 500 and the bottom coating 600 may correspond to the sealing portion 300S of the battery cell 100 , and a cut portion of the battery cell 100 may be formed at the boundary portion.
  • the corner part 350C and the side part 350S of the battery cell 100 may be simultaneously cut.
  • a shear angle may be formed in the top view 500 by the protrusion 500P, and the corner portion 350C of the battery cell 100 may be cut to correspond to the shear angle.
  • a plurality of pouch-type battery cells according to an embodiment of the present invention are gathered to constitute a battery module, and one or more of these battery modules may be packaged in a pack case to form a battery pack.
  • the above-described battery module and battery pack including the same may be applied to various devices.
  • a device may be applied to transportation means such as an electric bicycle, an electric vehicle, and a hybrid vehicle, but the present invention is not limited thereto and is applicable to various devices that can use a battery module and a battery pack including the same, and this It belongs to the scope of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

본 발명의 일 실시예에 따른 파우치셀 커팅 장치는 셀 케이스 및 상기 셀 케이스 내에 수납된 전극 조립체를 포함하는 전지 셀의 실링부를 커팅하는 상도(top knife)와 하도(bottom knife)를 포함하고, 상기 상도의 양 측부는 각각 상기 하도의 양 측부에 형성된 만입부를 향해 돌출된 돌출부를 포함하며, 상기 돌출부에 의해 상기 전지 셀의 코너부가 커팅된다.

Description

파우치셀 커팅 장치 및 파우치셀 제조 방법
관련 출원(들)과의 상호 인용
본 출원은 2020년 11월 12일자 한국 특허 출원 제10-2020-0151199호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 파우치셀 커팅 장치 및 파우치셀 제조 방법에 관한 것으로서, 보다 구체적으로 공정이 간소화된 파우치셀 커팅 장치 및 파우치셀 제조 방법에 관한 것이다.
최근, 화석연료의 고갈에 의한 에너지원의 가격 상승, 환경 오염의 관심이 증폭되며, 친환경 대체 에너지원에 대한 요구가 미래생활을 위한 필수 불가결한 요인이 되고 있다. 이에 원자력, 태양광, 풍력, 조력 등 다양한 전력 생산기술들에 대한 연구가 지속되고 있으며, 이렇게 생산된 에너지를 더욱 효율적으로 사용하기 위한 전력 저장 장치 또한 지대한 관심이 이어지고 있다.
특히, 모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차 전지의 수요가 급격히 증가하고 있고, 그에 따라 다양한 요구에 부응할 수 있는 전지에 대한 많은 연구가 행해지고 있다.
대표적으로 높은 에너지 밀도, 방전 전압, 출력 안정성 등의 장점을 가진 리튬이온 전지, 리튬이온 폴리머 전지 등과 같은 리튬 이차 전지에 대한 수요가 높다.
이차 전지는 전지 케이스의 형상에 따라, 전극 조립체가 원통형 또는 각형의 금속 캔에 내장되어 있는 원통형 전지 및 각형 전지와, 전극 조립체가 알루미늄 라미네이트 시트의 셀 케이스에 내장되어 있는 파우치형 전지로 분류된다.
파우치형 이차 전지에서는 고온의 환경과 장기의 사이클 시험 시 발생하는 다량의 가스로 인해 셀 케이스와 전극 리드의 실링 부위에서 벤트(vent)가 발생할 수 있다. 이로 인해, 이차 전지의 안전성 문제가 대두되고 있다. 이러한 안전성 문제를 줄이기 위해 셀 케이스와 전극 리드의 실링 품질을 향상시킬 필요가 있다.
본 발명이 해결하고자 하는 과제는, 공정이 간소화된 파우치셀 커팅 장치 및 파우치셀 제조 방법을 제공하기 위한 것이다.
그러나, 본 발명의 실시예들이 해결하고자 하는 과제는 상술한 과제에 한정되지 않고 본 발명에 포함된 기술적 사상의 범위에서 다양하게 확장될 수 있다.
본 발명의 일 실시예에 따른 파우치셀 커팅 장치는 셀 케이스 및 상기 셀 케이스 내에 수납된 전극 조립체를 포함하는 전지 셀의 실링부를 커팅하는 상도(top knife)와 하도(bottom knife)를 포함하고, 상기 상도의 양 측부는 각각 상기 하도의 양 측부에 형성된 만입부를 향해 돌출된 돌출부를 포함하며, 상기 돌출부에 의해 상기 전지 셀의 코너부가 커팅된다.
상기 상도와 상기 하도의 경계부는 상기 전지 셀의 실링부에 대응하고, 상기 경계부에서 상기 전지 셀의 절단부가 형성되며, 상기 절단부에서 상기 전지 셀의 코너부와 측면부가 동시에 커팅될 수 있다.
상기 돌출부에 의해 상기 상도에 시어각(shear angle)이 형성되고, 상기 시어각에 대응하도록 상기 전지 셀의 코너부가 커팅될 수 있다.
상기 전지 셀의 측면부는 상기 전지 셀의 길이 방향으로 뻗는 부분에 해당하고, 상기 전지 셀로부터 돌출되는 전극 리드는 상기 전지 셀의 길이 방향으로 돌출될 수 있다.
상기 전지 셀은 상기 전극 조립체가 위치하는 셀 바디부와 상기 셀 바디부와 연결되는 가스 포켓부를 포함하고, 상기 절단부는 상기 셀 바디부와 상기 가스 포켓부가 연결되는 부분을 포함할 수 있다.
본 발명의 다른 일 실시예에 따른 파우치셀 제조 방법은 전지 셀의 제조 방법에 있어서, 전극 조립체를 셀 케이스 내에 수납하는 단계, 상기 셀 케이스의 가스 포켓부를 통해 전해액을 주입하는 단계, 상기 셀 케이스를 실링하여 실링부를 형성하는 단계, 및 상기 실링부를 커팅하는 단계를 포함하고, 상기 실링부를 커팅하는 단계는, 상기 전지 셀의 코너부와 측면부를 동시에 커팅한다.
상기 파우치셀 제조 방법은 상기 실링부를 커팅하는 단계 이전에, 상기 전지 셀의 위치를 고정하는 단계를 더 포함할 수 있다.
상기 전지 셀의 측면부는 상기 전지 셀의 길이 방향으로 뻗는 부분에 해당하고, 상기 전지 셀로부터 돌출되는 전극 리드는 상기 전지 셀의 길이 방향으로 돌출될 수 있다.
상기 실링부는 상기 가스 포켓부와 상기 전극 조립체가 위치하는 셀 바디부가 연결되는 부분을 포함할 수 있다.
상기 전지 셀의 코너부와 측면부가 동시에 커팅되어, 상기 전지 셀의 코너부는 상기 전지 셀의 측면부 기준으로 경사각을 형성할 수 있다.
실시예들에 따르면, 디개싱(degassing) 이후 셀을 사이드 폴딩 하기 전에 코너부와 측면부를 따로 커팅하지 않고, 동시에 커팅함으로써 공정을 간소화하고, 스크랩(scrap)이 발생하거나 절연이 깨지는 위험을 감소시킬 수 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 파우치형 전지 셀을 나타내는 분해 사시도이다.
도 2는 도 1의 파우치형 전지 셀이 조립된 모습을 나타내는 사시도이다.
도 3은 도 1의 P영역을 확대하여 나타낸 단면도이다.
도 4 및 도 5는 본 발명의 비교예에 따른 파우치셀 커팅 방법을 나타내는 도면들이다.
도 6 및 도 7은 본 발명의 일 실시예에 따른 파우치셀 커팅 방법을 나타내는 도면들이다.
도 8은 본 발명의 다른 일 실시예에 따른 파우치셀 커팅 장치를 나타내는 도면이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 여러 실시예들에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다. 도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다.
또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 또는 "상에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다. 또한, 기준이 되는 부분 "위에" 또는 "상에" 있다고 하는 것은 기준이 되는 부분의 위 또는 아래에 위치하는 것이고, 반드시 중력 반대 방향을 향하여 "위에" 또는 "상에" 위치하는 것을 의미하는 것은 아니다.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 명세서 전체에서, "평면상"이라 할 때, 이는 대상 부분을 위에서 보았을 때를 의미하며, "단면상"이라 할 때, 이는 대상 부분을 수직으로 자른 단면을 옆에서 보았을 때를 의미한다.
도 1은 본 발명의 일 실시예에 따른 파우치형 전지 셀을 나타내는 분해 사시도이다. 도 2는 도 1의 파우치형 전지 셀이 조립된 모습을 나타내는 사시도이다. 도 3은 도 1의 P영역을 확대하여 나타낸 단면도이다.
도 1 및 도 2를 참고하면, 본 실시예에 따른 파우치형 전지 셀(100)은, 셀 케이스(300) 내부에 전극 조립체(200)를 수납한 뒤 밀봉하여 제조될 수 있다. 전극 조립체(200)는 양극, 음극 및 양극과 음극 사이에 배치되는 분리막을 포함할 수 있다. 전극 조립체(200)는 스택형 전극 조립체, 젤리롤형 전극 조립체 또는 스택/폴딩형 전극 조립체일 수 있다.
양극 및 음극 각각은 전극 탭(210t)을 포함하고, 전극 탭(210t)과 각각 연결되는 전극 리드(210, 220)가 셀 케이스(300) 외부로 노출될 수 있다. 또한, 밀봉성과 절연성을 위해 전극 리드(210, 220)들은 각각 리드 필름(400)으로 덮인 상태로 실링부(300S)에 위치할 수 있다.
셀 케이스(300)는 라미네이트 시트로 이루어져 있고, 열 융착을 위한 수지층과 물질 침투 방지를 위한 금속층을 포함할 수 있다. 셀 케이스(300)는 상부 케이스(310)와 하부 케이스(320)를 포함할 수 있다.
구체적으로, 도 3을 참고하면, 상부 케이스(310)는 밀봉을 위한 내측 수지층(310a), 물질의 관통을 방지하는 금속층(310b), 및 외측 수지층(310c)을 포함할 수 있다.
이상에서 설명한 상부 케이스(310)에 관한 층 구조는 하부 케이스(320)에도 동일하게 적용될 수 있다. 다시 말해, 전극 조립체(200)에서 멀어지는 방향을 따라 하부 케이스(320)는 내측 수지층, 금속층, 및 외측 수지층을 포함할 수 있다.
외측 수지층(310c) 및 상기 포장 시트층은 외부로부터 파우치형 이차 전지를 보호하기 위해 두께 대비 우수한 인장강도와 내후성을 갖고 전기적 절연성을 띌 수 있다. 이러한 외측 수지층(310c)은 폴리에틸렌테레프탈레이트(PolyEthylene Terephthalate, PET) 수지 또는 나일론(nylon) 수지를 포함할 수 있다. 금속층(310b)은 공기, 습기 등이 파우치형 전지 셀(100) 내부로 유입되는 것을 방지할 수 있다. 이러한 금속층(310b)은 알루미늄(Al)을 포함할 수 있다. 내측 수지층(310a)은 전극 조립체(200)를 내장한 상태에서 인가된 열과 압력에 의해 서로 열 융착될 수 있다. 이러한 내측 수지층(310a)은 무연신 폴리프로필렌(Casted PolyPropylene, CPP) 또는 폴리프로필렌(PolyPropylene, PP)를 포함할 수 있다.
도 1 및 도 2를 다시 참고하면, 상부 케이스(310)와 하부 케이스(320) 각각에 전극 조립체(200)가 안착될 수 있는 오목한 형상의 수납부(300ST)가 형성될 수 있다. 상부 케이스(310)와 하부 케이스(320) 각각에 대해 수납부(300ST)의 바깥 둘레를 따라 실링부(300S1, 300S2)가 마련될 수 있다. 상부 케이스(310)의 실링부(300S1)와 하부 케이스(320)의 실링부(300S2)가 서로 열융착되어 실링부(300S)를 형성하고, 셀 케이스(300)가 밀봉될 수 있다.
본 발명의 다른 실시예로써, 상부 케이스의 일변과 하부 케이스의 일변이 서로 일체로써 연결되고, 나머지 세변이 열 융착되는 형태일 수 있다.
한편, 전극 조립체(200)에 포함된 다수의 양극 및 다수의 음극 각각은 양극탭 및 음극탭을 포함할 수 있고, 전극 리드(210, 220)가 연결된다. 구체적으로, 전극 리드(210, 220) 중 하나는 양극 리드이고, 다른 하나는 음극 리드일 수 있다. 위와 같이 전극 조립체(200)와 연결된 전극 리드(210, 220) 중 하나는 셀 케이스(300)의 일 단부로부터 돌출되고, 셀 케이스(300) 외부로 노출되며, 전극 리드(210, 220) 중 다른 하나는 셀 케이스(300)의 다른 일 단부로부터 돌출되고, 셀 케이스(300) 외부로 노출될 수 있다. 본 실시예에서는 양 방향 전극 리드(210, 220) 구조로 설명하였으나, 전극 리드(210, 220)가 한 방향으로 돌출될 수도 있다.
도 2에서 전지 셀(100)의 코너부가 직각 형태인 것으로 도시하였으나, 이후 설명하는 파우치셀 커팅에 의해 코너부는 경사 모양을 가질 수 있다.
도 4 및 도 5는 본 발명의 비교예에 따른 파우치셀 커팅 방법을 나타내는 도면들이다.
도 4를 참고하면, 비교예에 따른 파우치셀 커팅 방법은, 파우치셀 제조 공정 중에 디개싱(degassing) 이후에 전지 셀의 측면부를 폴딩할 수 있다. 전지 셀의 측면부를 폴딩하기 전에 전지 셀의 측면부(350S)와 코너부(350C)를 커팅할 수 있고, 비교예에 따르면, 전지 셀의 측면부(350S)와 코너부(350C)를 따로 커팅할 수 있다.
이와 같이, 전지 셀의 측면부(350S)와 코너부(350C)를 따로 커팅하는 경우, 코너부(350C) 커팅 시, 미 커팅된 스크랩(scrap)이 남아 있을 리스크가 있으며, 커팅 직후, 커팅 면에 대해 주름 및 휘어짐을 방지하기 위해 윙 프레스 공정을 반드시 진행해야 하는 번거로움이 있다. 구체적으로, 코너부(350C)를 별도 커팅하게 되면, 커팅되는 코너부(350C) 자체의 크기가 매우 작기 때문에 스크랩이 매우 작아 유출될 위험이 커질 수 있다.
구체적으로 도 5를 참고하면, 비교예에 따른 파우치셀 커팅 방법은, 포지셔닝 공정, 코너부 커팅 공정, 제1차 윙 프레스 공정, 측면부 커팅 공정, 및 제2차 윙 프레스 공정을 포함할 수 있다. 여기서, 포지셔닝 공정은 전지 셀을 커팅하기 전에 전지 셀의 위치를 알맞게 고정시키기 위한 공정이고, 윙 프레스 공정은 전지 셀의 실링부를 가열 플레이트로 눌러주는 공정일 수 있다.
비교예에 따르면, 다수의 윙 프레스 공정을 진행하기 때문에, 실링부 가장자리 부분의 절연이 깨질 위험이 있다.
도 6 및 도 7은 본 발명의 일 실시예에 따른 파우치셀 커팅 방법을 나타내는 도면들이다.
도 6을 참고하면, 본 실시예에 따른 전지 셀은 파우치형의 셀 케이스에 전극 조립체가 수납되는 있는 형태의 파우치셀일 수 있다.
도 1, 도 2 및 도 6을 참고하면, 본 실시예에 따른 전지 셀의 제조 방법은, 전극 조립체(200)를 셀 케이스(300) 내에 수납하는 단계, 셀 케이스(300)의 가스 포켓부(100GP)를 통해 전해액을 주입하는 단계, 셀 케이스(300)를 실링하여 실링부(300S)를 형성하는 단계, 및 실링부(300S)를 커팅하는 단계를 포함한다. 여기서, 실링부(300S)를 커팅하는 단계는, 전지 셀(100)의 코너부(350C)와 측면부(350S)를 동시에 커팅할 수 있다.
본 실시예에 따라 커팅되는 실링부(300S)는 가스 포켓부(100GP)와 전극 조립체(200)가 위치하는 셀 바디부(100BP)가 연결되는 부분을 포함할 수 있다. 가스 포켓부(100GP)와 셀 바디부(100BP)가 연결되는 부분에 대응하는 전지 셀(100)이 측면부(350S)와 다른 일측에 위치하는 측면부(350S)에는 각각 절단부(300CP)가 형성되고, 절단부(300CP)에서 전지 셀(100)의 코너부(350C)와 측면부(350S)가 동시에 커팅될 수 있다.
본 실시예에 따른 전지 셀(100)의 측면부(350S)는 전지 셀(100)의 길이 방향으로 뻗는 부분에 해당하고, 전지 셀(100)로부터 돌출되는 전극 리드(210, 220)는 전지 셀(100)의 길이 방향으로 돌출될 수 있다. 구체적으로, 전지 셀(100)의 전면부(350F)로부터 제1 전극 리드(210)가 돌출되고, 전지 셀(100)의 후면부(350R)로부터 제2 전극 리드(220)가 돌출될 수 있다. 전지 셀(100)의 측면부(350S)는 전지 셀(100)의 전면부(350F)와 후면부(350R)를 연결하는 부분이며, 전지 셀(100)의 길이 방향을 따라 뻗는 가장자리에 대응할 수 있다.
이와 같이, 전지 셀의 측면부(350S)와 코너부(350C)를 동시에 커팅하는 경우, 코너부(350C) 커팅 시, 미 커팅된 스크랩(scrap)이 남아 있을 리스크를 최소화할 수 있으며, 코너부 커팅 공정과 측면부 커팅 공정 사이에, 커팅 면에 대해 주름 및 휘어짐을 방지하기 위해 윙 프레스 공정을 추가할 필요가 없어 공정을 간소화할 수 있다.
구체적으로 도 7을 참고하면, 본 실시예에 따른 파우치셀 커팅 방법은, 포지셔닝 공정, 코너부 및 측면부 동시 커팅 공정, 및 윙 프레스 공정을 포함할 수 있다. 여기서, 포지셔닝 공정은 전지 셀을 커팅하기 전에 전지 셀의 위치를 알맞게 고정시키기 위한 공정이고, 윙 프레스 공정은 전지 셀의 실링부를 가열 플레이트로 눌러주는 공정일 수 있다.
본 실시예에 따르면, 윙 프레스 공정 횟수를 최소화하기 때문에, 실링부 가장자리 부분의 절연이 깨질 위험을 줄일 수 있다.
본 실시예에 따라 전지 셀(100)의 코너부(350C)와 측면부(350S)가 동시에 커팅되어, 전지 셀(100)의 코너부(350C)는 전지 셀(100)의 측면부(350S) 기준으로 경사각을 형성할 수 있다.
본 실시예에 따라 코너부(350C)를 커팅함으로써, 후속 공정으로 실링부(300S)를 이중면 접힘 모양(Double Side Folded Shape)을 만들기 위해 스파이럴 롤러 등을 사용하게 되는데, 이때 코너부(350C)에 대응하는 전지 셀(100) 부분이 쳐지는 문제를 미연에 방지할 수 있다. 이러한 이중면 접힘 모양은, 셀 케이스의 실링부가 적어도 2번 접혀서 형성된 모양일 수 있다.
또한, 본 실시예에 따라 측면부(350S)를 커팅함으로써, 이중 접힘 실링부를 형성하기 위한 규격을 제어할 수 있다.
도 8은 본 발명의 다른 일 실시예에 따른 파우치셀 커팅 장치를 나타내는 도면이다.
도 8을 참고하면, 본 실시예에 따른 파우치셀 커팅 장치는, 셀 케이스 및 상기 셀 케이스 내에 수납된 전극 조립체를 포함하는 전지 셀(100)의 실링부(300S)를 커팅하는 상도(500; top knife)와 하도(600; bottom knife)를 포함하고, 상도(500)의 양 측부는 각각 하도(600)의 양 측부에 형성된 만입부(600D)를 향해 돌출된 돌출부(500P)를 포함한다. 이때, 돌출부(500P)에 의해 전지 셀(100)의 코너부(350C)가 커팅된다. 상도(500)의 길이는 하도(600)의 길이보다 짧을 수 있다.
상도(500)와 하도(600)의 경계부는 전지 셀(100)의 실링부(300S)에 대응하고, 상기 경계부에서 전지 셀(100)의 절단부가 형성될 수 있다. 상기 절단부에서 상기 전지 셀(100)의 코너부(350C)와 측면부(350S)가 동시에 커팅될 수 있다.
돌출부(500P)에 의해 상도(500)에 시어각(shear angle)이 형성되고, 상기 시어각에 대응하도록 전지 셀(100)의 코너부(350C)가 커팅될 수 있다.
한편, 본 발명의 실시예에 따른 파우치형 전지 셀은 여러 개가 모여 전지 모듈을 구성하고, 이러한 전지 모듈은 하나 또는 그 이상이 팩 케이스 내에 패키징되어 전지팩을 형성할 수 있다.
앞에서 설명한 전지 모듈 및 이를 포함하는 전지 팩은 다양한 디바이스에 적용될 수 있다. 이러한 디바이스에는, 전기 자전거, 전기 자동차, 하이브리드 자동차 등의 운송 수단에 적용될 수 있으나, 본 발명은 이에 제한되지 않고 전지 모듈 및 이를 포함하는 전지 팩을 사용할 수 있는 다양한 디바이스에 적용 가능하며, 이 또한 본 발명의 권리범위에 속한다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
[부호의 설명]
100: 전지 셀
100BP: 셀 바디부
100GP: 가스 포켓부
300: 셀 케이스
300S: 측면부
300CP: 절단부
350C: 코너부
350S: 측면부
500: 상도
500P: 돌출부
600: 하도

Claims (10)

  1. 셀 케이스 및 상기 셀 케이스 내에 수납된 전극 조립체를 포함하는 전지 셀의 실링부를 커팅하는 상도(top knife)와 하도(bottom knife)를 포함하고,
    상기 상도의 양 측부는 각각 상기 하도의 양 측부에 형성된 만입부를 향해 돌출된 돌출부를 포함하며,
    상기 돌출부에 의해 상기 전지 셀의 코너부가 커팅되는 파우치셀 커팅 장치.
  2. 제1항에서,
    상기 상도와 상기 하도의 경계부는 상기 전지 셀의 실링부에 대응하고, 상기 경계부에서 상기 전지 셀의 절단부가 형성되며,
    상기 절단부에서 상기 전지 셀의 코너부와 측면부가 동시에 커팅되는 파우치셀 커팅 장치.
  3. 제2항에서,
    상기 돌출부에 의해 상기 상도에 시어각(shear angle)이 형성되고, 상기 시어각에 대응하도록 상기 전지 셀의 코너부가 커팅되는 파우치셀 커팅 장치.
  4. 제2항에서,
    상기 전지 셀의 측면부는 상기 전지 셀의 길이 방향으로 뻗는 부분에 해당하고, 상기 전지 셀로부터 돌출되는 전극 리드는 상기 전지 셀의 길이 방향으로 돌출되는 파우치셀 커팅 장치.
  5. 제2항에서,
    상기 전지 셀은 상기 전극 조립체가 위치하는 셀 바디부와 상기 셀 바디부와 연결되는 가스 포켓부를 포함하고,
    상기 절단부는 상기 셀 바디부와 상기 가스 포켓부가 연결되는 부분을 포함하는 파우치셀 커팅 장치.
  6. 전지 셀의 제조 방법에 있어서,
    전극 조립체를 셀 케이스 내에 수납하는 단계,
    상기 셀 케이스의 가스 포켓부를 통해 전해액을 주입하는 단계,
    상기 셀 케이스를 실링하여 실링부를 형성하는 단계, 및
    상기 실링부를 커팅하는 단계를 포함하고,
    상기 실링부를 커팅하는 단계는, 상기 전지 셀의 코너부와 측면부를 동시에 커팅하는 파우치셀 제조 방법.
  7. 제6항에서,
    상기 실링부를 커팅하는 단계 이전에, 상기 전지 셀의 위치를 고정하는 단계를 더 포함하는 파우치셀 제조 방법.
  8. 제6항에서,
    상기 전지 셀의 측면부는 상기 전지 셀의 길이 방향으로 뻗는 부분에 해당하고, 상기 전지 셀로부터 돌출되는 전극 리드는 상기 전지 셀의 길이 방향으로 돌출되는 파우치셀 제조 방법.
  9. 제6항에서,
    상기 실링부는 상기 가스 포켓부와 상기 전극 조립체가 위치하는 셀 바디부가 연결되는 부분을 포함하는 파우치셀 제조 방법.
  10. 제6항에서,
    상기 전지 셀의 코너부와 측면부가 동시에 커팅되어, 상기 전지 셀의 코너부는 상기 전지 셀의 측면부 기준으로 경사각을 형성하는 파우치셀 제조 방법.
PCT/KR2021/014437 2020-11-12 2021-10-18 파우치셀 커팅 장치 및 파우치셀 제조 방법 WO2022102998A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/919,690 US20230163379A1 (en) 2020-11-12 2021-10-18 Pouch Cell Cutting Apparatus and Pouch Cell Manufacturing Method
CN202180022705.1A CN115298883A (zh) 2020-11-12 2021-10-18 袋电池切割设备和袋电池制造方法
EP21892168.2A EP4123797A1 (en) 2020-11-12 2021-10-18 Pouch cell cutting apparatus and pouch cell manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200151199A KR20220064751A (ko) 2020-11-12 2020-11-12 파우치셀 커팅 장치 및 파우치셀 제조 방법
KR10-2020-0151199 2020-11-12

Publications (1)

Publication Number Publication Date
WO2022102998A1 true WO2022102998A1 (ko) 2022-05-19

Family

ID=81601384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/014437 WO2022102998A1 (ko) 2020-11-12 2021-10-18 파우치셀 커팅 장치 및 파우치셀 제조 방법

Country Status (5)

Country Link
US (1) US20230163379A1 (ko)
EP (1) EP4123797A1 (ko)
KR (1) KR20220064751A (ko)
CN (1) CN115298883A (ko)
WO (1) WO2022102998A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140036437A (ko) * 2012-09-14 2014-03-26 주식회사 엘지화학 이차전지의 제조방법 및 이에 의해 제조되는 이차전지를 포함하는 전기화학소자
KR20160026259A (ko) * 2014-08-29 2016-03-09 에스케이이노베이션 주식회사 이차전지의 제조방법
KR101726783B1 (ko) * 2014-11-06 2017-04-13 주식회사 엘지화학 보조 실링부의 형성 과정을 포함하는 전지셀의 제조방법
KR20180037488A (ko) * 2016-10-04 2018-04-12 주식회사 엘지화학 둥근 형태로 전극 리드를 가공할 수 있는 리드 가공 장치 및 이를 이용하여 가공된 전극 리드를 포함하는 가공된 전지셀
KR101908586B1 (ko) * 2018-07-16 2018-10-16 주식회사 셀텍 이차전지 셀의 테라스부 모서리 자동 절단 장치

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202678421U (zh) * 2012-05-23 2013-01-16 宁德新能源科技有限公司 软包装聚合物锂离子电池
CN104852014B (zh) * 2015-05-14 2017-10-20 宁德时代新能源科技股份有限公司 一种制备锂离子电池极片元件的装置
CN204538120U (zh) * 2015-05-14 2015-08-05 宁德时代新能源科技有限公司 一种制备锂离子电池极片元件的装置
CN205646005U (zh) * 2016-02-01 2016-10-12 东莞新能源科技有限公司 一种软包装锂离子电池
CN209312886U (zh) * 2018-12-27 2019-08-27 湖南泰和美新能源科技有限公司 一种软包锂电池负极耳切刀组件及带有该组件的制片机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140036437A (ko) * 2012-09-14 2014-03-26 주식회사 엘지화학 이차전지의 제조방법 및 이에 의해 제조되는 이차전지를 포함하는 전기화학소자
KR20160026259A (ko) * 2014-08-29 2016-03-09 에스케이이노베이션 주식회사 이차전지의 제조방법
KR101726783B1 (ko) * 2014-11-06 2017-04-13 주식회사 엘지화학 보조 실링부의 형성 과정을 포함하는 전지셀의 제조방법
KR20180037488A (ko) * 2016-10-04 2018-04-12 주식회사 엘지화학 둥근 형태로 전극 리드를 가공할 수 있는 리드 가공 장치 및 이를 이용하여 가공된 전극 리드를 포함하는 가공된 전지셀
KR101908586B1 (ko) * 2018-07-16 2018-10-16 주식회사 셀텍 이차전지 셀의 테라스부 모서리 자동 절단 장치

Also Published As

Publication number Publication date
EP4123797A1 (en) 2023-01-25
US20230163379A1 (en) 2023-05-25
KR20220064751A (ko) 2022-05-19
CN115298883A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
WO2015122667A1 (ko) 실링부에 홈을 포함하고 있는 파우치형 이차전지
WO2014137112A1 (ko) 단차 구조를 포함하는 전지셀
WO2011115464A2 (ko) 파우치형 케이스 및 이를 포함하는 전지팩
WO2018131788A2 (ko) 파우치형 이차전지 및 파우치 필름 포밍 장치
WO2017073905A1 (ko) 테이핑을 이용하는 벤팅 구조의 전지셀
WO2020204407A1 (ko) 이차 전지용 전지 케이스 및 파우치 형 이차 전지
WO2018048133A1 (ko) 이차전지용 파우치 외장재, 이를 이용한 파우치형 이차전지 및 그 제조 방법
WO2016056776A1 (ko) 계단 구조의 전극조립체에 대응하는 형상으로 형성되어 있는 전지케이스를 포함하는 전지셀
WO2022080673A1 (ko) 파우치형 이차 전지 및 이를 포함하는 전지 모듈
WO2022102998A1 (ko) 파우치셀 커팅 장치 및 파우치셀 제조 방법
WO2018062902A1 (ko) 수납부 및 전극 리드용 그루브를 포함하는 전지케이스를 구비한 전지셀
WO2022164237A1 (ko) 이차전지용 테이프의 부착 방법
WO2022114460A1 (ko) 셀 트레이 및 이를 포함하는 보관 컨테이너
WO2022065653A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021221310A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2021075832A1 (ko) 원통형 전지 및 원통형 전지 제조 방법
WO2020262819A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022119220A1 (ko) 이차전지 및 이를 포함하는 디바이스
WO2023063676A1 (ko) 전지 셀 및 이를 포함하는 전지 모듈
WO2022169112A1 (ko) 전지셀 및 이를 포함하는 전지 모듈
WO2024106956A1 (ko) 한 쌍의 실링롤러를 포함하는 파우치형 전지셀 실링장치, 이를 이용한 실링방법 및 이를 이용하여 제조된 파우치형 전지셀
WO2022169292A1 (ko) 이차전지용 테이프의 부착 장치 및 이를 이용한 부착 방법
WO2023068671A1 (ko) 이차 전지, 이의 제조 방법 및 이를 포함하는 디바이스
WO2023090680A1 (ko) 이차 전지 및 이를 포함하는 전지 모듈
WO2022139427A1 (ko) 전지셀 및 이의 제조 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21892168

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021892168

Country of ref document: EP

Effective date: 20221019

NENP Non-entry into the national phase

Ref country code: DE