WO2022102976A1 - 마이크로니들 어레이 및 이의 제조방법 - Google Patents

마이크로니들 어레이 및 이의 제조방법 Download PDF

Info

Publication number
WO2022102976A1
WO2022102976A1 PCT/KR2021/013759 KR2021013759W WO2022102976A1 WO 2022102976 A1 WO2022102976 A1 WO 2022102976A1 KR 2021013759 W KR2021013759 W KR 2021013759W WO 2022102976 A1 WO2022102976 A1 WO 2022102976A1
Authority
WO
WIPO (PCT)
Prior art keywords
microneedle
manufacturing
mold
region
microneedle array
Prior art date
Application number
PCT/KR2021/013759
Other languages
English (en)
French (fr)
Inventor
김동환
박상한
강복기
이민석
Original Assignee
주식회사 대웅테라퓨틱스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 대웅테라퓨틱스 filed Critical 주식회사 대웅테라퓨틱스
Publication of WO2022102976A1 publication Critical patent/WO2022102976A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/40Plastics, e.g. foam or rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C39/026Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0023Drug applicators using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0053Methods for producing microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2207/00Methods of manufacture, assembly or production
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C2045/0094Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor injection moulding of small-sized articles, e.g. microarticles, ultra thin articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/002Making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • B29L2031/7544Injection needles, syringes

Definitions

  • the present invention relates to a microneedle array and a method for manufacturing the same, and more particularly, to a microneedle array manufactured using a mold manufactured by an injection molding method using a thermoplastic resin as a material, and a microneedle array capable of loading a plurality of active ingredients; It relates to a manufacturing method thereof.
  • microneedle formulations aim to deliver ingredients through the skin to achieve a desired efficacy.
  • the microneedle formulation uses microneedles with diameters and heights of only tens to thousands of micrometers to penetrate the stratum corneum, which is the main barrier layer for ingredient delivery through the skin.
  • the target component reaches the epidermal layer or the dermal layer, so that the microneedle is applied or the body's circulatory system exhibits efficacy throughout the body.
  • the material of the microneedle can be largely divided into a metal microneedle and a biodegradable material microneedle.
  • the metal microneedle has a hollow microneedle shape like a general injection needle with a path through which the component to be delivered can move, and a solid microneedle that delivers the component by coating it on the surface of the microneedle.
  • the biodegradable microneedle is mainly in the form of a solid microneedle, and the component is coated on the surface of the microneedle or the microneedle is formed like a biodegradable polymer and applied to the skin, and then the applied microneedle is decomposed to deliver the component. .
  • the microneedle is generally manufactured by injecting a material constituting the needle into a metal (iron, silicon, etc.) mold in which the shape of the microneedle is engraved.
  • the process of separating the microneedle from the mold to cycle the manufacturing process after the formation of the microneedle is essential. .
  • the shape of the microneedle may be deformed or lost during an additional manufacturing or distribution process. Such deformation or loss may result in non-uniformity in the content of individual microneedles, and as a result, may lead to imbalance in the total content of drugs loaded into the microneedle array.
  • the metal mold is an accessory of the manufacturing equipment, for mass production, the manufacturing equipment must be enlarged as the size of the metal mold increases, and the manufacturing cost also increases. There is a problem in that the production cost is lowered due to this.
  • the present invention is to solve the problems of the prior art described above, and an object of the present invention is to use a mold manufactured by injection molding using a thermoplastic resin as a material, and a microneedle capable of loading a plurality of active ingredients An array and a method for manufacturing the same are provided.
  • one aspect of the present invention comprises the steps of (a) manufacturing a mold for manufacturing a microneedle divided into at least two or more regions, and including one or more intaglio portions in each region; and (b) molding one or more microneedles by injecting different microneedle raw materials into the respective regions.
  • the mold may be a method of manufacturing a microneedle array, characterized in that manufactured by injection molding a thermoplastic resin.
  • the thermoplastic resin is at least one selected from the group consisting of polyethylene terephthalate (PET), polyvinyl chloride (PVC), and polypropylene (PP). It may be a manufacturing method.
  • the mold may be a method of manufacturing a microneedle array, characterized in that the mold is a primary packaging container in full close contact with the microneedle and is removed immediately before application of the microneedle to the human body.
  • step (c) laminating an adhesive sheet on a flat surface including an upper surface of the microneedle and one surface of the mold; characterized in that it further comprises It may be a method of manufacturing a microneedle array.
  • the pressure is reduced to 0.5 atm or less, and then filled with a blade or pressurized to 2 atm or more to the intaglio of the mold. It may be a method of manufacturing a microneedle array, characterized in that.
  • step (b) the microneedle raw material containing the active ingredient to be delivered is filled in the concave part of the mold, and after primary drying, the base part raw material is filled on the upper part, Secondary drying may be a method of manufacturing a microneedle array, characterized in that the microneedle is molded.
  • the microneedle raw material may be a method of manufacturing a microneedle array, characterized in that at least one selected from the group consisting of metals, non-metals, biodegradable polymers, and pharmacological components.
  • the base raw material is carboxymethyl cellulose (CMC), hyaluronic acid (HA), polyvinyl alcohol (PVA), polylactic acid (PLA), polylacticcoglycolic acid (PLGA), It may be a method of manufacturing a microneedle array, characterized in that at least one selected from the group consisting of polyvinylpyrrolidone (PVP).
  • CMC carboxymethyl cellulose
  • HA hyaluronic acid
  • PVA polyvinyl alcohol
  • PLA polylactic acid
  • PLGA polylacticcoglycolic acid
  • PVP polyvinylpyrrolidone
  • another aspect of the present invention is a mold for manufacturing a microneedle that is partitioned into at least two or more regions, and includes one or more intaglios in each region; and one or more microneedles molded by injecting different microneedle raw materials into the respective regions; it provides a microneedle array comprising a.
  • the mold may be a microneedle array, characterized in that manufactured by injection molding a thermoplastic resin.
  • the thermoplastic resin is at least one selected from the group consisting of polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyvinylidene chloride (PVDC), and polypropylene (PP). Characterized in, it may be a microneedle array.
  • the mold may be a microneedle array, characterized in that it is removed immediately before application of the microneedle to the human body as a primary packaging material in full close contact with the microneedle.
  • the microneedle raw material may be a method of manufacturing a microneedle array, characterized in that at least one selected from the group consisting of metals, non-metals, biodegradable polymers, and pharmacological components.
  • it may be a microneedle array, characterized in that it further comprises a base on the upper surface of the microneedle.
  • the base portion is carboxymethyl cellulose (CMC), hyaluronic acid (HA), polyvinyl alcohol (PVA), polylactic acid (PLA), polylacticcoglycolic acid (PLGA), polyvinyl It may be a microneedle array, characterized in that at least one selected from the group consisting of pyrrolidone (PVP).
  • CMC carboxymethyl cellulose
  • HA hyaluronic acid
  • PVA polyvinyl alcohol
  • PLA polylactic acid
  • PLGA polylacticcoglycolic acid
  • PVP pyrrolidone
  • it may be a microneedle array, characterized in that the adhesive sheet is laminated on one surface of the microneedle.
  • it may be a microneedle array, characterized in that the adhesive sheet is laminated on one surface of the base.
  • the mold for manufacturing microneedles manufactured through injection molding does not shrink or warp even when stored for a long period of time compared to thermocompression molding, so that the shape of the product does not change, and the storage stability of the product can be improved. there is.
  • the mold for manufacturing microneedles manufactured through injection molding can be formed very precisely without deviation in height of individual intaglios compared to thermocompression molding, and many intaglios can be formed in a narrower area.
  • the mold for manufacturing the microneedle manufactured through injection molding is used as a mold required for manufacturing the microneedle, and the mold for manufacturing the microneedle is present in the final product without being removed from the microneedle, so that the user applies the mold to the human body. Deformation, loss, contamination, etc. of the microneedle can be prevented by allowing the microneedle to be completely removed.
  • microneedles since a mold for manufacturing microneedles having a function of protecting the microneedle in the final product is used as a mold for forming the microneedle, the maximum production quantity can be adjusted according to the input amount of raw materials regardless of the size of the manufacturing apparatus, Accordingly, microneedles can be mass-produced within a short period of time.
  • thermoplastic plastic materials such as PET, PVC, and PP are cheaper than silicone materials, and molds for manufacturing microneedles made of these thermoplastic materials are free from the issues of Cleaning Validation (CV), durability and internal medicines. It has excellent protection against external contamination, and pre-sterilization is possible.
  • CV Cleaning Validation
  • microneedle array containing different pharmacological components By manufacturing a microneedle array containing different pharmacological components through a mold for manufacturing microneedles partitioned into at least two or more regions, various types of pharmacological components can be administered at once, so that convenience can be improved by reducing the number of administration there will be
  • FIG. 1 is a schematic diagram of a step of manufacturing a mold for manufacturing a microneedle according to an embodiment of the present invention.
  • FIG. 2 is a photograph of a mold for manufacturing a microneedle manufactured by an injection molding method according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram of the step of molding the microneedle according to an embodiment of the present invention.
  • Figure 4 is a schematic diagram of the step of molding the microneedle according to an embodiment of the present invention by a two-stage molding method.
  • FIG. 5 is a schematic view of the step of laminating the pressure-sensitive adhesive sheet according to an embodiment of the present invention.
  • FIGS. 6A and 6B are perspective and cross-sectional views, respectively, of a microneedle array including a microneedle manufacturing mold, a microneedle, and an adhesive sheet according to an embodiment of the present invention.
  • FIG. 7 is a photograph in which the microneedle is removed from the mold for manufacturing the microneedle according to an embodiment of the present invention.
  • FIG. 8 is a view showing the shape change of a mold for manufacturing a microneedle manufactured by an injection molding method and a mold for manufacturing a microneedle manufactured by a thermocompression molding method.
  • FIG. 9 is a diagram illustrating a distance between needles of a mold for manufacturing microneedles manufactured by an injection molding method and a mold for manufacturing microneedles manufactured by a thermocompression molding method.
  • FIG. 10 shows a mold for manufacturing a microneedle manufactured by an injection molding method according to another embodiment of the present invention and divided into two regions.
  • FIG. 11 is a schematic diagram of the step of molding a microneedle divided into two regions according to another embodiment of the present invention.
  • FIG. 12 is a schematic diagram of the step of molding the microneedle divided into two regions by a two-stage molding method according to another embodiment of the present invention.
  • FIG. 13 is a schematic view of the step of laminating the pressure-sensitive adhesive sheet according to another embodiment of the present invention.
  • 18 to 20 show various types of molds for manufacturing microneedles for mounting three active ingredients.
  • 21 and 22 show various types of molds for manufacturing microneedles for mounting four active ingredients.
  • 24 to 26 show various types of molds for manufacturing microneedles for mounting six active ingredients.
  • A manufacturing a mold for manufacturing a microneedle including one or more intaglio parts by injection molding a thermoplastic resin; And (B) injecting a microneedle raw material into the intaglio portion to mold one or more microneedles; it provides a method of manufacturing a microneedle array comprising a.
  • the mold 10 for manufacturing a microneedle including the intaglio part 11 may be manufactured by melting, flowing, cooling, and demolding the thermoplastic resin using an injection device.
  • FIG. 1 is a schematic diagram of a step of manufacturing a mold for manufacturing a microneedle according to an embodiment of the present invention
  • FIG. 2 shows a mold for manufacturing a microneedle manufactured by an injection molding method
  • FIG. 8 is a microneedle manufactured by an injection molding method
  • It is a view showing the shape change of a mold for manufacturing a needle and a mold for manufacturing a microneedle manufactured by a thermocompression molding method
  • FIG. 9 is a needle of a mold for manufacturing a microneedle manufactured by an injection molding method and a mold for manufacturing a microneedle manufactured by a thermocompression molding method It is a diagram showing the interval between
  • thermoplastic resin when injection molding through a process of melting, flowing, cooling and demolding a thermoplastic resin using an injection device, the thermoplastic resin is a mold for manufacturing a microneedle including one or more intaglio parts (10) can be molded into At this time, one surface of the molded microneedle manufacturing mold 10 may include one or more intaglio portions 11, and the other surface may be flat.
  • the engraved part 11 serves as a mold for the microneedle 21 formed in a subsequent step, and has the same shape as the microneedle 21 , but may have an upside down phase reversed.
  • the engraved part 11 may be a tip engraved part.
  • the term “tip intaglio” refers to an intaglio recessed from the upper surface by reducing the cross-sectional area from the flat upper surface to the lower surface forming the tip to have the shape of a conventional microneedle 21 .
  • one surface of the molded microneedle manufacturing mold 10 may include a flat intaglio portion 12 and one or more intaglio portions 11 formed on a lower surface of the flat intaglio portion 12 .
  • the term “flat intaglio” refers to an intaglio recessed with substantially the same cross-sectional area and a predetermined depth from a flat upper surface to a lower surface.
  • a lower surface of the flat intaglio portion 12 may be substantially flat.
  • the terms "upper surface” and/or “lower surface” used herein are for specifying the relative positional relationship of each component, and do not specify their absolute positions.
  • the intaglio portions 11 of the mold 10 for manufacturing a microneedle in which the flat intaglio portions 12 do not exist are not interconnected and exist independently.
  • the manufactured microneedle 21 also exists independently without being interconnected. 30), there is a problem in that it is difficult to adhere uniformly. For example, in the case of laminating 100 microneedles 21 that exist independently of each other in 10 * 10 (horizontal * vertical) with the adhesive sheet 30 in a subsequent step, a single Since the cross-sectional area of the upper surface of the microneedle 21 is insufficient, it may be easily separated from the adhesive sheet 30 and cause inconvenience to the user.
  • the mold 10 for manufacturing a microneedle in which the flat intaglio portion 12 is present includes one or more intaglio portions 11 formed on the lower surface of the flat intaglio portion 12, and in a subsequent step, the microneedle raw material 20 ) is filled in not only the intaglio part 11 but also the flat intaglio part 12 so that the microneedle 21 formed by the intaglio part 11 and the support 22 formed by the flat intaglio part 12 are integrated Since it is formed, it is possible to prevent the single microneedle 21 from arbitrarily falling from the adhesive sheet 30 as described above.
  • the thermoplastic resin may be at least one selected from the group consisting of polyethylene terephthalate (PET), polyvinyl chloride (PVC), and polypropylene (PP), but is not limited thereto.
  • PET polyethylene terephthalate
  • PVC polyvinyl chloride
  • PP polypropylene
  • the dried microneedle in the mold manufacturing method using a silicone material, since silicone does not play a protective role against external air or foreign substances, the dried microneedle must be demolded from the silicone mold and then repackaged. In this process, since it is practically difficult to individually pack the microneedles in close contact with the microneedles, the microneedles must be packaged in a pouch exposed to air or packaged in a cap-shaped container.
  • the closure and stability of the packaging container is a factor that has a great influence on maintaining the quality of the internal medicine, and it must be completely protected from physicochemical deformation or deterioration of the internal microneedle medicine through the simulation of transport conditions and mechanical testing of the final product.
  • the microneedle manufacturing mold 10 may be configured to be removed immediately before application of the microneedle 21 to the human body as a primary packaging container in full close contact with the microneedle 21 .
  • the microneedle 21 is deformed, lost, contamination can be prevented.
  • Thermoplastic materials such as polyethylene terephthalate (PET), a release paper material that protects in direct contact with the drug layer, polyvinyl chloride (PVC) used for packaging pharmaceutical tablets, and polypropylene (PP) used for syringe manufacturing, are silicone materials. It is a low-cost material and can be used once. Therefore, the mold 10 for manufacturing microneedles made of thermoplastic plastic materials such as PET, PVC, and PP is free from cleaning validation (CV) issues, and has excellent durability and protection of internal medicines from external contamination sources. , which is advantageous in that it can be pre-sterilized.
  • PET polyethylene terephthalate
  • PVC polyvinyl chloride
  • PP polypropylene
  • the mold 10 for manufacturing the microneedle is a primary packaging material that is completely in close contact with the microneedle 21 without the need to demold and repack the microneedle 21 manufactured in the microneedle manufacturing process. It can be advantageous in maintaining the quality of the internal microneedle drug because it is configured to simplify the manufacturing process, and has excellent closure and stability as a packaging container.
  • FIG. 8 the shape changes of a mold for manufacturing a microneedle manufactured by injection molding a thermoplastic resin and a mold for manufacturing a microneedle manufactured by thermocompression molding a thermoplastic resin are shown.
  • the mold 40 for manufacturing microneedles manufactured through thermocompression molding undergoes shrinkage, warpage, etc. over time during storage, thereby changing the shape of the product.
  • the mold 10 for manufacturing microneedles manufactured through injection molding does not shrink or warp even after long-term storage, so that the shape of the product does not change, and the storage stability of the product can be improved.
  • thermocompression molding is to form a solid film, and since the mold 40 for manufacturing microneedles manufactured through thermocompression molding easily causes variations in the force received by position during thermal compression, the height of the intaglio is not constant. do.
  • injection molding is a method of filling the inside of an injection mold by liquefying a plastic resin, and the mold 10 for manufacturing a microneedle manufactured through injection molding can be formed very precisely without deviation in the height of the intaglio.
  • FIG. 9 the distance between individual intaglio parts of a mold for manufacturing microneedles manufactured by injection molding a thermoplastic resin and a mold for manufacturing microneedles manufactured by thermocompression molding a thermoplastic resin is shown.
  • the mold 40 for microneedle production manufactured by thermocompression molding including 100 intaglio parts 41 that exist independently of each other in 10 * 10 (horizontal * vertical) requires an area of 1.4 cm * 1.4 cm, but 10 * It can be seen that the mold 10 for manufacturing a microneedle manufactured by thermocompression molding including 100 intaglio portions 11 that exist independently of each other by 10 (horizontal * vertical) requires an area of 0.8 cm * 0.8 cm.
  • thermocompression molding is to thermocompress a solid plastic resin film using a mold having several embossed parts. Between the points where the film is molded by the embossed parts, a gap required for deformation such as stretching of the film is required.
  • injection molding is a method of filling the inside of an injection mold by liquefying a plastic resin, so that many engraved parts can be formed in a narrower area.
  • thermocompression molding the processes of mold heating, film pressurization, cooling and desorption are 1 cycle, and it takes about 1 to 2 hours per cycle.
  • injection molding the process of melting, flowing, cooling and desorbing the plastic resin is 1 cycle, and it takes about 2 minutes per cycle. That is, when a mold for manufacturing microneedles is manufactured by the injection molding method, the production efficiency may be improved compared to the thermal compression molding method, and the manufacturing cost may be reduced.
  • Figure 3 is a schematic diagram of the step of molding the microneedle according to an embodiment of the present invention.
  • 3(a) and 3(b) show the steps of forming the microneedle using a mold for manufacturing each microneedle molded through the method of FIG. 1, respectively.
  • the microneedle raw material 20 may be injected into the intaglio part 11 to form the microneedle 21 .
  • the microneedle 21 of the present invention is a soluble microneedle, and the microneedle raw material 20 is made of metal, non-metal, biodegradable polymer, and active pharmaceutical ingredients according to the shape of the microneedle 21 . It may include one or more selected from the group.
  • the microneedle raw material 20 may be a composition including a pharmacological component, and may be a composition including a metal, a non-metal, a biodegradable polymer, or a combination of two or more thereof, but is not limited thereto.
  • the pharmacological component herein may include at least one of an antigen, a vaccine, a hormone, an enzyme, a protein, and a synthetic drug.
  • the microneedle raw material 20 is supplied from the storage tank to the mold 10 for manufacturing the microneedle through a single discharge port, and the intaglio part 11 and/or the flat intaglio part 12 can be injected.
  • the method of supplying and injecting the microneedle raw material 20 is not limited thereto, and, if necessary, the microneedle raw material 20 may be formed into a plurality of intaglio portions 11 and/or flat intaglio portions 12 .
  • the microneedle raw material is directly injected into the intaglio part 11 and/or the flat intaglio part 12 through a plurality of outlets located adjacent to each other, or using a coating method such as roll coating, bar coating, or spray coating. (20) may be injected into the intaglio portion 11 and/or the flat intaglio portion 12.
  • the microneedle raw material 20 is put on the flat surface of the mold 10 for manufacturing the microneedle, and then using a blade It may be filled in the engraved part 11 and/or the flat engraved part 12 of the mold 10 for manufacturing the microneedle.
  • the filling method using a blade after decompression so that the inside of the decompression chamber is close to a vacuum state suppresses the generation of bubbles in the engraved part 11 of the mold 10 for microneedle production, so that the microneedle 21 is sophisticated for pharmaceutical use. It is possible to overcome the limitation of application to general cosmetics by having the same content as the shape.
  • the raw material 20 of the microneedle after injection of the raw material 20 of the microneedle, it may be filled by pressurizing at least 2 atm, preferably at least 2 atm and below 50 atm.
  • the high pressure pressurizes the raw material and pushes the air, so it is possible to suppress the generation of bubbles in the intaglio portion 11 of the mold 10 for manufacturing the microneedle.
  • the adhesive sheet 30 cannot be smoothly laminated in a subsequent step, and as an excessive amount of the microneedle raw material 20 is used, economically also disadvantageous
  • the intaglio part 11 and/or the flat intaglio part 12 of the mold 10 for manufacturing a microneedle using a method such as squeezing is excluded.
  • the microneedle raw material 20 remaining in the area can be removed, and the area except for the intaglio part 11 and/or the flat intaglio part 12 of the microneedle manufacturing mold 10 and the upper surface of the microneedle 21
  • a problem that may occur in a subsequent step can be prevented by removing any step difference between the livers so that they form a substantially flat surface.
  • the mold 10 for manufacturing microneedles manufactured by injection molding the thermoplastic resin in step (A) is subjected to microneedle 21 in step (B).
  • the microneedle 21 is used as a mold necessary for manufacturing the array, and the mold 10 for manufacturing the microneedle in the final product is removed from the microneedle 21 before being applied to the human body by the user in a state that is not removed from the microneedle 21. It can prevent deformation, loss, contamination, etc.
  • Figure 4 is a schematic diagram of the step of molding the microneedle according to an embodiment of the present invention by a two-stage molding method.
  • 4(a) and 4(b) show the steps of molding the microneedles by a two-stage molding method using a mold for manufacturing each microneedle molded through the method of FIG. 1, respectively.
  • the microneedle 21 molding may be performed in the following two steps. First, the microneedle raw material 20 containing active ingredients such as pharmacological ingredients to be delivered is filled in the concave part 11 of the mold 10 for microneedle production as described above, and then dried first. Then, the dried microneedle 21 is reduced in volume and exists only at the lower end of the intaglio part 11 . Then, the base raw material 23 is filled in the upper part of the microneedle 21 dried as described above, and then the secondary drying is performed.
  • the microneedle raw material 20 containing active ingredients such as pharmacological ingredients to be delivered is filled in the concave part 11 of the mold 10 for microneedle production as described above, and then dried first. Then, the dried microneedle 21 is reduced in volume and exists only at the lower end of the intaglio part 11 . Then, the base raw material 23 is filled in the upper part of the microneedle 21 dried as described above, and then the secondary drying is performed.
  • the microneedle 21 and the base part 24 can be made of different materials, and preferably, the microneedle 21 and the base part 24 are carboxymethyl cellulose (CMC) and hyaluronic acid (HA), respectively. ), polyvinyl alcohol (PVA), polylactic acid (PLA), polylacticcoglycolic acid (PLGA), polyvinylpyrrolidone (PVP), etc.
  • CMC carboxymethyl cellulose
  • HA hyaluronic acid
  • PVA polyvinyl alcohol
  • PLA polylactic acid
  • PLGA polylacticcoglycolic acid
  • PVP polyvinylpyrrolidone
  • the microneedle array manufactured by the two-stage molding method can be manufactured so that active ingredients, such as pharmacological ingredients, exist only at the lower end of the microneedle 21, if necessary, so that only a precisely controlled amount can be delivered to the user.
  • 5 is a schematic view of the step of laminating the pressure-sensitive adhesive sheet according to an embodiment of the present invention.
  • 5 (a) and 5 (b) show the step of laminating the pressure-sensitive adhesive sheet on one surface, that is, the flat surface of the microneedle array prepared in FIGS. 3 (a) and 3 (b), respectively.
  • the flat surface may include an upper surface of the microneedle 21 and one surface of the mold 10 for manufacturing the microneedle (FIG. 3(a)), and a support 22 integrally formed with the microneedle 21 may include an upper surface of the mold 10 and one surface of the mold 10 for manufacturing the microneedle (FIG. 3(b)).
  • the pressure-sensitive adhesive sheet 30 may be a sheet made of a thermoplastic substrate such as a metal, a polymer, or a fabric or a pressure-sensitive adhesive coated on one surface of the sheet.
  • the pressure-sensitive adhesive may be a releasable pressure-sensitive adhesive that can be attached and peeled at least once.
  • One side of the pressure-sensitive adhesive sheet 30 on which the pressure-sensitive adhesive is applied is laminated to one side of the microneedle 21 array, that is, a flat surface to attach and fix the upper surface of the microneedle 21, and for manufacturing the microneedle
  • One surface of the mold 10 and the attached region maintain adhesive force even after the mold 10 for manufacturing the microneedle is removed for skin application, so that the pharmacological component contained in the microneedle 21 is attached to the skin for a period necessary for delivery.
  • the bonding force between the side surface of the microneedle 21 and the mold 10 for manufacturing the microneedle is the adhesive sheet 30 and the microneedle 21
  • the bonding force of the upper surface of the bonding force of the upper surface of
  • the composition of the pressure-sensitive adhesive and its adhesive force so that the bonding force between the pressure-sensitive adhesive sheet 30 and the upper surface of the microneedle 21 is greater than that of the side surface of the microneedle 21 and the microneedle manufacturing mold 10 .
  • the microneedle by controlling and/or coating one surface in contact with the microneedle raw material 20 of the microneedle manufacturing mold 10 with a certain material and/or surface-treating to give a certain level of roughness
  • the mold 10 for manufacturing the microneedles can be easily removed.
  • FIG. 6A and 6B are perspective and cross-sectional views, respectively, of a microneedle array including a microneedle manufacturing mold, a microneedle, and an adhesive sheet according to an embodiment of the present invention
  • FIG. 7 is an embodiment of the present invention. It is a photograph in which the microneedle according to the example is removed from the mold for manufacturing the microneedle.
  • the microneedle array is manufactured by injection molding a thermoplastic resin, a mold for manufacturing a microneedle including one or more intaglio parts, and one or more microneedles molded by injecting a microneedle raw material into the intaglio part may include needles.
  • the mold 10 for manufacturing the microneedle may be a mold of a plastic material for manufacturing the microneedle 21 , and at the same time may be a packaging container that is completely in close contact with the microneedle 21 . That is, the microneedle 21 by the mold 10 for manufacturing the microneedle is not exposed to the air until just before the manufacturing process and application to the human body, so that deformation, loss, contamination, etc. can be prevented.
  • FIG. 10 shows a mold for manufacturing a microneedle manufactured by an injection molding method according to another embodiment of the present invention and divided into two regions.
  • Another aspect of the present invention comprises the steps of: (a) manufacturing a mold for manufacturing a microneedle partitioned into at least two or more regions and including one or more intaglio portions in each region; and (b) molding one or more microneedles by injecting different microneedle raw materials into the respective regions.
  • microneedle manufacturing mold is divided into at least two or more regions, different microneedle raw materials may be injected into the engraved portions disposed in each region to manufacture a microneedle array. Accordingly, since several types of pharmacological ingredients can be administered at once with one product, it is possible to reduce the number of administrations and improve convenience.
  • the mold 10 for manufacturing a microneedle when the mold 10 for manufacturing a microneedle is divided into two regions, the first region 10a and the second region 10b, the first region 10a and the second region 10b ), pharmacological components of different components may be injected.
  • the first region 10a and the second region 10b may be spaced apart from each other at a predetermined interval, and the interval between these regions may be formed to be at least greater than the interval between each individual microneedle.
  • the first region 10a may include a first flat intaglio portion 12a and one or more first intaglio portions 11a formed on a lower surface of the first flat intaglio portion 12a.
  • the second region 10b may include a second flat intaglio portion 12b and one or more second intaglio portions 11b formed on a lower surface of the second flat intaglio portion 12b.
  • first region 10a and the second region 10b may be formed in different areas, and the microneedle raw material requiring a larger dose may be injected into the area having a larger area.
  • first region 10a and the second region 10b may include different numbers of engraved parts, and the microneedle raw material requiring a higher dose may be injected into the region having more engraved parts.
  • FIG. 11 is a schematic diagram of the step of molding a microneedle divided into two regions according to another embodiment of the present invention.
  • one or more microneedles may be formed by injecting different microneedle raw materials into the first region 10a and the second region 10b, respectively.
  • the first microneedle raw material 20a is supplied to the first region 10a of the mold 10 for manufacturing microneedles to be injected into the first intaglio part 11a and the first flat intaglio part 12a.
  • the second microneedle raw material 20b may be supplied to the second region 10b and injected into the second engraved portion 11b and the second flat engraved portion 12b.
  • the first microneedle 21a and the first support 22a integrally formed with the first microneedle 21a may be formed in the first area 10a through a drying process, and the second area ( In 10b), the second microneedle 21b and the second support body 22b integrally formed with the second microneedle 21b may be formed.
  • microneedles 21a and 21b formed by the intaglio portions 11a and 11b and the supports 22a and 22b formed by the flat intaglio portions 12a and 12b are integrally formed, a single unit from the adhesive sheet 30 of the microneedles (21a, 21b) can be prevented from falling arbitrarily.
  • FIG. 12 is a schematic diagram of the step of molding the microneedle divided into two regions by a two-stage molding method according to another embodiment of the present invention.
  • the microneedle molding divided into two regions may be performed in the following two steps.
  • the first microneedle raw material 20a is filled in the first engraved part 11a of the first region 10a, and then the first microneedle raw material 20a is first dried. Then, the dried first microneedle 21a is reduced in volume and exists only at the lower end of the first intaglio portion 11a.
  • the second microneedle raw material 20b is filled in the second engraved portion 11b of the second region 10b, and then the second microneedle raw material 20b is first dried. Then, the dried second microneedle 21b is reduced in volume and exists only at the lower end of the second intaglio portion 11b.
  • the microneedle array manufactured by the two-stage molding method can be manufactured so that active ingredients, such as pharmacological ingredients, exist only at the lower ends of the microneedles 21a and 21b, as needed, so that only a precisely controlled amount can be delivered to the user. .
  • FIG. 13 is a schematic view of the step of laminating the pressure-sensitive adhesive sheet according to another embodiment of the present invention.
  • the pressure-sensitive adhesive sheet 30 may be laminated on one surface, ie, a flat surface, of the microneedle array manufactured in FIG. 11 or 12 .
  • the flat surface may include an upper surface of the supporter 22a, 22b integrally formed with the microneedle 21a, 21b and one surface of the mold 10 for manufacturing the microneedle (FIG. 11), and the microneedle It may include an upper surface of the base 24 formed on the upper portions of the 21a and 21b and one surface of the mold 10 for manufacturing the microneedle ( FIG. 12 ).
  • One side of the pressure-sensitive adhesive sheet 30 on which the adhesive is applied is laminated to one side of the microneedle (21a, 21b) array, that is, a flat surface to attach the upper surface of the supporter (22a, 22b) or the upper surface of the base (24).
  • the mold 10 for microneedle production maintain adhesive force even after the mold 10 for microneedle production is removed for skin application, and are included in the microneedles 21a and 21b It can be adhered to the skin for a period necessary for the delivered pharmacological component.
  • the mold 10 for manufacturing microneedles may be a semi-circular two-part mold divided by being spaced apart into a first region 10a and a second region 10b, and a first region 10a and a second region In (10b), microneedle raw materials having different active ingredients may be injected.
  • the first region 10a and the second region 10b may be formed to have the same depth of engraving.
  • the mold 10 for manufacturing microneedles may have a shape in which a second region 10b is located inside a circular first region 10a, and the second region 10b is a square or It may be circular.
  • the first region 10a and the second region 10b may be formed in engravings of different depths to be partitioned from each other, or may be formed in engravings having the same depth and be partitioned from each other by barrier ribs.
  • the mold 10 for manufacturing microneedles may have a shape in which four second regions 10b spaced apart from each other are positioned inside a circular first region 10a, and the second region 10b is It may have a fan shape.
  • the first region 10a and the second region 10b may be formed and partitioned with engravings of different depths, or may be formed with engravings of the same depth and be partitioned from each other by barrier ribs.
  • 18 to 20 show various types of molds for manufacturing microneedles for mounting three active ingredients.
  • the mold 10 for manufacturing microneedles may be a 120-degree circular three-part mold divided into a first region 10a, a second region 10b, and a third region 10c, and the second region 10c.
  • Microneedle raw materials having different active ingredients may be injected into the first region 10a to the third region 10c.
  • the first region 10a to the third region 10c may be formed with intaglios having the same depth.
  • the mold 10 for manufacturing microneedles includes a semi-circular first region 10a, a third region 10c, and a rectangular second region 10b positioned therebetween to be partitioned apart from each other. It may be a divided mold, and microneedle raw materials having different active ingredients may be injected into the first region 10a to the third region 10c. In this case, the first region 10a to the third region 10c may be formed with intaglios having the same depth.
  • the mold 10 for manufacturing microneedles may have a shape in which a second region 10b and a third region 10c spaced apart from each other are positioned inside a circular first region 10a, and the second The region 10b and the third region 10c may have a triangular shape.
  • the first region 10a and the second region 10b may be formed to have different depths to be partitioned from each other, or may be formed to have the same depth and be partitioned from each other by barrier ribs.
  • first region 10a and the third region 10b may be partitioned by forming intaglios of different depths, or may be formed in intaglios having the same depth and be partitioned from each other by barrier ribs.
  • second region 10b and the third region 10c may be formed in engravings having the same depth.
  • 21 and 22 show various types of molds for manufacturing microneedles for mounting four active ingredients.
  • the mold 10 for manufacturing microneedles is a 90-degree circle 4 spaced apart into a first region 10a, a second region 10b, a third region 10c, and a fourth region 10d. It may be a divided mold, and microneedle raw materials having different active ingredients may be injected into the first region 10a to the fourth region 10d. In this case, the first region 10a to the fourth region 10d may be formed with intaglios having the same depth.
  • the mold 10 for manufacturing microneedles includes one or more semi-circular outer first regions 10a, one or more semi-circular outer second regions 10b, a triangular inner third region 10c, and a triangular inner second region. It may be a four-split mold in which four regions 10d are spaced apart from each other, and microneedle raw materials having different active ingredients may be injected into the first regions 10a to 10d, respectively. In this case, the first region 10a to the fourth region 10d may be formed with intaglios having the same depth.
  • the mold 10 for manufacturing microneedles is spaced apart into a first region 10a, a second region 10b, a third region 10c, a fourth region 10d, and a fifth region 10e. It may be a 72-degree circular five-segment mold partitioned by being divided, and microneedle raw materials having different active ingredients may be injected into the first region 10a to the fifth region 10e. In this case, the first region 10a to the fifth region 10e may be formed with intaglios having the same depth.
  • 24 to 26 show various types of molds for manufacturing microneedles for mounting six active ingredients.
  • the mold 10 for manufacturing microneedles includes a first region 10a, a second region 10b, a third region 10c, a fourth region 10d, a fifth region 10e, and a second region 10e. It may be a 60-degree circular six-segment mold spaced apart into six regions 10f, and microneedle raw materials having different active ingredients may be injected into the first regions 10a to 6th regions 10f, respectively. In this case, the first region 10a to the sixth region 10f may be formed with intaglios having the same depth.
  • a sector-shaped first region 10a, a third region 10c, and a rectangular second region 10b positioned therebetween are partitioned apart from each other.
  • the sector-shaped fourth region 10d, the fifth region 10e, and the quadrangular sixth region 10e positioned therebetween may be a 6-segment mold partitioned apart from each other, and the first region 10a Microneedle raw materials having different active ingredients may be injected into the sixth to sixth regions 10f.
  • the first region 10a to the sixth region 10f may be formed with intaglios having the same depth.
  • the mold 10 for manufacturing a microneedle has a semi-circular outer first region 10a, a semi-circular outer second region 10b, a semi-circular outer third region 10c, a semi-circular outer fourth region 10d, It may be a six-segment mold in which the triangular inner fifth region 10e and the triangular sixth inner region 10f are spaced apart from each other, and the first region 10a to the sixth region 10f contain different active ingredients, respectively.
  • a microneedle raw material having a can be injected.
  • the first region 10a to the sixth region 10f may be formed with intaglios having the same depth.
  • microneedle array and its manufacturing method of the present invention as chemical solutions of different components are independently injected into the microneedle molds partitioned into different regions, multivalent antigens or multiple types of antigens through one microneedle array Since the vaccine can be administered at once, the convenience can be improved by reducing the number of times the drug is administered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Dermatology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

본 발명의 일 실시예는 (a) 적어도 2개 이상의 영역으로 구획되고, 각 영역에 하나 이상의 음각부를 포함하는 마이크로니들 제조용 몰드를 제조하는 단계; 및 (b) 상기 각 영역에 서로 다른 마이크로니들 원료 물질을 주입하여 하나 이상의 마이크로니들을 성형하는 단계;를 포함 하는, 마이크로니들 어레이의 제조방법을 제공한다. 또한, 본 발명의 다른 실시예는 적어도 2개 이상의 영역으로 구획되고, 각 영역에 하나 이상의 음각부를 포함하는 마이크로니들 제조용 몰드; 및 상기 각 영역에 서로 다른 마이크로니들 원료 물질을 주입하여 성형되는 하나 이상의 마이크로니들;을 포함하는, 마이크로니들 어레이를 제공한다.

Description

마이크로니들 어레이 및 이의 제조방법
본 발명은 마이크로니들 어레이 및 이의 제조방법에 관한 것으로, 보다 상세하게는 열가소성 플라스틱 수지를 소재로 사출 성형 방식으로 제조된 몰드를 이용하여 제조되며, 복수의 유효성분을 탑재할 수 있는 마이크로니들 어레이 및 이의 제조방법에 관한 것이다.
일반적으로 마이크로니들 제형은 피부를 통해 목적하는 효능을 달성하기 위한 성분의 전달을 목적으로 한다. 마이크로니들 제형은 피부를 통한 성분 전달의 주요 장벽층인 각질층을 뚫기 위해 직경과 높이가 수십에서 수천 마이크로미터에 불과한 마이크로니들을 이용한다. 상기 마이크로니들을 이용하여 목적으로 하는 성분이 표피층 또는 진피층에 도달하도록 하여 마이크로니들을 적용한 부위 또는 인체의 순환 시스템을 통해 전신에서 효능을 나타내게 된다.
마이크로니들의 재질은 크게 금속제 마이크로니들과 생분해성 소재 마이크로니들로 구분할 수 있다.
금속제 마이크로니들은 전달하고자 하는 성분이 이동할 수 있는 경로가 뚫린 일반 주사 니들과 같은 중공을 가진 중공형(hollow) 마이크로니들 형태와, 성분을 마이크로니들의 표면에 코팅하여 전달하는 솔리드(solid) 마이크로니들 형태가 있다.
한편, 생분해성 마이크로니들은 주로 솔리드 마이크로니들 형태로서, 성분을 마이크로니들의 표면에 코팅하거나 생분해성 고분자와 같이 마이크로니들을 형성하여 피부에 적용 후 적용된 마이크로니들이 분해되면서 성분을 전달하는 방식을 취한다.
상기 마이크로니들의 제조는 일반적으로 마이크로니들의 형상이 음각으로 형성된 금속제(철, 실리콘 등) 몰드에 니들을 구성하는 물질을 주입하여 형성하는 방식으로 제조된다.
이러한 금속제 몰드에서 마이크로니들을 형성하는 방법은 금속제 몰드가 마이크로니들 제조장비의 부속품이거나 비금속에 비해 무겁기 때문에 마이크로니들 형성 후 제조공정을 순환시키기 위해 마이크로니들을 몰드에서 분리해야 하는 과정이 필수적으로 수반된다.
이러한 제조방법으로 인해 마이크로니들을 금속제 몰드에서 분리 시, 또는 몰드 분리 후 추가의 제조 또는 유통과정에서 마이크로니들 외형의 변형 또는 손실이 생길 수 있다. 이러한 변형 또는 손실은 마이크로니들 개개의 함량 불균일을 초래할 수 있고 결과적으로 마이크로니들 어레이에 로딩된 약물의 전체 함량의 불균형을 초래할 수 있다. 또 금속제 몰드가 제조장비의 부속품이므로 대량생산을 위해서는 금속제 몰드가 커지는 만큼 제조장비가 대형화되어야 하고 제작비용 또한 높아지며, 연속생산을 위해서는 금속제 몰드의 완전한 세정이 필요하기 때문에 시간이 많이 소요되어 제조효율이 낮아지고 이로 인해 제조원가가 높아지는 문제가 있다.
또한 마이크로니들을 몰드에서 분리한 후에는 마이크로니들 각각을 보호할 수 있는 포장재가 절실하지만, 마이크로니들 각각을 감싸 둘러싸는 포장재는 전무한 실정이다. 나아가, 종래 마이크로니들의 경우, 1개 제품에 하나의 약물만을 탑재하도록 구성되어, 2개 이상의 약물을 탑재하기 위해서는 별도의 몰드를 각각 제조해야 하는 문제점이 있었다.
선행기술문헌
한국 등록특허공보 제 10-1694317호 (2017.01.03)
본 발명은 전술한 종래기술의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 열가소성 플라스틱 수지를 소재로 사출 성형 방식으로 제조된 몰드를 이용하여 제조되며, 복수의 유효성분을 탑재할 수 있는 마이크로니들 어레이 및 이의 제조방법을 제공하는 것이다.
상기와 같은 목적을 달성하기 위해, 본 발명의 일 측면은 (a) 적어도 2개 이상의 영역으로 구획되고, 각 영역에 하나 이상의 음각부를 포함하는 마이크로니들 제조용 몰드를 제조하는 단계; 및 (b) 상기 각 영역에 서로 다른 마이크로니들 원료 물질을 주입하여 하나 이상의 마이크로니들을 성형하는 단계;를 포함하는, 마이크로니들 어레이의 제조방법을 제공한다.
본 발명의 일 실시예에 있어서, 상기 몰드는 열가소성 플라스틱 수지를 사출 성형하여 제조되는 것을 특징으로 하는, 마이크로니들 어레이의 제조방법일 수 있다.
본 발명의 일 실시예에 있어서, 상기 열가소성 플라스틱 수지는 폴리에틸렌테레프탈레이트(PET), 폴리비닐클로라이드(PVC), 폴리프로필렌(PP)으로 이루어진 군에서 선택된 적어도 하나 이상인 것을 특징으로 하는, 마이크로니들 어레이의 제조방법일 수 있다.
본 발명의 일 실시예에 있어서, 상기 몰드는 상기 마이크로니들에 완전 밀착된 1차 포장 용기로서 상기 마이크로니들의 인체 적용 직전 제거되는 것을 특징으로 하는, 마이크로니들 어레이의 제조방법일 수 있다.
본 발명의 일 실시예에 있어서, 상기 (b) 단계 이후에, (c) 상기 마이크로니들의 상면 및 상기 몰드의 일면을 포함하는 평탄면에 점착 시트를 합지하는 단계;를 더 포함하는 것을 특징으로 하는, 마이크로니들 어레이의 제조방법일 수 있다.
본 발명의 일 실시예에 있어서, 상기 (b)단계에서, 상기 마이크로니들 원료 물질의 주입후 0.5 기압 이하로 감압한 후 블레이드를 이용하거나, 또는 2기압 이상으로 가압하여 상기 몰드의 음각부에 충진하는 것을 특징으로 하는, 마이크로니들 어레이의 제조방법일 수 있다.
본 발명의 일 실시예에 있어서, 상기 (b)단계에서, 전달하고자 하는 유효 성분이 포함된 마이크로니들 원료 물질을 상기 몰드의 음각부에 충진하고 1차 건조한 후 그 상부에 기저부 원료 물질을 충진하고 2차 건조하여 마이크로니들을 성형하는 것을 특징으로 하는, 마이크로니들 어레이의 제조방법일 수 있다.
본 발명의 일 실시예에 있어서, 상기 마이크로니들 원료 물질은 금속, 비금속, 생분해성 고분자, 및 약리 성분으로 이루어진 군에서 선택된 하나 이상인 것을 특징으로 하는, 마이크로니들 어레이의 제조방법일 수 있다.
본 발명의 일 실시예에 있어서, 상기 기저부 원료 물질은 카르복시메틸셀룰로오스(CMC), 히알루론산(HA), 폴리비닐알코올(PVA), 폴리락틱산(PLA), 폴리락틱코글라이콜산(PLGA), 폴리비닐피롤리돈(PVP)으로 이루어진 군에서 선택된 적어도 하나 이상인 것을 특징으로 하는, 마이크로니들 어레이의 제조방법일 수 있다.
상기와 같은 목적을 달성하기 위해, 본 발명의 다른 측면은, 적어도 2개 이상의 영역으로 구획되고, 각 영역에 하나 이상의 음각부를 포함하는 마이크로니들 제조용 몰드; 및 상기 각 영역에 서로 다른 마이크로니들 원료 물질을 주입하여 성형되는 하나 이상의 마이크로니들;을 포함하는, 마이크로니들 어레이를 제공한다.
본 발명의 일 실시예에 있어서, 상기 몰드는 열가소성 플라스틱 수지를 사출 성형하여 제조되는 것을 특징으로 하는, 마이크로니들 어레이일 수 있다.
본 발명의 일 실시예에 있어서, 상기 열가소성 플라스틱 수지는 폴리에틸렌테레프탈레이트(PET), 폴리비닐클로라이드(PVC), 폴리비닐리덴클로라이드(PVDC), 폴리프로필렌(PP)으로 이루어진 군에서 선택된 적어도 하나 이상인 것을 특징으로 하는, 마이크로니들 어레이일 수 있다.
본 발명의 일 실시예에 있어서, 상기 몰드는 상기 마이크로니들에 완전 밀착된 1차 포장재 역할로서 상기 마이크로니들의 인체 적용 직전 제거되는 것을 특징으로 하는, 마이크로니들 어레이일 수 있다.
본 발명의 일 실시예에 있어서, 상기 마이크로니들 원료 물질은 금속, 비금속, 생분해성 고분자, 및 약리 성분으로 이루어진 군에서 선택된 하나 이상인 것을 특징으로 하는, 마이크로니들 어레이의 제조방법일 수 있다.
본 발명의 일 실시예에 있어서, 상기 마이크로니들의 상면에 기저부를 더 포함하는 것을 특징으로 하는, 마이크로니들 어레이일 수 있다.
본 발명의 일 실시예에 있어서, 상기 기저부는 카르복시메틸셀룰로오스(CMC), 히알루론산(HA), 폴리비닐알코올(PVA), 폴리락틱산(PLA), 폴리락틱코글라이콜산(PLGA), 폴리비닐피롤리돈(PVP)으로 이루어진 군에서 선택된 적어도 하나 이상인 것을 특징으로 하는, 마이크로니들 어레이일 수 있다.
본 발명의 일 실시예에 있어서, 상기 마이크로니들의 일면에 점착 시트가 합지되는 것을 특징으로 하는, 마이크로니들 어레이일 수 있다.
본 발명의 일 실시예에 있어서, 상기 기저부의 일면에 점착 시트가 합지되는 것을 특징으로 하는, 마이크로니들 어레이일 수 있다.
본 발명의 일 측면에 따르면, 사출 성형을 통해 제조된 마이크로니들 제조용 몰드는 열압착 성형 대비 장기간 보관에도 수축, 휨 등이 발생하지 않아 제품의 형상이 변화되지 않으며, 제품의 보관 안정성이 향상될 수 있다.
그리고, 사출 성형을 통해 제조된 마이크로니들 제조용 몰드는 열압착 성형 대비 개별 음각부의 높이가 편차 없이 매우 정밀하게 형성될 수 있으며, 보다 좁은 면적에 많은 음각부가 형성될 수 있다.
또한, 사출 성형으로 마이크로니들 제조용 몰드를 제조하는 경우, 열압착 성형 대비 생산효율이 향상될 수 있으며, 제조 단가는 감소할 수 있다.
그리고, 사출 성형을 통해 제조된 마이크로니들 제조용 몰드를 마이크로니들의 제조에 필요한 주형으로 이용하고, 최종 제품에서 상기 마이크로니들 제조용 몰드가 상기 마이크로니들로부터 제거되지 않은 상태로 존재하도록 하여 사용자에 의해 인체 적용 전 제거되도록 함으로써 상기 마이크로니들의 변형, 손실, 오염 등을 방지할 수 있다.
또한, 최종 제품에서 마이크로니들을 보호하는 기능을 가지는 마이크로니들 제조용 몰드를 마이크로니들의 형성에 필요한 주형으로 사용하므로, 최대 제조수량을 제조장치의 크기에 관계없이 원료의 투입량에 따라 조절할 수 있고, 이에 따라 마이크로니들을 단시간 내에 대량으로 생산할 수 있다.
그리고, PET, PVC, PP와 같은 열가소성 플라스틱 소재는 실리콘 소재 대비 저가 소재로서, 이러한 열가소성 플라스틱 소재로 제조된 마이크로니들 제조용 몰드는 세척 밸리데이션(CV, Cleaning Validation) 이슈에서 자유롭고, 내구성 및 내부의 의약품을 외부 오염원으로부터 보호하는 기능이 우수하며, 사전 멸균이 가능하다.
또한, 적어도 2개 이상의 영역으로 구획되는 마이크로니들 제조용 몰드를 통해 서로 다른 약리성분을 포함하는 마이크로니들 어레이를 제조함으로써 여러 종류의 약리 성분을 한번에 투여할 수 있으므로, 투여 횟수를 줄여 편의성을 향상시킬 수 있게 된다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 본 발명의 일 실시예에 따른 마이크로니들 제조용 몰드를 제조하는 단계를 도식화한 것이다.
도 2는 본 발명의 일 실시예에 따른 사출 성형 방법으로 제조된 마이크로니들 제조용 몰드의 사진이다.
도 3은 본 발명의 일 실시예에 따른 마이크로니들을 성형하는 단계를 도식화한 것이다.
도 4는 본 발명의 일 실시예에 따른 마이크로니들을 2단 몰딩 방법으로 성형하는 단계를 도식화한 것이다.
도 5는 본 발명의 일 실시예에 따른 점착 시트를 합지하는 단계를 도식화한 것이다.
도 6의 (a) 및 (b)는 각각 본 발명의 일 실시예에 따른 마이크로니들 제조용 몰드, 마이크로니들 및 점착 시트를 포함하는 마이크로니들 어레이의 사시도 및 단면도이다.
도 7은 본 발명의 일 실시예에 따른 마이크로니들이 마이크로니들 제조용 몰드로부터 제거된 사진이다.
도 8은 사출 성형 방법으로 제조된 마이크로니들 제조용 몰드와 열 압축 성형 방법으로 제조된 마이크로니들 제조용 몰드의 형상 변화를 나타내는 도면이다.
도 9는 사출 성형 방법으로 제조된 마이크로니들 제조용 몰드와 열 압축 성형 방법으로 제조된 마이크로니들 제조용 몰드의 니들 간 간격을 나타내는 도면이다.
도 10은 본 발명의 다른 실시예에 따른 사출 성형 방법으로 제조되고 2개 영역으로 구획된 마이크로니들 제조용 몰드를 나타낸다.
도 11은 본 발명의 다른 실시예에 따른 2개 영역으로 구획된 마이크로니들을 성형하는 단계를 도식화한 것이다.
도 12는 본 발명의 다른 실시예에 따른 2개 영역으로 구획된 마이크로니들을 2단 몰딩 방법으로 성형하는 단계를 도식화한 것이다.
도 13은 본 발명의 다른 실시예에 따른 점착 시트를 합지하는 단계를 도식화한 것이다.
도 14 내지 도 17은 2개의 유효성분을 탑재하기 위한 다양한 마이크로니들 제조용 몰드의 종류를 나타낸다.
도 18 내지 도 20은 3개의 유효성분을 탑재하기 위한 다양한 마이크로니들 제조용 몰드의 종류를 나타낸다.
도 21 및 도 22는 4개의 유효성분을 탑재하기 위한 다양한 마이크로니들 제조용 몰드의 종류를 나타낸다.
도 23은 5개의 유효성분을 탑재하기 위한 다양한 마이크로니들 제조용 몰드의 종류를 나타낸다.
도 24 내지 도 26은 6개의 유효성분을 탑재하기 위한 다양한 마이크로니들 제조용 몰드의 종류를 나타낸다.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.
이하 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.
본 발명의 일 측면은, (A) 열가소성 플라스틱 수지를 사출 성형하여 하나 이상의 음각부를 포함하는 마이크로니들 제조용 몰드를 제조하는 단계; 및 (B) 상기 음각부에 마이크로니들 원료 물질을 주입하여 하나 이상의 마이크로니들을 성형하는 단계;를 포함하는, 마이크로니들 어레이의 제조방법을 제공한다.
상기 (A) 단계에서, 사출 장치를 이용하여 열가소성 플라스틱 수지를 용융, 유동, 냉각 및 탈형시켜 음각부(11)를 포함하는 마이크로니들 제조용 몰드(10)를 제조할 수 있다.
도 1은 본 발명의 일 실시예에 따른 마이크로니들 제조용 몰드를 제조하는 단계를 도식화한 것이고, 도 2는 사출 성형 방법으로 제조된 마이크로니들 제조용 몰드를 나타내며, 도 8은 사출 성형 방법으로 제조된 마이크로니들 제조용 몰드와 열 압축 성형 방법으로 제조된 마이크로니들 제조용 몰드의 형상 변화를 나타내는 도면이고, 도 9는 사출 성형 방법으로 제조된 마이크로니들 제조용 몰드와 열 압축 성형 방법으로 제조된 마이크로니들 제조용 몰드의 니들 간 간격을 나타내는 도면이다.
도 1 및 도 2를 참조하면, 사출 장치를 이용하여 열가소성 플라스틱 수지를 용융, 유동, 냉각 및 탈형시키는 과정을 통해 사출 성형하면 상기 열가소성 플라스틱 수지는 하나 이상의 음각부를 포함하는 마이크로니들 제조용 몰드(10)로 성형될 수 있다. 이 때, 성형된 상기 마이크로니들 제조용 몰드(10)의 일면은 하나 이상의 음각부(11)를 포함할 수 있고, 타면은 평탄할 수 있다.
상기 음각부(11)는 후속 단계에서 형성되는 마이크로니들(21)에 대한 몰드로 작용하는 것으로, 상기 마이크로니들(21)과 동일한 형상이되, 상하 방향으로의 역상을 가질 수 있다.
이때, 상기 음각부(11)는 첨단 음각부일 수 있다. 본 명세서에 사용된 용어, “첨단 음각부”는 통상의 마이크로니들(21)의 형상을 갖도록 평면인 상면으로부터 첨단을 이루는 하면까지 단면적이 감소하여 상기 상면으로부터 요입된 음각을 의미한다.
한편, 성형된 상기 마이크로니들 제조용 몰드(10)의 일면은 평탄 음각부(12) 및 상기 평탄 음각부(12)의 하면에 형성된 하나 이상의 음각부(11)를 포함할 수도 있다. 본 명세서에 사용된 용어, “평탄 음각부”는 평면인 상면으로부터 하면까지 실질적으로 동일한 단면적 및 일정 깊이로 요입된 음각을 의미한다. 상기 평탄 음각부(12)의 하면은 실질적으로 평탄할 수 있다. 또한, 본 명세서에 사용된 용어, “상면” 및/또는 “하면”은 각 구성의 상대적인 위치 관계를 특정하기 위한 것으로서, 이들의 절대적인 위치를 특정하는 것은 아니다.
평탄 음각부(12)가 존재하지 않는 마이크로니들 제조용 몰드(10)의 음각부(11)는 상호 연결되지 않고 독립적으로 존재한다. 이러한 마이크로니들 제조용 몰드(10)를 이용하여 마이크로니들(21)을 제조하는 경우, 제조된 마이크로니들(21) 또한 상호 연결되지 않고 독립적으로 존재하므로, 후속 단계에서 마이크로니들(21)이 점착 시트(30)에 균일하게 부착되기 어려운 문제가 있다. 예를 들어, 10*10(가로*세로)으로 상호 독립적으로 존재하는 100개의 마이크로니들(21)을 후속 단계에서 점착 시트(30)과 합지하는 경우, 상기 점착 시트(30)에 부착된 단일의 마이크로니들(21)의 상면의 단면적이 불충분하므로 상기 점착 시트(30)으로부터 쉽게 떨어져 사용자에게 불편을 유발할 수 있다.
이에 대해, 평탄 음각부(12)가 존재하는 마이크로니들 제조용 몰드(10)는 평탄 음각부(12)의 하면에 형성된 하나 이상의 음각부(11)를 포함하고, 후속 단계에서 마이크로니들 원료 물질(20)이 상기 음각부(11) 뿐만 아니라 상기 평탄 음각부(12)에도 채워져 상기 음각부(11)에 의해 형성된 마이크로니들(21)과 상기 평탄 음각부(12)에 의해 형성된 지지체(22)가 일체로 형성되므로, 상기와 같이 점착 시트(30)로부터 단일의 마이크로니들(21)이 임의로 떨어지는 것을 방지할 수 있다.
열가소성 플라스틱 수지는 폴리에틸렌테레프탈레이트(PET), 폴리비닐클로라이드(PVC), 폴리프로필렌(PP)으로 이루어진 군에서 선택된 적어도 하나 이상일 수 있으며, 이에 한정되는 것은 아니다.
종래의 실리콘 소재는 고가이고 일회성 사용은 어려운 부분이 있어 재사용이 필요한데, 이 경우 마이크로니들이 형성되는 미세 음각부 부분에 대한 세척 밸리데이션(CV, Cleaning Validation)과 세척 용매의 실리콘 투과도에 대한 검증이 어렵다. 또한 실리콘 소재의 경우 물리화학적으로 분해되고 비교적 약한 경도로 인해 제조과정 또는 세척과정에서 파편의 발생과 실리콘 몰드의 수명에 대한 검증이 어려운 부분이 있다.
또한, 실리콘 소재를 이용한 몰드 제조방식은 실리콘이 외부 공기나 이물질에 대한 보호역할을 못하기 때문에 건조된 마이크로니들을 실리콘 몰드에서 탈형 후 재포장 해야 한다. 이 과정에서 미세크기의 마이크로니들을 개별로 밀착 포장하는 것은 현실적으로 어려우므로 마이크로니들이 공기에 노출된 채 파우치에 포장되거나 캡 모양의 용기를 씌운 형태로 포장되어야 한다.
포장 용기의 폐쇄성 및 안정성은 내부 의약품의 품질 유지에 매우 큰 영향을 미치는 인자로 최종 제품의 운반 조건 시뮬레이션 및 기계적 테스트를 통해 내부 마이크로니들 의약품의 물리화학적 변형이나 변질로부터 완전히 보호할 수 있어야 한다.
*이에, 마이크로니들 제조용 몰드(10)는 마이크로니들(21)에 완전 밀착된 1차 포장 용기로서 상기 마이크로니들(21)의 인체 적용 직전 제거되도록 구성될 수 있다.
즉, 최종 제품에서 마이크로니들 제조용 몰드(10)가 마이크로니들(21)로부터 제거되지 않은 상태로 존재하도록 하여 사용자에 의해 인체 적용 전 제거되도록 함으로써 공기 노출에 따른 마이크로니들(21)의 변형, 손실, 오염 등을 방지할 수 있다.
약물층에 직접 맞닿아 보호하는 박리지의 소재인 폴리에틸렌테레프탈레이트(PET)나 의약품 정제의 포장에 쓰이는 폴리비닐클로라이드(PVC)와 주사기 제조에 쓰이는 폴리프로필렌(PP)과 같은 열가소성 플라스틱 소재는 실리콘 소재 대비 저가 소재로서 1회 사용이 가능하다. 따라서, PET, PVC, PP와 같은 열가소성 플라스틱 소재로 제조된 마이크로니들 제조용 몰드(10)는 세척 밸리데이션(CV, Cleaning Validation) 이슈에서 자유롭고, 내구성 및 내부의 의약품을 외부 오염원으로부터 보호하는 기능이 우수하며, 사전 멸균이 가능하다는 점에서 이점이 있다.
또한, 이러한 마이크로니들 제조용 몰드(10)는 마이크로니들 제조과정에서 제조된 마이크로니들(21)을 탈형하여 재포장할 필요 없이 마이크로니들(21)에 완전 밀착된 1차 포장재로서 사용 전 제거되는 형태로 구성되어 제조공정이 단순화되고, 포장 용기로서의 폐쇄성 및 안정성이 우수하여 내부 마이크로니들 의약품의 품질 유지에 유리할 수 있다.
도 8을 참조하면, 열가소성 플라스틱 수지를 사출 성형하여 제조된 마이크로니들 제조용 몰드와 열가소성 플라스틱 수지를 열 압축 성형하여 제조된 마이크로니들 제조용 몰드의 형상 변화를 나타낸다.
열압축 성형을 통해 제조된 마이크로니들 제조용 몰드(40)는 보관 시 시간이 지나면 수축, 휨 등이 발생하여 제품의 형상이 변화된다. 반면에, 사출 성형을 통해 제조된 마이크로니들 제조용 몰드(10)는 장기간 보관에도 수축, 휨 등이 발생하지 않아 제품의 형상이 변화되지 않으며, 제품의 보관 안정성이 향상될 수 있다.
또한, 열압축 성형은 고형인 필름을 성형하는 것으로, 열압축 성형을 통해 제조된 마이크로니들 제조용 몰드(40)는 열압축 시 위치별로 받는 힘의 편차가 쉽게 발생하기 때문에 음각부의 높이가 일정하지 않게 된다. 반면에, 사출 성형은 플라스틱 수지를 액화시켜 사출 금형 내부를 채우는 방식으로, 사출 성형을 통해 제조된 마이크로니들 제조용 몰드(10)는 음각부의 높이가 편차 없이 매우 정밀하게 형성될 수 있게 된다.
도 9를 참조하면, 열가소성 플라스틱 수지를 사출 성형하여 제조된 마이크로니들 제조용 몰드와 열가소성 플라스틱 수지를 열압축 성형하여 제조된 마이크로니들 제조용 몰드의 개별 음각부 간 간격을 나타낸다.
10*10(가로*세로)으로 상호 독립적으로 존재하는 100개의 음각부(41)를 포함하는 열압축 성형으로 제조된 마이크로니들 제조용 몰드(40)는 1.4cm*1.4cm 면적이 필요하지만, 10*10(가로*세로)으로 상호 독립적으로 존재하는 100개의 음각부(11)를 포함하는 열압축 성형으로 제조된 마이크로니들 제조용 몰드(10)는 0.8cm*0.8cm 면적이 필요한 것을 확인할 수 있다.
즉, 열압축 성형은 여러 개의 양각부가 있는 금형을 사용해 고형인 플라스틱 수지 필름을 열압축하는 것으로, 필름이 상기 양각부에 의해 성형되는 지점 사이에는 필름이 늘어나는 것과 같은 변형에 필요한 간격이 요구된다. 반면에, 사출 성형은 플라스틱 수지를 액화시켜 사출 금형 내부를 채우는 방식으로, 보다 좁은 면적에 많은 음각부가 형성될 수 있게 된다.
또한, 열압축 성형은 금형 가열, 필름 가압, 냉각 및 탈착의 과정을 1cycle로 하며, 1cycle 당 대략 1~2시간이 소요된다. 반면에, 사출 성형은 플라스틱 수지 용융, 유동, 냉각 및 탈착의 과정을 1cycle로 하며, 1cycle 당 대략 2분 내외의 시간이 소요된다. 즉, 사출 성형 방법으로 마이크로니들 제조용 몰드를 제조하는 경우, 열압축 성형 방법 대비 생산효율이 향상될 수 있으며, 제조 단가는 감소할 수 있다.
도 3은 본 발명의 일 실시예에 따른 마이크로니들을 성형하는 단계를 도식화한 것이다. 도 3(a) 및 도 3(b)는 각각 도 1의 방법을 통해 성형된 각각의 마이크로니들 제조용 몰드를 이용하여 마이크로니들을 성형하는 단계를 나타낸다.
상기 (B) 단계에서, 상기 음각부(11)에 마이크로니들 원료 물질(20)을 주입하여 마이크로니들(21)을 성형할 수 있다. 본 발명의 마이크로니들(21)은 용해성 마이크로니들로서, 마이크로니들 원료 물질(20)은 상기 마이크로니들(21)의 형태에 따라 금속, 비금속, 생분해성 고분자, 및 약리 성분(active pharmaceutical ingredients)으로 이루어진 군에서 선택된 하나 이상을 포함할 수 있다. 예를 들어, 마이크로니들 원료 물질(20)은 약리 성분을 포함하는 조성물일 수 있고, 금속, 비금속, 생분해성 고분자, 또는 이들 중 2 이상의 조합을 포함하는 조성물일 수 있으나, 이에 한정되는 것은 아니다. 또한, 여기서 약리 성분은 항원, 백신, 호르몬, 효소, 단백질, 합성의약 중 적어도 어느 하나를 포함하는 것일 수 있다.
도 3을 참고하면, 마이크로니들 원료 물질(20)을 저장조로부터 단일의 토출구를 통해 상기 마이크로니들 제조용 몰드(10)에 공급하여 음각부(11) 및/또는 평탄 음각부(12)에 주입할 수 있으나, 마이크로니들 원료 물질(20)의 공급 및 주입 방법이 이에 한정되는 것은 아니며, 필요에 따라, 상기 마이크로니들 원료 물질(20)을 복수의 음각부(11) 및/또는 평탄 음각부(12) 각각에 인접하여 위치한 복수의 토출구를 통해 상기 음각부(11) 및/또는 평탄 음각부(12)에 직접 주입하거나, 롤 코팅, 바 코팅, 스프레이 코팅과 같은 코팅 방법을 이용하여 상기 마이크로니들 원료 물질(20)을 음각부(11) 및/또는 평탄 음각부(12)에 주입할 수도 있다.
이 때, 감압 챔버 내에서 0.5 기압 이하, 바람직하게는 0.1 기압 이하로 감압한 후 상기 마이크로니들 원료 물질(20)을 상기 마이크로니들 제조용 몰드(10)의 평탄면에 투입한 다음 블레이드를 이용하여 상기 마이크로니들 제조용 몰드(10)의 음각부(11) 및/또는 평탄 음각부(12)에 충진할 수 있다. 이처럼, 감압 챔버 내부를 진공 상태에 가깝도록 감압 후 블레이드를 이용한 충진 방식은 마이크로니들 제조용 몰드(10)의 음각부(11) 내 기포발생을 억제하여 마이크로니들(21)이 약학적 사용을 위한 정교한 모양과 균등한 함량을 가지게 함으로써 일반적인 화장품으로의 적용 한계를 극복할 수 있다. 한편, 마이크로니들의 원료 물질(20) 주입 후 2기압 이상, 바람직하게는 2기압 이상 50기압 이하로 가압하여 충진할 수도 있다. 높은 압력이 원료 물질을 가압하여 공기를 밀어내어 마이크로니들 제조용 몰드(10)의 음각부(11) 내 기포발생을 억제하는 것이 가능하다.
한편, 마이크로니들 원료 물질(20)이 상기 음각부(11) 및/또는 평탄 음각부(12)의 깊이를 초과하여 공급되면, 마이크로니들 제조용 몰드(10) 중 음각부(11) 및/또는 평탄 음각부(12)를 제외한 영역에 이크로니들 원료 물질(20)이 잔류하여 후속 단계에서 점착 시트(30)가 원활하게 합지될 수 없고, 과량의 마이크로니들 원료 물질(20)이 사용됨에 따라 경제적으로도 불리하다.
이에 대해, 마이크로니들 원료 물질(20)을 공급한 후, 스퀴징(squeezing) 등의 방법을 이용하여 마이크로니들 제조용 몰드(10) 중 음각부(11) 및/또는 평탄 음각부(12)를 제외한 영역에 잔류하는 마이크로니들 원료 물질(20)을 제거할 수 있고, 마이크로니들 제조용 몰드(10) 중 음각부(11) 및/또는 평탄 음각부(12)를 제외한 영역과 마이크로니들(21)의 상면 간의 임의의 단차를 제거하여 이들이 실질적으로 평탄면을 이루도록 함으로써 후속 단계에서 발생할 수 있는 문제를 방지할 수 있다.
이처럼, 본 발명의 마이크로니들(21) 어레이의 제조방법은, 상기 (A) 단계에서 열가소성 플라스틱 수지를 사출 성형하여 제조된 마이크로니들 제조용 몰드(10)를 상기 (B) 단계에서 마이크로니들(21) 어레이의 제조에 필요한 몰드로 이용하고, 최종 제품에서 마이크로니들 제조용 몰드(10)가 마이크로니들(21)로부터 제거되지 않은 상태로 존재하도록 하여 사용자에 의해 인체 적용 전 제거되도록 함으로써 상기 마이크로니들(21)의 변형, 손실, 오염 등을 방지할 수 있다.
도 4는 본 발명의 일 실시예에 따른 마이크로니들을 2단 몰딩 방법으로 성형하는 단계를 도식화한 것이다. 도 4(a) 및 도 4(b)는 각각 도 1의 방법을 통해 성형된 각각의 마이크로니들 제조용 몰드를 이용하여 마이크로니들을 마이크로니들을 2단 몰딩 방법으로 성형하는 단계를 나타낸다.
도 4를 참조하면, 일 실시예에 따라 마이크로니들(21) 성형은 다음과 같은 2단계로 진행될 수도 있다. 먼저, 전달하고자 하는 약리성분 등의 유효 성분이 포함된 마이크로니들 원료 물질(20)을 상술한 바와 같이 마이크로니들 제조용 몰드(10)의 음각부(11)에 충진한 후 1차 건조한다. 그러면, 건조된 마이크로니들(21)은 부피가 줄어들어 상기 음각부(11)의 하단부에만 존재하게 된다. 그 다음, 기저부 원료 물질(23)을 상술한 바와 같이 건조된 상기 마이크로니들(21)의 상부에 충진한 후 2차 건조한다.
이를 통해, 마이크로니들(21)과 기저부(24)가 각각 따로 제작된 마이크로니들 어레이를 형성할 수 있다. 이 때, 상기 마이크로니들(21)과 기저부(24)는 각각 다른 재질로 제작 가능하며, 바람직하게 상기 마이크로니들(21)과 상기 기저부(24)는 각각 카르복시메틸셀룰로오스(CMC), 히알루론산(HA), 폴리비닐알코올(PVA), 폴리락틱산(PLA), 폴리락틱코글라이콜산(PLGA), 폴리비닐피롤리돈(PVP) 등에서 선택된 적어도 하나로 제작될 수 있으나, 이에 한정되는 것은 아니다.
이처럼, 2단 몰딩 방법으로 제작된 마이크로니들 어레이는 필요에 따라 마이크로니들(21)의 하단부에만 약리 성분 등의 유효 성분이 존재하도록 하여 정확하게 제어된 양만큼만 사용자에게 전달 가능하도록 제작될 수 있다.
도 5는 본 발명의 일 실시예에 따른 점착 시트를 합지하는 단계를 도식화한 것이다. 도 5(a) 및 도 5(b)는 각각 도 3(a) 및 도 3(b)에서 제조된 마이크로니들 어레이의 일면, 즉, 평탄면에 점착 시트를 합지하는 단계를 나타낸다.
상기 평탄면은 상기 마이크로니들(21)의 상면 및 상기 마이크로니들 제조용 몰드(10)의 일면을 포함할 수 있고(도 3(a)), 상기 마이크로니들(21)과 일체로 형성된 지지체(22)의 상면 및 상기 마이크로니들 제조용 몰드(10)의 일면을 포함할 수 있다(도 3(b)).
상기 점착 시트(30)는 금속, 고분자, 직물 등의 열가소성 기재로 이루어진 시트 또는 시트의 일면에 점착제가 도포, 코팅된 것일 수 있다. 상기 점착제는 1회 이상의 부착 및 박리가 가능한 이형성 점착제일 수 있다.
상기 점착 시트(30)에서 점착제가 도포된 일면은 상기 마이크로니들(21) 어레이의 일면, 즉, 평탄면에 합지되어 상기 마이크로니들(21)의 상면을 부착, 고정시킬 수 있고, 상기 마이크로니들 제조용 몰드(10)의 일면과 부착된 영역은 피부 적용을 위해 상기 마이크로니들 제조용 몰드(10)가 제거된 후에도 점착력을 유지하여 마이크로니들(21)에 포함된 약리 성분이 전달되는데 필요한 기간 동안 피부에 부착될 수 있다.
상기 점착 시트(30)가 합지된 마이크로니들(21) 어레이에서, 상기 마이크로니들(21)의 측면과 상기 마이크로니들 제조용 몰드(10)의 결합력이 상기 점착 시트(30)와 상기 마이크로니들(21)의 상면의 결합력에 비해 큰 경우, 피부 적용을 위해 상기 마이크로니들 제조용 몰드(10)를 제거할 때 상기 마이크로니들(21)이 상기 마이크로니들 제조용 몰드(10)에 결합된 상태에서 상기 점착 시트(30)로부터 박리되어 필요한 양의 약물이 투여될 수 없다. 따라서, 상기 점착 시트(30)와 상기 마이크로니들(21)의 상면의 결합력이 상기 마이크로니들(21)의 측면과 상기 마이크로니들 제조용 몰드(10)의 결합력에 비해 크도록 점착제의 조성과 그에 따른 부착력을 조절하고/하거나 상기 마이크로니들 제조용 몰드(10) 중 상기 마이크로니들 원료 물질(20)과 접촉하는 일면을 일정 물질로 코팅하고/하거나 표면 처리하여 일정 수준의 조도(roughness)를 부여함으로써 상기 마이크로니들(21)의 측면과 상기 마이크로니들 제조용 몰드(10)의 결합력을 낮추어 상기 마이크로니들 제조용 몰드(10)가 용이하게 제거되도록 할 수 있다.
도 6의 (a) 및 (b)는 각각 본 발명의 일 실시예에 따른 마이크로니들 제조용 몰드, 마이크로니들 및 점착 시트를 포함하는 마이크로니들 어레이의 사시도 및 단면도이고, 도 7은 본 발명의 일 실시예에 따른 마이크로니들이 마이크로니들 제조용 몰드로부터 제거된 사진이다.
도 6 및 도 7을 참조하면, 마이크로니들 어레이는 열가소성 플라스틱 수지를 사출 성형하여 제조되며, 하나 이상의 음각부를 포함하는 마이크로니들 제조용 몰드 및 상기 음각부에 마이크로니들 원료 물질을 주입하여 성형되는 하나 이상의 마이크로니들을 포함할 수 있다.
마이크로니들 제조용 몰드(10)는 마이크로니들(21)을 제조하는 플라스틱 소재의 주형이면서, 동시에 마이크로니들(21)에 완전 밀착된 포장 용기일 수 있다. 즉, 이러한 마이크로니들 제조용 몰드(10)에 의해 마이크로니들(21)은 제조 과정 및 인체 적용 직전까지 공기 중에 노출되지 않아 변형, 손실, 오염 등이 방지될 수 있다.
도 10은 본 발명의 다른 실시예에 따른 사출 성형 방법으로 제조되고 2개 영역으로 구획된 마이크로니들 제조용 몰드를 나타낸다.
이하에서는, 전술한 마이크로니들 어레이 및 이의 제조방법과의 차이점을 위주로 설명하기로 한다.
본 발명의 다른 측면은, (a) 적어도 2개 이상의 영역으로 구획되고, 각 영역에 하나 이상의 음각부를 포함하는 마이크로니들 제조용 몰드를 제조하는 단계; 및 (b) 상기 각 영역에 서로 다른 마이크로니들 원료 물질을 주입하여 하나 이상의 마이크로니들을 성형하는 단계;를 포함하는, 마이크로니들 어레이의 제조방법을 제공한다.
즉, 마이크로니들 제조용 몰드가 적어도 2개 이상의 영역으로 구획됨에 따라, 각 영역에 배치된 음각부에 서로 다른 마이크로니들 원료 물질을 주입하여 마이크로니들 어레이를 제조할 수 있다. 이에 따라, 하나의 제품으로 여러 종류의 약리 성분을 한번에 투여할 수 있으므로, 투여 횟수를 줄여 편의성을 향상시킬 수 있게 된다.
일례로 도 10을 참조하면, 마이크로니들 제조용 몰드(10)가 제1 영역(10a) 및 제2 영역(10b)의 2개의 영역으로 구획된 경우, 제1 영역(10a)과 제2 영역(10b)에는 각각 다른 성분의 약리 성분이 주입될 수 있다. 여기서, 제1 영역(10a)과 제2 영역(10b)은 기 설정된 간격으로 이격될 수 있는데, 이러한 영역 사이의 간격은 적어도 각각의 개별 마이크로니들 사이의 간격보다 크게 형성될 수 있다.
이때, 제1 영역(10a)은 제1 평탄 음각부(12a) 및 상기 제1 평탄 음각부(12a)의 하면에 형성된 하나 이상의 제1 음각부(11a)를 포함할 수 있다. 또한 제2 영역(10b)은 제2 평탄 음각부(12b) 및 상기 제2 평탄 음각부(12b)의 하면에 형성된 하나 이상의 제2 음각부(11b)를 포함할 수 있다. 이처럼, 각 영역(10a, 10b)이 평탄 음각부(12a, 12b)를 포함하여 서로 명확하게 구획됨에 따라, 후속 단계에서 각 영역(10a, 10b)에 주입되는 서로 다른 마이크로니들 원료 물질이 섞이는 것을 방지할 수 있게 된다.
한편, 제1 영역(10a)과 제2 영역(10b)은 서로 다른 면적으로 형성될 수 있으며, 더 많은 투여량이 요구되는 마이크로니들 원료 물질은 더 큰 면적을 갖는 영역에 주입될 수 있다. 또는, 제1영역(10a)과 제2 영역(10b)은 서로 다른 개수의 음각부를 포함할 수 있으며, 더 많은 투여량이 요구되는 마이크로니들 원료 물질은 더 많은 음각부를 갖는 영역에 주입될 수 있다.
도 11은 본 발명의 다른 실시예에 따른 2개 영역으로 구획된 마이크로니들을 성형하는 단계를 도식화한 것이다.
도 11을 참조하면, 제1 영역(10a)과 제2 영역(10b)에 각각 서로 다른 마이크로니들 원료 물질을 주입하여 하나 이상의 마이크로니들을 성형할 수 있다.
보다 구체적으로, 마이크로니들 제조용 몰드(10)의 제1 영역(10a)에는 제1 마이크로니들 원료 물질(20a)을 공급하여 제1 음각부(11a) 및 제1 평탄 음각부(12a)에 주입할 수 있고, 제2 영역(10b)에는 제2 마이크로니들 원료 물질(20b)을 공급하여 제2 음각부(11b) 및 제2 평탄 음각부(12b)에 주입할 수 있다. 이후, 건조 과정을 통해 제1 영역(10a)에서는 제1 마이크로니들(21a) 및 상기 제1 마이크로니들(21a)과 일체로 형성되는 제1 지지체(22a)를 성형할 수 있으며, 제2 영역(10b)에서는 제2 마이크로니들(21b) 및 상기 제2 마이크로니들(21b)과 일체로 형성되는 제2 지지체(22b)를 성형할 수 있다.
이처럼, 음각부(11a, 11b)에 의해 형성된 마이크로니들(21a, 21b)과 평탄 음각부(12a, 12b)에 의해 형성된 지지체(22a, 22b)가 일체로 형성되므로, 점착 시트(30)로부터 단일의 마이크로니들(21a, 21b)이 임의로 떨어지는 것을 방지할 수 있다.
도 12는 본 발명의 다른 실시예에 따른 2개 영역으로 구획된 마이크로니들을 2단 몰딩 방법으로 성형하는 단계를 도식화한 것이다.
도 12를 참조하면, 2개의 영역으로 구획된 마이크로니들 성형은 다음과 같은 2단계로 진행될 수도 있다.
먼저, 제1 마이크로니들 원료 물질(20a)을 제1 영역(10a)의 제1 음각부(11a)에 충진한 후 1차 건조한다. 그러면, 건조된 제1 마이크로니들(21a)은 부피가 줄어들어 상기 제1 음각부(11a)의 하단부에만 존재하게 된다. 이와 동시에 또는 순차적으로, 제2 마이크로니들 원료 물질(20b)을 제2 영역(10b)의 제2 음각부(11b)에 충진한 후 1차 건조한다. 그러면, 건조된 제2 마이크로니들(21b)은 부피가 줄어들어 상기 제2 음각부(11b)의 하단부에만 존재하게 된다.
그 다음, 기저부 원료 물질(23)을 건조된 제1 영역(10a)의 제1 마이크로니들(21a) 및 제2 영역(10b)의 제2 마이크로니들(21b)의 상부에 충진한 후 2차 건조한다. 이를 통해, 마이크로니들(21a, 21b)과 기저부(24)가 각각 따로 제작된 마이크로니들 어레이를 형성할 수 있다.
이처럼, 2단 몰딩 방법으로 제작된 마이크로니들 어레이는 필요에 따라 마이크로니들(21a, 21b)의 하단부에만 약리 성분 등의 유효 성분이 존재하도록 하여 정확하게 제어된 양만큼만 사용자에게 전달 가능하도록 제작될 수 있다.
도 13은 본 발명의 다른 실시예에 따른 점착 시트를 합지하는 단계를 도식화한 것이다.
도 13을 참조하면, 도 11 또는 도 12에서 제조된 마이크로니들 어레이의 일면, 즉, 평탄면에 점착 시트(30)를 합지할 수 있다. 이때, 상기 평탄면은 상기 마이크로니들(21a, 21b)과 일체로 형성된 지지체(22a, 22b)의 상면 및 상기 마이크로니들 제조용 몰드(10)의 일면을 포함할 수 있고(도 11), 상기 마이크로니들(21a, 21b)의 상부에 형성된 기저부(24)의 상면 및 상기 마이크로니들 제조용 몰드(10)의 일면을 포함할 수 있다(도 12).
점착 시트(30)에서 점착제가 도포된 일면은 상기 마이크로니들(21a, 21b) 어레이의 일면, 즉, 평탄면에 합지되어 상기 지지체(22a, 22b)의 상면 또는 상기 기저부(24)의 상면을 부착, 고정시킬 수 있고, 상기 마이크로니들 제조용 몰드(10)의 일면과 부착된 영역은 피부 적용을 위해 상기 마이크로니들 제조용 몰드(10)가 제거된 후에도 점착력을 유지하여 마이크로니들(21a, 21b)에 포함된 약리 성분이 전달되는데 필요한 기간 동안 피부에 부착될 수 있다.
도 14 내지 도 17은 2개의 유효성분을 탑재하기 위한 다양한 마이크로니들 제조용 몰드의 종류를 나타낸다.
도 14를 참조하면, 마이크로니들 제조용 몰드(10)는 제1 영역(10a)과 제2 영역(10b)으로 이격되어 구획되는 반원형 2분할 몰드일 수 있으며, 제1 영역(10a)과 제2 영역(10b)에는 각각 다른 유효성분을 갖는 마이크로니들 원료 물질이 주입될 수 있다. 이때, 제1 영역(10a)과 제2 영역(10b)은 같은 깊이의 음각으로 형성될 수 있다.
도 15 및 도 16을 참조하면, 마이크로니들 제조용 몰드(10)는 원형의 제1 영역(10a) 내부에 제2 영역(10b)이 위치하는 형태일 수 있으며, 제2 영역(10b)은 사각형 또는 원형일 수 있다. 이때 제1 영역(10a)과 제2 영역(10b)은 서로 다른 깊이의 음각으로 형성되어 서로 구획되거나, 서로 같은 깊이 음각으로 형성되되 격벽에 의해 서로 구획될 수 있다.
도 17을 참조하면, 마이크로니들 제조용 몰드(10)는 원형의 제1 영역(10a) 내부에 서로 이격된 4개의 제2 영역(10b)이 위치하는 형태일 수 있으며, 제2 영역(10b)은 부채꼴 형상일 수 있다. 이때 제1 영역(10a)과 제2 영역(10b)은 서로 다른 깊이의 음각으로 형성되어 구획되거나, 서로 같은 깊이의 음각으로 형성되되 격벽에 의해 서로 구획될 수 있다.
도 18 내지 도 20은 3개의 유효성분을 탑재하기 위한 다양한 마이크로니들 제조용 몰드의 종류를 나타낸다.
도 18을 참조하면, 마이크로니들 제조용 몰드(10)는 제1 영역(10a), 제2 영역(10b) 및 제3 영역(10c)으로 이격되어 구획되는 120도 원형 3분할 몰드일 수 있으며, 제1 영역(10a) 내지 제3 영역(10c)에는 각각 다른 유효성분을 갖는 마이크로니들 원료 물질이 주입될 수 있다. 이때, 제1 영역(10a) 내지 제3 영역(10c)은 같은 깊이의 음각으로 형성될 수 있다.
도 19를 참조하면, 마이크로니들 제조용 몰드(10)는 반원형의 제1 영역(10a), 제3 영역(10c) 및 그 사이에 위치하는 사각형의 제2 영역(10b)이 서로 이격되어 구획되는 3분할 몰드일 수 있으며, 제1 영역(10a) 내지 제3 영역(10c)에는 각각 다른 유효성분을 갖는 마이크로니들 원료 물질이 주입될 수 있다. 이때, 제1 영역(10a) 내지 제3 영역(10c)은 같은 깊이의 음각으로 형성될 수 있다.
도 20을 참조하면, 마이크로니들 제조용 몰드(10)는 원형의 제1 영역(10a) 내부에 서로 이격된 제2 영역(10b) 및 제3 영역(10c)이 위치하는 형태일 수 있으며, 제2 영역(10b) 및 제3 영역(10c)은 삼각 형상일 수 있다. 이때 제1 영역(10a)과 제2 영역(10b)은 서로 다른 깊이로 형성되어 서로 구획되거나, 서로 같은 깊이로 형성되되 격벽에 의해 서로 구획될 수 있다. 또한, 제1 영역(10a)과 제3 영역(10b)은 서로 다른 깊이의 음각으로 형성되어 구획되거나, 서로 같은 깊이의 음각으로 형성되되 격벽에 의해 서로 구획될 수 있다. 그리고, 제2 영역(10b)과 제3 영역(10c)은 같은 깊이의 음각으로 형성될 수 있다.
도 21 및 도 22는 4개의 유효성분을 탑재하기 위한 다양한 마이크로니들 제조용 몰드의 종류를 나타낸다.
도 21을 참조하면, 마이크로니들 제조용 몰드(10)는 제1 영역(10a), 제2 영역(10b), 제3 영역(10c) 및 제4 영역(10d)으로 이격되어 구획되는 90도 원형 4분할 몰드일 수 있으며, 제1 영역(10a) 내지 제4 영역(10d)에는 각각 다른 유효성분을 갖는 마이크로니들 원료 물질이 주입될 수 있다. 이때, 제1 영역(10a) 내지 제4 영역(10d)은 같은 깊이의 음각으로 형성될 수 있다.
도 22를 참조하면, 마이크로니들 제조용 몰드(10)는 하나 이상의 반원형 외곽 제1 영역(10a), 하나 이상의 반원형 외곽 제2 영역(10b), 삼각형의 내부 제3 영역(10c) 및 삼각형의 내부 제4 영역(10d)이 이격되어 구획되는 4분할 몰드일 수 있으며, 제1 영역(10a) 내지 제4 영역(10d)에는 각각 다른 유효성분을 갖는 마이크로니들 원료 물질이 주입될 수 있다. 이때, 제1 영역(10a) 내지 제4 영역(10d)은 같은 깊이의 음각으로 형성될 수 있다.
도 23은 5개의 유효성분을 탑재하기 위한 다양한 마이크로니들 제조용 몰드의 종류를 나타낸다.
도 23을 참조하면, 마이크로니들 제조용 몰드(10)는 제1 영역(10a), 제2 영역(10b), 제3 영역(10c), 제4 영역(10d) 및 제5 영역(10e)으로 이격되어 구획되는 72도 원형 5분할 몰드일 수 있으며, 제1 영역(10a) 내지 제5 영역(10e)에는 각각 다른 유효성분을 갖는 마이크로니들 원료 물질이 주입될 수 있다. 이때, 제1 영역(10a) 내지 제5 영역(10e)은 같은 깊이의 음각으로 형성될 수 있다.
도 24 내지 도 26은 6개의 유효성분을 탑재하기 위한 다양한 마이크로니들 제조용 몰드의 종류를 나타낸다.
도 24를 참조하면, 마이크로니들 제조용 몰드(10)는 제1 영역(10a), 제2 영역(10b), 제3 영역(10c), 제4 영역(10d), 제5 영역(10e) 및 제 6영역(10f)으로 이격되어 구획되는 60도 원형 6분할 몰드일 수 있으며, 제1 영역(10a) 내지 제6 영역(10f)에는 각각 다른 유효성분을 갖는 마이크로니들 원료 물질이 주입될 수 있다. 이때, 제1 영역(10a) 내지 제6 영역(10f)은 같은 깊이의 음각으로 형성될 수 있다.
도 25를 참조하면, 마이크로니들 제조용 몰드(10)는 부채꼴 형상의 제1 영역(10a), 제3 영역(10c) 및 그 사이에 위치하는 사각형의 제2 영역(10b)이 서로 이격되어 구획되고, 부채꼴 형상의 제4 영역(10d), 제5 영역(10e) 및 그 사이에 위치하는 사각형의 제6 영역(10e)이 서로 이격되어 구획되는 6분할 몰드일 수 있으며, 제1 영역(10a) 내지 제6 영역(10f)에는 각각 다른 유효성분을 갖는 마이크로니들 원료 물질이 주입될 수 있다. 이때, 제1 영역(10a) 내지 제6 영역(10f) 은 같은 깊이의 음각으로 형성될 수 있다.
도 26을 참조하면, 마이크로니들 제조용 몰드(10)는 반원형 외곽 제1 영역(10a), 반원형 외곽 제2 영역(10b), 반원형 외곽 제3영역(10c), 반원형 외곽 제4 영역(10d), 삼각형의 내부 제5 영역(10e) 및 삼각형의 내부 제6 영역(10f)이 이격되어 구획되는 6분할 몰드일 수 있으며, 제1 영역(10a) 내지 제6 영역(10f)에는 각각 다른 유효성분을 갖는 마이크로니들 원료 물질이 주입될 수 있다. 이때, 제1 영역(10a) 내지 제6 영역(10f)은 같은 깊이의 음각으로 형성될 수 있다.
 이처럼, 본 발명의 마이크로니들 어레이 및 이의 제조 방법에 따르면, 서로 다른 영역으로 구획되는 마이크로니들 몰드에 서로 다른 성분의 약액이 독립적으로 주입됨에 따라, 하나의 마이크로니들 어레이를 통해 다가의 항원 또는 다종의 백신을 한번에 투여할 수 있으므로, 약액의 투여 횟수를 줄여 편의성을 향상시킬 수 있게 된다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
부호의 설명
10 마이크로니들 제조용 몰드
11 음각부
12 평탄 음각부
20 마이크로니들 원료 물질
21 마이크로니들
22 지지체
23 기저부 원료 물질
24 기저부
30 점착 시트

Claims (18)

  1. (a) 적어도 2개 이상의 영역으로 구획되고, 각 영역에 하나 이상의 음각부를 포함하는 마이크로니들 제조용 몰드를 제조하는 단계; 및
    (b) 상기 각 영역에 서로 다른 마이크로니들 원료 물질을 주입하여 하나 이상의 마이크로니들을 성형하는 단계;를 포함하는, 마이크로니들 어레이의 제조방법.
  2. 제1항에 있어서,
    상기 몰드는 열가소성 플라스틱 수지를 사출 성형하여 제조되는 것을 특징으로 하는, 마이크로니들 어레이의 제조방법.
  3. 제2항에 있어서,
    상기 열가소성 플라스틱 수지는 폴리에틸렌테레프탈레이트(PET), 폴리비닐클로라이드(PVC), 폴리프로필렌(PP)으로 이루어진 군에서 선택된 적어도 하나 이상인 것을 특징으로 하는, 마이크로니들 어레이의 제조방법.
  4. 제1항에 있어서,
    상기 몰드는 상기 마이크로니들에 완전 밀착된 1차 포장 용기로서 상기 마이크로니들의 인체 적용 직전 제거되는 것을 특징으로 하는, 마이크로니들 어레이의 제조방법.
  5. 제1항에 있어서,
    상기 (b) 단계 이후에,
    (c) 상기 마이크로니들의 상면 및 상기 몰드의 일면을 포함하는 평탄면에 점착 시트를 합지하는 단계;를 더 포함하는 것을 특징으로 하는, 마이크로니들 어레이의 제조방법.
  6. 제1항에 있어서,
    상기 (b)단계에서, 상기 마이크로니들 원료 물질의 주입후 0.5 기압 이하로 감압한 후 블레이드를 이용하거나, 또는 2기압 이상으로 가압하여 상기 몰드의 음각부에 충진하는 것을 특징으로 하는, 마이크로니들 어레이의 제조방법.
  7. 제1항에 있어서,
    상기 (b)단계에서, 전달하고자 하는 유효 성분이 포함된 마이크로니들 원료 물질을 상기 몰드의 음각부에 충진하고 1차 건조한 후 그 상부에 기저부 원료 물질을 충진하고 2차 건조하여 마이크로니들을 성형하는 것을 특징으로 하는, 마이크로니들 어레이의 제조방법.
  8. 제1항에 있어서,
    상기 마이크로니들 원료 물질은 금속, 비금속, 생분해성 고분자, 및 약리 성분으로 이루어진 군에서 선택된 하나 이상인 것을 특징으로 하는, 마이크로니들 어레이의 제조방법.
  9. 제1항에 있어서,
    상기 기저부 원료 물질은 카르복시메틸셀룰로오스(CMC), 히알루론산(HA), 폴리비닐알코올(PVA), 폴리락틱산(PLA), 폴리락틱코글라이콜산(PLGA), 폴리비닐피롤리돈(PVP)으로 이루어진 군에서 선택된 적어도 하나 이상인 것을 특징으로 하는, 마이크로니들 어레이의 제조방법.
  10. 적어도 2개 이상의 영역으로 구획되고, 각 영역에 하나 이상의 음각부를 포함하는 마이크로니들 제조용 몰드; 및
    상기 각 영역에 서로 다른 마이크로니들 원료 물질을 주입하여 성형되는 하나 이상의 마이크로니들;을 포함하는, 마이크로니들 어레이.
  11. 제10항에 있어서,
    상기 몰드는 열가소성 플라스틱 수지를 사출 성형하여 제조되는 것을 특징으로 하는, 마이크로니들 어레이.
  12. 제11항에 있어서,
    상기 열가소성 플라스틱 수지는 폴리에틸렌테레프탈레이트(PET), 폴리비닐클로라이드(PVC), 폴리비닐리덴클로라이드(PVDC), 폴리프로필렌(PP)으로 이루어진 군에서 선택된 적어도 하나 이상인 것을 특징으로 하는, 마이크로니들 어레이.
  13. 제10항에 있어서,
    상기 몰드는 상기 마이크로니들에 완전 밀착된 1차 포장 용기로서 상기 마이크로니들의 인체 적용 직전 제거되는 것을 특징으로 하는, 마이크로니들 어레이.
  14. 제10항에 있어서,
    상기 마이크로니들 원료 물질은 금속, 비금속, 생분해성 고분자, 및 약리 성분으로 이루어진 군에서 선택된 하나 이상인 것을 특징으로 하는, 마이크로니들 어레이의 제조방법.
  15. 제10항에 있어서,
    상기 마이크로니들의 상면에 기저부를 더 포함하는 것을 특징으로 하는, 마이크로니들 어레이.
  16. 제15항에 있어서,
    상기 기저부는 카르복시메틸셀룰로오스(CMC), 히알루론산(HA), 폴리비닐알코올(PVA), 폴리락틱산(PLA), 폴리락틱코글라이콜산(PLGA), 폴리비닐피롤리돈(PVP)으로 이루어진 군에서 선택된 적어도 하나 이상인 것을 특징으로 하는, 마이크로니들 어레이.
  17. 제10항에 있어서,
    상기 마이크로니들의 일면에 점착 시트가 합지되는 것을 특징으로 하는, 마이크로니들 어레이.
  18. 제15항에 있어서,
    상기 기저부의 일면에 점착 시트가 합지되는 것을 특징으로 하는, 마이크로니들 어레이.
PCT/KR2021/013759 2020-11-13 2021-10-07 마이크로니들 어레이 및 이의 제조방법 WO2022102976A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200151979 2020-11-13
KR10-2020-0151979 2020-11-13

Publications (1)

Publication Number Publication Date
WO2022102976A1 true WO2022102976A1 (ko) 2022-05-19

Family

ID=81601445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/013759 WO2022102976A1 (ko) 2020-11-13 2021-10-07 마이크로니들 어레이 및 이의 제조방법

Country Status (2)

Country Link
KR (2) KR20220065661A (ko)
WO (1) WO2022102976A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102639625B1 (ko) * 2023-03-13 2024-02-23 (주)시지바이오 마이크로니들 패키지 및 상기 마이크로니들 패키지를 포함하는 어플리케이터 패키지
KR102583795B1 (ko) 2023-04-27 2023-10-05 연세대학교 산학협력단 변형성이 향상된 마이크로니들 패치 및 이를 포함하는 마이크로니들 패치 키트

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120280428A1 (en) * 2004-12-07 2012-11-08 3M Innovative Properties Company Method of molding a microneedle
KR20140143216A (ko) * 2012-04-03 2014-12-15 테라젝트, 인코포레이티드 백신의 구강점막 전달용인 용해성 미세바늘 어레이
KR20170011580A (ko) * 2015-07-23 2017-02-02 주식회사 엔이케이 경피 전달 마이크로 니들 제품 및 그 제조 방법
KR20170038463A (ko) * 2015-09-30 2017-04-07 하태석 마이크로 니들 제조방법
KR20200106824A (ko) * 2019-03-04 2020-09-15 주식회사 대웅테라퓨틱스 마이크로니들 어레이 및 이의 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101694317B1 (ko) 2016-05-24 2017-01-10 하태석 마이크로 니들 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120280428A1 (en) * 2004-12-07 2012-11-08 3M Innovative Properties Company Method of molding a microneedle
KR20140143216A (ko) * 2012-04-03 2014-12-15 테라젝트, 인코포레이티드 백신의 구강점막 전달용인 용해성 미세바늘 어레이
KR20170011580A (ko) * 2015-07-23 2017-02-02 주식회사 엔이케이 경피 전달 마이크로 니들 제품 및 그 제조 방법
KR20170038463A (ko) * 2015-09-30 2017-04-07 하태석 마이크로 니들 제조방법
KR20200106824A (ko) * 2019-03-04 2020-09-15 주식회사 대웅테라퓨틱스 마이크로니들 어레이 및 이의 제조방법

Also Published As

Publication number Publication date
KR20220065661A (ko) 2022-05-20
KR20240007890A (ko) 2024-01-17

Similar Documents

Publication Publication Date Title
WO2022102976A1 (ko) 마이크로니들 어레이 및 이의 제조방법
WO2017138682A1 (ko) 생체적합성 고분자를 이용한 마이크로니들의 제조방법
WO2017116076A1 (ko) 경피 흡수용 마이크로구조체 및 이의 제조방법
WO2018093218A1 (ko) 복합 제형이 적용된 마이크로니들 어레이 및 이의 제조방법
WO2017176045A2 (ko) 효율적인 피부 천공을 위한 마이크로니들 구조
WO2023113233A1 (ko) 마이크로니들 제조방법
WO2016093585A1 (ko) 미용 팩 및 그 제조방법
WO2010140760A2 (en) Flexible microneedle patch system and method for manufacturing the same
WO2016099159A1 (ko) 미세방 마이크로구조체 및 이의 제조방법
WO2023146093A1 (ko) 마이크로니들 제조방법
CN110478612B (zh) 尖端溶解法制备气泡式空心给药微针的方法
WO2018182149A1 (ko) 마스크 팩 및 그 제조방법
WO2019066397A1 (ko) 마스크 팩 및 그 제조방법
WO2019103268A1 (ko) 니들 팁에 코팅부를 보유하는 마이크로니들을 제조하는 방법 및 장치
WO2024136035A1 (ko) 세마글루타이드를 포함하는 마이크로니들 및 이의 제조방법
KR102249834B1 (ko) 마이크로 니들 패치의 제조 방법
WO2022102977A1 (ko) 마이크로니들 어레이 및 이의 제조방법
WO2023106639A1 (ko) 마이크로니들 조립체
WO2020180033A1 (ko) 마이크로니들 어레이 및 이의 제조방법
KR20170011580A (ko) 경피 전달 마이크로 니들 제품 및 그 제조 방법
WO2020060195A1 (ko) 미세 구조체 기반 약물 주입장치 및 이의 제조 방법
WO2022003653A1 (ko) 멀티 레이어 마이크로니들 구조체 및 이의 제조 방법
WO2020153802A1 (ko) 3층 이상 구조의 마이크로 니들 및 이의 제조방법
WO2017065570A1 (ko) 겔형 고분자 물질을 이용한 마이크로구조체 및 이의 제조방법
WO2022250199A1 (ko) 다중층 마이크로니들 어레이 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21892146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21892146

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/09/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21892146

Country of ref document: EP

Kind code of ref document: A1