WO2023063676A1 - 전지 셀 및 이를 포함하는 전지 모듈 - Google Patents

전지 셀 및 이를 포함하는 전지 모듈 Download PDF

Info

Publication number
WO2023063676A1
WO2023063676A1 PCT/KR2022/015261 KR2022015261W WO2023063676A1 WO 2023063676 A1 WO2023063676 A1 WO 2023063676A1 KR 2022015261 W KR2022015261 W KR 2022015261W WO 2023063676 A1 WO2023063676 A1 WO 2023063676A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing
gas discharge
battery
battery cell
pattern
Prior art date
Application number
PCT/KR2022/015261
Other languages
English (en)
French (fr)
Inventor
최홍준
김동연
공진학
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220127087A external-priority patent/KR20230053514A/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202280057446.0A priority Critical patent/CN117916938A/zh
Priority to EP22881303.6A priority patent/EP4362196A1/en
Publication of WO2023063676A1 publication Critical patent/WO2023063676A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/178Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery cell and a battery module including the same, and more particularly, to a battery cell including a gas discharge unit to which a sealing pattern having weak sealing strength is applied, and a battery module including the same.
  • secondary batteries are of great interest as energy sources for power devices such as electric bicycles, electric vehicles, and hybrid electric vehicles as well as mobile devices such as mobile phones, digital cameras, laptops, and wearable devices.
  • these secondary batteries are classified into cylindrical batteries and prismatic batteries in which the electrode assembly is embedded in a cylindrical or prismatic metal can, and pouch-type batteries in which the electrode assembly is embedded in a pouch-type case made of an aluminum laminate sheet.
  • the electrode assembly embedded in the battery case is a power generating device capable of charging and discharging, consisting of a positive electrode, a negative electrode, and a separator structure interposed between the positive electrode and the negative electrode. It is classified into a jelly-roll type wound with a separator interposed and a stack type in which a plurality of positive and negative electrodes are sequentially stacked in a state in which a separator is interposed.
  • the pouch-type battery having a structure in which a stacked or stacked/folding type electrode assembly is embedded in a pouch-type battery case of an aluminum laminate sheet is gradually being used due to low manufacturing cost, small weight, and easy deformation shape. It is increasing.
  • An object to be solved by the present invention is to provide a battery cell including a gas discharge unit to which a sealing pattern having a weak sealing strength is applied, and a battery module including the same.
  • a battery cell includes a battery case including an electrode assembly mounted in an accommodating unit and a sealing unit having a sealed outer periphery; and an electrode lead electrically connected to an electrode tab included in the electrode assembly and protruding outwardly of the battery case via the sealing portion, the sealing portion including a gas discharge portion, and A portion where the gas discharge unit is not located is formed in a first sealing pattern, and the gas discharge unit is formed in a second sealing pattern, and the first sealing pattern and the second sealing pattern are different.
  • the first sealing pattern may have repeated depressions and protrusions along the length direction of the sealing portion
  • the second sealing pattern may have repeated depressions and protrusions along the width direction of the sealing portion
  • a recessed portion and a protruding portion may have the same distance from each other.
  • a distance between the recessed part and the protruding part of the second sealing pattern may be greater than that between the recessed part and the protruding part of the first sealing pattern.
  • the gas discharge part may be located on an outer periphery where the electrode lead is located.
  • the gas discharge unit may be located in a portion where the electrode lead is not located.
  • a sealing strength of the gas discharge unit may be smaller than a sealing strength of the sealing unit.
  • a battery module according to another embodiment of the present invention may include the aforementioned battery cells.
  • the battery cells may be stacked in a direction in which the gas outlet is adjacent to a bottom surface.
  • the gas exhaust portion may be formed below the electrode lead among the sealing portions.
  • the present invention is a battery cell including a gas discharge unit to which a sealing pattern having a weak sealing strength is applied, and a battery module including the same, wherein gas discharge is effectively performed when a venting phenomenon of the battery cell occurs, and gas discharge Safety can be improved by directing the direction to a specific direction.
  • FIG. 1 is a top view of a battery cell according to an embodiment of the present invention.
  • FIG. 2(a) is an enlarged view of one end of the battery cell of FIG. 1, and FIG. 2(b) is a cross-section taken along the line AA′ or line B-B′ of FIG. 2(a). It is a drawing showing
  • FIG. 3(a) is a diagram showing a sealing pattern of the sealing unit of FIG. 2(a)
  • FIG. 3(b) is a diagram illustrating a sealing pattern of the gas discharge unit of FIG. 2(b).
  • FIG 4 is an enlarged view of one end of a battery cell according to a comparative example.
  • FIG. 5 is a view showing a cross section cut along the cutting line a-a′ of FIG. 4 .
  • planar image it means when the target part is viewed from above, and when it is referred to as “cross-sectional image”, it means when a cross section of the target part cut vertically is viewed from the side.
  • FIG. 1 is a top view of a battery cell according to an embodiment of the present invention.
  • the electrode assembly 110 is mounted in the storage unit 210, and the battery case 200 includes a sealing unit 250 having a sealed outer periphery. ; and an electrode lead 300 electrically connected to the electrode tab included in the electrode assembly 110 and protruding outward of the battery case 200 via the sealing portion 250 .
  • the battery case 200 may be a laminate sheet including a resin layer and a metal layer. More specifically, the battery case 200 is made of a laminate sheet, and may be composed of an outer resin layer forming the outermost shell, a barrier metal layer to prevent penetration of materials, and an inner resin layer for sealing.
  • the electrode assembly 110 may have a structure of a jelly-roll type (winding type), a stack type (lamination type), or a combination type (stack/folding type). More specifically, the electrode assembly 110 may include an anode, a cathode, and a separator disposed between them.
  • the electrode lead 300 is electrically connected to an electrode tab (not shown) included in the electrode assembly 110 and protrudes outward from the battery case 200 via the sealing portion 250 .
  • the lead film 400 is located at a portion corresponding to the sealing portion 250 in at least one of the upper and lower portions of the electrode lead 300 .
  • the lead film 400 prevents a short circuit from occurring in the electrode lead 300 during thermal fusion or press fusion together with the sealing portion 250, and sealability between the sealing portion 250 and the electrode lead 300. can improve
  • FIG. 2(a) is an enlarged view of one end of the battery cell of FIG. 1, and FIG. 2(b) is a cross-section taken along the line AA′ or line B-B′ of FIG. 2(a). It is a drawing showing FIG. 3(a) is a diagram showing a sealing pattern of the sealing unit of FIG. 2(a), and FIG. 3(b) is a diagram illustrating a sealing pattern of the gas discharge unit of FIG. 2(b).
  • the sealing unit 250 includes a gas discharge unit 250V. That is, the gas discharge unit 250V may be formed by replacing a part of the sealing unit 250 . In other words, the gas discharge unit 250V may be inserted into a part of the sealing unit 250 .
  • the gas discharge unit 250V may be located on the outer periphery where the electrode lead 300 is located. That is, the gas discharge unit 250V may be located in the sealing unit 250 sealing the outer periphery where the electrode lead 300 is located.
  • the part where the sealing strength is the weakest in the sealing part 250 is the part where the electrode lead 300 is located, but in the case of the present invention, the gas around the outer periphery where the electrode lead 300 is located. Since the discharge unit 250V is formed, gas discharged when the internal pressure of the battery cell 100 increases can be prevented from being discharged to the sealing portion 250 where the electrode lead 300 is located.
  • the gas discharge unit 250V may be located in a portion where the electrode lead 300 is not located. That is, the gas discharge unit 250V may be located in the sealing unit 250 that seals a portion where the electrode lead 300 is not located among the outer periphery where the electrode lead 300 is located.
  • the location of the gas discharge unit 250V is not limited thereto, and may be formed at a location considering a direction to induce gas discharge.
  • the gas discharged when the internal pressure of the battery cell 100 is increased is not discharged to the portion of the sealing part 250 where the electrode lead 300 is located, and It may be discharged through a gas discharge unit (250V) located in a part other than the part. That is, the gas discharge unit 250V may guide the discharge direction of the gas discharged when the internal pressure of the battery cell 100 increases in a specific direction.
  • the sealing strength of the gas discharge unit 250V may be smaller than that of the sealing unit 250 . Accordingly, when the internal pressure of the battery cell 100 increases, the gas discharge unit 250V may be damaged prior to the sealing unit 250 . That is, when the internal pressure of the battery cell 100 increases, the gas discharge unit 250V is damaged prior to the sealing unit 250, and thus the gas discharge unit 250V may serve as a passage through which gas is discharged.
  • a portion of the sealing part 250 where the gas discharge part is not located may be formed in a first sealing pattern, and the gas discharge part 250V may be formed in the first sealing pattern.
  • the first sealing pattern and the second sealing pattern may be different.
  • the sealing pattern may mean a sealing area having a certain pattern.
  • the first sealing pattern of the sealing part 250 and the first sealing pattern of the gas discharge part 250V may be patterns in which indentation and protrusion are repeated in different directions.
  • the first sealing pattern may have repeated indentation and protrusion along the longitudinal direction (cut line A-A') of the sealing part 250
  • the second sealing pattern Indentation and protrusion may be repeated along the width direction (cut line BB') of the silver sealing portion 250 .
  • the sealing part 250 may have a first sealing pattern in which indentation and protrusion are repeated along the longitudinal direction of the sealing part 250 .
  • the first sealing pattern may receive a bending load along the traveling direction of the pattern of the sealing part 250, as shown in FIG. 3(a). That is, the first sealing pattern may receive a bending load in the width direction of the repeatedly formed indentation or protruding portion. Accordingly, the sealing portion 250 having the first sealing pattern is partially subjected to a bending load, and thus the sealing strength may be relatively high.
  • the gas discharge unit 250V may have a second sealing pattern that is recessed and protrudes along the width direction of the sealing unit 250 .
  • the second sealing pattern may receive a bending load in a direction perpendicular to the pattern progression direction of the sealing part 250, as shown in FIG. 3(b). That is, the second sealing pattern may receive a bending load in the longitudinal direction of the indented or protruded portion. Accordingly, the entirety of the gas discharge unit 250V having the second sealing pattern is subjected to a bending load at the indented or protruded portion, and thus the sealing strength may be relatively low.
  • the sealing strength of the gas discharge portion 250V having the second sealing pattern may be smaller than that of the sealing portion 250 having the first sealing pattern. That is, when the internal pressure of the battery cell 100 rises, the gas discharge unit 250V is damaged prior to the sealing unit 250, and the gas discharge unit 250V serves as a gas discharge passage while guiding the gas discharge direction. can be done
  • the present embodiment does not include a separate member for gas discharge and forms the gas discharge unit 250V having different sealing strength only with a difference in sealing pattern, the manufacturing process is simple and the manufacturing cost is reduced. There is an advantage to being
  • a recessed portion and a protruding portion may have the same interval.
  • first sealing pattern and the second sealing pattern have the same pattern spacing only in different directions, a manufacturing process may be easier and process efficiency may be increased.
  • the distance between the recessed and protruding parts of the second sealing pattern may be greater than the distance between the recessed and protruding parts of the first sealing pattern.
  • the sealing strength of the gas discharge unit 250V having the first sealing pattern may be reduced. That is, when the internal pressure of the battery cell 100 rises, the gas discharge unit 250V is damaged within a faster time, so that the gas can be effectively discharged to the outside of the battery cell 100 .
  • the interval between the recessed portion and the protruding portion of the first sealing pattern and the second sealing pattern is not limited thereto, and may be formed at various intervals other than the above.
  • a battery module may include the battery cell 100 described above.
  • the battery cells 100 may be stacked in a direction in which a side surface on which the electrode lead 300 is not positioned touches the bottom surface.
  • the battery cells 100 may be stacked in a direction in which the gas outlets 250V are adjacent to the bottom surface.
  • the battery cells 100 may be stacked in a direction in which the gas outlet 250V is positioned below the electrode lead 300 . That is, in the battery cell 100 , the gas discharge unit 250V may be formed below the electrode lead 300 in the sealing unit 250 .
  • the gas discharge unit 250V of the battery cell 100 is located adjacent to the bottom surface, so that when the internal pressure of the battery cell 100 increases, the gas discharged through the gas discharge unit 250V is discharged from the bottom surface. It can be discharged towards the surface. That is, in this embodiment, the gas discharged from some of the battery cells 100 is discharged toward the bottom surface, thereby minimizing the damage caused by the high-temperature inflammable gas discharged from the battery cells 100 to the adjacent battery cells 100. and heat propagation to adjacent battery cells 100 can also be effectively delayed.
  • one or more battery modules according to the present embodiment may be packaged in a pack case to form a battery pack.
  • the battery module described above and the battery pack including the battery module may be applied to various devices. Such devices may be applied to means of transportation such as electric bicycles, electric vehicles, hybrid vehicles, etc., but the present invention is not limited thereto and is applicable to various devices capable of using a battery module and a battery pack including the same, which is also applicable to the present invention. Belongs to the scope of the right of invention.
  • FIG. 4 is an enlarged view of one end of a battery cell according to a comparative example.
  • FIG. 5 is a view showing a cross section cut along the cutting line a-a′ of FIG. 4 .
  • the electrode assembly 11 is mounted in the battery case 20, and the sealing portion 25 formed by sealing the outer periphery of the battery case 20 is provided.
  • the electrode lead 30 is electrically connected to the electrode tab included in the electrode assembly 11 and protrudes outward from the battery case 20 via the sealing portion 25 .
  • a separate sealing pattern may not be formed on the sealing portion 25 . That is, in the battery cell 10 of the comparative example, all portions of the sealing portion 25 may be sealed in a flat shape.
  • the battery cell 100 according to the present embodiment may more easily discharge gas through the gas discharge unit 250V.
  • gas can be discharged in a direction induced in advance by the gas discharge unit 250V, heat propagation between adjacent battery cells 100 can be prevented and safety can be further improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

본 발명의 일 실시예에 따른 전지 셀은, 전극 조립체가 수납부에 장착되되, 외주변이 밀봉된 구조의 실링부를 포함하는 전지 케이스; 및 상기 전극 조립체에 포함된 전극 탭과 전기적으로 연결되되, 상기 실링부를 경유하여 상기 전지 케이스의 외측 방향으로 돌출되어 있는 전극 리드를 포함하고, 상기 실링부는 가스 배출부를 포함하고, 상기 실링부 중 상기 가스 배출부가 위치하지 않은 부분은 제1 실링 패턴으로 형성되어 있고, 상기 가스 배출부는 제2 실링 패턴으로 형성되어 있고, 상기 제1 실링 패턴과 상기 제2 실링 패턴은 상이하다.

Description

전지 셀 및 이를 포함하는 전지 모듈
관련 출원(들)과의 상호 인용
본 출원은 2021년 10월 14일자 한국 특허 출원 제10-2021-0136429호 및 2022년 10월 5일자 한국 특허 출원 제10-2022-0127087호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 전지 셀 및 이를 포함하는 전지 모듈에 관한 것으로, 보다 구체적으로는 실링 강도가 취약한 형태의 실링 패턴이 적용된 가스 배출부를 포함하는 전지 셀 및 이를 포함하는 전지 모듈에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 특히, 이차전지는 휴대폰, 디지털 카메라, 노트북, 웨어러블 디바이스 등의 모바일 기기뿐만 아니라, 전기 자전거, 전기 자동차, 하이브리드 전기 자동차 등의 동력 장치에 대한 에너지원으로도 많은 관심을 가지고 있다.
이러한 이차전지는 전지 케이스의 형상에 따라, 전극 조립체가 원통형 또는 각형의 금속 캔에 내장되어 있는 원통형 전지 및 각형 전지와, 전극 조립체가 알루미늄 라미네이트 시트의 파우치형 케이스에 내장되어 있는 파우치형 전지로 분류된다. 여기서, 전지 케이스에 내장되는 전극 조립체는 양극, 음극, 및 상기 양극과 상기 음극 사이에 개재된 분리막 구조로 이루어져 충방전이 가능한 발전소자로서, 활물질이 도포된 긴 시트형의 양극과 음극 사이에 분리막을 개재하여 권취한 젤리-롤형과, 다수의 양극과 음극을 분리막에 개재한 상태에서 순차적으로 적층한 스택형으로 분류된다.
이 중에서도, 특히 스택형 또는 스택/폴딩형 전극 조립체를 알루미늄 라미네이트 시트의 파우치형 전지 케이스에 내장한 구조의 파우치형 전지가, 낮은 제조 비용, 작은 중량, 용이한 변형 형태 등을 이유로 사용량이 점차적으로 증가하고 있다.
그러나, 최근 전지 셀의 에너지 밀도가 증가함에 따라, 전지 셀 내부에서 발생하는 가스량 또한 증가되는 문제가 있다. 종래의 전지 셀의 경우, 전지 셀 내부에서 발생된 가스가 배출될 수 있는 부품이 포함되어 있지 않아, 전지 셀은 가스 발생으로 인해 벤팅 현상이 발생될 수 있다. 특히, 종래의 전지 셀에서 벤팅 현상 발생 시, 실링이 취약한 부분으로 가스가 배출되게 된다. 이러한 가스는 인화성 가스로서, 인접한 셀을 가열하여, 인접한 셀의 발화 및 폭발을 유도할 수 있다.
이에 따라, 전지 셀의 벤팅 현상 발생 시 가스 배출이 효과적으로 수행되면서도, 가스 배출 방향을 특정 방향으로 유도하여 안전성을 향상시키는 전지 셀을 개발할 필요성이 높아지고 있다.
본 발명의 해결하고자 하는 과제는, 실링 강도가 취약한 형태의 실링 패턴이 적용된 가스 배출부를 포함하는 전지 셀 및 이를 포함하는 전지 모듈을 제공하는 것이다.
본 발명이 해결하고자 하는 과제가 상술한 과제로 제한되는 것은 아니며, 언급되지 아니한 과제들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예에 따른 전지 셀은, 전극 조립체가 수납부에 장착되되, 외주변이 밀봉된 구조의 실링부를 포함하는 전지 케이스; 및 상기 전극 조립체에 포함된 전극 탭과 전기적으로 연결되되, 상기 실링부를 경유하여 상기 전지 케이스의 외측 방향으로 돌출되어 있는 전극 리드를 포함하고, 상기 실링부는 가스 배출부를 포함하고, 상기 실링부 중 상기 가스 배출부가 위치하지 않은 부분은 제1 실링 패턴으로 형성되어 있고, 상기 가스 배출부는 제2 실링 패턴으로 형성되어 있고, 상기 제1 실링 패턴과 상기 제2 실링 패턴은 상이하다.
상기 제1 실링 패턴은 상기 실링부의 길이 방향을 따라 만입 및 돌출이 반복되어 있고, 상기 제2 실링 패턴은 상기 실링부의 폭 방향을 따라 만입 및 돌출이 반복되어 있을 수 있다.
상기 제1 실링 패턴과 상기 제2 실링 패턴은 만입된 부분과 돌출된 부분의 간격이 서로 동일할 수 있다.
상기 제2 실링 패턴의 만입된 부분과 돌출된 부분의 간격은 상기 제1 실링 패턴의 만입된 부분과 돌출된 부분의 간격보다 클 수 있다.
상기 실링부에서, 상기 가스 배출부는 상기 전극 리드가 위치한 외주변에 위치할 수 있다.
상기 전극 리드가 위치한 외주변에서, 상기 가스 배출부는 상기 전극 리드가 위치하지 않은 부분에 위치할 수 있다.
상기 가스 배출부의 실링 강도는 상기 실링부의 실링 강도보다 작을 수 있다.
본 발명의 다른 일 실시예에 따른 전지 모듈은 상술한 전지 셀을 포함할 수 있다.
상기 전지 셀은 상기 가스 배출부가 바닥면에 인접한 방향으로 적층되어 있을 수 있다.
상기 전지 셀에서, 상기 가스 배출부는 상기 실링부 중 상기 전극 리드의 하측에 형성되어 있을 수 있다.
실시예들에 따르면, 본 발명은 실링 강도가 취약한 형태의 실링 패턴이 적용된 가스 배출부를 포함하는 전지 셀 및 이를 포함하는 전지 모듈로서, 전지 셀의 벤팅 현상 발생 시 가스 배출이 효과적으로 수행되면서도, 가스 배출 방향을 특정 방향으로 유도하여 안전성을 향상시킬 수 있다.
본 발명의 효과가 상술한 효과들로 제한되는 것은 아니며, 언급되지 아니한 효과들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확히 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 전지 셀에 대한 상면도이다.
도 2(a)는 도 1의 전지 셀의 일 단부를 확대하여 나타낸 도면이고, 도 2(b)는 도 2(a)의 절단선 A-A’ 또는 절단선 B-B’를 따라 자른 단면을 나타내는 도면이다.
도 3(a)는 도 2(a)의 실링부의 실링 패턴을 나타내는 도면이고, 도 3(b)는 도 2(b)의 가스 배출부의 실링 패턴을 나타내는 도면이다.
도 4는 비교예에 따른 전지 셀의 일 단부를 확대하여 나타낸 도면이다.
도 5는 도 4의 절단선 a-a’를 따라 자른 단면을 나타내는 도면이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 여러 실시예들에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다. 도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
또한, 명세서 전체에서, "평면상"이라 할 때, 이는 대상 부분을 위에서 보았을 때를 의미하며, "단면상"이라 할 때, 이는 대상 부분을 수직으로 자른 단면을 옆에서 보았을 때를 의미한다.
이하에서는, 본 발명의 실시예에 따른 전지 셀에 대해 설명하고자 한다.
도 1은 본 발명의 일 실시예에 따른 전지 셀에 대한 상면도이다.
본 발명의 일 실시예에 따른 전지 셀(100)은, 전극 조립체(110)가 수납부(210)에 장착되되, 외주변이 밀봉된 구조의 실링부(250)를 포함하는 전지 케이스(200); 및 전극 조립체(110)에 포함된 전극 탭과 전기적으로 연결되되, 실링부(250)를 경유하여 전지 케이스(200)의 외측 방향으로 돌출되어 있는 전극 리드(300)를 포함한다.
전지 케이스(200)는 수지층과 금속층을 포함하는 라미네이트 시트일 수 있다. 보다 구체적으로, 전지 케이스(200)는 라미네이트 시트로 이루어져 있고, 최외각을 이루는 외측 수지층, 물질의 관통을 방지하는 차단성 금속층, 및 밀봉을 위한 내측 수지층으로 구성될 수 있다.
전극 조립체(110)는 젤리-롤형(권취형), 스택형(적층형), 또는 복합형(스택/폴딩형)의 구조로 이루어질 수 있다. 보다 구체적으로, 전극 조립체(110)는 양극, 음극, 이들 사이에 배치되는 분리막으로 이루어질 수 있다.
전극 리드(300)는 전극 조립체(110)에 포함된 전극 탭(미도시됨)과 전기적으로 연결되고, 실링부(250)를 경유하여 전지 케이스(200)의 외측 방향으로 돌출되어 있다. 또한, 리드 필름(400)은 전극 리드(300)의 상부 및 하부 중 적어도 하나에서, 실링부(250)에 대응되는 부분에 위치한다.
이에 따라, 리드 필름(400)은 실링부(250)와 함께 열 융착 또는 프레스 융착 시 전극 리드(300)에서 쇼트가 발생하는 것을 방지하면서도, 실링부(250)와 전극 리드(300)의 밀봉성을 향상시킬 수 있다.
이하에서는, 본 발명의 실시예에 따른 전지 셀의 실링부를 중심으로 설명하고자 한다. 다만, 여기서 전지 셀의 일 단부를 기준으로 설명될 것이나, 반드시 이에 한정되는 것은 아니고 반대 단부인 경우에도 동일하거나 유사한 내용으로 설명될 수 있다.
도 2(a)는 도 1의 전지 셀의 일 단부를 확대하여 나타낸 도면이고, 도 2(b)는 도 2(a)의 절단선 A-A’ 또는 절단선 B-B’를 따라 자른 단면을 나타내는 도면이다. 도 3(a)는 도 2(a)의 실링부의 실링 패턴을 나타내는 도면이고, 도 3(b)는 도 2(b)의 가스 배출부의 실링 패턴을 나타내는 도면이다.
도 1 및 도 2(a)를 참조하면, 본 실시예에 따른 전지 셀(100)에서, 실링부(250)는 가스 배출부(250V)를 포함한다. 즉, 가스 배출부(250V)는 실링부(250) 중 일부를 대체하여 형성되어 있을 수 있다. 다르게 말하면, 가스 배출부(250V)는 실링부(250) 중 일부에 삽입되어 있을 수 있다.
보다 구체적으로, 실링부(250)에서, 가스 배출부(250V)는 전극 리드(300)가 위치한 외주변에 위치할 수 있다. 즉, 가스 배출부(250V)는 전극 리드(300)가 위치한 외주변을 밀봉한 실링부(250)에 위치할 수 있다.
이에 따라, 일반적으로 전지 셀(100)에서, 실링부(250)에서 실링 강도가 가장 취약한 부분이 전극 리드(300)가 위치한 부분이나, 본원 발명의 경우 전극 리드(300)가 위치한 외주변에 가스 배출부(250V)가 형성되어 있어, 전지 셀(100)의 내압 상승 시 배출되는 가스는 전극 리드(300)가 위치한 실링부(250) 부분으로 배출되는 것을 방지할 수 있다.
일 예로, 전극 리드(300)가 위치한 외주변에서, 가스 배출부(250V)는 전극 리드(300)가 위치하지 않은 부분에 위치할 수 있다. 즉, 가스 배출부(250V)는 전극 리드(300)가 위치한 외주변 중 전극 리드(300)가 위치하지 않은 부분을 밀봉한 실링부(250)에 위치할 수 있다. 다만, 가스 배출부(250V)의 위치는 이에 한정되는 것은 아니며, 가스 배출을 유도하고자 하는 방향을 고려한 위치에 형성되어 있을 수 있다.
이에 따라, 도 2(a)와 같이, 전지 셀(100)의 내압 상승 시 배출되는 가스는 전극 리드(300)가 위치한 실링부(250) 부분으로 배출되지 않고, 전극 리드(300)가 위치하는 부분을 제외한 부분에 위치한 가스 배출부(250V)를 통해 배출될 수 있다. 즉, 가스 배출부(250V)는 전지 셀(100) 내압 상승 시 배출되는 가스의 배출 방향을 특정 방향으로 유도할 수 있다.
또한, 본 실시예의 전지 셀(100)에서, 가스 배출부(250V)의 실링 강도는 실링부(250)의 실링 강도보다 작을 수 있다. 이에 따라, 전지 셀(100)의 내압 상승 시 가스 배출부(250V)가 실링부(250)보다 우선하여 파손될 수 있다. 즉, 전지 셀(100) 내압 상승 시 가스 배출부(250V)는 실링부(250)보다 우선적으로 파손되어, 가스 배출부(250V)는 가스가 배출되는 통로의 역할을 수행할 수 있다.
도 2(a)를 참조하면, 실링부(250) 중 상기 가스 배출부가 위치하지 않은 부분은 제1 실링 패턴으로 형성되어 있을 수 있고, 가스 배출부(250V)는 제1 실링 패턴으로 형성되어 있을 수 있다. 여기서, 상기 제1 실링 패턴과 상기 제2 실링 패턴은 상이할 수 있다. 여기서, 실링 패턴이란 일정한 패턴을 가지는 실링 영역을 의미할 수 있다.
보다 구체적으로, 실링부(250)의 상기 제1 실링 패턴과 가스 배출부(250V)의 상기 제1 실링 패턴은 서로 상이한 방향으로 만입 및 돌출이 반복되어 있는 패턴일 수 있다. 일 예로, 도 2(b)와 같이, 상기 제1 실링 패턴은 실링부(250)의 길이 방향(절단선 A-A’)을 따라 만입 및 돌출이 반복되어 있을 수 있고, 상기 제2 실링 패턴은 실링부(250)의 폭 방향(절단선 B-B’)을 따라 만입 및 돌출이 반복되어 있을 수 있다.
도 2 및 도 3(a)을 참조하면, 실링부(250)는 실링부(250)의 길이 방향을 따라 만입 및 돌출이 반복되어 있는 제1 실링 패턴을 가질 수 있다. 이 때, 상기 제1 실링 패턴은, 도 3(a)와 같이 실링부(250)의 패턴의 진행 방향을 따라 굽힘 하중을 받을 수 있다. 즉, 상기 제1 실링 패턴은 반복 형성되는 만입 또는 돌출된 부분의 폭 방향으로 굽힘 하중을 받을 수 있다. 이에 따라, 상기 제1 실링 패턴을 가지는 실링부(250)는 부분적으로 굽힘 하중을 받게 되어, 비교적 실링 강도가 높을 수 있다.
이와 달리, 도 2 및 도 3(b)를 참조하면, 가스 배출부(250V)는 실링부(250)의 폭 방향을 따라 만입 및 돌출되어 있는 제2 실링 패턴을 가질 수 있다. 이 때, 상기 제2 실링 패턴은, 도 3(b)와 같이 실링부(250)의 패턴 진행 방향에 수직인 방향으로 굽힘 하중을 받을 수 있다. 즉, 상기 제2 실링 패턴은 만입 또는 돌출된 부분의 길이 방향으로 굽힘 하중을 받을 수 있다. 이에 따라, 상기 제2 실링 패턴을 가지는 가스 배출부(250V)는 만입 또는 돌출된 부분에 전체적으로 굽힘 하중을 받게 되어, 비교적 실링 강도가 작을 수 있다.
이에 따라, 본 실시예의 전지 셀(100)에서, 상기 제2 실링 패턴을 가지는 가스 배출부(250V)의 실링 강도는 상기 제1 실링 패턴을 가지는 실링부(250)의 실링 강도보다 작을 수 있다. 즉, 전지 셀(100)의 내압 상승 시 가스 배출부(250V)가 실링부(250)보다 우선적으로 파손되어, 가스 배출부(250V)는 가스가 배출 방향을 유도하면서, 가스 배출 통로의 역할을 수행할 수 있다.
이와 더불어, 본 실시예는 가스 배출을 위한 별도의 부재를 포함하지 않고, 실링 패턴의 차이만으로 실링 강도를 달리하는 가스 배출부(250V)를 형성하는 점에서, 제조 공정이 간이하고 제조 비용이 절감되는 이점이 있다.
일 예로, 상기 제1 실링 패턴과 상기 제2 실링 패턴은 만입된 부분과 돌출된 부분의 간격이 서로 동일할 수 있다.
이에 따라, 상기 제1 실링 패턴과 상기 제2 실링 패턴은 패턴의 형성 방향이 상이할 뿐 패턴의 간격은 동일한 점에서, 제조 공정이 보다 용이해지고 공정 효율성이 높아질 수 있다.
다른 일 예로, 상기 제2 실링 패턴의 만입된 부분과 돌출된 부분의 간격은 상기 제1 실링 패턴의 만입된 부분과 돌출된 부분의 간격보다 클 수 있다.
이에 따라, 상기 제1 실링 패턴을 가지는 가스 배출부(250V)의 실링 강도가 보다 작아질 수 있다. 즉, 전지 셀(100)의 내압 상승 시 가스 배출부(250V)가 보다 빠른 시간 내에 파손되어, 전지 셀(100) 외부로 가스가 효과적으로 배출될 수 있다.
다만, 상기 제1 실링 패턴과 상기 제2 실링 패턴은 만입된 부분과 돌출된 부분의 간격은 이에 한정되는 것은 아니며, 상술한 내용 이외에도 다양한 간격으로 형성되어 있을 수 있다.
본 발명의 다른 일 실시예에 따른 전지 모듈은 상술한 전지 셀(100)을 포함할 수 있다. 특히, 상기 전지 모듈에서, 전지 셀(100)은 전극 리드(300)가 위치하지 않은 측면이 바닥면에 닿는 방향으로 적층되어 있을 수 있다. 여기서, 전지 셀(100)은 가스 배출부(250V)가 바닥면에 인접한 방향으로 적층되어 있을 수 있다. 일 예로, 전지 셀(100)은 가스 배출부(250V)가 전극 리드(300)의 하측에 위치하는 방향으로 적층되어 있을 수 있다. 즉, 전지 셀(100)에서, 가스 배출부(250V)는 실링부(250) 중 전극 리드(300)의 하측에 형성되어 있을 수 있다.
이에 따라, 본 실시예에서, 전지 셀(100)의 가스 배출부(250V)는 바닥면에 인접하게 위치하여, 전지 셀(100) 내압 상승 시 가스 배출부(250V)를 통해 배출되는 가스는 바닥면을 향해 배출될 수 있다. 즉, 본 실시예에서, 일부 전지 셀(100)에서 배출되는 가스가 바닥면을 향해 배출되어, 전지 셀(100)에서 배출된 고온의 인화성 가스가 인접한 전지 셀(100)에 가하는 손상을 최소화할 수 있고, 인접한 전지 셀(100)에 대한 열전파 또한 효과적으로 지연시킬 수 있다.
한편, 본 실시 예에 따른 전지 모듈은 하나 또는 그 이상이 팩 케이스 내에 패키징되어 전지팩을 형성할 수 있다.
앞에서 설명한 전지 모듈 및 이를 포함하는 전지팩은 다양한 디바이스에 적용될 수 있다. 이러한 디바이스에는, 전기 자전거, 전기 자동차, 하이브리드 자동차 등의 운송 수단에 적용될 수 있으나, 본 발명은 이에 제한되지 않고 전지 모듈 및 이를 포함하는 전지팩을 사용할 수 있는 다양한 디바이스에 적용 가능하며, 이 또한 본 발명의 권리 범위에 속한다.
도 4는 비교예에 따른 전지 셀의 일 단부를 확대하여 나타낸 도면이다. 도 5는 도 4의 절단선 a-a’를 따라 자른 단면을 나타내는 도면이다.
도 4를 참조하면, 비교예에 따른 전지 셀(10)은 전지 케이스(20) 내에 전극 조립체(11)가 장착되어 있고, 전지 케이스(20)의 외주변이 밀봉되어 형성된 실링부(25)를 포함할 수 있다. 여기서, 전극 조립체(11)에 포함된 전극 탭과 전기적으로 연결되되, 실링부(25)를 경유하여 전지 케이스(20)의 외측 방향으로 돌출되어 있는 전극 리드(30)를 포함한다.
여기서, 비교예에 따른 전지 셀(10)은, 도 1 내지 도 3의 전지 셀(100)과 달리, 실링부(25)에 별도의 실링 패턴이 형성되어 있지 않을 수 있다. 즉, 비교예의 전지 셀(10)에서, 실링부(25)는 모든 부분이 평평(Flat)한 형태로 실링되어 있을 수 있다.
도 5를 참조하면, 비교예에 따른 전지 셀(10)의 경우, 실링부(25)에 별도의 실링 패턴이 형성되어 있지 않아, 전지 셀(10)의 두께 방향으로 굽힘 하중을 받게 되어, 실링부(25)가 파손되는 것을 확인할 수 있다. 특히, 실링부(25) 중에서도 실링 강도가 가장 취약한 부분인 전극 리드(30)가 위치한 부분이 파손될 수 있다. 또한, 전극 리드(30)가 위치한 부분은 인접한 전지 셀의 전극 리드와 매우 가깝게 위치하여, 실링부(25)의 파손 부위를 통해 배출되는 고온의 인화성 가스가 인접한 전지 셀을 빠르게 가열시킬 수 있다. 이에 따라, 비교예에 따른 전지 셀(10)을 포함하는 전지 모듈에서 전지 셀(10) 간의 열전파가 보다 쉽게 발생될 수 있는 문제가 있다.
이에 비해, 도 1 내지 도 3을 참조하면, 본 실시예에 따른 전지 셀(100)은 가스 배출부(250V)를 통해 가스 배출이 보다 용이할 수 있다. 이와 더불어, 가스 배출부(250V)에 의해 미리 유도된 방향으로 가스가 배출될 수 있어, 인접한 전지 셀(100) 간의 열 전파를 방지할 수 있고, 안전성이 보다 향상될 수 있는 이점이 있다.
이상에서 본 발명의 바람직한 실시 예에 대하여 상세하게 설명하였으나, 본 발명의 권리 범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리 범위에 속하는 것이다.
<부호의 설명>
10, 100: 전지 셀
11, 110: 전극 조립체
20, 200: 전지 케이스
210: 수납부
250: 실링부
250V: 가스 배출부
30, 300: 전극 리드
400: 리드 필름

Claims (10)

  1. 전극 조립체가 수납부에 장착되되, 외주변이 밀봉된 구조의 실링부를 포함하는 전지 케이스; 및
    상기 전극 조립체에 포함된 전극 탭과 전기적으로 연결되되, 상기 실링부를 경유하여 상기 전지 케이스의 외측 방향으로 돌출되어 있는 전극 리드를 포함하고,
    상기 실링부는 가스 배출부를 포함하고,
    상기 실링부 중 상기 가스 배출부가 위치하지 않은 부분은 제1 실링 패턴으로 형성되어 있고,
    상기 가스 배출부는 제2 실링 패턴으로 형성되어 있고,
    상기 제1 실링 패턴과 상기 제2 실링 패턴은 상이한 전지 셀.
  2. 제1항에서,
    상기 제1 실링 패턴은 상기 실링부의 길이 방향을 따라 만입 및 돌출이 반복되어 있고,
    상기 제2 실링 패턴은 상기 실링부의 폭 방향을 따라 만입 및 돌출이 반복되어 있는 전지 셀.
  3. 제2항에서,
    상기 제1 실링 패턴과 상기 제2 실링 패턴은 만입된 부분과 돌출된 부분의 간격이 서로 동일한 전지 셀.
  4. 제2항에서,
    상기 제2 실링 패턴의 만입된 부분과 돌출된 부분의 간격은 상기 제1 실링 패턴의 만입된 부분과 돌출된 부분의 간격보다 큰 전지 셀.
  5. 제1항에서,
    상기 실링부에서, 상기 가스 배출부는 상기 전극 리드가 위치한 외주변에 위치하는 전지 셀.
  6. 제5항에서,
    상기 전극 리드가 위치한 외주변에서, 상기 가스 배출부는 상기 전극 리드가 위치하지 않은 부분에 위치하는 전지 셀.
  7. 제1항에서,
    상기 가스 배출부의 실링 강도는 상기 실링부의 실링 강도보다 작은 전지 셀.
  8. 제1항의 전지 셀을 포함하는 전지 모듈.
  9. 제8항에서,
    상기 전지 셀은 상기 가스 배출부가 바닥면에 인접한 방향으로 적층되어 있는 전지 모듈.
  10. 제9항에서,
    상기 전지 셀에서, 상기 가스 배출부는 상기 실링부 중 상기 전극 리드의 하측에 형성되어 있는 전지 모듈.
PCT/KR2022/015261 2021-10-14 2022-10-11 전지 셀 및 이를 포함하는 전지 모듈 WO2023063676A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280057446.0A CN117916938A (zh) 2021-10-14 2022-10-11 电池单体及包括该电池单体的电池模块
EP22881303.6A EP4362196A1 (en) 2021-10-14 2022-10-11 Battery cell and battery module comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210136429 2021-10-14
KR10-2021-0136429 2021-10-14
KR1020220127087A KR20230053514A (ko) 2021-10-14 2022-10-05 전지 셀 및 이를 포함하는 전지 모듈
KR10-2022-0127087 2022-10-05

Publications (1)

Publication Number Publication Date
WO2023063676A1 true WO2023063676A1 (ko) 2023-04-20

Family

ID=85988476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015261 WO2023063676A1 (ko) 2021-10-14 2022-10-11 전지 셀 및 이를 포함하는 전지 모듈

Country Status (2)

Country Link
EP (1) EP4362196A1 (ko)
WO (1) WO2023063676A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070056425A (ko) * 2005-11-29 2007-06-04 삼성에스디아이 주식회사 파우치형 리튬 이차 전지
KR20090064041A (ko) * 2007-12-14 2009-06-18 주식회사 엘지화학 신규한 실링부 구조를 포함하는 이차전지
KR20110102667A (ko) * 2010-03-11 2011-09-19 삼성에스디아이 주식회사 이차 전지
KR20160045468A (ko) * 2014-10-17 2016-04-27 주식회사 엘지화학 파우치형 이차 전지 및 그의 제조방법
KR20200055680A (ko) * 2018-11-13 2020-05-21 주식회사 엘지화학 파우치 케이스 및 이를 포함하는 파우치형 이차 전지의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070056425A (ko) * 2005-11-29 2007-06-04 삼성에스디아이 주식회사 파우치형 리튬 이차 전지
KR20090064041A (ko) * 2007-12-14 2009-06-18 주식회사 엘지화학 신규한 실링부 구조를 포함하는 이차전지
KR20110102667A (ko) * 2010-03-11 2011-09-19 삼성에스디아이 주식회사 이차 전지
KR20160045468A (ko) * 2014-10-17 2016-04-27 주식회사 엘지화학 파우치형 이차 전지 및 그의 제조방법
KR20200055680A (ko) * 2018-11-13 2020-05-21 주식회사 엘지화학 파우치 케이스 및 이를 포함하는 파우치형 이차 전지의 제조 방법

Also Published As

Publication number Publication date
EP4362196A1 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
WO2017073905A1 (ko) 테이핑을 이용하는 벤팅 구조의 전지셀
WO2010050697A2 (ko) 전지 카트리지와 이를 포함하는 전지모듈
WO2022080908A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2021201421A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2019078449A1 (ko) 가스 배출이 가능한 이차전지용 파우치형 케이스
WO2022182016A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022182210A1 (ko) 전지셀, 이의 제조 방법 및 이를 포함하는 전지 모듈
WO2016056776A1 (ko) 계단 구조의 전극조립체에 대응하는 형상으로 형성되어 있는 전지케이스를 포함하는 전지셀
WO2022080673A1 (ko) 파우치형 이차 전지 및 이를 포함하는 전지 모듈
WO2021210805A1 (ko) 전지 팩 및 이를 포함하는 디바이스
WO2021075688A1 (ko) 전지 모듈 및 이을 포함하는 전지 팩
WO2023063676A1 (ko) 전지 셀 및 이를 포함하는 전지 모듈
WO2022250429A1 (ko) 전지 셀 및 이를 포함하는 전지 모듈
WO2022215881A1 (ko) 이차전지 및 이의 제조 방법
WO2022158792A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022225168A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2022065764A1 (ko) 파우치 전지셀 및 이를 포함하는 전지 모듈
WO2023068671A1 (ko) 이차 전지, 이의 제조 방법 및 이를 포함하는 디바이스
WO2023090680A1 (ko) 이차 전지 및 이를 포함하는 전지 모듈
WO2022139427A1 (ko) 전지셀 및 이의 제조 장치
WO2022216122A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2024117478A1 (ko) 전지 모듈 이를 포함하는 전지 팩
WO2022098063A1 (ko) 전지셀 및 이를 포함하는 전지 모듈
WO2022124660A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2023063612A1 (ko) 인쇄회로기판, 이의 제조 방법 및 이를 포함하는 전지 팩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22881303

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022881303

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2024504851

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022881303

Country of ref document: EP

Effective date: 20240124

WWE Wipo information: entry into national phase

Ref document number: 202280057446.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE