WO2022102328A1 - トマト植物体、トマト果実及びトマト植物体の栽培方法 - Google Patents

トマト植物体、トマト果実及びトマト植物体の栽培方法 Download PDF

Info

Publication number
WO2022102328A1
WO2022102328A1 PCT/JP2021/037933 JP2021037933W WO2022102328A1 WO 2022102328 A1 WO2022102328 A1 WO 2022102328A1 JP 2021037933 W JP2021037933 W JP 2021037933W WO 2022102328 A1 WO2022102328 A1 WO 2022102328A1
Authority
WO
WIPO (PCT)
Prior art keywords
tomato plant
tomato
light
branch
fruit
Prior art date
Application number
PCT/JP2021/037933
Other languages
English (en)
French (fr)
Inventor
隆史 細川
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2022561347A priority Critical patent/JP7499873B2/ja
Priority to IL302838A priority patent/IL302838A/en
Priority to EP21891575.9A priority patent/EP4245129A4/en
Priority to CN202180076160.2A priority patent/CN116437802A/zh
Publication of WO2022102328A1 publication Critical patent/WO2022102328A1/ja
Priority to US18/315,503 priority patent/US20230276750A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/05Fruit crops, e.g. strawberries, tomatoes or cucumbers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/02Treatment of plants with carbon dioxide
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/249Lighting means
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/82Solanaceae, e.g. pepper, tobacco, potato, tomato or eggplant
    • A01H6/825Solanum lycopersicum [tomato]

Definitions

  • This disclosure relates to tomato plants, tomato fruits and methods for cultivating tomato plants.
  • an artificial light type plant factory that cultivates plants such as vegetables using an artificial light source such as an LED (Light Emitting Diode) in a closed space has attracted attention. Cultivation of plants in an artificial light type plant factory is not affected by climate and weather, and the problem of labor shortage can be solved, so plants can be cultivated throughout the year under certain conditions. ..
  • Japanese Patent No. 5330162 proposes a closed type plant factory suitable for cultivation of tall (long-stem) plants such as tomatoes.
  • the tomato plant has a main branch, and after the true leaves are differentiated in about eight stages, the flower buds are differentiated and the first stage flower cluster (also referred to as the first flower cluster) is settled.
  • the first stage flower cluster also referred to as the first flower cluster
  • the present inventor has a method of cultivating a tomato plant using a closed-type plant factory disclosed in Japanese Patent No. 5330162 and a light emitting device disclosed in Japanese Patent Application Laid-Open No. 2016-202072, in which the number of harvests per unit volume ( It was found that there is room for improvement in terms of space utilization efficiency) and the quality of harvested tomatoes. Then, the sum (X) of the number of flower clusters and fruit clusters of one of the main branches or side branches that the tomato plant can have, and the length in cm from the planting surface to the growth point of the main branch or side branch. A new finding was obtained that the space utilization efficiency in the cultivation of tomato plants and the quality of harvested tomato fruits can be improved by making (L) a specific relationship.
  • the present disclosure has been made based on the above findings, and the problem to be solved by one embodiment according to the present disclosure is that the tomato fruits can be cultivated with high space utilization efficiency and high quality tomato fruits are harvested. Is to provide a tomato plant that can. Further, an object to be solved by one embodiment according to the present disclosure is to provide tomato fruits harvested from the tomato plant and a method for cultivating the tomato plant.
  • a tomato plant satisfying the formula (1) 6.0 ⁇ L / X ⁇ 30.0 ...
  • L represents the length in cm from the planting surface to the growth point of the main branch
  • X represents the flower cluster and fruit bunch of the main branch.
  • L represents the length in cm from the planting surface to the growth point of one main branch or side branch
  • X is the one main branch or side branch.
  • X is an integer of 2 or more.
  • ⁇ 3> The tomato plant according to ⁇ 1> or ⁇ 2>, wherein X is an integer of 10 or less in the above formula (1).
  • ⁇ 4> The tomato plant according to any one of ⁇ 1> to ⁇ 3>, which satisfies the formula (2). 11.0 ⁇ L / X ⁇ 22.0 ... (2)
  • L represents the length in cm from the planting surface to the growth point of the main branch
  • X represents the flower cluster and fruit bunch of the main branch.
  • L represents the length in cm from the planting surface to the growth point of one main branch or side branch
  • X is the one main branch or side branch.
  • X is an integer of 2 or more.
  • ⁇ 5> A tomato fruit harvested from the tomato plant according to any one of ⁇ 1> to ⁇ 4> and containing 10 mg or more of lycopene per 100 g by weight.
  • ⁇ 6> The tomato fruit according to ⁇ 5>, which has a Brix sugar content of 7% by mass or more.
  • At least a step of irradiating the above-ground part of the first tomato plant with artificial light having a light intensity of 200 ⁇ mol / m 2 ⁇ s to 800 ⁇ mol / m 2 ⁇ s is included, and the formula (1) is derived from the first tomato plant.
  • L represents the length in cm from the planting surface to the growth point of the main branch
  • X is the flower cluster of the main branch.
  • L represents the length in cm from the planting surface to the growth point of one main branch or side branch
  • X is the one main branch. Represents the sum of the number of flower clusters and fruit clusters of a branch or side branch. However, X is an integer of 2 or more.
  • ⁇ 8> The method for cultivating a tomato plant according to ⁇ 7>, wherein the irradiation direction of the artificial light to the above-ground part of the first tomato plant is from the side surface direction of the tomato plant.
  • the cultivation temperature of the first tomato plant in the light period is 23 ° C to 33 ° C, and the cultivation temperature of the first tomato plant in the dark period is 15 ° C to 22 ° C. 7> The method for cultivating a tomato plant according to any one of ⁇ 9>.
  • ⁇ 11> The method for cultivating a tomato plant according to any one of ⁇ 7> to ⁇ 10>, wherein the carbon dioxide concentration in the cultivation environment of the first tomato plant is 300 ppm or more.
  • ⁇ 12> One selected from a light source, a hydroponic cultivation mechanism, and a temperature / humidity control mechanism that irradiates the above-ground part of the first tomato plant with artificial light from at least one of the upper surface direction and the side surface direction.
  • a tomato plant that can be cultivated with high space utilization efficiency and can harvest high quality tomato fruits. Further, according to one embodiment of the present disclosure, it is possible to provide a tomato fruit harvested from the tomato plant and a method for cultivating the tomato plant.
  • FIG. 1 is a schematic diagram showing an example of a tomato plant according to the present disclosure.
  • FIG. 2 is a schematic diagram for explaining a method of measuring light intensity.
  • FIG. 3 is a schematic diagram for explaining a method of measuring light intensity.
  • the "tomato plant” and the “second tomato plant” are tomato plants satisfying the formula (1), and as shown in FIG. 1 (in FIG. 1, the tomato plant is designated by reference numeral 10). ), Has at least 20 main branches, and has two or more flower clusters and fruit clusters in total.
  • reference numeral 40 indicates a flower cluster or a fruit cluster
  • reference numeral 50 indicates a true leaf.
  • the contact point between the tomato plant and the plant surface is indicated by reference numeral 60.
  • the "first tomato plant” means a plant after germination of tomato seeds and before becoming the tomato plant or the second tomato plant according to the present disclosure.
  • the first tomato plant includes a first tomato plant before planting and a first tomato plant that does not satisfy the formula (1) even after planting. Further, the planting means that the temporarily planted first tomato plant is moved to the final place where the main cultivation is performed.
  • the term "side branch” means a branch having extended side buds generated from the leaves of the main branch or the base of a stem, and the state of having no side branch is tailored to the state of having one or more side branches. It is called multiple tailoring, and the state of having one side branch is called two tailoring, and the state of having two side branches is called three tailoring.
  • the "planting surface” is a support in which a tomato plant 10, a first tomato plant 90 or a second tomato plant (not shown) is planted, as shown in FIGS.
  • the “growth point” means the tip of the main branch 20 or the side branch (not shown) of the tomato plant 10 as shown in FIG. 1, and is indicated by reference numeral 70 in FIG.
  • “the length in cm from the planting surface to the growing point of the main branch” is the shape of the main branch from the contact point 60 between the tomato plant 10 and the planting surface to the growing point 70 of the main branch. The length measured along. The same applies to the case of side branches.
  • the "aboveground part of the first tomato plant” refers to a part above the planting surface.
  • “Brix sugar content” refers to the refractive index measured at 20 ° C. using a sugar content meter, a refractometer, etc., based on the conversion table of the International Committee for the Unification of Sugar Analysis Methods (ICUMSA), and the mass of the sucrose solution. It is a value converted into a percentage.
  • ICUMSA International Committee for the Unification of Sugar Analysis Methods
  • process is included in this term not only for an independent process but also for cases where the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes.
  • mass and “weight” are synonymous, and “mass%” and “weight%” are synonymous.
  • Tomato plant The tomato plant according to the present disclosure satisfies the formula (1).
  • L / X the number in the second decimal place is rounded off. 6.0 ⁇ L / X ⁇ 30.0 ...
  • (1) in the formula, when the tomato plant does not have a side branch, L represents the length in cm from the planting surface to the growth point of the main branch, and X represents the flower cluster and fruit bunch of the main branch. Represents the sum of the numbers of When the tomato plant has a side branch, L represents the length in cm from the planting surface to the growth point of one main branch or side branch, and X is the one main branch or side branch. Represents the sum of the number of flower bunches and fruit bunches that a tomato has. However, X is an integer of 2 or more.
  • the tomato plant according to the present disclosure it can be cultivated with high space utilization efficiency and high quality tomato fruits can be harvested.
  • the reason why the above effect is achieved is presumed as follows, but is not limited to this.
  • the tomato plant according to the present disclosure has a short distance between adjacent flower clusters, fruit clusters or between flower clusters and fruit clusters, and the number of harvests (number of harvests per unit volume) with respect to the length of the tomato plant is high. , Space utilization efficiency is high.
  • the tomato fruits harvested from the tomato plants have high quality because the nutrients that should have been used for the growth of the tomato plants in the length direction can be used for the tomato fruits.
  • the L / X when the L / X is 6.0 or more, fruit set is satisfactorily produced in the flower cluster. Further, when the L / X is 30.0 or less, the space utilization efficiency in the cultivation of the tomato plant, the first tomato plant and the second tomato plant described later can be improved, and the space utilization efficiency can be improved. The quality of harvested tomato fruits can be improved.
  • the L / X adjustment method can be performed, for example, by adjusting the light intensity of the light source used for cultivating the first tomato plant.
  • L is preferably 100 or less, more preferably 95 or less, and further preferably 90 or less. By setting L to 100 or less, the space utilization efficiency in the cultivation of tomato plants according to the present disclosure can be further improved. Further, L is preferably 20 or more. By setting L to 20 or more, the number of tomato fruits harvested can be improved.
  • X is an integer of 2 or more means that the tomato plant has grown to a certain level or more.
  • X is preferably an integer of 10 or less, more preferably an integer of 7 or less, and even more preferably an integer of 5 or less.
  • X is preferably an integer of 3 or more.
  • "pinching" means picking the buds of the growth point of a tomato plant, a first tomato plant or a second tomato plant, and stopping the growth of the stem thereof.
  • the support supporting the tomato plant, the first tomato plant and the second tomato plant is not particularly limited, and the tomato plant, the first tomato plant and the second tomato plant can be used.
  • cultivated by hydroponic cultivation for example, urethane foam, rock wool, a support base provided with a water-retaining sheet, or the like can be used.
  • the tomato plant, the first tomato plant and the second tomato plant are cultivated by soil cultivation, for example, cultured soil or the like can be used. Even when cultivated by soil cultivation, the above-mentioned urethane foam or the like may be used.
  • a support member such as a support member and a string for attracting hanging may be used for the tomato plant, the first tomato plant and the second tomato plant.
  • the tomato plant according to the present disclosure preferably satisfies the formula (2), and more preferably the formula (3).
  • L and X are as described above.
  • the tomato plant according to the present disclosure has at least a main branch, but may have one or more side branches.
  • L represents the length in cm from the planting surface to the growth point of the main branch
  • X is the sum of the number of flower clusters and fruit clusters of the main branch. Represents.
  • L represents the length in cm from the planting surface to the growth point of one main branch or side branch
  • X is the one main branch described above. Or, it represents the sum of the number of flower clusters and fruit clusters of the side branch.
  • the tomato plant has one or more side branches, it is sufficient that one main branch or side branch satisfies the above formula (1), and the other branches do not have to be satisfied. From the viewpoint of space utilization efficiency in cultivation of tomato plants and quality of harvested tomato fruits, it is preferable that all the main branches and side branches of the tomato plants satisfy the above formula (1). From the viewpoint of the quality of the tomato fruit to be harvested, the number of side branches is preferably 3 or less, more preferably 1 or less, and further preferably the tomato plant does not have side branches.
  • the number of fruit set in each flower cluster of the main branch or the side branch is preferably 1 to 7, and more preferably 2 to 5.
  • the quality of the harvested tomato fruit can be further improved.
  • the tomato plant according to the present disclosure in which the distance between adjacent flower clusters (or fruit clusters) is short, it is possible to effectively prevent the flower clusters (fruit clusters) from coming into contact with each other and causing crushing or the like. , The quality of harvested tomato fruits is improved.
  • the number of fruits set is large, it is preferable to pick the fruits.
  • the true leaves below the inflorescence where flowering is confirmed are removed. Specifically, it is preferable to remove the true leaves below the inflorescence where flowering is confirmed as 3 or more and 5 or less, and more preferably 2 or more and 4 or less.
  • the quality of the harvested tomato fruit can be further improved.
  • the leaves mutual shading can be avoided and the cultivation efficiency of the tomato plant, the first tomato plant and the second tomato plant can be improved.
  • the tomato fruit according to the present disclosure is harvested from the above tomato plant and contains 10 mg or more of lycopene per 100 g by weight.
  • the lycopene content is preferably 15 mg / 100 g or more, more preferably 17 mg / 100 g or more.
  • the Brix sugar content of the tomato fruit according to the present disclosure is preferably 3.5% by mass or more, more preferably 4% by mass or more, and further preferably 7% by mass or more.
  • the Brix sugar content and the amount of lycopene of tomato fruits are determined by using a fruit and vegetable quality evaluation device Fruit Selector (manufactured by Kubota Co., Ltd., model: K-BA800) on the equator where the diameter of tomato fruits is the largest. It is the average value of the measured values of Brix sugar content and lycopene amount at 4 points where the line connecting 2 places and the line connecting the other 2 places are orthogonal to each other. Specifically, the measurement of the amount of lycopene using the fruit selector is performed as follows.
  • a calibration curve is created by correlating the amount of lycopene of tomato fruit measured by high performance liquid chromatography (HPLC) with the amount of lycopene measured by a fruit selector.
  • HPLC high performance liquid chromatography
  • the lycopene amount is measured by converting the lycopene amount measured using the fruit selector into the lycopene amount measured by HPLC based on the calibration curve.
  • the tomato fruit varieties according to the present disclosure are not particularly limited, and can be conventionally known tomato fruit varieties. Further, the type is not particularly limited to large tomatoes, midi tomatoes, mini tomatoes and the like.
  • the method for cultivating a tomato plant according to the present disclosure includes at least a step of irradiating the first tomato plant with artificial light having a light intensity of 200 ⁇ mol / m 2 ⁇ s to 800 ⁇ mol / m 2 ⁇ s, and the first tomato plant.
  • a second tomato plant satisfying the above formula (1) is cultivated from the body.
  • the second tomato plant preferably satisfies the above formula (2), and more preferably satisfies the above formula (3).
  • the method for cultivating a tomato plant according to the present disclosure includes at least a step of irradiating the first tomato plant with artificial light having a light intensity of 200 ⁇ mol / m 2 ⁇ s to 800 ⁇ mol / m 2 ⁇ s, and the first tomato plant.
  • a second tomato plant satisfying the formula (1) is cultivated from the body, and the main branch or the side branch has by irradiating the first tomato plant with artificial light having an intensity within the above numerical range.
  • the second tomato plant obtained by setting the light intensity of artificial light irradiating the first tomato plant to 200 ⁇ mol / m 2 ⁇ s or more has.
  • Adjacent, between flower clusters, between fruit clusters or between flower clusters and fruit clusters is shortened, and the number of harvests for the length of the second tomato plant is improved, so that the space utilization efficiency is high and the tomatoes are harvested.
  • the quality of tomato fruits can be improved. Further, by setting the light intensity of the artificial light irradiating the first tomato plant to 800 ⁇ mol / m 2 ⁇ s or less, fruit set is satisfactorily produced in the flower cluster.
  • the light intensity is the height of the light source installed at the uppermost stage in the direction perpendicular to the plant surface 30 from the contact point 100 between the first tomato plant 90 and the plant surface 30. It is calculated by arranging a measuring device toward the light source 80 every 10 cm, measuring the light intensity, and calculating this average value. As shown in FIG. 3, when the light source 80 is arranged on both side surfaces of the first tomato plant, the light intensity is measured from the contact point 100 between the first tomato plant 90 and the plant surface 30 to the plant surface 30.
  • the measuring instruments are placed toward the light sources 80 on both sides at intervals of 10 cm up to the height of the light source installed at the top, and the sum of the light intensities at each position is measured, and this average value is measured. Is calculated by finding.
  • a photon sensor LI-109 manufactured by LI-COR
  • the position of the contact point between the first tomato plant and the plant surface is determined based on the planned placement position of the first tomato plant.
  • the light intensity means the light intensity in the light period.
  • the light intensity of sunlight rises up to about 2000 ⁇ mol / m 2 ⁇ s in a day, but the time for achieving the above light intensity is extremely short (about 1 hour to 2 hours). Further, the irradiation of sunlight on the first tomato plant is from the upper surface direction, and the sunlight emitted on a part of the first tomato plant by the shadow of the true leaves of the first tomato plant. The light intensity of is low. For the above reasons, the light intensity when the first tomato plant is cultivated using sunlight is not an appropriate value, and it is adjacent to each other, between flower clusters, between fruit clusters, or between flower clusters and fruit clusters. The distance is long, and it becomes a long-stem tomato plant that does not satisfy the above formula (1).
  • the light intensity is preferably 220 ⁇ mol / m 2 ⁇ s to 780 ⁇ mol / m 2 ⁇ s, and is preferably 300 ⁇ mol / m 2 ⁇ s to 750 ⁇ mol / s. It is more preferably m 2 ⁇ s, and even more preferably 400 ⁇ mol / m 2 ⁇ s to 720 ⁇ mol / m 2 ⁇ s.
  • the light intensity is that in the light period.
  • the first tomato plant may be irradiated with artificial light from the upper surface direction or the side surface direction, but the distance between adjacent flower clusters can be shortened, and the space utilization efficiency can be improved. Since it can be further improved, it is preferable to irradiate artificial light from the side surface direction. In addition, by irradiating artificial light from the side surface of the first tomato plant, the light can efficiently reach the leaves, which are photosynthetic organs, so that the amount of light to be irradiated can be further reduced. , The cultivation efficiency of the obtained second tomato plant can be improved. Further, the artificial light may be irradiated from both the side surface direction and the top surface direction.
  • the cycle of the light period and the dark period (hereinafter referred to as the light-dark cycle) of the artificial light to be irradiated is controlled.
  • the ratio of the light period time to the dark period time is preferably 1 to 3, more preferably 1.2 to 2.2. preferable.
  • the "light period” means a period during which the first tomato plant is irradiated with a light source.
  • the "dark period” means a period during which the first tomato plant is not irradiated with the light source.
  • the light source of the artificial light to be irradiated is not particularly limited, and examples thereof include LEDs and fluorescent lamps. However, in the method for cultivating tomato plants according to the present disclosure, it is preferable to use LEDs.
  • the type of LED used may be one type, or two or more types may be used.
  • the LED may emit visible light such as red, blue and yellow, or may emit invisible light of ultraviolet light (wavelength 380 nm or less) or infrared light (wavelength 780 nm or more). However, from the viewpoint of promoting the photosynthesis of the first tomato plant, those that emit light in the wavelength region of 400 nm to 700 nm are preferable.
  • Chlorophyll which is a photosynthetic dye, has a peak of light absorption in a region having a wavelength of 400 nm to 500 nm and a region having a wavelength of 600 nm to 700 nm. It is preferable to use an LED including an element that emits light having a wavelength and an LED including an element that emits light having a peak wavelength in the wavelength region of 600 nm to 700 nm in combination.
  • the wavelength is 400 nm.
  • Ratio of light intensity of light having a peak wavelength in the region of ⁇ 500 nm to light intensity of light having a peak wavelength in the region of 600 nm to 700 nm (light intensity / wavelength of light having a peak wavelength in the region of wavelength 600 nm to 700 nm). It is preferable to adjust the light composition so that the light intensity of light having a peak wavelength in the region of 400 nm to 500 nm) is 1.5 to 4, and the light composition is adjusted to be 1.8 to 3. Is more preferable.
  • the peak wavelength means the wavelength at which the emission intensity is maximized in one peak of the spectral waveform. Further, for example, an LED that emits pseudo white visible light can be used.
  • the LED that emits pseudo-white visible light is a combination of an LED that emits blue visible light and a yellow phosphor that is excited by the above-mentioned visible light.
  • the resulting spectral waveform has a first peak wavelength at wavelengths of 400 nm to 480 nm and a second peak wavelength at 570 nm to 600 nm. Further, the mountain including the second peak wavelength exists over a wide wavelength range (425 nm to 760 nm).
  • the correlated color temperature of the light is preferably a light composition of 3000K to 6000K, and more preferably a light composition of 4000K to 5500K.
  • the LED that emits pseudo-white visible light examples include a plant growing LED white type (PGL-NE-200NWD) manufactured by Ryoden Shoji Co., Ltd.
  • the "correlated color temperature” is a value obtained in accordance with Japanese Industrial Standards (JIS) Z 8725: 2015 (measurement method of light source distribution temperature and color temperature / correlated color temperature).
  • JIS Japanese Industrial Standards
  • an LED that emits red visible light, an LED that emits blue visible light, an LED that emits invisible light, and an LED that emits pseudo white visible light can be used in combination.
  • the obtained spectral waveform has a wavelength of 400 nm. It has a first peak wavelength at 480 nm, a second peak wavelength at 650 nm to 700 nm, and a third peak wavelength at 730 nm to 750 nm. Further, the spectral waveform has an emission intensity value of a certain level or higher in the wavelength range of 425 nm to 760 nm.
  • the cultivation temperature of the first tomato plant is not particularly limited, but is preferably 23 ° C to 33 ° C, more preferably 25 ° C to 32 ° C in the light period. By setting the cultivation temperature in the light period within the above numerical range, the quality of the harvested tomato fruits can be further improved.
  • the cultivation temperature of the first tomato plant in the dark period is preferably 15 ° C to 22 ° C, more preferably 16 ° C to 20 ° C. By setting the cultivation temperature in the dark period within the above numerical range, the quality of the harvested tomato fruits can be further improved.
  • the cultivation temperature is measured by arranging a thermometer at a position 1 cm away from the first tomato plant at the midpoint between the contact point between the first tomato plant and the planting surface and the growth point.
  • the thermometer for example, TR-74Ui manufactured by T & D Co., Ltd. and its attached sensors can be used.
  • the relative humidity of the first tomato plant in the cultivation environment is preferably 40% to 70%, more preferably 50% to 65%.
  • the relative humidity is measured by arranging a hygrometer at a position 1 cm away from the first tomato plant at the midpoint between the contact point between the first tomato plant and the planting surface and the growth point.
  • the hygrometer for example, TR-74Ui manufactured by T & D Co., Ltd. and its attached sensors can be used.
  • the carbon dioxide concentration in the cultivation environment of the first tomato plant is preferably 300 ppm or more, more preferably 400 ppm or more, further preferably 800 ppm or more, and particularly preferably 1,000 ppm or more. preferable.
  • the carbon dioxide concentration is determined by arranging a carbon dioxide concentration meter at a position 1 cm away from the first tomato plant at the midpoint between the contact point between the first tomato plant and the planting surface and the growth point. taking measurement.
  • the carbon dioxide densitometer for example, LI-850 manufactured by LI-COR can be used.
  • the first tomato plant may be cultivated by soil cultivation or hydroponics, but from the viewpoint of the number of tomato fruits harvested and the hygiene of the cultivation environment, hydroponics may be used. It is preferable to do it.
  • the soil such as culture soil corresponds to the support that supports the root of the first tomato plant.
  • urethane foam for example, urethane foam, rock wool, a support base provided with a water-retaining sheet, or the like can be used as a support for supporting the roots.
  • the method of supplying the liquid fertilizer is not particularly limited, and the support is immersed in the liquid fertilizer for cultivation.
  • Examples thereof include spray-type hydroponics in which liquid fertilizer is sprayed onto the roots, and drip-type hydroponics in which liquid fertilizer is dropped onto the root or support.
  • the liquid fertilizer used is not particularly limited as long as it is suitable for tomato cultivation.
  • commercially available mixed liquid fertilizer (OAT House No. 1 manufactured by OAT Agrio Co., Ltd., Home Hyponica manufactured by Kyowa Co., Ltd., etc.) is used at a desired concentration. It may be used by dissolving or diluting it in, or it may be used in combination with simple fertilizer based on known fertilizer compositions such as garden trial prescription and Yamazaki prescription.
  • the concentration of the liquid fertilizer can be indexed by the EC (Electrical Conductivity) value, and is preferably 1.0 ds / m to 8.0 ds / m, preferably 1.0 ds, from the viewpoint of the quality of the harvested tomato fruit.
  • the concentration of the liquid fertilizer may be changed according to the growth of the first tomato plant.
  • the EC value is measured at 25 ° C. using an electric conductivity meter (for example, HI98131 manufactured by Hannah Instruments).
  • the method for cultivating a tomato plant according to the present disclosure includes a light source that irradiates the above-ground part of the first tomato plant with artificial light from at least one of the upper surface direction and the side surface direction, a hydroponic cultivation mechanism, and a temperature / humidity control mechanism. It is preferable to use a cultivation device containing one or more selected from. Further, it is more preferable that the cultivation apparatus includes a liquid fertilizer supply mechanism, and it is further preferable to include an EC value adjusting mechanism for the liquid fertilizer. Further, it is more preferable that the cultivation apparatus includes a mechanism for adjusting the light intensity, light-dark cycle, carbon dioxide concentration and the like of the light source.
  • Tomato seeds (variety: Momotaro York (registered trademark)) are sown on a support, 5 cm square rock wool (manufactured by Nippon Rock Wool Co., Ltd., Yasaihana Pot) that is sufficiently moistened with pure water. It was stored in the dark at a temperature of 28 ° C. and a relative humidity of 70% for 3 days. After the germination of tomato seeds was confirmed, seedlings were raised for 27 days by the bottom liquid supply method to obtain the first tomato plant. As the liquid fertilizer, Home Hyponica manufactured by Kyowa Co., Ltd. diluted 500 times with pure water was used, and the liquid was supplied twice a day.
  • a white LED (PGL-NE-200NWD) manufactured by Ryoden Shoji Co., Ltd. was used, the light intensity was set to 250 ⁇ mol / m 2 ⁇ s, and irradiation was performed from the upper surface direction.
  • a tomato plant (second tomato plant) was obtained by cultivating under the following cultivation conditions using a cultivation device including a temperature and humidity control mechanism.
  • the light intensity was measured before the cultivation of the first tomato plant.
  • the position of the contact point between the first tomato plant and the planting surface is determined based on the planned placement position of the first tomato plant, and the contact point is in the vertical direction from the contact point to the planting surface at the uppermost stage. It was calculated by arranging photon sensors toward the light sources on both sides at intervals of 10 cm up to the height of the installed light source, measuring the sum of the light intensities at each position, and calculating this average value.
  • the light intensity of each can be adjusted with a dimmer (UL9005 # 01-0R) manufactured by Denshi Kogyo Co., Ltd.) ⁇
  • Light intensity 250 ⁇ mol / m 2 ⁇ s
  • Example 2 After four flower clusters had settled on the main branch, and after confirming that two true leaves had expanded on the upper side of the fourth flower cluster, the above true leaves were left and the core was pinched, and the number of fruits set on each flower cluster was Tomato fruits were harvested in the same manner as in Example 1 except that the number of fruits was reduced to 4 and the cultivation conditions were changed as follows.
  • the length (L) from the planting surface to the growth point of the main branch was 45 cm, and the L / X was 11.3.
  • the number of tomato fruits harvested was 16.
  • Example 3 After three flower clusters had settled on the main branch, and after confirming that two true leaves had expanded on the upper side of the third flower cluster, the above true leaves were left and the core was pinched, and the number of fruits set on each flower cluster was Tomato fruits were harvested in the same manner as in Example 1 except that the number of fruits was reduced to one and the cultivation conditions were changed as follows.
  • the length (L) from the planting surface to the growth point of the main branch was 19 cm, and the L / X was 6.3.
  • the number of tomato fruits harvested was three.
  • Example 4 After three flower clusters had settled on the main branch, and after confirming that two true leaves had expanded on the upper side of the third flower cluster, the above true leaves were left and the core was pinched, and the number of fruits set on each flower cluster was Tomato fruits were harvested in the same manner as in Example 1 except that the number of fruits was reduced to 3 and the cultivation conditions were changed as follows.
  • the length (L) from the planting surface to the growth point of the main branch was 88 cm, and the L / X was 29.3.
  • the number of tomato fruits harvested was nine.
  • Example 5 After four flower clusters had settled on the main branch, and after confirming that two true leaves had expanded on the upper side of the fourth flower cluster, the above true leaves were left and the core was pinched, and the number of fruits set on each flower cluster was Tomato fruits were harvested in the same manner as in Example 1 except that the number of fruits was reduced to 5 and the cultivation conditions were changed as follows.
  • the length (L) from the planting surface to the growth point of the main branch was 95 cm, and the L / X was 23.8.
  • the number of tomato fruits harvested was 20.
  • the length (L) from the contact point between the plant surface of the mature tomato plant and the surface of the support to the growth point of the main branch was 65 cm, and the L / X was 13.0.
  • the number of tomato fruits harvested was 20.
  • EC value of liquid fertilizer Initially, the EC value is 1.5 ds / m. The liquid fertilizer of No. 3 was used, and sodium chloride was added to the above liquid fertilizer until the flowering of the third flower cluster, and the EC value of the liquid fertilizer was gradually increased to 3.5 ds / m. After flowering of the third flower cluster, 8.0 ds / m liquid fertilizer was used.
  • Example 7 After three flower clusters had settled on the main branch, and after confirming that two true leaves had expanded on the upper side of the third flower cluster, the above true leaves were left and the core was pinched, and the number of fruits set on each flower cluster was Tomato fruits were harvested in the same manner as in Example 1 except that the number of fruits was reduced to two and the cultivation conditions were changed as follows.
  • the length (L) from the contact point between the plant surface of the mature tomato plant and the surface of the support to the growth point of the main branch was 65 cm, and the L / X was 21.7.
  • the number of tomato fruits harvested was six.
  • Example 1 The seedlings obtained in Example 1 were cultivated in a greenhouse (April-July, Kanagawa Prefecture) according to a conventional method under the following cultivation conditions. After confirming that three flower clusters had settled on the main branch and two true leaves had expanded on the upper side of the third flower cluster, the core was pinched while leaving the true leaves. Each fruit bunch was picked so that the number of fruits set was 4, and the tomato fruits that had set by the third flower bunch were harvested, and the cultivation was completed. The total number of tomato fruits harvested during the cultivation period was 12. The length (L) from the planting surface to the growth point of the main branch was 106 cm, and the L / X was 35.3.
  • a calibration curve was prepared by correlating the amount of lycopene of tomato fruit measured by high performance liquid chromatography (HPLC) with the amount of lycopene measured by a fruit selector.
  • HPLC high performance liquid chromatography

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Botany (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Physiology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Cultivation Of Plants (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Fertilizers (AREA)

Abstract

式(1)を満たす、トマト植物体、及びその応用。 6.0≦L/X≦30.0・・・(1) 式中、上記トマト植物体が、側枝を有しない場合、Lは、植面から、主枝の生長点までのcm単位の長さを表し、且つXは、上記主枝が有する花房及び果房の数の和を表し、上記トマト植物体が、側枝を有する場合、Lは、植面から、1本の主枝又は側枝の生長点までのcm単位の長さを表し、且つXは、上記1本の主枝又は側枝が有する花房及び果房の数の和を表す。 但し、Xは2以上の整数。

Description

トマト植物体、トマト果実及びトマト植物体の栽培方法
 本開示は、トマト植物体、トマト果実及びトマト植物体の栽培方法に関する。
 近年、閉鎖された空間の中で、LED(Light Emitting Diode)等の人工光源を使用して野菜等の植物を栽培する人工光型植物工場が注目されている。
 人工光型植物工場における植物の栽培は、気候及び天候の影響を受けることがなく、人手不足の問題も解消することができるため、一定した条件の下、一年を通して植物を栽培することができる。
 例えば、人工光型植物工場として、特許第5330162号公報においては、トマト等の背丈の高い(長茎)植物体の栽培に適した閉鎖型植物工場が提案されている。
 トマト植物体は、主枝を有し、本葉が八段程度分化した後、花芽が分化し、一段目の花房(第一花房ともいう)が着生するところ、特開2016-202072号公報においては、トマト植物体の本葉の段数を低減させ、第一花房の着生位置を低位置とすることができる、人工光型植物工場等において使用することのできる発光装置が提案されている。
 本発明者は、特許第5330162号公報において開示される閉鎖型植物工場及び特開2016-202072号公報において開示される発光装置を使用したトマト植物体の栽培方法は、単位体積当たりの収穫数(空間利用効率)及び収穫されるトマトの品質の観点から改良の余地があることを見出した。そして、トマト植物体が有しうる主枝又は側枝の1本が有する花房及び果房の数の和(X)と、植面から、上記主枝又は側枝の生長点までのcm単位の長さ(L)とを特定の関係とすることにより、トマト植物体の栽培における空間利用効率及び収穫されるトマト果実の品質を改良することができるという新たな知見を得た。
 本開示は、上記知見に基づきなされたものであり、本開示に係る一実施形態が解決しようとする課題は、高い空間利用効率にて栽培することができ、且つ高品質のトマト果実を収穫することができるトマト植物体を提供することである。
 また、本開示に係る一実施形態が解決しようとする課題は、上記トマト植物体から収穫されるトマト果実、及び上記トマト植物体の栽培方法を提供することである。
<1> 式(1)を満たす、トマト植物体。
 6.0≦L/X≦30.0・・・(1)
 式中、上記トマト植物体が、側枝を有しない場合、Lは、植面から、主枝の生長点までのcm単位の長さを表し、且つXは、上記主枝が有する花房及び果房の数の和を表し、
 上記トマト植物体が、側枝を有する場合、Lは、植面から、1本の主枝又は側枝の生長点までのcm単位の長さを表し、且つXは、上記1本の主枝又は側枝が有する花房及び果房の数の和を表す。
 但し、Xは2以上の整数。
<2> 上記式(1)中、Lが、100以下である、<1>に記載のトマト植物体。
<3> 上記式(1)中、Xが10以下の整数である、<1>又は<2>に記載のトマト植物体。
<4> 式(2)を満たす、<1>~<3>のいずれか1つに記載のトマト植物体。
 11.0≦L/X≦22.0・・・(2)
 式中、上記トマト植物体が、側枝を有しない場合、Lは、植面から、主枝の生長点までのcm単位の長さを表し、且つXは、上記主枝が有する花房及び果房の数の和を表し、
 上記トマト植物体が、側枝を有する場合、Lは、植面から、1本の主枝又は側枝の生長点までのcm単位の長さを表し、且つXは、上記1本の主枝又は側枝が有する花房及び果房の数の和を表す。
 但し、Xは2以上の整数。
<5> <1>~<4>のいずれか1つに記載のトマト植物体より収穫され、重量100g当たり10mg以上のリコペンを含有する、トマト果実。
<6> Brix糖度が7質量%以上である、<5>に記載のトマト果実。
<7> 第1のトマト植物体の地上部に光強度200μmol/m・s~800μmol/m・sの人工光を照射する工程を少なくとも含み、前記第1のトマト植物体から式(1)を満たす第2のトマト植物体を栽培する、トマト植物体の栽培方法。
 6.0≦L/X≦30.0・・・(1)
 式中、上記第2のトマト植物体が、側枝を有しない場合、Lは、植面から、主枝の生長点までのcm単位の長さを表し、且つXは、上記主枝が有する花房及び果房の数の和を表し、
 上記第2のトマト植物体が、側枝を有する場合、Lは、植面から、1本の主枝又は側枝の生長点までのcm単位の長さを表し、且つXは、上記1本の主枝又は側枝が有する花房及び果房の数の和を表す。
 但し、Xは2以上の整数。
<8> 上記第1のトマト植物体の地上部への上記人工光の照射方向が、上記トマト植物体の側面方向から行われる、<7>に記載のトマト植物体の栽培方法。
<9> 上記第1のトマト植物体の地上部に照射される上記人工光の明暗周期が制御されており、暗期の時間に対する明期の時間の比が、1~3である、<7>又は<8>に記載のトマト植物体の栽培方法。
<10> 明期における上記第1のトマト植物体の栽培温度が、23℃~33℃であり、暗期における上記第1のトマト植物体の栽培温度が、15℃~22℃である、<7>~<9>のいずれか1つに記載のトマト植物体の栽培方法。
<11> 上記第1のトマト植物体の栽培環境における二酸化炭素濃度が、300ppm以上である、<7>~<10>のいずれか1つに記載のトマト植物体の栽培方法。
<12> 上記第1のトマト植物体の地上部に対して、上面方向及び側面方向の少なくとも一方から上記人工光の照射を行う光源、水耕栽培機構及び温湿度制御機構から選択される1つ以上を含む栽培装置を用いた、<7>~<11>のいずれか1つに記載のトマト植物体の栽培方法。
 本開示の一実施形態によれば、高い空間利用効率にて栽培することができ、且つ高品質のトマト果実を収穫することができるトマト植物体を提供することができる。
 また、本開示の一実施形態によれば、上記トマト植物体から収穫されるトマト果実、及び上記トマト植物体の栽培方法を提供することができる。
図1には、本開示に係るトマト植物体の一例を示す模式図である。 図2は、光強度を測定する方法について説明するための模式図である。 図3は、光強度を測定する方法について説明するための模式図である。
 以下、本開示を実施するための形態について詳細に説明する。但し、本発明は下記実施形態に限定されるものではない。下記実施形態において、その構成要素は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本開示を制限するものではない。
 本開示において、「トマト植物体」及び「第2のトマト植物体」は、式(1)を満たすトマト植物体であり、図1に示すように(図1中においてトマト植物体は、符号10で表す)、主枝20を少なくとも有し、且つ花房及び果房を合わせて2つ以上有する。なお、図1において、符号40は花房又は果房を示し、符号50は本葉を示す。また、図1において、トマト植物体と植面との接点を符号60で示す。
 本開示において、「第1のトマト植物体」は、トマト種子の発芽後、本開示に係るトマト植物体又は第2のトマト植物体となる前の植物体を意味する。なお、第1のトマト植物体には、定植前の第1のトマト植物体及び定植後であっても式(1)を満たさない第1のトマト植物体が包含される。また、定植とは、仮植えした第1のトマト植物体を、本栽培を行う最終場所に移すことを意味する。
 本開示において、「側枝」とは、主枝の葉又は茎の付け根等から生じる脇芽が伸びた枝を意味し、側枝を有しない状態を1本仕立て、1本以上の側枝を有する状態を複数本仕立てといい、1本の側枝を有する状態を2本仕立て、2本の側枝を有する状態を3本仕立てという。
 本開示において、「植面」とは、図1~図3に示すように、トマト植物体10、第1のトマト植物体90又は第2のトマト植物体(図示せず。)を植えた支持体の面を意味し、符号30で示す。
 本開示において、「生長点」とは、図1に示すように、トマト植物体10が有する主枝20又は側枝(図示せず)の先端を意味し、図1において、符号70で示す。
 本開示において、「植面から、主枝の生長点までのcm単位の長さ」とは、トマト植物体10と植面の接点60から、主枝の生長点70までの、主枝の形状に沿って測定される長さである。なお、側枝の場合についても同様である。
 本開示において、「第1のトマト植物体の地上部」とは、植面より上側の部位を指す。
 本開示において「Brix糖度」とは、糖度計又は屈折計等を用いて20℃で測定された屈折率を、国際砂糖分析法統一委員会(ICUMSA)の換算表に基づいてショ糖溶液の質量パーセントに換算した値である。
 本開示において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
 本開示において、「質量」と「重量」とは同義であり、「質量%」と「重量%」とは同義である。
(トマト植物体)
 本開示に係るトマト植物体は、式(1)を満たす。なお、L/Xは、小数点以下2桁目の数字を四捨五入する。
 6.0≦L/X≦30.0・・・(1)
 式中、上記トマト植物体が、側枝を有しない場合、Lは、植面から、主枝の生長点までのcm単位の長さを表し、且つXは、上記主枝が有する花房及び果房の数の和を表し、
 上記トマト植物体が、側枝を有する場合、Lは、植面から、1本の主枝又は側枝の生長点までのcm単位の長さを表し、且つXは、上記1本の主枝又は側枝が有する花房及び果房の数の和を表す。
 但し、Xは2以上の整数。
 本開示に係るトマト植物体によれば、高い空間利用効率にて栽培することができ、且つ高品質のトマト果実を収穫することができる。上記効果が奏される理由は以下のように推測されるが、これに限定されるものではない。
 本開示に係るトマト植物体は、隣り合う、花房間、果房間又は花房と果房との間の距離が短く、トマト植物体の長さに対する収穫数(単位体積当たりの収穫数)が高いため、空間利用効率は高いものとなる。
 また、トマト植物体の長さ方向への成長に使用されるはずであった栄養をトマト果実へ使用することができるため、上記トマト植物体から収穫されるトマト果実は高い品質を有する。
 本開示に係るトマト植物体において、L/Xが、6.0以上であることにより、花房において良好に着果が生じる。また、L/Xが、30.0以下であることにより、トマト植物体、並びに後述する第1のトマト植物体及び第2のトマト植物体の栽培における空間利用効率を向上することができ、且つ収穫されるトマト果実の品質を向上することができる。
 L/Xの調整方法は、例えば、第1のトマト植物体の栽培に使用する光源の光強度等を調整することにより行うことができる。
 上記式(1)中、Lは、100以下であることが好ましく、95以下であることがより好ましく、90以下であることが更に好ましい。Lを100以下とすることにより、本開示に係るトマト植物体の栽培における空間利用効率をより向上することができる。
 また、Lは、20以上であることが好ましい。Lを20以上とすることにより、トマト果実の収穫数を向上することができる。
 上記式(1)中、Xが2以上の整数であるということは、トマト植物体が一定以上成長していることを意味する。
 Xは、10以下の整数であることが好ましく、7以下の整数であることがより好ましく、5以下の整数であることが更に好ましい。Xを10以下の整数とすることにより、収穫されるトマト果実の品質をより向上することができる。
 また、Xは、3以上の整数であることが好ましい。Xを3以上の整数とすることにより、トマト果実の収穫数を向上することができる。
 Xを上記の範囲にするために、トマト植物体、第1のトマト植物体又は第2のトマト植物体を摘心することが好ましい。
 本開示において、「摘芯」とは、トマト植物体、第1のトマト植物体又は第2のトマト植物体の生長点の芽を摘み、その茎の成長を止めることである。
 トマト植物体、第1のトマト植物体及び第2のトマト植物体を支持する支持体は、特に限定されるものではなく、トマト植物体、第1のトマト植物体及び第2のトマト植物体を水耕栽培により栽培する場合には、例えば、発泡ウレタン、ロックウール、及び保水シートが設けられた支持台等を使用することができる。また、トマト植物体、第1のトマト植物体及び第2のトマト植物体を土耕栽培により栽培する場合には、例えば、培養土等を使用することができる。なお、土耕栽培により栽培する場合であっても、上記発泡ウレタン等を使用してもよい。
 また、トマト植物体、第1のトマト植物体及び第2のトマト植物体に対し、支柱及び吊り下げ誘引を行うための紐等の支持部材を使用してもよい。
 空間利用効率及び収穫されるトマト果実の品質の観点から、本開示に係るトマト植物体は、式(2)を満たすことが好ましく、式(3)を満たすことがより好ましい。
11.0≦L/X≦22.0・・・(2)
11.0≦L/X≦15.0・・・(3)
 式(2)及び式(3)中、L及びXは上記した通りである。
 本開示に係るトマト植物体は、主枝を少なくとも有するものであるが、1本以上の側枝を有していてもよい。
 トマト植物体が、側枝を有しない場合、Lは、植面から、主枝の生長点までのcm単位の長さを表し、且つXは、上記主枝が有する花房及び果房の数の和を表す。
 トマト植物体が1本以上の側枝を有する場合、Lは、植面から、1本の主枝又は側枝の生長点までのcm単位の長さを表し、且つXは、上記1本の主枝又は側枝が有する花房及び果房の数の和を表す。すなわち、トマト植物体が1本以上の側枝を有する場合、1本の主枝又は側枝が上記式(1)を満たしていればよく、その他の枝については満たしていなくともよい。トマト植物体の栽培における空間利用効率及び収穫されるトマト果実の品質の観点からは、トマト植物体が有する主枝及び側枝全てが上記式(1)を満たすことが好ましい。
 収穫されるトマト果実の品質の観点から、側枝の本数は、3本以下であることが好ましく、1本以下であることがより好ましく、トマト植物体が側枝を有しないことが更に好ましい。
 主枝又は側枝が有する各花房における着果数は、1個~7個が好ましく、2個~5個がより好ましい。着果数を上記数値範囲とすることにより、収穫されるトマト果実の品質をより向上することができる。具体的には、隣り合う花房(又は果房)間距離が短い本開示に係るトマト植物体において、花房(果房)同士が接触し、潰れ等が生じることを効果的に防止することができ、収穫されるトマト果実の品質が向上される。
 また、着果数が多い場合には、摘果することが好ましい。
 本開示に係るトマト植物体、第1のトマト植物体及び第2のトマト植物体は、開花が確認された花房より下側の本葉が摘葉されていることが好ましい。具体的には、開花が確認された花房より下側の本葉を3葉以上5葉以下として摘葉することが好ましく、2葉以上4葉以下とすることがより好ましい。摘葉によりトマト植物体を上記状態に維持することにより、収穫されるトマト果実の品質をより向上することができる。また、摘葉を行うことにより、相互被陰を避け、トマト植物体、第1のトマト植物体及び第2のトマト植物体の栽培効率を向上することができる。
(トマト果実)
 本開示に係るトマト果実は、上記トマト植物体より収穫されたものであり、重量100g当たり10mg以上のリコペンを含有する。リコペン含有量は、15mg/100g以上であることが好ましく、17mg/100g以上であることがより好ましい。
 本開示に係るトマト果実のBrix糖度は、3.5質量%以上であることが好ましく、4質量%以上であることがより好ましく、7質量%以上であることが更に好ましい。
 本開示において、トマト果実のBrix糖度及びリコペン量は、青果物品質評価装置フルーツセレクター((株)クボタ製、型式:K-BA800)を用いて、トマト果実の径が最も大きくなる赤道部上の4か所であって、2か所を結んだ線と、その他の2か所を結んだ線とが直交する4か所において、Brix糖度及びリコペン量を測定した値の平均値とする。
 なお、フルーツセレクターを用いたリコペン量の測定は、具体的には、以下のようにして行われる。
 まず、高速液体クロマトグラフィー(HPLC)により測定したトマト果実のリコペン量と、フルーツセレクターにより測定したリコペン量の相関付けを行うことにより、検量線を作成する。次いで、フルーツセレクターを用いて測定されるリコペン量を、検量線に基づいて、HPLCにより測定されるリコペン量に換算することによりリコペン量を測定する。
 本開示に係るトマト果実の品種は、特に限定されるものではなく、従来公知のトマト果実の品種とすることができる。また、大玉トマト、ミディトマト、ミニトマト等の種類にも特に限定されない。
(トマト植物体の栽培方法)
 本開示に係るトマト植物体の栽培方法は、第1のトマト植物体に光強度200μmol/m・s~800μmol/m・sの人工光を照射する工程を少なくとも含み、第1のトマト植物体から上記式(1)を満たす第2のトマト植物体を栽培する。第2のトマト植物体は、上記式(2)を満たすことが好ましく、上記式(3)を満たすことがより好ましい。
 本開示に係るトマト植物体の栽培方法によれば、高い空間利用効率にて栽培することができ、且つ高品質のトマト果実を収穫することができる。上記効果が奏される理由は以下のように推測されるが、これに限定されるものではない。
 本開示に係るトマト植物体の栽培方法は、第1のトマト植物体に光強度200μmol/m・s~800μmol/m・sの人工光を照射する工程を少なくとも含み、第1のトマト植物体から式(1)を満たす第2のトマト植物体を栽培するものであり、上記数値範囲内の強度を有する人工光を第1のトマト植物体に照射することにより、主枝又は側枝が有する、隣り合う、花房間、果房間又は花房と果房との間の距離が短くなり、第2のトマト植物体が有する主枝又は側枝の長さに対する収穫数が向上するため、空間利用効率は高いものとなる。
 また、第1のトマト植物体及び第2のトマト植物体の主枝又は側枝の長さ方向への成長に使用されるはずであった栄養をトマト果実へ使用することができるため、上記第2のトマト植物体から収穫されるトマト果実は高い品質を有する。
 本開示に係るトマト植物体の栽培方法において、第1のトマト植物体に照射する人工光の光強度を200μmol/m・s以上とすることにより、得られる第2のトマト植物体が有する、隣り合う、花房間、果房間又は花房と果房との間の距離が短くなり、第2のトマト植物体の長さに対する収穫数が向上するため、空間利用効率は高いものとなり、且つ収穫されるトマト果実の品質を向上することができる。
 また、第1のトマト植物体に照射する人工光の光強度を、800μmol/m・s以下とすることにより、花房において良好に着果が生じる。
 本開示において、光強度は、図2に示すように、第1のトマト植物体90と植面30との接点100から、植面30との垂直方向に、最上段に設置された光源の高さまで10cmごとに、計測機器を光源80に向けて配置し、光強度を測定し、この平均値を求めることにより算出される。
 図3に示すように、光源80が、第1のトマト植物体の両側面に配置される場合、光強度は、第1のトマト植物体90と植面30との接点100から、植面30との垂直方向に、最上段に設置された光源の高さまで10cmごとに、計測機器を両側面の光源80にそれぞれに向けて配置し、各位置における光強度の和を測定し、この平均値を求めることにより算出される。
 計測機器としては、例えば、光量子センサー(LI-COR社製、LI-109)等を使用することができる。
 なお、光強度の測定は、第1のトマト植物体の影による影響を避けるため、第1のトマト植物体の栽培を開始する前に行うことが好ましい。第1のトマト植物体の栽培開始前に光強度の測定を行う場合、第1のトマト植物体の配置予定位置に基づいて、第1のトマト植物体と植面との接点の位置を決める。
 なお、本開示において、光強度とは、明期における光強度を意味する。
 なお、太陽光は、光強度が一日の中で、最大2000μmol/m・s程度まで上昇するが、上記光強度となる時間は極めて短い(1時間~2時間程度)。また、第1のトマト植物体への太陽光の照射は上面方向からとなり、第1のトマト植物体が有する本葉等の影により、第1のトマト植物体の一部において照射される太陽光の光強度は低い値となる。上記した理由から、太陽光を利用して第1のトマト植物体を栽培した場合の光強度は適切な値とはならず、隣り合う、花房間、果房間又は花房と果房との間の距離は長く、上記式(1)を満たさない、長茎のトマト植物体となる。
 空間利用効率、収穫されるトマト果実の品質及び収穫数の観点から、光強度は、220μmol/m・s~780μmol/m・sであることが好ましく、300μmol/m・s~750μmol/m・sであることがより好ましく、400μmol/m・s~720μmol/m・sであることが更に好ましい。なお、上記光強度は、明期におけるものである。
 第1のトマト植物体への人工光の照射は、上面方向から行ってもよく、側面方向から行ってもよいが、隣り合う花房間等の距離をより短くすることができ、空間利用効率をより向上させることができるため、側面方向から人工光の照射を行うことが好ましい。また、人工光の照射を第1のトマト植物体の側面方向から行うことにより、光合成器官である葉に対し効率的に光を到達することができるため、照射する光をより少なくすることができ、得られる第2のトマト植物体の栽培効率を向上することができる。
 また、側面方向及び上面方向の両方向から人工光の照射を行ってもよい。
 照射される人工光の明期及び暗期の周期(以下、明暗周期という。)は制御されていることが好ましい。
 収穫されるトマト果実の品質の観点から、暗期の時間に対する明期の時間の比(明期の時間/暗期の時間)は、1~3が好ましく、1.2~2.2がより好ましい。
 なお、本開示において、「明期」とは、光源により第1のトマト植物体を照射する期間を意味する。また、本開示において、「暗期」とは、光源により第1のトマト植物体を照射しない期間を意味する
 照射される人工光の光源は、特に限定されるものではなく、例えば、LED及び蛍光灯等が挙げられるが、本開示に係るトマト植物体の栽培方法においては、LEDを使用することが好ましい。
 使用するLEDの種類は1種であってもよく、2種以上を使用してもよい。
 LEDは、赤、青及び黄等の可視光を発光するものであってもよく、紫外光(波長380nm以下)又は赤外光(波長780nm以上)の不可視光を発光するものであってもよいが、第1のトマト植物体の光合成の促進という観点からは、波長400nm~700nmの領域で発光するものが好ましい。
 なお、光合成色素であるクロロフィルは、概ね波長400nm~500nmの領域と、波長600nm~700nmの領域とに光吸収のピークを有するため、光合成の促進という観点からは、波長400nm~500nmの領域にピーク波長を有する光を発光する素子を備えるLEDと、波長600nm~700nmの領域にピーク波長を有する光を発光する素子を備えるLEDとを組み合わせて使用することが好ましい。
 波長400nm~500nmの領域にピーク波長を有する光を発光する素子を備えるLEDと、波長600nm~700nmの領域にピーク波長を有する光を発光する素子を備えるLEDとを組み合わせて使用する場合、波長400nm~500nmの領域にピーク波長を有する光の光強度に対する波長600nm~700nmの領域にピーク波長を有する光の光強度との比(波長600nm~700nmの領域にピーク波長を有する光の光強度/波長400nm~500nmの領域にピーク波長を有する光の光強度)が、1.5~4となるように光組成を調整することが好ましく、1.8~3となるように光組成を調整することがより好ましい。
 なお、本開示において、ピーク波長とは、スペクトル波形の1つの山において発光強度が最大となる波長を意味する。
 また、例えば、疑似的な白の可視光を発光するLEDを使用することができる。疑似的な白の可視光を発光するLEDとは、青の可視光を発光するLED及び上記可視光により励起される黄色蛍光体を併用したものである。
 疑似的な白の可視光を発光するLEDを使用する場合、得られるスペクトル波形は、波長400nm~480nmにおいて第一のピーク波長を有し、570nm~600nmにおいて第二のピーク波長を有する。また、第二のピーク波長を含む山は、広い波長域(425nm~760nm)に渡り存在する。
 疑似的な白の可視光を発光するLEDを使用する場合、光の相関色温度は、3000K~6000Kとなる光組成であることが好ましく、4000K~5500Kとなる光組成であることがより好ましい。
 疑似的な白の可視光を発光するLEDとしては、例えば、菱電商事(株)製、植物育成LED白色タイプ(PGL-NE-200NWD)等が挙げられる。
 本開示において、「相関色温度」は、日本産業規格(JIS)Z 8725:2015年発行(光源の分布温度及び色温度・相関色温度の測定方法)に準拠して求められた値である。
 また、例えば、赤の可視光を発光するLED、青の可視光を発光するLED、不可視光を発光するLED、及び疑似的な白の可視光を発光するLEDを併用することができる。
 赤の可視光を発光するLED、青の可視光を発光するLED、不可視光を発光するLED、及び疑似的な白の可視光を発光するLEDを併用する場合、得られるスペクトル波形は、波長400nm~480nmにおいて第一のピーク波長を有し、650nm~700nmにおいて第二のピーク波長を有し、730nm~750nmにおいて第三のピーク波長を有する。また、スペクトル波形は、425nm~760nmの波長域において一定以上の発光強度値となる。
 第1のトマト植物体の栽培温度は、特に限定されるものではないが、明期においては、23℃~33℃であることが好ましく、25℃~32℃であることがより好ましい。明期における栽培温度を上記数値範囲内とすることにより、収穫されるトマト果実の品質をより向上することができる。
 また、暗期における第1のトマト植物体の栽培温度は、15℃~22℃であることが好ましく、16℃~20℃であることがより好ましい。暗期における栽培温度を上記数値範囲内とすることにより、収穫されるトマト果実の品質をより向上することができる。
 本開示において、栽培温度は、第1のトマト植物体及び植面の接点と、生長点との中間地点における第1のトマト植物体から1cm離れた位置に温度計を配置することにより測定する。温度計としては、例えば、(株)T&D製のTR-74Ui及びその付属センサー類を使用することができる。
 第1のトマト植物体の栽培環境における相対湿度は、40%~70%であることが好ましく、50%~65%であることがより好ましい。第1のトマト植物体の栽培環境における相対湿度を上記数値範囲内とすることにより、収穫されるトマト果実の品質をより向上することができる。
 本開示において、相対湿度は、第1のトマト植物体及び植面の接点と、生長点との中間地点における第1のトマト植物体から1cm離れた位置に湿度計を配置することにより測定する。湿度計としては、例えば、(株)T&D製のTR-74Ui及びその付属センサー類を使用することができる。
 第1のトマト植物体の栽培環境における二酸化炭素濃度は、300ppm以上であることが好ましく、400ppm以上であることがより好ましく、800ppm以上であることが更に好ましく、1,000ppm以上であることが特に好ましい。第1のトマト植物体の栽培環境における二酸化炭素濃度を上記数値範囲内とすることにより、収穫されるトマト果実の品質をより向上することができる。
 本開示において、二酸化炭素濃度は、第1のトマト植物体及び植面の接点と、生長点との中間地点における第1のトマト植物体から1cm離れた位置に二酸化炭素濃度計を配置することにより測定する。二酸化炭素濃度計としては、例えば、LI-COR社製のLI-850を使用することができる。
 第1のトマト植物体の栽培は、土耕栽培により行ってもよく、水耕栽培により行ってもよいが、トマト果実の収穫数及び栽培環境の衛生性等の観点からは、水耕栽培により行うことが好ましい。
 土耕栽培により第1のトマト植物体の栽培を行う場合、培養土等の土が、第1のトマト植物体の根部を支持する支持体に該当する。
 第1のトマト植物体を水耕栽培により栽培する場合において、根部を支持するための支持体として例えば、発泡ウレタン、ロックウール、及び保水シートが設けられた支持台等を使用することができる。
 第1のトマト植物体を水耕栽培により栽培する場合において、液体肥料の供給方法は、特に限定されるものではなく、液体肥料内に支持体を浸け栽培する湛液式水耕栽培、支持体へ液体肥料を噴霧する噴霧式水耕栽培、及び根部又は支持体へ液体肥料を滴下する点滴式水耕栽培等が挙げられる。
 使用する液体肥料はトマト栽培に適するものであれば特に制限はなく、例えば市販の混合液肥(OATアグリオ(株)製のOATハウス1号及び協和(株)製のホームハイポニカ等)を所望の濃度に溶解、希釈して使用しても良いし、園試処方及び山崎処方等の公知の肥料組成に基づき、単肥を組み合わせて用いても良い。
 液体肥料の濃度はEC(Electrical Conductivity)値を指標とすることができ、収穫されるトマト果実の品質の観点から、1.0ds/m~8.0ds/mであることが好ましく、1.0ds/m~8.0ds/mであることがより好ましい。また、液体肥料の濃度を、第1のトマト植物体の成長に合わせ変更してもよい。
 EC値の測定は、25℃において、電気伝導率計(例えば、ハンナインスツルメンツ社製のHI98131)を用いて行う。
 本開示に係るトマト植物体の栽培方法は、第1のトマト植物体地上部に対して、上面方向及び側面方向の少なくとも一方から人工光の照射を行う光源、水耕栽培機構及び温湿度制御機構から選択される1つ以上を含む栽培装置を用いて行うことが好ましい。
 また、上記栽培装置は、液体肥料供給機構を含むことがより好ましく、液体肥料のEC値調整機構を含むことが更に好ましい。また、上記栽培装置は、光源の光強度、明暗周期及び二酸化炭素濃度等を調整する機構を含むことが更に好ましい。
 以下、上記実施形態を実施例により具体的に説明するが、上記実施形態はこれらの実施例に限定されるものではない。
<実施例1>
 トマト種子(品種:桃太郎ヨーク(登録商標))を、支持体である、十分に純水を含ませた5cm角のロックウール(日本ロックウール(株)製、やさいはなポット)に播種し、暗黒下において、温度28℃及び相対湿度70%の条件にて3日間保管した。
 トマト種子の発芽が確認された後、底面給液方式により27日間育苗し、第1のトマト植物体を得た。液体肥料として、協和(株)製のホームハイポニカを純水で500倍に希釈したものを使用し、給液は一日に2回行った。
 なお、育苗期間の光源としては、菱電商事(株)製白色LED(PGL-NE-200NWD)を使用し、光強度を250μmol/m・sに設定し、上面方向から照射した。
 得られた第1のトマト植物体を、第1のトマト植物体の両側面に垂直方向に20cmの間隔を開けて配置される5個(片側の個数)の光源と、湛液水耕栽培機構と、温湿度制御機構とを含む栽培装置を使用して、下記栽培条件により栽培し、トマト植物体(第2のトマト植物体)を得た。
 光強度の測定は、第1のトマト植物体の栽培前に行った。
 具体的には、第1のトマト植物体の配置予定位置に基づいて、第1のトマト植物体と植面との接点の位置を決め、上記接点から植面との垂直方向に、最上段に設置された光源の高さまで10cmごとに、光量子センサーを両側面の光源にそれぞれに向けて配置し、各位置における光強度の和を測定し、この平均値を求めることにより算出した。
 栽培期間中は、定法に則り、1本仕立てで整枝(脇芽掻き及び摘葉等)並びに誘引を行い、主枝に5個の花房(第一花房~第五花房)が着生した後、さらに第五花房の上側に2枚の本葉が展開したことを確認後、上記本葉を残して摘芯した。
 各果房は着果数が3個となるよう摘果し、前記第五花房までに結実したトマト果実を収穫し、栽培を終えた。栽培期間でのトマト果実の総収穫数は15個であった。
 植面から、主枝の生長点までの長さ(L)は、90cmであり、L/Xは、18.0であった。
 (栽培条件)
・光源:昭和電工(株)製、LED、CIVILIGHT(波長660nmにピーク波長を有する赤色光を発光する素子及び波長450nmにピーク波長を有する青色光を発光する素子を備えた蛍光灯型LED、ユニオン電子工業(株)製調光器(UL9005#01-0R)にて、それぞれの光強度を調整可能。)
・光強度:250μmol/m・s
・光組成:波長450nmの領域にピーク波長を有する青色光の光強度に対する波長660nmにピーク波長を有する赤色光の光強度との比=2[167(μmol/m・s)/83(μmol/m・s)]:表1中においては、光組成1と記載
・明暗周期(明期/暗期):14時間/10時間
・温度:25℃(明期)、17℃(暗期)
・相対湿度:60%
・二酸化炭素濃度:400ppm
・給肥方法:湛液式水耕
・液体肥料:協和(株)製の「ハイポニカ液体肥料」を純水で希釈して使用
・液体肥料のEC値:2.0ds/m
<実施例2>
 主枝に4個の花房が着生した後、さらに第四花房の上側に2枚の本葉が展開したことを確認後、上記本葉を残して摘芯し、各花房への着果数は4個となるよう摘果すると共に、栽培条件を以下のように変更した以外は、実施例1と同様にして、トマト果実を収穫した。植面から、主枝の生長点までの長さ(L)は、45cmであり、L/Xは、11.3であった。なお、トマト果実の収穫数は16個であった。
(栽培条件)
・光源:昭和電工(株)製、LED、CIVILIGHT
・光強度:500μmol/m・s
・光組成:波長450nmの領域にピーク波長を有する青色光の光強度に対する波長660nmにピーク波長を有する赤色光の光強度との比=2[334(μmol/m・s)/166(μmol/m・s)]:表1中においては、光組成2と記載。
・明暗周期(明期/暗期):16時間/8時間
・温度:25℃(明期)、19℃(暗期)
・相対湿度:60%
・二酸化炭素濃度:1000ppm
・給肥方法:点滴式水耕
・液体肥料:協和(株)製の「ハイポニカ液体肥料」を純水で希釈して使用
・液体肥料のEC値:3.5ds/m
<実施例3>
 主枝に3個の花房が着生した後、さらに第三花房の上側に2枚の本葉が展開したことを確認後、上記本葉を残して摘芯し、各花房への着果数は1個となるよう摘果すると共に、栽培条件を以下のように変更した以外は、実施例1と同様にして、トマト果実を収穫した。植面から、主枝の生長点までの長さ(L)は、19cmであり、L/Xは、6.3であった。なお、トマト果実の収穫数は3個であった。
(栽培条件)
・光源:昭和電工(株)製LED、CIVILIGHT
・光強度:800μmol/m・s
・光組成:波長450nmの領域にピーク波長を有する青色光の光強度に対する波長660nmにピーク波長を有する赤色光の光強度との比=2[533(μmol/m・s)/267(μmol/m・s)]:表1中においては、光組成3と記載。
・明暗周期(明期/暗期):14時間/10時間
・温度:25℃(明期)、17℃(暗期)
・相対湿度:60%
・二酸化炭素濃度:400ppm
・給肥方法:湛液式水耕
・液体肥料:協和(株)製の「ハイポニカ液体肥料」を純水で希釈して使用
・液体肥料のEC値:1.5ds/m
<実施例4>
 主枝に3個の花房が着生した後、さらに第三花房の上側に2枚の本葉が展開したことを確認後、上記本葉を残して摘芯し、各花房への着果数は3個となるよう摘果すると共に、栽培条件を以下のように変更した以外は、実施例1と同様にして、トマト果実を収穫した。植面から、主枝の生長点までの長さ(L)は、88cmであり、L/Xは、29.3であった。なお、トマト果実の収穫数は9個であった。
(栽培条件)
・光源:菱電商事(株)製、植物育成LED白色タイプ、PGL-NE-200NWD
・光強度:200μmol/m・s
・光組成:相関色温度=4000K:表1中においては光組成4と記載。
・明暗周期(明期/暗期):14時間/10時間
・温度:25℃(明期)、17℃(暗期)
・相対湿度:60%
・二酸化炭素濃度:800ppm
・給肥方法:湛液式水耕
・液体肥料:協和(株)製の「ハイポニカ液体肥料」を純水で希釈して使用
・液体肥料のEC値:1.5ds/m
<実施例5>
 主枝に4個の花房が着生した後、さらに第四花房の上側に2枚の本葉が展開したことを確認後、上記本葉を残して摘芯し、各花房への着果数は5個となるよう摘果すると共に、栽培条件を以下のように変更した以外は、実施例1と同様にして、トマト果実を収穫した。植面から、主枝の生長点までの長さ(L)は、95cmであり、L/Xは、23.8であった。なお、トマト果実の収穫数は20個であった。
(栽培条件)
・光源:菱電商事(株)製、植物育成LED白色タイプ、PGL-NE-200NWD
・光強度:300μmol/m・s
・光組成:相関色温度=4000K:表1中においては光組成4と記載。
・明暗周期(明期/暗期):16時間/8時間
・温度:30℃(明期)、17℃(暗期)
・相対湿度:60%
・二酸化炭素濃度:1,000ppm
・給肥方法:点滴式水耕
・液体肥料:協和(株)製の「ハイポニカ液体肥料」を純水で希釈して使用
・液体肥料のEC値:3.5ds/m
<実施例6>
 主枝に5個の花房が着生した後、さらに第五花房の上側に2枚の本葉が展開したことを確認後、上記本葉を残して摘芯し、各花房への着果数は4個となるよう摘果すると共に、栽培条件を以下のように変更した以外は、実施例1と同様にして、トマト果実を収穫した。植面成熟トマト植物体と支持体表面との接点から、主枝の生長点までの長さ(L)は、65cmであり、L/Xは、13.0であった。なお、トマト果実の収穫数は20個であった。
(栽培条件)
・光源:菱電商事(株)製、植物育成LED4色タイプ、PGL-200DWBF26D
・光強度:500μmol/m2・s
・光組成:上記LEDの発光挙動に準じる。:表1中においては光組成5と記載。
・明暗周期(明期/暗期):16時間/8時間
・温度:27℃(明期)、19℃(暗期)
・相対湿度:60%
・二酸化炭素濃度:1,000ppm
・給肥方法:点滴式水耕
・液体肥料:協和(株)製の「ハイポニカ液体肥料」を純水で希釈して使用
・液体肥料のEC値:最初は、EC値が1.5ds/mの液体肥料を使用し、第三花房の開花まで、上記液体肥料へ塩化ナトリウムを添加し、液体肥料のEC値を3.5ds/mまで徐々に上昇させた。第三花房の開花後は8.0ds/mの液体肥料を使用した。
<実施例7>
 主枝に3個の花房が着生した後、さらに第三花房の上側に2枚の本葉が展開したことを確認後、上記本葉を残して摘芯し、各花房への着果数は2個となるよう摘果すると共に、栽培条件を以下のように変更した以外は、実施例1と同様にして、トマト果実を収穫した。植面成熟トマト植物体と支持体表面との接点から、主枝の生長点までの長さ(L)は、65cmであり、L/Xは、21.7であった。なお、トマト果実の収穫数は6個であった。
(栽培条件)
・光源:菱電商事(株)製、植物育成LED白色タイプ、PGL-NE-200NWD
・光強度:500μmol/m2・s
・光組成:相関色温度=4000K:表1中においては光組成4と記載。
・明暗周期(明期/暗期):16時間/8時間
・温度:25℃(明期)、19℃(暗期)
・相対湿度:60%
・二酸化炭素濃度:1,000ppm
・給肥方法:点滴式水耕
・液体肥料:協和(株)製の「ハイポニカ液体肥料」を純水で希釈して使用
・液体肥料のEC値:6.0ds/m
<比較例1>
 実施例1において得られた苗を、ビニールハウス内(4月~7月、神奈川県)にて定法に則り、以下の栽培条件にて栽培した。なお、主枝に3個の花房が着生した後、さらに第三花房の上側に2枚の本葉が展開したことを確認後、上記本葉を残して摘芯した。
 各果房は着果数が4個となるよう摘果し、前記第三花房までに結実したトマト果実を収穫し、栽培を終えた。栽培期間でのトマト果実の総収穫数は12個であった。植面から、主枝の生長点までの長さ(L)は、106cmであり、L/Xは、35.3であった。
(栽培条件)
・光源:太陽
・温度:35℃(明期)、18℃(暗期)
・相対湿度:60%
・二酸化炭素濃度:400ppm
・給肥方法:点滴式水耕
・液体肥料:協和(株)製の「ハイポニカ液体肥料」を純水で希釈して使用
・液体肥料のEC値:2.0ds/m
<比較例2>
 栽培条件を以下のように変更した以外は、実施例1と同様にして、苗を栽培したところ着果せず、トマト果実を収穫することができなかった。なお、着生した花房の数(X)は、3個であり、植面から、主枝の生長点までの長さ(L)は、15cmであり、L/Xは、5.0であった。
(栽培条件)
・光源:昭和電工(株)製LED、CIVILIGHT
・光強度:900μmol/m・s
・光組成:波長450nmの領域にピーク波長を有する青色光の光強度に対する波長660nmにピーク波長を有する赤色光の光強度との比=2[600(μmol/m・s)/300(μmol/m・s)]:表1中においては、光組成6と記載。
・明暗周期(明期/暗期):14時間/10時間
・明暗周期(明期/暗期):14時間/10時間
・温度:25℃(明期)、17℃(暗期)
・相対湿度:60%
・二酸化炭素濃度:400ppm
・給肥方法:湛液式水耕
・液体肥料:協和(株)製の「ハイポニカ液体肥料」を純水で希釈して使用
・液体肥料のEC値:2.0ds/m
<<Brix糖度及びリコペン量の測定>>
 青果物品質評価装置フルーツセレクター((株)クボタ製、型式:K-BA800)を用いて、上記実施例及び比較例において収穫したトマト果実の径が最も大きくなる赤道部上の4か所であって、2か所を結んだ線と、その他の2か所を結んだ線とが直交する4か所において、Brix糖度及びリコペン量を測定し、その平均値をそれぞれ算出した。算出結果を表2にまとめた。
 なお、フルーツセレクターを用いたリコペン量の測定は、具体的には、以下のようにして行った。まず、高速液体クロマトグラフィー(HPLC)により測定したトマト果実のリコペン量と、フルーツセレクターにより測定したリコペン量の相関付けを行うことにより、検量線を作成した。次いで、フルーツセレクターを用いて測定されるリコペン量を、検量線に基づいて、HPLCにより測定されるリコペン量に換算し、このリコペン量を採用した。
 
 
 
 
Figure JPOXMLDOC01-appb-T000001

 
 
Figure JPOXMLDOC01-appb-T000002

 
 上記実施例の結果から、本開示に係るトマト植物体によれば、栽培における空間利用効率及び収穫されるトマト果実の品質が改善されていることが分かる。
 2020年11月16日に出願された日本国特許出願2020-190528号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書に参照により取り込まれる。

Claims (12)

  1.  式(1)を満たす、トマト植物体。
     6.0≦L/X≦30.0・・・(1)
     式中、前記トマト植物体が、側枝を有しない場合、Lは、植面から、主枝の生長点までのcm単位の長さを表し、且つXは、前記主枝が有する花房及び果房の数の和を表し、
     前記トマト植物体が、側枝を有する場合、Lは、植面から、1本の主枝又は側枝の生長点までのcm単位の長さを表し、且つXは、前記1本の主枝又は側枝が有する花房及び果房の数の和を表す。
     但し、Xは2以上の整数。
  2.  前記式(1)中、Lが、100以下である、請求項1に記載のトマト植物体。
  3.  前記式(1)中、Xが10以下の整数である、請求項1又は請求項2に記載のトマト植物体。
  4.  式(2)を満たす、請求項1~請求項3のいずれか一項に記載のトマト植物体。
     11.0≦L/X≦22.0・・・(2)
     式中、前記トマト植物体が、側枝を有しない場合、Lは、植面から、主枝の生長点までのcm単位の長さを表し、且つXは、前記主枝が有する花房及び果房の数の和を表し、
     前記トマト植物体が、側枝を有する場合、Lは、植面から、1本の主枝又は側枝の生長点までのcm単位の長さを表し、且つXは、前記1本の主枝又は側枝が有する花房及び果房の数の和を表す。
     但し、Xは2以上の整数。
  5.  請求項1~請求項4のいずれか一項に記載のトマト植物体より収穫され、
     重量100g当たり10mg以上のリコペンを含有する、トマト果実。
  6.  Brix糖度が7質量%以上である、請求項5に記載のトマト果実。
  7.  第1のトマト植物体の地上部に光強度200μmol/m・s~800μmol/m・sの人工光を照射する工程を少なくとも含み、前記第1のトマト植物体から式(1)を満たす第2のトマト植物体を栽培する、トマト植物体の栽培方法。
     6.0≦L/X≦30.0・・・(1)
     式中、前記第2のトマト植物体が、側枝を有しない場合、Lは、植面から、主枝の生長点までのcm単位の長さを表し、且つXは、前記主枝が有する花房及び果房の数の和を表し、
     前記第2のトマト植物体が、側枝を有する場合、Lは、植面から、1本の主枝又は側枝の生長点までのcm単位の長さを表し、且つXは、前記1本の主枝又は側枝が有する花房及び果房の数の和を表す。
     但し、Xは2以上の整数。
  8.  前記第1のトマト植物体の地上部への前記人工光の照射が、前記第1のトマト植物体の側面方向から行われる、請求項7に記載のトマト植物体の栽培方法。
  9.  前記第1のトマト植物体の地上部に照射される前記人工光の明暗周期が制御されており、暗期の時間に対する明期の時間の比が、1~3である、請求項7又は請求項8に記載のトマト植物体の栽培方法。
  10.  明期における前記第1のトマト植物体の栽培温度が、23℃~33℃であり、
     暗期における前記第1のトマト植物体の栽培温度が、15℃~22℃である、請求項7~請求項9のいずれか一項に記載のトマト植物体の栽培方法。
  11.  前記第1のトマト植物体の栽培環境における二酸化炭素濃度が、300ppm以上である、請求項7~請求項10のいずれか一項に記載のトマト植物体の栽培方法。
  12.  前記第1のトマト植物体の地上部に対して、上面方向及び側面方向の少なくとも一方から前記人工光の照射を行う光源、水耕栽培機構及び温湿度制御機構から選択される1つ以上を含む栽培装置を用いた、請求項7~請求項11のいずれか一項に記載のトマト植物体の栽培方法。
PCT/JP2021/037933 2020-11-16 2021-10-13 トマト植物体、トマト果実及びトマト植物体の栽培方法 WO2022102328A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022561347A JP7499873B2 (ja) 2020-11-16 2021-10-13 トマト植物体、トマト果実及びトマト植物体の栽培方法
IL302838A IL302838A (en) 2020-11-16 2021-10-13 Tomato plant, tomato fruit and a method for cultivating a tomato plant
EP21891575.9A EP4245129A4 (en) 2020-11-16 2021-10-13 TOMATO PLANT, TOMATO FRUIT AND METHOD FOR CULTIVATING A TOMATO PLANT
CN202180076160.2A CN116437802A (zh) 2020-11-16 2021-10-13 番茄植物体、番茄果实及番茄植物体的栽培方法
US18/315,503 US20230276750A1 (en) 2020-11-16 2023-05-11 Tomato plant, tomato fruit, and method of cultivating tomato plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-190528 2020-11-16
JP2020190528 2020-11-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/315,503 Continuation US20230276750A1 (en) 2020-11-16 2023-05-11 Tomato plant, tomato fruit, and method of cultivating tomato plant

Publications (1)

Publication Number Publication Date
WO2022102328A1 true WO2022102328A1 (ja) 2022-05-19

Family

ID=81601804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037933 WO2022102328A1 (ja) 2020-11-16 2021-10-13 トマト植物体、トマト果実及びトマト植物体の栽培方法

Country Status (6)

Country Link
US (1) US20230276750A1 (ja)
EP (1) EP4245129A4 (ja)
JP (1) JP7499873B2 (ja)
CN (1) CN116437802A (ja)
IL (1) IL302838A (ja)
WO (1) WO2022102328A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024176949A1 (ja) * 2023-02-24 2024-08-29 富士フイルム株式会社 トマト及びトマト植物体の栽培方法
WO2024177140A1 (ja) * 2023-02-24 2024-08-29 富士フイルム株式会社 果菜植物の栽培方法、トマト、果菜植物水耕栽培用培養液及び果菜植物水耕栽培装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230172115A1 (en) * 2021-12-08 2023-06-08 Eden Green US & Caribbean Produce Holdings Inc. Lighting system and method for use in vertical hydroponics

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011050288A (ja) * 2009-08-31 2011-03-17 Fujikin Inc 閉鎖型植物工場
JP2012070727A (ja) * 2010-09-03 2012-04-12 Hamamatsu Photonics Kk トマト果実中の単位乾燥重量あたりの栄養成分含量を上昇させる方法
JP2016202072A (ja) 2015-04-22 2016-12-08 ツジコー株式会社 発光装置およびトマト苗栽培装置
JP2017104060A (ja) * 2015-12-10 2017-06-15 日本製紙株式会社 トマト
US20180199527A1 (en) * 2015-07-08 2018-07-19 Arnoldus Cornelis Josef AMMERLAAN Plant
JP2020190528A (ja) 2019-05-23 2020-11-26 花王株式会社 感触特性評価装置及び記憶装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011050288A (ja) * 2009-08-31 2011-03-17 Fujikin Inc 閉鎖型植物工場
JP5330162B2 (ja) 2009-08-31 2013-10-30 株式会社フジキン 閉鎖型植物工場
JP2012070727A (ja) * 2010-09-03 2012-04-12 Hamamatsu Photonics Kk トマト果実中の単位乾燥重量あたりの栄養成分含量を上昇させる方法
JP2016202072A (ja) 2015-04-22 2016-12-08 ツジコー株式会社 発光装置およびトマト苗栽培装置
US20180199527A1 (en) * 2015-07-08 2018-07-19 Arnoldus Cornelis Josef AMMERLAAN Plant
JP2017104060A (ja) * 2015-12-10 2017-06-15 日本製紙株式会社 トマト
JP2020190528A (ja) 2019-05-23 2020-11-26 花王株式会社 感触特性評価装置及び記憶装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Vegetable Gardening Encyclopedia Tomato", 15 April 2005, RURAL CULTURE ASSOCIATION, JP, ISBN: 4-540-03283-6, article AGRICULTURAL CULTURE ASSOCIATION: "Straight single pruning method: (1) Features of pruning method, (3) Precautions for use', 1 Initial growth adjustment is important", pages: 455 - 458, XP009536768 *
KATSUMI SUZUKI: "Low-stage dense planting and high-yielding cultivation of tomatoes", NOGYO OYOBI ENGEI = AGRICULTURE AND HORTICULTURE, vol. 63, no. 10, 1 October 2008 (2008-10-01), pages 39 - 43, XP009536794, ISSN: 1345-8833 *
See also references of EP4245129A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024176949A1 (ja) * 2023-02-24 2024-08-29 富士フイルム株式会社 トマト及びトマト植物体の栽培方法
WO2024177140A1 (ja) * 2023-02-24 2024-08-29 富士フイルム株式会社 果菜植物の栽培方法、トマト、果菜植物水耕栽培用培養液及び果菜植物水耕栽培装置

Also Published As

Publication number Publication date
IL302838A (en) 2023-07-01
EP4245129A1 (en) 2023-09-20
JP7499873B2 (ja) 2024-06-14
CN116437802A (zh) 2023-07-14
JPWO2022102328A1 (ja) 2022-05-19
US20230276750A1 (en) 2023-09-07
EP4245129A4 (en) 2024-05-29

Similar Documents

Publication Publication Date Title
Kim et al. Light spectral and thermal properties govern biomass allocation in tomato through morphological and physiological changes
US11596108B2 (en) Light source for indoor plant cultivation
WO2022102328A1 (ja) トマト植物体、トマト果実及びトマト植物体の栽培方法
Ménard et al. Developmental and physiological responses of tomato and cucumber to additional blue light
CN106455503B (zh) 室内水培园艺方法
JP6325771B2 (ja) 植物育成用照明装置を用いた栽培方法および植物育成用照明装置
JP2022518259A (ja) 植物の成長を促進する光照射方法と植物用ランプ及びその応用
JP5102190B2 (ja) 植物栽培方法
JP2018121589A (ja) 人工光による植物苗の栽培方法
CN108811870B (zh) 一种适应于欧洲云杉幼苗生长的光谱及配比
KR101330101B1 (ko) 접목·삽목묘 생산장치
JP2007222039A (ja) 植物の育成方法および育成ハウス
Dyśko et al. Effects of LED and HPS lighting on the growth, seedling morphology and yield of greenhouse tomatoes and cucumbers.
CN114847029A (zh) 一种降低室内栽培黄瓜化瓜率的光环境调控方法
JP2021145605A (ja) 植物の高密度栽培方法
Treder et al. The effects of LEDs on growth and morphogenesis of vegetable seedlings cultivated in growth chambers
WO2022270130A1 (ja) 果菜植物の栽培方法
WO2022102327A1 (ja) 果菜植物の栽培方法及びトマト果実
JP2001258389A (ja) 植物栽培方法
JP2018143203A (ja) ジャーマンカモミールの形態制御方法
WO2023218911A1 (ja) 果菜植物の栽培方法、果菜植物の栽培装置及びトマト植物
JP7373852B2 (ja) ミニトマトの苗の栽培方法
Jankauskienė et al. The comparison of supplemental blue and green light effects on two cucumber hybrid transplant grown under HPS lighting in greenhouse
Harada et al. Effects of long-day treatment using fluorescent lamps and supplemental lighting using white LEDs on the yield of cut rose flowers
Kobayashi et al. Relationship between photomorphogenesis and tree growth in Cryptomeria japonica assessed using light emitting diodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891575

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022561347

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202347034468

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021891575

Country of ref document: EP

Effective date: 20230616