WO2022102089A1 - 鋳型造型用粘結剤組成物 - Google Patents

鋳型造型用粘結剤組成物 Download PDF

Info

Publication number
WO2022102089A1
WO2022102089A1 PCT/JP2020/042460 JP2020042460W WO2022102089A1 WO 2022102089 A1 WO2022102089 A1 WO 2022102089A1 JP 2020042460 W JP2020042460 W JP 2020042460W WO 2022102089 A1 WO2022102089 A1 WO 2022102089A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
component
mold
binder composition
content
Prior art date
Application number
PCT/JP2020/042460
Other languages
English (en)
French (fr)
Inventor
大典 山口
俊樹 松尾
大喜 田中
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to CN202080105309.0A priority Critical patent/CN116234647A/zh
Priority to PCT/JP2020/042460 priority patent/WO2022102089A1/ja
Priority to JP2022504620A priority patent/JP7102639B1/ja
Priority to TW110125842A priority patent/TW202229492A/zh
Publication of WO2022102089A1 publication Critical patent/WO2022102089A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/02Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives
    • B22C1/10Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives for influencing the hardening tendency of the mould material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins

Definitions

  • the present invention relates to a binder composition for molding.
  • an acid-curable mold comprises a binder composition for molding containing an acid-curable resin and a curing agent composition containing sulfonic acid, sulfuric acid, phosphoric acid, etc. in fire-resistant particles such as silica sand. After adding and kneading these, the obtained kneaded sand is filled in a prototype such as a wooden mold, and the acid-curable resin is cured to produce the product.
  • Furan resin, phenol resin, etc. are used as the acid curable resin, and furfuryl alcohol / urea / formaldehyde resin, furfuryl alcohol / formaldehyde resin, furfuryl alcohol / phenol / formaldehyde resin, etc.
  • furan resin A known modified furan resin or the like is used.
  • Such a mold manufacturing method enables molding work with a high degree of freedom, and since high-quality castings can be manufactured due to the excellent thermal properties of the mold, machine parts, construction machine parts, automobile parts, etc. Widely used in casting castings.
  • One of the important conditions in manufacturing a mold is to improve the working environment during mold manufacturing (during resin curing), and in particular, to reduce the amount of furfuryl alcohol that volatilizes during mold manufacturing, furan resin. It is desired to reduce the monomeric furfuryl alcohol inside.
  • Japanese Patent Application Laid-Open No. 2014-501175 states that the release of furfuryl alcohol and formaldehyde during kneading and molding can be reduced by using a binder composition having a low content of monomeric furfuryl alcohol. Is disclosed.
  • the same pot life can be obtained by using a binder composition containing 5-hydroxymethylfurfural or 2,5-bishydroxymethylfuran as an alternative to furfuryl alcohol. It is disclosed that by shortening the die-cutting time, the mold productivity can be improved, and the curing speed and the mold strength can be improved.
  • the present invention contains furfuryl alcohol (component A), bishydroxymethylfuran (component B), resin (component C) and water (component D).
  • a binder composition for molding that satisfies the following conditions (1) to (5).
  • Condition (4) Nitrogen content in the component C is 2.7% by mass or more and 22.0% by mass or less
  • Condition (5) The component in the mold-molding binder composition When the content of B is y and the nitrogen content of the component C is x, the following formula (1) is satisfied. 2.97x + 15.2 ⁇ y (1)
  • the present invention is a mold molding composition containing the mold molding binder composition and a curing agent composition containing a curing agent for curing the mold molding binder composition. ..
  • the present invention is for a mold, which comprises refractory particles, the mold-molding binder composition, and a curing agent composition containing a curing agent for curing the mold-molding binder composition. It is a composition.
  • a fire-resistant particle, the mold-molding binder composition, and a curing agent composition containing a curing agent for curing the mold-molding binder composition are mixed and used for a mold.
  • a method for producing a mold which comprises a mixing step of obtaining a composition and a curing step of packing the mold composition in a mold and curing the mold composition.
  • the conventionally proposed binder composition having a low content of monomeric furfuryl alcohol has insufficient template strength, especially the template strength in a low temperature (for example, 5 ° C or lower) environment, and is improved. There was room.
  • the present invention can significantly improve the mold strength in a low temperature environment, and has a low content of monomeric furfuryl alcohol, a mold-molding binder composition, a mold-molding composition, and a mold composition.
  • a method for manufacturing a product and a mold is provided.
  • the present invention contains furfuryl alcohol (component A), bishydroxymethylfuran (component B), resin (component C) and water (component D).
  • a binder composition for molding that satisfies the following conditions (1) to (5).
  • Condition (4) Nitrogen content in the component C is 2.7% by mass or more and 22.0% by mass or less
  • Condition (5) The component in the mold-molding binder composition When the content of B is y and the nitrogen content of the component C is x, the following formula (1) is satisfied. 2.97x + 15.2 ⁇ y (1)
  • the present invention is a mold molding composition containing the mold molding binder composition and a curing agent composition containing a curing agent for curing the mold molding binder composition. ..
  • the present invention is for a mold, which comprises refractory particles, the mold-molding binder composition, and a curing agent composition containing a curing agent for curing the mold-molding binder composition. It is a composition.
  • a fire-resistant particle, the mold-molding binder composition, and a curing agent composition containing a curing agent for curing the mold-molding binder composition are mixed and used for a mold.
  • a method for producing a mold which comprises a mixing step of obtaining a composition and a curing step of packing the mold composition in a mold and curing the mold composition.
  • a mold-molding binder composition a mold-molding composition, and a mold, which can significantly improve the mold strength in a low-temperature environment and have a low content of monomeric furfuryl alcohol.
  • a method for producing a composition for mold and a mold can be provided.
  • the binder composition for molding of the present embodiment (hereinafter, also simply referred to as a binder composition) includes furfuryl alcohol (component A), bishydroxymethylfuran (component B), resin (component C), and water. It contains (component D) and satisfies the following conditions (1) to (5).
  • Condition (4) Nitrogen content in the component C is 2.7% by mass or more and 22.0% by mass or less
  • Condition (5) The component in the mold-molding binder composition When the content of B is y and the nitrogen content of the component C is x, the following formula (1) is satisfied. 2.97x + 15.2 ⁇ y (1)
  • the binder composition it is possible to provide a binder composition having a low content of monomeric furfuryl alcohol, which can significantly improve the template strength in a low temperature environment.
  • the reason why the binder composition exerts such an effect is not clear, but it is considered as follows.
  • Bishydroxymethylfuran (component B) is superior in reactivity with furfuryl alcohol (component A) as compared with the resin (component C), and reduces the viscosity of the binder composition.
  • component B When the content of bishydroxymethylfuran (component B) is increased, the reactivity is improved, the viscosity of the binder composition is also reduced, and the kneadability with the refractor-resistant particles is also improved, so that the mold strength is improved.
  • bishydroxymethylfuran (component B) has a high melting point, the storage stability deteriorates as the content increases (condition (3)). Further, when the nitrogen content in the resin is increased, the crosslinking reaction proceeds and the mold strength is improved.
  • condition (4) when the nitrogen content in the resin increases, the viscosity of the binder composition increases, the kneadability with the refractor-resistant particles deteriorates, and the strength decreases (condition (4)). Therefore, as the nitrogen content in the resin increases, the content of bishydroxymethylfuran (component B) is increased with respect to the total content of bishydroxymethylfuran (component B) and the resin (component C) to lower the viscosity. Therefore, it is considered that the mold strength can be improved (condition (5)).
  • the content of the component A in the binder composition is 30.0% by mass or less, preferably 25.0% by mass or less, more preferably 20.0% by mass or less, from the viewpoint of improving the working environment. It is preferable, and 15.0% by mass or less is more preferable.
  • the content of the component A in the binder composition is preferably more than 0% by mass, more preferably 5.0% by mass or more, still more preferably 10.0% by mass or more, from the viewpoint of improving the template strength. 15.0% by mass or more is more preferable, and 20.0% by mass or more is even more preferable.
  • the content of component A can be measured by the method described in Examples.
  • the component B contains 2,5-bishydroxymethylfuran and / or 3,4-bis from the viewpoint of significantly improving the template strength in a low temperature environment while reducing the content of monomeric furfuryl alcohol. Hydroxymethylfuran is preferred, and 2,5-bishydroxymethylfuran is more preferred.
  • the content of the component B in the binder composition is 18.0% by mass or more from the viewpoint of significantly improving the mold strength in a low temperature environment while reducing the content of the monomeric furfuryl alcohol. Is preferable, 20.0% by mass or more is more preferable, 21.0% by mass or more is further preferable, 22.0% by mass or more is further preferable, 39.0% by mass or more is further preferable, and 51.0% by mass is 51.0% by mass. The above is even more preferable, and 63.0% by mass or more is even more preferable.
  • the content of the component B in the binder composition is preferably 70.0% by mass or less, more preferably 68.0% by mass or less, and 65.0% by mass or less from the viewpoint of improving storage stability. Is even more preferable, and 63.0% by mass or less is even more preferable.
  • the content of component B can be measured by the method described in Examples.
  • the component C can be used without particular limitation as long as it is a resin used as a binder for molding.
  • An acid-curable resin can be exemplified as a resin used as a binder for molding, and examples of the acid-curable resin include furan resin, a condensate of melamine and aldehydes, a condensate of urea and aldehydes, and ethylene urea.
  • One or more selected from the group consisting of condensates of aldehydes can be exemplified.
  • the component C preferably contains a furan resin from the viewpoint of significantly improving the mold strength in a low temperature environment while reducing the content of the monomeric furfuryl alcohol.
  • the component C does not contain furfuryl alcohol.
  • the furan resin is obtained by polymerizing a monomer composition containing furfuryl alcohol, and can be used without particular limitation as long as it can be used as a binder for molding.
  • the furan resin is a condensate of furfuryl alcohol and urea and a condensate of furfuryl alcohol and melamine from the viewpoint of significantly improving the template strength in a low temperature environment while reducing the content of monomeric furfuryl alcohol.
  • Condensate of furfuryl alcohol and ethylene urea Condensate of furfuryl alcohol and ethylene urea, condensate of furfuryl alcohol and urea and aldehydes (urea-modified furan resin), condensate of furfuryl alcohol and melamine and aldehydes, furfuryl alcohol and ethylene urea and aldehydes
  • aldehydes examples include formaldehyde, acetaldehyde, glyoxal, furfural, terephthalaldehyde, hydroxymethylfurfural and the like, and one or more of these can be appropriately used. From the viewpoint of improving the mold strength, it is preferable to use formaldehyde, and from the viewpoint of reducing the amount of formaldehyde generated during molding, it is preferable to use furfural, terephthalaldehyde, or hydroxymethylfurfural.
  • phenols examples include phenol, cresol, resorcin, bisphenol A, bisphenol C, bisphenol E, bisphenol F and the like, and one or more of these can be used.
  • the furan resin can be produced by a known method.
  • the furan resin is a urea-modified furan resin
  • the urea-modified furan resin has 0.6 to 30.0 parts by mass of urea and 0.4 to 50.0 parts by mass of paraformaldehyde with respect to 100.0 parts by mass of furfuryl alcohol. It can be obtained by reacting by mass.
  • the total content of one or more selected from the group is preferably 90% by mass or more from the viewpoint of significantly improving the mold strength in a low temperature environment while reducing the content of the monomeric furfuryl alcohol. 95% by mass or more is more preferable, 98% by mass or more is further preferable, substantially 100% by mass is further preferable, and 100% by mass is further preferable. In addition, in this specification, “substantially” means that the amount of an impurity may be contained.
  • the content of the furan resin in the component C is preferably 80% by mass or more, preferably 90% by mass, from the viewpoint of significantly improving the mold strength in a low temperature environment while reducing the content of the monomeric furfuryl alcohol.
  • the above is more preferable, 95% by mass or more is further preferable, 98% by mass or more is further preferable, substantially 100% by mass is further preferable, and 100% by mass is further preferable.
  • the nitrogen content in the component C improves the cross-linking density of the resin and significantly improves the template strength in a low temperature environment. From the viewpoint, it is 2.7% by mass or more, preferably 2.8% by mass or more, more preferably 3.7% by mass or more, and further preferably 4.6% by mass or more.
  • the nitrogen content in the component C is 22.0% by mass or less, and 21.0% by mass or less, from the viewpoint of maintaining good kneading property with the fire-resistant aggregate and suppressing a decrease in mold strength. It is preferable, 17.0% by mass or less is more preferable, and 13.9% by mass or less is further preferable.
  • the nitrogen content in component C can be measured by the method described in Examples.
  • the content of the component C in the binder composition is preferably 5.0% by mass or more from the viewpoint of improving the crosslink density of the resin and significantly improving the mold strength in a low temperature environment. 0% by mass or more is more preferable, and 7.0% by mass or more is further preferable.
  • the content of the component C in the binder composition is preferably 45.0% by mass or less, preferably 45.0% by mass or less, from the viewpoint of maintaining good kneading property with the refractory aggregate and suppressing a decrease in mold strength. It is more preferably 0.0% by mass or less, and further preferably 42.0% by mass or less.
  • the nitrogen content in the binder composition is preferably 0.1% by mass or more, preferably 0.2% by mass, from the viewpoint of improving the crosslink density of the resin and significantly improving the mold strength in a low temperature environment. The above is more preferable.
  • the nitrogen content in the binder composition is preferably 3.5% by mass or less, preferably 3.2% by mass, from the viewpoint of maintaining good kneading property with the refractory aggregate and suppressing a decrease in mold strength. % Or less is more preferable, and 3.0% by mass or less is further preferable.
  • the nitrogen content in the binder composition can be measured by the method described in Examples.
  • the content of the component B with respect to the total content of the component B and the component C in the binder composition is a viewpoint of improving the crosslink density of the resin and significantly improving the mold strength in a low temperature environment. Therefore, it is 39.0% by mass or more, preferably 51.0% by mass or more, and more preferably 63.0% by mass or more.
  • the content of the component B with respect to the total content of the component B and the component C in the binder composition is 95.0% by mass or less, 92.0% by mass, from the viewpoint of improving storage stability. It is preferably 90.0% by mass or less, more preferably 90.0% by mass or less, and further preferably 78.0% by mass or less.
  • the binder composition reduces the content of monomeric furfuryl alcohol when the content of the component B in the binder composition is y and the nitrogen content of the component C is x.
  • the above formula (1) is satisfied from the viewpoint of significantly improving the mold strength in a low temperature environment.
  • the binder composition preferably contains the component B in the binder composition from the viewpoint of significantly improving the template strength in a low temperature environment while reducing the content of the monomeric furfuryl alcohol.
  • the content of the component B is 39.0 to 95.0% by mass, and the nitrogen content in the component C is 2.7 to 22.0% by mass with respect to the total content of the component C. , The above formula (1) is satisfied.
  • the binder composition preferably contains the component B in the binder composition from the viewpoint of significantly improving the template strength in a low temperature environment while reducing the content of the monomeric furfuryl alcohol.
  • the content of the component B is 51.0 to 95.0% by mass, and the nitrogen content in the component C is 2.7 to 22.0% by mass with respect to the total content of the component C. , The above formula (1) is satisfied.
  • the binder composition is more preferably the component B in the binder composition from the viewpoint of significantly improving the template strength in a low temperature environment while reducing the content of the monomeric furfuryl alcohol.
  • the content of the component B is 63.0 to 95.0% by mass, and the nitrogen content in the component C is 2.7 to 22.0% by mass with respect to the total content of the component C. Moreover, the above formula (1) is satisfied.
  • the binder composition is more preferably the component B in the binder composition from the viewpoint of significantly improving the template strength in a low temperature environment while reducing the content of the monomeric furfuryl alcohol.
  • the content of the component B is 63.0 to 95.0% by mass, and the nitrogen content in the component C is 3.7 to 17.0% by mass with respect to the total content of the component C. Moreover, the above formula (1) is satisfied.
  • the binder composition is more preferably the component in the binder composition from the viewpoint of significantly improving the template strength in a low temperature environment while reducing the content of the monomeric furfuryl alcohol.
  • the content of the component B is 63.0 to 95.0% by mass with respect to the total content of B and the component C, and the nitrogen content in the component C is 4.6 to 13.9% by mass.
  • the following formula (2) is satisfied. 1.32x + 57.4 ⁇ y (2)
  • the binder composition preferably has the content of the component B relative to the total content of the component B and the component C in the binder composition 63.
  • the nitrogen content in the component C is 4.6 to 13.9% by mass, and the formula (2) is satisfied.
  • the content of the component D in the binder composition is 25.0% by mass or less, preferably 20.0% by mass or less, from the viewpoint of improving the mold strength.
  • the content of the component D in the binder composition is preferably 5.0% by mass or more, more preferably 8.0% by mass or more, from the viewpoint of adjusting the viscosity of the binder composition. 0% by mass or more is more preferable.
  • the content of component D can be measured by the method described in Examples.
  • the binder composition may contain a curing accelerator from the viewpoint of improving the mold strength.
  • a curing accelerator one or more selected from the group consisting of phenol derivatives, aromatic dialdehydes, and tannins is preferable from the viewpoint of improving the template strength.
  • phenol derivative examples include resorcin, cresol, hydroquinone, phloroglucinol, methylenebisphenol and the like.
  • the content of the phenol derivative in the binder composition is preferably 1 to 25% by mass, more preferably 2 to 15% by mass, and 3 to 10% from the viewpoint of improving the template strength. It is more preferably by mass%.
  • aromatic dialdehyde examples include terephthalaldehyde, phthalaldehyde, isophthalaldehyde and the like, and derivatives thereof and the like.
  • the derivatives thereof mean a compound having a substituent such as an alkyl group in the aromatic ring of an aromatic compound having two formyl groups as a basic skeleton.
  • the content of the aromatic dialdehyde in the binder composition is preferably 0.1 from the viewpoint of sufficiently dissolving the aromatic dialdehyde in the furan resin and suppressing the odor of the aromatic dialdehyde itself. It is ⁇ 15% by mass, more preferably 0.5 to 10% by mass, still more preferably 1 to 5% by mass.
  • tannins examples include condensed tannins and hydrolyzed tannins.
  • condensed tannins and hydrolyzable tannins include tannins having a pyrogallol skeleton and a resorcin skeleton.
  • bark extracts containing these tannins and extracts from natural products such as plant-derived leaves, fruits, seeds, and gall parasitized by plants may be added.
  • the content of tannins in the binder composition is preferably 0.2 to 10% by mass, more preferably 1.0 to 7% by mass, from the viewpoint of improving the curing rate and the mold strength. %, More preferably 1.9 to 5% by mass.
  • the viscosity of the binder composition at 25 ° C. is preferably 70 mPa ⁇ s or less, and more preferably 50 mPa ⁇ s or less, from the viewpoint of workability during the production of the mold composition and the mold production.
  • the viscosity of the binder composition at 25 ° C. can be measured by the method described in Examples.
  • the binder composition may further contain an additive such as a silane coupling agent.
  • a silane coupling agent such as N- ⁇ - (aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, and N- ⁇ - (aminoethyl)-.
  • Aminosilanes such as ⁇ -aminopropyltriethoxysilane and 3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, Epoxysilanes such as 3-glycidoxypropylmethyldiethoxysilane and 3-glycidoxypropyltriethoxysilane, ureidosilanes, mercaptosilanes, sulfide silanes, methacryloxysilanes, acryloxysilanes and the like are used.
  • aminosilanes are aminosilanes, epoxysilanes and ureidosilanes. More preferably, aminosilane and epoxysilane.
  • aminosilanes N- ⁇ - (aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane is preferable.
  • epoxy silanes 3-glycidoxypropylmethyldimethoxysilane is preferable.
  • the content of the silane coupling agent in the binder composition is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, from the viewpoint of improving the mold strength. From the same viewpoint, the content of the silane coupling agent in the binder composition is preferably 5% by mass or less, more preferably 3% by mass or less, further preferably 1% by mass or less, and 0.5% by mass. The following is more preferable.
  • the binder composition for mold molding of the present embodiment is suitably used for molding a self-hardening mold.
  • the self-hardening mold is a mold in which when the binder composition and the curing agent are mixed with sand, the polymerization reaction proceeds with the passage of time and the mold is cured.
  • the temperature of the sand used at that time is in the range of ⁇ 20 ° C. to 50 ° C., preferably 0 ° C. to 40 ° C.
  • the mold can be appropriately cured by selecting an appropriate amount of a curing agent and adding it to the sand.
  • the mold-molding composition of the present embodiment contains the binder composition and a curing agent composition containing a curing agent that cures the mold-molding binder composition.
  • the molding composition of the present embodiment has the same effect as the binder composition.
  • the curing agent composition can be used without particular limitation as long as it contains a curing agent that cures the binder composition.
  • the curing agent include acid-based curing agents, which include sulfonic acid-based compounds such as xylene sulfonic acid (particularly m-xylene sulfonic acid), toluene sulfonic acid (particularly p-toluene sulfonic acid), and methane sulfonic acid, and phosphorus.
  • One or more conventionally known substances such as an acid, a phosphoric acid compound such as an acidic phosphoric acid ester, and sulfuric acid can be used. These compounds are preferably aqueous solutions from the viewpoint of handleability.
  • the curing agent composition may contain one or more solvents selected from the group consisting of alcohols, ether alcohols and esters, and carboxylic acids.
  • the content of the solvent in the curing agent composition is appropriately adjusted in order to obtain a desired reaction rate and mold strength depending on the temperature of the working environment and the temperature of the fire-resistant particles, but in general, it is generally used. From the viewpoint of dissolving the curing agent composition, 5% by mass or more is preferable, 10% by mass or more is more preferable, and 20% by mass or more is further preferable.
  • the content of the solvent in the curing agent composition is preferably 90% by mass or less, more preferably 80% by mass or less, still more preferably 70% by mass or less, from the viewpoint of improving the mold strength.
  • the content of the curing agent in the curing agent composition is preferably 10% by mass or more, more preferably 20% by mass or more, still more preferably 30% by mass or more, from the viewpoint of improving the mold strength.
  • the content of the curing agent in the curing agent composition is preferably 95% by mass or less, more preferably 90% by mass or less, still more preferably 80% by mass or less, from the viewpoint of dissolving the curing agent composition.
  • the mass ratio of the binder composition to the curing agent is 10 to 60 parts by mass of the curing agent with respect to 100 parts by mass of the binder composition from the viewpoint of improving the curing rate and improving the mold strength. Is preferable, 10 to 40 parts by mass is more preferable, and 10 to 30 parts by mass is further preferable.
  • the mold composition of the present embodiment contains refractory particles, the binder composition, and the curing agent composition.
  • the mold composition of the present embodiment has the same effect as the binder composition of the present embodiment.
  • Refractory particles As the refractory particles, one or more conventionally known particles such as silica sand, chromate sand, zircon sand, olivine sand, alumina sand, mullite sand, and synthetic mullite sand can be used, and used fire resistance. Collected particles and regenerated particles can also be used. Among these, it is preferable to contain silica sand.
  • the mass ratio of the refractory particles, the binder composition, and the curing agent can be appropriately set, but from the viewpoint of improving the curing rate and the mold strength, the refractory particles. It is preferable that the binder composition is in the range of 0.5 to 1.5 parts by mass and the curing agent is in the range of 0.07 to 1 part by mass with respect to 100 parts by mass.
  • the method for producing a mold of the present embodiment is a mixing step of mixing the refractory particles, the binder composition, and the curing agent composition to obtain a mold composition, and the mold composition. It comprises a curing step of packing in a mold and curing the mold composition.
  • the method for producing the mold has the same effect as that of the binder composition.
  • the order in which the binder composition, the curing agent composition, and the refractory particles are added and mixed is not particularly limited, and the binder composition and the curing agent composition are mixed.
  • the molding composition and the refractory particles may be mixed, and the binder composition, the curing agent composition, and the refractory particles are added and mixed, respectively.
  • each curing agent composition may be mixed and then added, or each curing agent composition may be added separately.
  • a known general method can be used, for example, a method of adding each raw material by a batch mixer and kneading, or a method of supplying each raw material to a continuous mixer and kneading. There is a way to do it.
  • the mold can be manufactured by using the conventional mold manufacturing process as it is except for the mixing step.
  • the present invention further discloses the following compositions, production methods, or uses.
  • ⁇ 1> Contains furfuryl alcohol (component A), bishydroxymethylfuran (component B), resin (component C) and water (component D).
  • a binder composition for molding that satisfies the following conditions (1) to (5).
  • Condition (4) Nitrogen content in the component C is 2.7% by mass or more and 22.0% by mass or less
  • Condition (5) The component in the mold-molding binder composition When the content of B is y and the nitrogen content of the component C is x, the following formula (1) is satisfied. 2.97x + 15.2 ⁇ y (1) ⁇ 2> Contains furfuryl alcohol (component A), bishydroxymethylfuran (component B), resin (component C) and water (component D).
  • the binder composition for molding according to ⁇ 1> which satisfies the following conditions (1) to (5).
  • Condition (1) The content of the component A in the mold-molding binder composition is 5.0% by mass or more and 30.0% by mass or less
  • Condition (2) In the mold-molding binder composition.
  • Condition (3) The content of the component D is 5.0% by mass or more and 25.0% by mass or less.
  • Condition (4) Content of component B is 39.0% by mass or more and 95.0% by mass or less (4):
  • ⁇ 3> The binder composition for molding according to ⁇ 1> or ⁇ 2>, wherein the content of the component A is 10.0% by mass or more and 30.0% by mass or less.
  • ⁇ 4> The binder composition for molding according to any one of ⁇ 1> to ⁇ 3>, wherein the content of the component A is 15.0% by mass or more and 30.0% by mass or less.
  • ⁇ 5> The binder composition for molding according to any one of ⁇ 1> to ⁇ 4>, wherein the content of the component D is 8.0% by mass or more and 25.0% by mass or less.
  • ⁇ 6> The binder composition for molding according to any one of ⁇ 1> to ⁇ 5>, wherein the content of the component D is 10.0% by mass or more and 20.0% by mass or less.
  • ⁇ 7> The binder composition for molding according to any one of ⁇ 1> to ⁇ 6>, which satisfies the following conditions (3) to (5).
  • ⁇ 12> The mold molding according to any one of ⁇ 1> to ⁇ 11>, wherein the component C contains a furan resin and the content of the furan resin in the component C is 98% by mass or more.
  • Cinder composition for. ⁇ 13> The invention according to any one of ⁇ 1> to ⁇ 12>, wherein the component C contains a furan resin, and the content of the furan resin in the component C is substantially 100% by mass.
  • the furan resin is one or more selected from the group consisting of a urea-modified furan resin, a furfuryl alcohol condensate, and a condensate of furfuryl alcohol and aldehydes, and two or more cocondensations selected from the above group.
  • ⁇ 15> One or more selected from the group consisting of the urea-modified furan resin, furfuryl alcohol condensate, and a condensate of furfuryl alcohol and aldehydes in the furan resin, and two or more selected from the group.
  • the binder composition for molding according to ⁇ 14> wherein the total content of one or more selected from the group consisting of condensates is 90% by mass or more.
  • ⁇ 17> One or more selected from the group consisting of the urea-modified furan resin, furfuryl alcohol condensate, and a condensate of furfuryl alcohol and aldehydes in the furan resin, and two or more selected from the group.
  • ⁇ 18> One or more selected from the group consisting of the urea-modified furan resin, furfuryl alcohol condensate, and a condensate of furfuryl alcohol and aldehydes in the furan resin, and two or more selected from the group.
  • the binder composition is 0.5 to 1.5 parts by mass and the curing agent is 0.07 to 1 part by mass with respect to 100 parts by mass of the refractory particles.
  • a method for producing a mold which comprises a mixing step of mixing the agent composition and the mold composition to obtain a mold composition, and a curing step of packing the mold composition in a mold and curing the mold composition.
  • ⁇ Resin manufacturing method> [Urea-modified furan resin] 609 g of furfuryl alcohol, 0.7 g of a 25 mass% sodium hydroxide aqueous solution, 188 g of 92 mass% paraformaldehyde, and 140 g of urea were put into a three-necked flask and reacted at 100 ° C. under normal pressure for 45 minutes. Then, 1.4 g of glutaric acid was added, and the mixture was further reacted at 100 ° C. for 45 minutes. Then, 52 g of urea was added, and the mixture was reacted at 70 ° C. for 30 minutes.
  • the pH was adjusted to 10 with a 25 mass% sodium hydroxide aqueous solution.
  • the obtained composition was distilled under reduced pressure using a rotary evaporator at 110 ° C. and an internal pressure of 5 mmHg to remove water and some furfuryl alcohol.
  • the composition of the obtained reaction product was 71.9% by mass of a urea-modified furan resin and 28.1% by mass of furfuryl alcohol.
  • the nitrogen content of the obtained reaction product was 14.5% by mass, and the nitrogen content of the urea-modified furan resin was 20.2% by mass.
  • the furfuryl alcohol in the resin b was 20.0% by mass, the BHMF was 29.5% by mass, the water was 6.8% by mass, and the nitrogen content was 2.4% by mass.
  • 1.5 g of a silane coupling agent, 36 g of furfuryl alcohol, and 145 g of water were added to the resin b and mixed to obtain a binder composition according to Production Example 3.
  • the content of furfuryl alcohol in the binder composition according to Production Example 3 is 20.0% by mass, the content of BHMF is 24.1% by mass, the content of furan resin is 32.9% by mass, and the content of water is contained.
  • the amount was 20.0% by mass, and the nitrogen content in the furan resin was 6.0% by mass.
  • the content of furfuryl alcohol in the binder composition according to Production Example 4 is 20.0% by mass, the content of BHMF is 22.4% by mass, the content of furan resin is 34.6% by mass, and the content of water is contained. The amount was 20.0% by mass, and the nitrogen content in the furan resin was 8.1% by mass.
  • the mixture was cooled to 75 ° C., 8 g of urea was added, and the mixture was reacted at the same temperature for 20 minutes to obtain a resin d.
  • the furfuryl alcohol in the resin d was 20.6% by mass
  • the BHMF was 28.0% by mass
  • the water was 6.5% by mass
  • the nitrogen content was 2.8% by mass.
  • 1.5 g of a silane coupling agent, 31 g of furfuryl alcohol, and 147 g of water were added to the resin d and mixed to obtain a binder composition according to Production Example 6.
  • the content of furfuryl alcohol in the binder composition according to Production Example 6 is 20.0% by mass, the content of BHMF is 23.0% by mass, the content of furan resin is 34.1% by mass, and the content of water is contained. The amount was 20.0% by mass, and the nitrogen content in the furan resin was 6.7% by mass.
  • the furfuryl alcohol in the resin e was 19.3% by mass, the BHMF was 27.5% by mass, the water was 7.3% by mass, and the nitrogen content was 2.8% by mass.
  • 1.5 g of a silane coupling agent, 43 g of furfuryl alcohol, and 141 g of water were added to the resin e and mixed to obtain a binder composition according to Production Example 7.
  • the content of furfuryl alcohol in the binder composition according to Production Example 7 is 20.0% by mass
  • the content of BHMF is 22.4% by mass
  • the content of furan resin is 34.6% by mass
  • the content of water is contained.
  • the amount was 20.0% by mass, and the nitrogen content in the furan resin was 6.6% by mass.
  • the binder composition according to Production Example 6 was produced by the following procedure based on the production method of KH-Y described in Special Table 2014-501175. 197 g of furfuryl alcohol, 196 g of 92 mass% paraformaldehyde, and 4.7 g of benzoic acid were put into a three-necked flask and reacted at 110 ° C. under normal pressure for 1 hour. Further, 394 g of furfuryl alcohol and 9.4 g of benzoic acid were added to this reaction product, the temperature was raised to 135 ° C., and the mixture was refluxed for 5 hours. The temperature after completion of the reaction was 125 ° C.
  • a resin f 60 g was added and cooled to 60 ° C. over about 40 minutes to obtain a resin f.
  • the furfuryl alcohol in the resin f was 23.2% by mass
  • the BHMF was 14.8% by mass
  • the water was 7.3% by mass
  • the nitrogen content was 3.3% by mass.
  • 1.5 g of a silane coupling agent and 137 g of water were added to the resin f and mixed to obtain a binder composition according to Production Example 8.
  • the content of furfuryl alcohol in the binder composition according to Production Example 8 is 20.0% by mass
  • the content of BHMF is 12.7% by mass
  • the content of furan resin is 45.7% by mass
  • the content of water is contained.
  • the amount was 20.0% by mass
  • the nitrogen content in the furan resin was 6.1% by mass.
  • Examples 1 to 21 and Comparative Examples 1 to 9 [Manufacturing of binder composition for molding] Using the urea-modified furan resin, furfuryl alcohol / formaldehyde resin, BHMF, furfuryl alcohol, water and silane coupling agent obtained in the above production example, mixing was performed at 40 ° C. for 30 minutes, and Example 1 To 16, the binder composition for mold molding of Comparative Examples 1 to 8 was obtained. As the binder compositions for molding of Examples 17 to 21, Comparative Examples 9 and Reference Examples 1 and 2, the compositions of Production Examples 1 to 8 shown above were used, respectively.
  • the amount of the curing agent composition added is 0.32 parts by mass with respect to 100 parts by mass of the regenerated silica sand of furan, and the compressive strength of the test piece described later is 0.20 to 0.35 MPa / 30 minutes.
  • the ratio of US-3 and Kaoritener C-21 was adjusted. When the addition amount was 0.32 parts by mass and did not meet the above compressive strength, only Kaoritener US-3 was used, and the addition amount was increased so as to satisfy the above compressive strength.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mold Materials And Core Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、フルフリルアルコール(成分A)、ビスヒドロキシメチルフラン(成分B)、樹脂(成分C)及び水(成分D)を含有し、下記の条件(1)~(5)を満たす鋳型造型用粘結剤組成物である。 条件(1):前記鋳型造型用粘結剤組成物中の前記成分Aの含有量が30.0質量%以下 条件(2):前記鋳型造型用粘結剤組成物中の前記成分Dの含有量が25.0質量%以下 条件(3):前記鋳型造型用粘結剤組成物中の前記成分Bと前記成分Cの含有量の合計に対する前記成分Bの含有量が39.0質量%以上95.0質量%以下 条件(4):前記成分C中の窒素含有量が2.7質量%以上22.0質量%以下 条件(5):前記鋳型造型用粘結剤組成物中の前記成分Bの含有量をy、前記成分Cの窒素含有量をxとした場合、下式(1)を満たす 2.97x+15.2≦y (1) 本発明によれば、低温環境下での鋳型強度を大幅に向上することができるモノマー状のフルフリルアルコールの含有量が少ない粘結剤組成物を提供することができる。

Description

鋳型造型用粘結剤組成物
 本発明は、鋳型造型用粘結剤組成物に関する。
 一般に、酸硬化性鋳型は、珪砂等の耐火性粒子に、酸硬化性樹脂を含有する鋳型造型用粘結剤組成物と、スルホン酸、硫酸、リン酸等を含有する硬化剤組成物とを添加し、これらを混練した後、得られた混練砂を木型等の原型に充填し、酸硬化性樹脂を硬化させて製造される。酸硬化性樹脂には、フラン樹脂やフェノール樹脂等が用いられており、フラン樹脂には、フルフリルアルコール・尿素・ホルムアルデヒド樹脂、フルフリルアルコール・ホルムアルデヒド樹脂、フルフリルアルコール・フェノール・ホルムアルデヒド樹脂、その他公知の変性フラン樹脂等が用いられている。このような鋳型の製造方法は自由度の高い造型作業が可能であり、また鋳型の熱的性質に優れることから高品質の鋳物が製造できるため、機械部品や建設機械部品、あるいは自動車用部品等の鋳物を鋳造する際に広く使用されている。
 鋳型を製造する上で、重要な条件の一つとして、鋳型製造時(樹脂硬化時)の作業環境の改善が挙げられ、特に、鋳型の製造時に揮発するフルフリルアルコールを低減するため、フラン樹脂中のモノマー状のフルフリルアルコールの低減が望まれている。
 例えば、特表2014-501175号公報には、モノマー状のフルフリルアルコールの含有量が少ない粘結剤組成物を用いることで、混練時や鋳型造型時のフルフリルアルコールおよびホルムアルデヒドの放出を低減できることが開示されている。
 また、特開昭56-61420号公報には、反応を充分に行うことで、樹脂構造中に高い割合でフルフリルアルコール骨格が導入された、モノマー状のフルフリルアルコールの含有量が少ない鋳型造型用のフェノール-フルフリルアルコール-ホルムアルデヒド樹脂の製造方法が開示されている。
 さらに、特開2013-151019号公報には、フルフリルアルコールの代替として、5-ヒドロキシメチルフルフラールや2,5-ビスヒドロキシメチルフランを含有する粘結剤組成物を用いることで、同じ可使時間で抜型時間を短くすることにより、鋳型生産性を向上させ、かつ硬化速度と鋳型強度を向上させることができることが開示されている。
 本発明は、フルフリルアルコール(成分A)、ビスヒドロキシメチルフラン(成分B)、樹脂(成分C)及び水(成分D)を含有し、
 下記の条件(1)~(5)を満たす鋳型造型用粘結剤組成物。
条件(1):前記鋳型造型用粘結剤組成物中の前記成分Aの含有量が30.0質量%以下
条件(2):前記鋳型造型用粘結剤組成物中の前記成分Dの含有量が25.0質量%以下
条件(3):前記鋳型造型用粘結剤組成物中の前記成分Bと前記成分Cの含有量の合計に対する前記成分Bの含有量が39.0質量%以上95.0質量%以下
条件(4):前記成分C中の窒素含有量が2.7質量%以上22.0質量%以下
条件(5):前記鋳型造型用粘結剤組成物中の前記成分Bの含有量をy、前記成分Cの窒素含有量をxとした場合、下式(1)を満たす
 2.97x+15.2≦y   (1)
 また、本発明は、前記鋳型造型用粘結剤組成物と、当該鋳型造型用粘結剤組成物を硬化させる硬化剤を含む硬化剤組成物と、を含有する、鋳型造型用組成物である。
 また、本発明は、耐火性粒子と、前記鋳型造型用粘結剤組成物と、当該鋳型造型用粘結剤組成物を硬化させる硬化剤を含む硬化剤組成物と、を含有する、鋳型用組成物である。
 また、本発明は、耐火性粒子と、前記鋳型造型用粘結剤組成物と、当該鋳型造型用粘結剤組成物を硬化させる硬化剤を含む硬化剤組成物と、を混合して鋳型用組成物を得る混合工程、及び前記鋳型用組成物を型枠に詰め、当該鋳型用組成物を硬化する硬化工程を含む鋳型の製造方法である。
発明の詳細な説明
 従来から提案されているモノマー状のフルフリルアルコールの含有量が少ない粘結剤組成物では、鋳型強度、特に、低温(例えば5℃以下)環境下での鋳型強度が不十分であり、改善の余地があった。
 本発明は、低温環境下での鋳型強度を大幅に向上することができる、モノマー状のフルフリルアルコールの含有量が少ない鋳型造型用粘結剤組成物、鋳型造型用組成物、及び鋳型用組成物、並びに鋳型の製造方法を提供する。
 本発明は、フルフリルアルコール(成分A)、ビスヒドロキシメチルフラン(成分B)、樹脂(成分C)及び水(成分D)を含有し、
 下記の条件(1)~(5)を満たす鋳型造型用粘結剤組成物。
条件(1):前記鋳型造型用粘結剤組成物中の前記成分Aの含有量が30.0質量%以下
条件(2):前記鋳型造型用粘結剤組成物中の前記成分Dの含有量が25.0質量%以下
条件(3):前記鋳型造型用粘結剤組成物中の前記成分Bと前記成分Cの含有量の合計に対する前記成分Bの含有量が39.0質量%以上95.0質量%以下
条件(4):前記成分C中の窒素含有量が2.7質量%以上22.0質量%以下
条件(5):前記鋳型造型用粘結剤組成物中の前記成分Bの含有量をy、前記成分Cの窒素含有量をxとした場合、下式(1)を満たす
 2.97x+15.2≦y   (1)
 また、本発明は、前記鋳型造型用粘結剤組成物と、当該鋳型造型用粘結剤組成物を硬化させる硬化剤を含む硬化剤組成物と、を含有する、鋳型造型用組成物である。
 また、本発明は、耐火性粒子と、前記鋳型造型用粘結剤組成物と、当該鋳型造型用粘結剤組成物を硬化させる硬化剤を含む硬化剤組成物と、を含有する、鋳型用組成物である。
 また、本発明は、耐火性粒子と、前記鋳型造型用粘結剤組成物と、当該鋳型造型用粘結剤組成物を硬化させる硬化剤を含む硬化剤組成物と、を混合して鋳型用組成物を得る混合工程、及び前記鋳型用組成物を型枠に詰め、当該鋳型用組成物を硬化する硬化工程を含む鋳型の製造方法である。
 本発明によれば、低温環境下での鋳型強度を大幅に向上することができる、モノマー状のフルフリルアルコールの含有量が少ない鋳型造型用粘結剤組成物、鋳型造型用組成物、及び鋳型用組成物、並びに鋳型の製造方法を提供することができる。
 以下、本発明の一実施形態について説明する。
<鋳型造型用粘結剤組成物>
 本実施形態の鋳型造型用粘結剤組成物(以下、単に粘結剤組成物ともいう)は、フルフリルアルコール(成分A)、ビスヒドロキシメチルフラン(成分B)、樹脂(成分C)及び水(成分D)を含有し、下記の条件(1)~(5)を満たす。
条件(1):前記鋳型造型用粘結剤組成物中の前記成分Aの含有量が30.0質量%以下
条件(2):前記鋳型造型用粘結剤組成物中の前記成分Dの含有量が25.0質量%以下
条件(3):前記鋳型造型用粘結剤組成物中の前記成分Bと前記成分Cの含有量の合計に対する前記成分Bの含有量が39.0質量%以上95.0質量%以下
条件(4):前記成分C中の窒素含有量が2.7質量%以上22.0質量%以下
条件(5):前記鋳型造型用粘結剤組成物中の前記成分Bの含有量をy、前記成分Cの窒素含有量をxとした場合、下式(1)を満たす
 2.97x+15.2≦y   (1)
 前記粘結剤組成物によれば、低温環境下での鋳型強度を大幅に向上することができる、モノマー状のフルフリルアルコールの含有量が少ない粘結剤組成物を提供することができる。前記粘結剤組成物がこのような効果を奏する理由は定かではないが、以下の様に考えられる。
 ビスヒドロキシメチルフラン(成分B)は、樹脂(成分C)と比較してフルフリルアルコール(成分A)との反応性に優れ、かつ前記粘結剤組成物の粘度を低減する。ビスヒドロキシメチルフラン(成分B)の含有量が多くなると反応性が向上し、粘結剤組成物の粘度も低減し耐火性粒子との混錬性も向上するため、鋳型強度が向上する。一方で、ビスヒドロキシメチルフラン(成分B)は融点が高いため、含有量が多くなると保存安定性が悪くなる(条件(3))。また、樹脂中の窒素含有量が多くなると架橋反応が進み鋳型強度が向上する。一方で樹脂中の窒素含有量が多くなると粘結剤組成物の粘度が高くなり耐火性粒子との混錬性が悪くなり強度が低下する(条件(4))。そのため、樹脂中の窒素含有量が高くなるにつれて、ビスヒドロキシメチルフラン(成分B)と樹脂(成分C)の含有量の合計に対するビスヒドロキシメチルフラン(成分B)の含有量を増やして粘度を下げることにより、鋳型強度を向上させることができる(条件(5))と考えられる。
〔フルフリルアルコール(成分A)〕
 前記粘結剤組成物中の前記成分Aの含有量は、作業環境を改善する観点から、30.0質量%以下であり、25.0質量%以下が好ましく、20.0質量%以下がより好ましく、15.0質量%以下が更に好ましい。前記粘結剤組成物中の前記成分Aの含有量は、鋳型強度を向上させる観点から、0質量%超が好ましく、5.0質量%以上がより好ましく、10.0質量%以上が更に好ましく、15.0質量%以上がより更に好ましく、20.0質量%以上がより更に好ましい。なお、成分Aの含有量は実施例に記載の方法により測定することができる。
〔ビスヒドロキシメチルフラン(成分B)〕
 前記成分Bは、モノマー状のフルフリルアルコールの含有量を低減しながら低温環境下での鋳型強度を大幅に向上させる観点から、2,5-ビスヒドロキシメチルフラン、及び/又は3,4-ビスヒドロキシメチルフランが好ましく、2,5-ビスヒドロキシメチルフランがより好ましい。
 前記粘結剤組成物中の前記成分Bの含有量は、モノマー状のフルフリルアルコールの含有量を低減しながら低温環境下での鋳型強度を大幅に向上させる観点から、18.0質量%以上が好ましく、20.0質量%以上がより好ましく、21.0質量%以上が更に好ましく、22.0質量%以上がより更に好ましく、39.0質量%以上がより更に好ましく、51.0質量%以上がより更に好ましく、63.0質量%以上がより更に好ましい。前記粘結剤組成物中の前記成分Bの含有量は、保存安定性を向上させる観点から、70.0質量%以下が好ましく、68.0質量%以下がより好ましく、65.0質量%以下が更に好ましく、63.0質量%以下がより更に好ましい。なお、成分Bの含有量は実施例に記載の方法により測定することができる。
〔樹脂(成分C)〕
 前記成分Cは、鋳型造型用粘結剤として用いられる樹脂であれば特に限定無く用いることが出来る。鋳型造型用粘結剤として用いられる樹脂としては酸硬化性樹脂が例示でき、当該酸硬化性樹脂としてはフラン樹脂、メラミンとアルデヒド類の縮合物、尿素とアルデヒド類の縮合物、及びエチレン尿素とアルデヒド類の縮合物よりなる群から選ばれる1種以上が例示できる。前記成分Cは、モノマー状のフルフリルアルコールの含有量を低減しながら低温環境下での鋳型強度を大幅に向上させる観点から、フラン樹脂を含有するのが好ましい。なお、前記成分Cはフルフリルアルコールを含まない。
 前記フラン樹脂は、フルフリルアルコールを含有するモノマー組成物を重合して得られるものであり、鋳型造型用の粘結剤に使用できる限り、特に限定なく使用することができる。前記フラン樹脂は、モノマー状のフルフリルアルコールの含有量を低減しながら低温環境下での鋳型強度を大幅に向上させる観点から、フルフリルアルコールと尿素の縮合物、フルフリルアルコールとメラミンの縮合物、フルフリルアルコールとエチレン尿素の縮合物、フルフリルアルコールと尿素とアルデヒド類の縮合物(尿素変性フラン樹脂)、フルフリルアルコールとメラミンとアルデヒド類の縮合物、フルフリルアルコールとエチレン尿素とアルデヒド類の縮合物、フルフリルアルコール縮合物、フルフリルアルコールとアルデヒド類の縮合物、及びフルフリルアルコールとフェノール類とアルデヒド類の縮合物よりなる群から選ばれる1種以上、並びに前記群から選ばれる2種以上の共縮合物よりなる群から選ばれる1種以上を含有するのが好ましく、尿素変性フラン樹脂、フルフリルアルコール縮合物及びフルフリルアルコールとアルデヒド類の縮合物よりなる群から選ばれる1種以上、並びに前記群から選ばれる2種以上の共縮合物よりなる群から選ばれる1種以上を含有するのがより好ましい。
 前記アルデヒド類としては、ホルムアルデヒド、アセトアルデヒド、グリオキザール、フルフラール、テレフタルアルデヒド、ヒドロキシメチルフルフラール等が挙げられ、これらのうち1種以上を適宜使用できる。鋳型強度向上の観点からは、ホルムアルデヒドを用いるのが好ましく、造型時のホルムアルデヒド発生量低減の観点からは、フルフラールやテレフタルアルデヒド、ヒドロキシメチルフルフラールを用いるのが好ましい。
 前記フェノール類としては、フェノール、クレゾール、レゾルシン、ビスフェノールA、ビスフェノールC、ビスフェノールE、ビスフェノールFなどが挙げられ、これらのうち1種以上を使用できる。
 前記フラン樹脂は公知の方法で製造することができる。例えば、前記フラン樹脂が尿素変性フラン樹脂の場合、尿素変性フラン樹脂は、フルフリルアルコール100.0質量部に対し、尿素0.6~30.0質量部及びパラホルムアルデヒド0.4~50.0質量部反応させることにより得ることが出来る。
 前記フラン樹脂中の前記尿素変性フラン樹脂、フルフリルアルコール縮合物及びフルフリルアルコールとアルデヒド類の縮合物よりなる群から選ばれる1種以上、並びに前記群から選ばれる2種以上の共縮合物よりなる群から選ばれる1種以上の含有量の合計は、モノマー状のフルフリルアルコールの含有量を低減しながら低温環境下での鋳型強度を大幅に向上させる観点から、90質量%以上が好ましく、95質量%以上がより好ましく、98質量%以上が更に好ましく、実質的に100質量%が更に好ましく、100質量%がより更に好ましい。なお、本明細書において、「実質的に」とは、不純物程度の量は含有してもよいことを意味する。
 前記成分C中のフラン樹脂の含有量は、モノマー状のフルフリルアルコールの含有量を低減しながら低温環境下での鋳型強度を大幅に向上させる観点から、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上が更に好ましく、98質量%以上が更に好ましく、実質的に100質量%が更に好ましく、100質量%がより更に好ましい。
 前記成分C中の窒素含有量(本明細書において、窒素含有量とは窒素原子の含有量を意味する)は、樹脂の架橋密度を向上させて低温環境下での鋳型強度を大幅に向上させる観点から、2.7質量%以上であり、2.8質量%以上が好ましく、3.7質量%以上がより好ましく、4.6質量%以上が更に好ましい。前記成分C中の窒素含有量は、耐火性骨材との良好な混練性を維持し、鋳型強度の低下を抑制する観点から、22.0質量%以下であり、21.0質量%以下が好ましく、17.0質量%以下がより好ましく、13.9質量%以下が更に好ましい。なお、成分C中の窒素含有量は実施例に記載の方法により測定することができる。
 前記粘結剤組成物中の前記成分Cの含有量は、樹脂の架橋密度を向上させて低温環境下での鋳型強度を大幅に向上させる観点から、5.0質量%以上が好ましく、6.0質量%以上がより好ましく、7.0質量%以上が更に好ましい。前記粘結剤組成物中の前記成分Cの含有量は、耐火性骨材との良好な混練性を維持し、鋳型強度の低下を抑制する観点から、45.0質量%以下が好ましく、43.0質量%以下がより好ましく、42.0質量%以下が更に好ましい。
 前記粘結剤組成物中の窒素含有量は、樹脂の架橋密度を向上させて低温環境下での鋳型強度を大幅に向上させる観点から、0.1質量%以上が好ましく、0.2質量%以上がより好ましい。前記粘結剤組成物中の窒素含有量は、耐火性骨材との良好な混練性を維持し、鋳型強度の低下を抑制する観点から、3.5質量%以下が好ましく、3.2質量%以下がより好ましく、3.0質量%以下が更に好ましい。なお、粘結剤組成物中の窒素含有量は実施例に記載の方法により測定することができる。
 前記粘結剤組成物中の前記成分Bと前記成分Cの含有量の合計に対する前記成分Bの含有量は、樹脂の架橋密度を向上させて低温環境下での鋳型強度を大幅に向上させる観点から、39.0質量%以上であり、51.0質量%以上が好ましく、63.0質量%以上がより好ましい。前記粘結剤組成物中の前記成分Bと前記成分Cの含有量の合計に対する前記成分Bの含有量は、保存安定性を向上させる観点から、95.0質量%以下であり、92.0質量%以下が好ましく、90.0質量%以下がより好ましく、78.0質量%以下が更に好ましい。
 前記粘結剤組成物は、前記粘結剤組成物中の前記成分Bの含有量をy、前記成分Cの窒素含有量をxとした場合、モノマー状のフルフリルアルコールの含有量を低減しながら低温環境下での鋳型強度を大幅に向上させる観点から、前記式(1)を満たす。
 前記粘結剤組成物は、モノマー状のフルフリルアルコールの含有量を低減しながら低温環境下での鋳型強度を大幅に向上させる観点から、好ましくは前記粘結剤組成物中の前記成分Bと前記成分Cの含有量の合計に対する前記成分Bの含有量が39.0~95.0質量%、かつ、前記成分C中の窒素含有量が2.7~22.0質量%であり、かつ、前記式(1)を満たす。
 前記粘結剤組成物は、モノマー状のフルフリルアルコールの含有量を低減しながら低温環境下での鋳型強度を大幅に向上させる観点から、好ましくは前記粘結剤組成物中の前記成分Bと前記成分Cの含有量の合計に対する前記成分Bの含有量が51.0~95.0質量%、かつ、前記成分C中の窒素含有量が2.7~22.0質量%であり、かつ、前記式(1)を満たす。
 前記粘結剤組成物は、モノマー状のフルフリルアルコールの含有量を低減しながら低温環境下での鋳型強度を大幅に向上させる観点から、より好ましくは前記粘結剤組成物中の前記成分Bと前記成分Cの含有量の合計に対する前記成分Bの含有量が63.0~95.0質量%、かつ、前記成分C中の窒素含有量が2.7~22.0質量%であり、かつ、前記式(1)を満たす。
 前記粘結剤組成物は、モノマー状のフルフリルアルコールの含有量を低減しながら低温環境下での鋳型強度を大幅に向上させる観点から、更に好ましくは前記粘結剤組成物中の前記成分Bと前記成分Cの含有量の合計に対する前記成分Bの含有量が63.0~95.0質量%、かつ、前記成分C中の窒素含有量が3.7~17.0質量%であり、かつ、前記式(1)を満たす。
 前記粘結剤組成物は、モノマー状のフルフリルアルコールの含有量を低減しながら低温環境下での鋳型強度を大幅に向上させる観点から、より更に好ましくは前記粘結剤組成物中の前記成分Bと前記成分Cの含有量の合計に対する前記成分Bの含有量が63.0~95.0質量%、かつ、前記成分C中の窒素含有量が4.6~13.9質量%であり、かつ、下記式(2)を満たす。
1.32x+57.4 ≦y   (2)
 前記粘結剤組成物は、保存安定性向上の観点から、より更に好ましくは前記粘結剤組成物中の前記成分Bと前記成分Cの含有量の合計に対する前記成分Bの含有量が63.0~78.0質量%、かつ、前記成分C中の窒素含有量が4.6~13.9質量%であり、かつ、前記式(2)を満たす。
〔水(成分D)〕
 前記粘結剤組成物中の前記成分Dの含有量は、鋳型強度を向上させる観点から、25.0質量%以下であり、20.0質量%以下が好ましい。前記粘結剤組成物中の前記成分Dの含有量は、前記粘結剤組成物の粘度調整の観点から、5.0質量%以上が好ましく、8.0質量%以上がより好ましく、10.0質量%以上が更に好ましい。なお、成分Dの含有量は実施例に記載の方法により測定することができる。
〔硬化促進剤〕
 前記粘結剤組成物には、鋳型強度向上の観点から、硬化促進剤が含まれていてもよい。硬化促進剤としては、鋳型強度向上の観点から、フェノール誘導体、芳香族ジアルデヒド、及びタンニン類からなる群より選ばれる1種以上が好ましい。
 前記フェノール誘導体としては、例えばレゾルシン、クレゾール、ヒドロキノン、フロログルシノール、メチレンビスフェノール等が挙げられる。前記粘結剤組成物中の前記フェノール誘導体の含有量は、鋳型強度を向上させる観点から、1~25質量%であることが好ましく、2~15質量%であることがより好ましく、3~10質量%であることが更に好ましい。
 前記芳香族ジアルデヒドとしては、テレフタルアルデヒド、フタルアルデヒド及びイソフタルアルデヒド等、並びにそれらの誘導体等が挙げられる。それらの誘導体とは、基本骨格としての2つのホルミル基を有する芳香族化合物の芳香環にアルキル基等の置換基を有する化合物等を意味する。前記粘結剤組成物中の芳香族ジアルデヒドの含有量は、芳香族ジアルデヒドをフラン樹脂に十分に溶解させる観点、及び芳香族ジアルデヒド自体の臭気を抑制する観点から、好ましくは0.1~15質量%であり、より好ましくは0.5~10質量%であり、更に好ましくは1~5質量%である。
 前記タンニン類としては、縮合タンニンや加水分解型タンニンが挙げられる。これら縮合タンニンや加水分解型タンニンの例としては、ピロガロール骨格やレゾルシン骨格を持つタンニンが挙げられる。また、これらタンニン類を含有する樹皮抽出物や植物由来の葉、実、種、植物に寄生した虫こぶ等の天然物からの抽出物を添加しても構わない。前記粘結剤組成物中のタンニン類の含有量は、硬化速度を向上させる観点及び鋳型強度向上の観点から、好ましくは0.2~10質量%であり、より好ましくは1.0~7質量%であり、更に好ましくは1.9~5質量%である。
 前記粘結剤組成物の25℃における粘度は、鋳型用組成物の製造時及び鋳型製造時の作業性の観点から、70mPa・s以下が好ましく、50mPa・s以下がより好ましい。なお、粘結剤組成物の25℃における粘度は実施例に記載の方法により測定することができる。
 前記粘結剤組成物には、更にシランカップリング剤等の添加剤が含まれていてもよい。例えば、前記粘結剤組成物にシランカップリング剤が含まれていると、得られる鋳型の最終強度をより向上させることができるため好ましい。シランカップリング剤としては、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン等のアミノシランや、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等のエポキシシラン、ウレイドシラン、メルカプトシラン、スルフィドシラン、メタクリロキシシラン、アクリロキシシランなどが用いられる。好ましくは、アミノシラン、エポキシシラン、ウレイドシランである。より好ましくはアミノシラン、エポキシシランである。アミノシランの中でも、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシランが好ましい。エポキシシランの中でも、3-グリシドキシプロピルメチルジメトキシシランが好ましい。
 前記粘結剤組成物中のシランカップリング剤の含有量は、鋳型強度向上の観点から、0.01質量%以上が好ましく、0.05質量%以上がより好ましい。前記粘結剤組成物中のシランカップリング剤の含有量は、同様の観点から、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましく、0.5質量%以下が更に好ましい。
 本実施形態の鋳型造型用粘結剤組成物は自硬性鋳型の造型に好適に用いられる。ここで自硬性鋳型とは、砂に粘結剤組成物と硬化剤を混合すると、時間の経過と共に重合反応が進行し、鋳型が硬化する鋳型である。その際に用いられる砂の温度としては、-20℃~50℃の範囲であり、好ましくは0℃~40℃である。このような温度の砂に対して、それに適した量の硬化剤を選択し砂に添加する事で、鋳型を適切に硬化できる。
<鋳型造型用組成物>
 本実施形態の鋳型造型用組成物は、前記粘結剤組成物と、当該鋳型造型用粘結剤組成物を硬化させる硬化剤を含む硬化剤組成物と、を含有する。本実施形態の鋳型造型用組成物は、前記粘結剤組成物と同様の効果を有する。
〔硬化剤組成物〕
 前記硬化剤組成物は、前記粘結剤組成物を硬化させる硬化剤を含有するものであれば特に限定なく用いることができる。当該硬化剤としては酸系硬化剤が例示でき、キシレンスルホン酸(特に、m-キシレンスルホン酸)やトルエンスルホン酸(特に、p-トルエンスルホン酸)、メタンスルホン酸等のスルホン酸系化合物、リン酸、酸性リン酸エステル等のリン酸系化合物、硫酸等、従来公知のものを1種以上が使用できる。これらの化合物は、取り扱い性の観点から水溶液であることが好ましい。更に、硬化剤組成物中にアルコール類、エーテルアルコール類及びエステル類よりなる群から選ばれる1種以上の溶剤や、カルボン酸類を含有させることができる。
 前記硬化剤組成物中の前記溶剤の含有量は、作業環境の温度や耐火性粒子の温度に応じて、所望の反応速度及び鋳型強度を得るために適宜調整されるが、一般的には、硬化剤組成物を溶解させる観点から、5質量%以上が好ましく、10質量%以上がより好ましく、20質量%以上が更に好ましい。前記硬化剤組成物中の前記溶剤の含有量は、鋳型強度向上の観点から、90質量%以下が好ましく、80質量%以下がより好ましく、70質量%以下が更に好ましい。
 前記硬化剤組成物中の前記硬化剤の含有量は、鋳型強度向上の観点から、10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上が更に好ましい。前記硬化剤組成物中の前記硬化剤の含有量は、硬化剤組成物を溶解させる観点から、95質量%以下が好ましく、90質量%以下がより好ましく、80質量%以下が更に好ましい。
 前記粘結剤組成物と前記硬化剤の質量比は、硬化速度を向上させ、鋳型強度を向上させる観点から、前記粘結剤組成物100質量部に対して、前記硬化剤10~60質量部が好ましく、10~40質量部がより好ましく、10~30質量部が更に好ましい。
〔鋳型用組成物〕
 本実施形態の鋳型用組成物は、耐火性粒子と、前記粘結剤組成物と、前記硬化剤組成物と、を含有する。本実施形態の鋳型用組成物は、本実施形態の鋳型用組成物は、前記粘結剤組成物と同様の効果を有する。
〔耐火性粒子〕
 前記耐火性粒子としては、珪砂、クロマイト砂、ジルコン砂、オリビン砂、アルミナ砂、ムライト砂、合成ムライト砂等の従来公知のもの1種又は2種以上を使用でき、また、使用済みの耐火性粒子を回収したものや再生処理したものなども使用できる。これらの中でも珪砂を含むことが好ましい。
 前記鋳型用組成物において、前記耐火性粒子と前記粘結剤組成物と前記硬化剤との質量比は適宜設定できるが、硬化速度を向上させ、鋳型強度を向上させる観点から、前記耐火性粒子100質量部に対して、前記粘結剤組成物が0.5~1.5質量部で、前記硬化剤が0.07~1質量部の範囲が好ましい。
<鋳型の製造方法>
 本実施形態の鋳型の製造方法は、耐火性粒子と、前記粘結剤組成物と、前記硬化剤組成物と、を混合して鋳型用組成物を得る混合工程、及び前記鋳型用組成物を型枠に詰め、当該鋳型用組成物を硬化する硬化工程を含む。当該鋳型の製造方法は、前記粘結剤組成物と同様の効果を有する。
 前記混合工程において、前記粘結剤組成物及び前記硬化剤組成物、並びに耐火性粒子を添加・混合する順序に特に限定は無く、前記粘結剤組成物と前記硬化剤組成物とを混合し鋳型造型用組成物を製造した後、当該鋳型造型用組成物と耐火性粒子とを混合してもよく、前記粘結剤組成物、前記硬化剤組成物、及び耐火性粒子をそれぞれ添加・混合してもよいが、保存安定性及び鋳型の生産性の観点からは、前記粘結剤組成物、前記硬化剤組成物、及び耐火性粒子を混合し、鋳型用組成物を得るのが好ましい。また、鋳型強度向上の観点から、耐火性粒子に硬化剤組成物を添加して混合し、次いで粘結剤組成物を添加して混合することが好ましい。また、2種以上の硬化剤組成物を用いる場合は、各硬化剤組成物を混合してから添加してもよく、各硬化剤組成物を別々に添加してもよい。
 前記混合工程において、各原料を混合する方法としては、公知一般の手法を用いることが出来、例えば、バッチミキサーにより各原料を添加して混練する方法や、連続ミキサーに各原料を供給して混練する方法が挙げられる。
 本実施形態の鋳型の製造方法において、当該混合工程以外は従来の鋳型の製造プロセスをそのまま利用して鋳型を製造することができる。
 上述した実施形態に関し、本発明はさらに以下の組成物、製造方法、或いは用途を開示する。
<1> フルフリルアルコール(成分A)、ビスヒドロキシメチルフラン(成分B)、樹脂(成分C)及び水(成分D)を含有し、
 下記の条件(1)~(5)を満たす鋳型造型用粘結剤組成物。
条件(1):前記鋳型造型用粘結剤組成物中の前記成分Aの含有量が30.0質量%以下
条件(2):前記鋳型造型用粘結剤組成物中の前記成分Dの含有量が25.0質量%以下
条件(3):前記鋳型造型用粘結剤組成物中の前記成分Bと前記成分Cの含有量の合計に対する前記成分Bの含有量が39.0質量%以上95.0質量%以下
条件(4):前記成分C中の窒素含有量が2.7質量%以上22.0質量%以下
条件(5):前記鋳型造型用粘結剤組成物中の前記成分Bの含有量をy、前記成分Cの窒素含有量をxとした場合、下式(1)を満たす
 2.97x+15.2≦y   (1)
<2> フルフリルアルコール(成分A)、ビスヒドロキシメチルフラン(成分B)、樹脂(成分C)及び水(成分D)を含有し、
 下記の条件(1)~(5)を満たす、<1>に記載の鋳型造型用粘結剤組成物。
条件(1):前記鋳型造型用粘結剤組成物中の前記成分Aの含有量が5.0質量%以上30.0質量%以下
条件(2):前記鋳型造型用粘結剤組成物中の前記成分Dの含有量が5.0質量%以上25.0質量%以下
条件(3):前記鋳型造型用粘結剤組成物中の前記成分Bと前記成分Cの含有量の合計に対する前記成分Bの含有量が39.0質量%以上95.0質量%以下
条件(4):前記成分C中の窒素含有量が2.7質量%以上22.0質量%以下
条件(5):前記鋳型造型用粘結剤組成物中の前記成分Bの含有量をy、前記成分Cの窒素含有量をxとした場合、下式(1)を満たす
 2.97x+15.2≦y   (1)
<3> 前記成分Aの含有量が10.0質量%以上30.0質量%以下である、<1>又は<2>に記載の鋳型造型用粘結剤組成物。
<4> 前記成分Aの含有量が15.0質量%以上30.0質量%以下である、<1>乃至<3>の何れか1つに記載の鋳型造型用粘結剤組成物。
<5> 前記成分Dの含有量が8.0質量%以上25.0質量%以下である、<1>乃至<4>の何れか1つに記載の鋳型造型用粘結剤組成物。
<6> 前記成分Dの含有量が10.0質量%以上20.0質量%以下である、<1>乃至<5>の何れか1つに記載の鋳型造型用粘結剤組成物。
<7> 下記の条件(3)~(5)を満たす、<1>乃至<6>の何れか1つに記載の鋳型造型用粘結剤組成物。
条件(3):前記鋳型造型用粘結剤組成物中の前記成分Bと前記成分Cの含有量の合計に対する前記成分Bの含有量が51.0質量%以上95.0質量%以下
条件(4):前記成分C中の窒素含有量が2.7質量%以上22.0質量%以下
条件(5):前記鋳型造型用粘結剤組成物中の前記成分Bの含有量をy、前記成分Cの窒素含有量をxとした場合、下式(1)を満たす
 2.97x+15.2≦y   (1)
<8> 下記の条件(3)~(5)を満たす、<1>乃至<7>の何れか1つに記載の鋳型造型用粘結剤組成物。
条件(3):前記鋳型造型用粘結剤組成物中の前記成分Bと前記成分Cの含有量の合計に対する前記成分Bの含有量が63.0質量%以上95.0質量%以下
条件(4):前記成分C中の窒素含有量が2.7質量%以上22.0質量%以下
条件(5):前記鋳型造型用粘結剤組成物中の前記成分Bの含有量をy、前記成分Cの窒素含有量をxとした場合、下式(1)を満たす
 2.97x+15.2≦y   (1)
<9> 前記成分Cがフラン樹脂を含有し、前記成分C中の前記フラン樹脂の含有量が、80質量%以上である、<1>乃至<8>の何れか1つに記載の鋳型造型用粘結剤組成物。
<10> 前記成分Cがフラン樹脂を含有し、前記成分C中の前記フラン樹脂の含有量が、90質量%以上である、<1>乃至<9>の何れか1つに記載の鋳型造型用粘結剤組成物。
<11> 前記成分Cがフラン樹脂を含有し、前記成分C中の前記フラン樹脂の含有量が、95質量%以上である、<1>乃至<10>の何れか1つに記載の鋳型造型用粘結剤組成物。
<12> 前記成分Cがフラン樹脂を含有し、前記成分C中の前記フラン樹脂の含有量が、98質量%以上である、<1>乃至<11>の何れか1つに記載の鋳型造型用粘結剤組成物。
<13> 前記成分Cがフラン樹脂を含有し、前記成分C中の前記フラン樹脂の含有量が、実質的に100質量%である、<1>乃至<12>の何れか1つに記載の鋳型造型用粘結剤組成物。
<14> 前記フラン樹脂が、尿素変性フラン樹脂、フルフリルアルコール縮合物及びフルフリルアルコールとアルデヒド類の縮合物よりなる群から選ばれる1種以上、並びに前記群から選ばれる2種以上の共縮合物よりなる群から選ばれる1種以上を含有する、<9>乃至<13>の何れか1つに記載の鋳型造型用粘結剤組成物。
<15> 前記フラン樹脂中の前記尿素変性フラン樹脂、フルフリルアルコール縮合物及びフルフリルアルコールとアルデヒド類の縮合物よりなる群から選ばれる1種以上、並びに前記群から選ばれる2種以上の共縮合物よりなる群から選ばれる1種以上の含有量の合計が90質量%以上である、<14>に記載の鋳型造型用粘結剤組成物。
<16> 前記フラン樹脂中の前記尿素変性フラン樹脂、フルフリルアルコール縮合物及びフルフリルアルコールとアルデヒド類の縮合物よりなる群から選ばれる1種以上、並びに前記群から選ばれる2種以上の共縮合物よりなる群から選ばれる1種以上の含有量の合計が95質量%以上である、<14>又は<15>に記載の鋳型造型用粘結剤組成物。
<17> 前記フラン樹脂中の前記尿素変性フラン樹脂、フルフリルアルコール縮合物及びフルフリルアルコールとアルデヒド類の縮合物よりなる群から選ばれる1種以上、並びに前記群から選ばれる2種以上の共縮合物よりなる群から選ばれる1種以上の含有量の合計が98質量%以上である、<14>乃至<16>の何れか1つに記載の鋳型造型用粘結剤組成物。
<18> 前記フラン樹脂中の前記尿素変性フラン樹脂、フルフリルアルコール縮合物及びフルフリルアルコールとアルデヒド類の縮合物よりなる群から選ばれる1種以上、並びに前記群から選ばれる2種以上の共縮合物よりなる群から選ばれる1種以上の含有量の合計が実質的に100質量%である、<14>乃至<17>の何れか1つに記載の鋳型造型用粘結剤組成物。
<19> <1>乃至<18>の何れか1項に記載の鋳型造型用粘結剤組成物と、当該鋳型造型用粘結剤組成物を硬化させる硬化剤を含む硬化剤組成物と、を含有する、鋳型造型用組成物。
<20> 耐火性粒子と、<1>乃至<18>の何れか1つに記載の鋳型造型用粘結剤組成物と、当該鋳型造型用粘結剤組成物を硬化させる硬化剤を含む硬化剤組成物と、を含有する、鋳型用組成物。
<21> 前記耐火性粒子100質量部に対して、前記粘結剤組成物が0.5~1.5質量部で、前記硬化剤が0.07~1質量部である、<20>に記載の鋳型用組成物。
<22> 耐火性粒子と、<1>乃至<18>の何れか1つに記載の鋳型造型用粘結剤組成物と、当該鋳型造型用粘結剤組成物を硬化させる硬化剤を含む硬化剤組成物と、を混合して鋳型用組成物を得る混合工程、及び前記鋳型用組成物を型枠に詰め、当該鋳型用組成物を硬化する硬化工程を含む鋳型の製造方法。
 以下、本発明を具体的に示す実施例等について説明する。
<物性の測定方法>
〔水の含有量〕
 自動水分測定装置(平沼産業株式会社製、AQV―2200A)を用いて、JIS K 0068に示されるカールフィッシャー法に基づいて測定を行った。
〔フルフリルアルコール及びビスヒドロキシメチルフランの含有量〕
 ガスクロマトグラフィー(株式会社島津製作所製、GC―2014S)を用いて下記の条件のガスクロマトグラフィー分析にて測定を行った。 
・検量線:フルフリルアルコール及びビスヒドロキシメチルフランを用いて作成した。
・内部標準溶液:1,6-ヘキサンジオール
・カラム:PEG-20M Chromosorb WAW DMCS 60/80mesh(ジーエルサイエンス社製)
・カラム温度:80~200℃(8℃/min)
・インジェクション温度:210℃
・検出器温度:250℃キャリアーガス:50mL/min(He)
〔窒素含有量〕
 JIS K 6451-2 に示されるケルダール法に基づいて測定を行った。
〔粘度〕
 E型粘度計(RE-80R、東機産業株式会社製)を用いて、25℃、標準ローター(コーン角度1°34’コーン半径:24mm)使用し、回転数100rpmで粘度の測定を行った。
<樹脂の製造方法>
〔尿素変性フラン樹脂〕
 三ツ口フラスコにフルフリルアルコール609g、25質量%水酸化ナトリウム水溶液0.7g、92質量%パラホルムアルデヒド188g、尿素140gを投入し、常圧下100℃で45分間反応させた。その後、グルタル酸1.4gを投入し、更に100℃で45分間反応させた。その後、尿素52gを添加し、70℃で30分反応させた。反応後、25質量%水酸化ナトリウム水溶液でpH10に調整した。得られた組成物を、ロータリーエバポレーターを用いて110℃、内部気圧5mmHgの条件で減圧蒸留し、水及び一部のフルフリルアルコールを除いた。得られた反応物の組成は、尿素変性フラン樹脂71.9質量%、フルフリルアルコール28.1質量%であった。また、得られた反応物の窒素含有量は14.5質量%であり、尿素変性フラン樹脂の窒素含有量は20.2質量%であった。
〔フルフリルアルコール縮合物〕
 三ツ口フラスコにフルフリルアルコール492g、グルタル酸8gを投入し、常圧下100℃で5時間反応させた。その後、25質量%水酸化ナトリウム水溶液でpH10に調整した。得られた組成物を、ロータリーエバポレーターを用いて110℃、内部気圧5mmHgの条件で減圧蒸留し、水及び一部のフルフリルアルコールを除いた。得られた反応物の組成は、フルフリルアルコール縮合物79.0質量%、フルフリルアルコール21.0質量%であった。
〔2,5-ビスヒドロキシメチルフラン(BHMF)〕
 三ツ口フラスコにフルフリルアルコール615g、92質量%パラホルムアルデヒド205g、グルタル酸41gを投入し、常圧下100℃で3時間反応させた。その後、48%水酸化ナトリウム水溶液でpH10に調整した。得られた組成物を、ロータリーエバポレーターを用いて110℃、内部気圧5mmHgの条件で減圧蒸留することで、フルフリルアルコール及び水分を除去した。得られた残留物を40℃に温めたクロロホルムに完全に溶解させた後、5℃で冷却することでBHMFの結晶を得た。その後同様の操作を2度繰り返した。得られた結晶の純度は100質量%であった。
<粘結剤組成物の製造例>
〔製造例1〕
 特開2013-151019号公報段落0055<縮合物1の製造>に記載の手順で樹脂aを得た。当該樹脂aの未反応フルフリルアルコール及び水分を測定し、当該測定結果を元に、前記樹脂a、フルフリルアルコール、水、及びシランカップリング剤を用いて、フルフリルアルコールの含有量が50質量%、水の含有量が10質量%、シランカップリング剤の含有量が0.15質量%となるよう調製し、製造例1に係る粘結剤組成物を得た。
〔製造例2〕
 前記樹脂a、フルフリルアルコール、水、及びシランカップリング剤を用いて、フルフリルアルコールの含有量が50質量%、水の含有量が20質量%、シランカップリング剤の含有量が0.15質量%となるよう調製し、製造例2に係る粘結剤組成物を得た。
〔製造例3〕
 三ツ口フラスコにフルフリルアルコール587g、25質量%水酸化ナトリウム水溶液1.0g、92質量%パラホルムアルデヒド 159g、グルタル酸29gを投入し、常圧下125℃で3時間反応させた。その後90℃まで冷却し尿素35gを仕込んだ後、105℃まで昇温し同温度で2時間反応させた。反応後75℃まで冷却し尿素7gを加え、同温度で20分反応させ、樹脂bを得た。樹脂b中のフルフリルアルコールは20.0質量%、BHMFは29.5質量%、水は6.8質量%および窒素含有量は2.4質量%であった。前記樹脂bにシランカップリング剤1.5g、フルフリルアルコール36g、水145gを加え混合し、製造例3に係る粘結剤組成物を得た。製造例3に係る粘結剤組成物のフルフリルアルコールの含有量は20.0質量%、BHMFの含有量は24.1質量%、フラン樹脂の含有量は32.9質量%、水の含有量は20.0質量%、フラン樹脂中の窒素含有量は6.0質量%であった。
〔製造例4〕
 三ツ口フラスコにフルフリルアルコール588g、25質量%水酸化ナトリウム水溶液1.0g、92 質量%パラホルムアルデヒド 159g、安息香酸29gを投入し、常圧下125℃で2時間反応させた。その後90℃まで冷却し92質量%パラホルムアルデヒド10g、尿素50gを投入し、105℃まで昇温し同温度で2時間反応させた。反応後75℃まで冷却し尿素11gを加え、同温度で20分反応させ、樹脂cを得た。前記樹脂c中のフルフリルアルコールは22.0質量%、BHMFは26.4質量%、水は7.4質量%及び窒素含有量は3.3質量%であった。前記樹脂cにシランカップリング剤1.5g、フルフリルアルコール13g、水138gを加え混合し、製造例4に係る粘結剤組成物を得た。製造例4に係る粘結剤組成物のフルフリルアルコールの含有量は20.0質量%、BHMFの含有量は22.4質量%、フラン樹脂の含有量は34.6質量%、水の含有量は20.0質量%、フラン樹脂中の窒素含有量は8.1質量%であった。
〔製造例5〕
 三ツ口フラスコに前記樹脂cを359g、フルフリルアルコール121g、水173g、BHMF345g、シランカップリング剤1.5gを加え、40℃で30分間攪拌し、製造例5に係る粘結剤組成物を得た。製造例5に係る粘結剤組成物のフルフリルアルコールの含有量は20.0質量%、BHMFの含有量は44.0質量%、フラン樹脂の含有量は14.7質量%、水の含有量は20.0質量%、フラン樹脂中の窒素含有量は8.1質量%であった。
〔製造例6〕
 三ツ口フラスコにフルフリルアルコール569g、25質量%水酸化ナトリウム水溶液0.9g、92質量%パラホルムアルデヒド 154g、グルタル酸28gを投入し、常圧下125℃で3時間反応させた。その後90℃まで冷却しエチレン尿素58gを仕込んだ後、105℃まで昇温し同温度で3時間反応させた。反応後75℃まで冷却し尿素8gを加え、同温度で20分反応させ、樹脂dを得た。樹脂d中のフルフリルアルコールは20.6質量%、BHMFは28.0質量%、水は6.5質量%および窒素含有量は2.8質量%であった。前記樹脂dにシランカップリング剤1.5g、フルフリルアルコール31g、水147gを加え混合し、製造例6に係る粘結剤組成物を得た。製造例6に係る粘結剤組成物のフルフリルアルコールの含有量は20.0質量%、BHMFの含有量は23.0質量%、フラン樹脂の含有量は34.1質量%、水の含有量は20.0質量%、フラン樹脂中の窒素含有量は6.7質量%であった。
〔製造例7〕
 三ツ口フラスコにフルフリルアルコール587g、25質量%水酸化ナトリウム水溶液1.0g、92質量%パラホルムアルデヒド 195g、グルタル酸29gを投入し、常圧下125℃で2時間反応させた。その後90℃まで冷却しメラミン28gを仕込んだ後、105℃まで昇温し同温度で2時間反応させた。反応後75℃まで冷却し尿素8gを加え、同温度で20分反応させ、樹脂eを得た。樹脂e中のフルフリルアルコールは19.3質量%、BHMFは27.5質量%、水は7.3質量%および窒素含有量は2.8質量%であった。前記樹脂eにシランカップリング剤1.5g、フルフリルアルコール43g、水141gを加え混合し、製造例7に係る粘結剤組成物を得た。製造例7に係る粘結剤組成物のフルフリルアルコールの含有量は20.0質量%、BHMFの含有量は22.4質量%、フラン樹脂の含有量は34.6質量%、水の含有量は20.0質量%、フラン樹脂中の窒素含有量は6.6質量%であった。
〔製造例8〕
 特表2014-501175記載のKH-Yの製造法を元に、下記手順で製造例6に係る粘結剤組成物を製造した。三ツ口フラスコにフルフリルアルコール197g、92質量%パラホルムアルデヒド 196g、安息香酸4.7gを投入し、常圧下110℃で1時間反応させた。この反応物にさらにフルフリルアルコール394g、安息香酸9.4gを入れ、135℃まで昇温し5時間還流させた。反応終了後の温度は125℃であった。その後尿素60gを投入し、約40分かけ60℃まで冷却し樹脂fを得た。前記樹脂f中のフルフリルアルコールは23.2質量%、BHMFは14.8質量%、水は7.3質量%、及び窒素含有量は3.3質量%であった。前記樹脂fにシランカップリング剤1.5g、水137gを加え混合し、製造例8に係る粘結剤組成物を得た。製造例8に係る粘結剤組成物のフルフリルアルコールの含有量は20.0質量%、BHMFの含有量は12.7質量%、フラン樹脂の含有量は45.7質量%、水の含有量は20.0質量%、フラン樹脂中の窒素含有量は6.1質量%であった。
<実施例1~21及び比較例1~9>
〔鋳型造型用粘結剤組成物の製造〕
 上記製造例で得られた尿素変性フラン樹脂、フルフリルアルコール・ホルムアルデヒド樹脂、BHMF、フルフリルアルコール、水及びシランカップリング剤を用いて、40℃、30分の条件で混合を行い、実施例1~16、比較例1~8の鋳型造型用粘結剤組成物を得た。実施例17~21、比較例9及び参考例1、2の鋳型造型用粘結剤組成物は、上記に示した製造例1~8の組成物をそれぞれ用いた。
〔鋳型用組成物の製造〕
 5℃、55%RHの条件下で、フラン再生珪砂100質量部に対し、硬化剤組成物を添加し、次いで表1に示した鋳型造型用粘結剤組成物0.8質量部を添加し、これらを混合して鋳型用組成物を得た。尚、硬化剤組成物はキシレンスルホン酸/硫酸系硬化剤(カオーライトナーUS-3、カオーライトナーC-21:花王クエーカー社製)を用いた。硬化剤組成物の添加量は、フラン再生珪砂100質量部に対して0.32質量部とし、後述のテストピースの圧縮強度が0.20~0.35MPa/30分となるように、カオーライトナーUS-3とカオーライトナーC-21の比率を調整した。また、添加量が0.32質量部で上記の圧縮強度に満たない場合は、カオーライトナーUS-3のみを使用し、かつ上記圧縮強度を満たすように添加量を増量した。
〔鋳型圧縮強度の評価〕
 混練直後の鋳型用組成物を直径50mm、高さ50mmの円柱形状のテストピース枠に充填し、30分経過した時に抜型を行いJIS Z 2604-1976に記載された方法で、圧縮強度(MPa)を測定し、この強度を「30分後の圧縮強度」とした。「30分後の圧縮強度」を、硬化速度の目安とし、硬化剤量が適正であることを確認した。また、別途、鋳型用組成物を同様にテストピース枠に充填し、2時間経過した時に抜型を行い、充填から24時間後に、JIS Z 2604-1976に記載された方法で、圧縮強度(MPa)を測定し、「24時間後の圧縮強度」とした。数値が高いほど鋳型強度が高いことを示す。評価結果を表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (7)

  1.  フルフリルアルコール(成分A)、ビスヒドロキシメチルフラン(成分B)、樹脂(成分C)及び水(成分D)を含有し、
     下記の条件(1)~(5)を満たす鋳型造型用粘結剤組成物。
    条件(1):前記鋳型造型用粘結剤組成物中の前記成分Aの含有量が30.0質量%以下
    条件(2):前記鋳型造型用粘結剤組成物中の前記成分Dの含有量が25.0質量%以下
    条件(3):前記鋳型造型用粘結剤組成物中の前記成分Bと前記成分Cの含有量の合計に対する前記成分Bの含有量が39.0質量%以上95.0質量%以下
    条件(4):前記成分C中の窒素含有量が2.7質量%以上22.0質量%以下
    条件(5):前記鋳型造型用粘結剤組成物中の前記成分Bの含有量をy、前記成分Cの窒素含有量をxとした場合、下式(1)を満たす
     2.97x+15.2≦y   (1)
  2.  前記成分Cがフラン樹脂を含有し、前記成分C中の前記フラン樹脂の含有量が、80質量%以上である、請求項1に記載の鋳型造型用粘結剤組成物。
  3.  前記フラン樹脂が、尿素変性フラン樹脂、フルフリルアルコール縮合物及びフルフリルアルコールとアルデヒド類の縮合物よりなる群から選ばれる1種以上、並びに前記群から選ばれる2種以上の共縮合物よりなる群から選ばれる1種以上を含有する、請求項2に記載の鋳型造型用粘結剤組成物。
  4.  前記フラン樹脂中の前記尿素変性フラン樹脂、フルフリルアルコール縮合物及びフルフリルアルコールとアルデヒド類の縮合物よりなる群から選ばれる1種以上、並びに前記群から選ばれる2種以上の共縮合物よりなる群から選ばれる1種以上の含有量の合計が90質量%以上である、請求項3に記載の鋳型造型用粘結剤組成物。
  5.  請求項1~4の何れか1項に記載の鋳型造型用粘結剤組成物と、当該鋳型造型用粘結剤組成物を硬化させる硬化剤を含む硬化剤組成物と、を含有する、鋳型造型用組成物。
  6.  耐火性粒子と、請求項1~4の何れか1項に記載の鋳型造型用粘結剤組成物と、当該鋳型造型用粘結剤組成物を硬化させる硬化剤を含む硬化剤組成物と、を含有する、鋳型用組成物。
  7.  耐火性粒子と、請求項1~4の何れか1項に記載の鋳型造型用粘結剤組成物と、当該鋳型造型用粘結剤組成物を硬化させる硬化剤を含む硬化剤組成物と、を混合して鋳型用組成物を得る混合工程、及び前記鋳型用組成物を型枠に詰め、当該鋳型用組成物を硬化する硬化工程を含む鋳型の製造方法。
PCT/JP2020/042460 2020-11-13 2020-11-13 鋳型造型用粘結剤組成物 WO2022102089A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080105309.0A CN116234647A (zh) 2020-11-13 2020-11-13 铸模造型用粘结剂组合物
PCT/JP2020/042460 WO2022102089A1 (ja) 2020-11-13 2020-11-13 鋳型造型用粘結剤組成物
JP2022504620A JP7102639B1 (ja) 2020-11-13 2020-11-13 鋳型造型用粘結剤組成物
TW110125842A TW202229492A (zh) 2020-11-13 2021-07-14 鑄模造模用黏結劑組合物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/042460 WO2022102089A1 (ja) 2020-11-13 2020-11-13 鋳型造型用粘結剤組成物

Publications (1)

Publication Number Publication Date
WO2022102089A1 true WO2022102089A1 (ja) 2022-05-19

Family

ID=81601831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042460 WO2022102089A1 (ja) 2020-11-13 2020-11-13 鋳型造型用粘結剤組成物

Country Status (4)

Country Link
JP (1) JP7102639B1 (ja)
CN (1) CN116234647A (ja)
TW (1) TW202229492A (ja)
WO (1) WO2022102089A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0857577A (ja) * 1994-08-19 1996-03-05 Kao Corp 鋳型製造用粘結剤組成物及び鋳型の製造方法
JP2011045904A (ja) * 2009-08-26 2011-03-10 Kao Corp 鋳型造型用粘結剤組成物
JP2011224592A (ja) * 2010-04-16 2011-11-10 Kao Corp 鋳型用組成物を製造するためのキット
JP2013151019A (ja) * 2011-10-31 2013-08-08 Kao Corp 鋳型造型用粘結剤組成物
JP2014501175A (ja) * 2010-12-16 2014-01-20 ヒユツテネス−アルベルトス ヘーミッシエ ヴエルケ ゲーエムベーハー 鋳物工業用の低−放出性常温硬化性結合剤
JP2020522388A (ja) * 2017-06-08 2020-07-30 アーエスカー ケミカルズ ゲーエムベーハーAsk Chemicals Gmbh 3次元的に積層造形体を製造するための方法
JP2020163410A (ja) * 2019-03-28 2020-10-08 群栄化学工業株式会社 砂組成物およびその製造方法と、鋳型の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0857577A (ja) * 1994-08-19 1996-03-05 Kao Corp 鋳型製造用粘結剤組成物及び鋳型の製造方法
JP2011045904A (ja) * 2009-08-26 2011-03-10 Kao Corp 鋳型造型用粘結剤組成物
JP2011224592A (ja) * 2010-04-16 2011-11-10 Kao Corp 鋳型用組成物を製造するためのキット
JP2014501175A (ja) * 2010-12-16 2014-01-20 ヒユツテネス−アルベルトス ヘーミッシエ ヴエルケ ゲーエムベーハー 鋳物工業用の低−放出性常温硬化性結合剤
JP2013151019A (ja) * 2011-10-31 2013-08-08 Kao Corp 鋳型造型用粘結剤組成物
JP2020522388A (ja) * 2017-06-08 2020-07-30 アーエスカー ケミカルズ ゲーエムベーハーAsk Chemicals Gmbh 3次元的に積層造形体を製造するための方法
JP2020163410A (ja) * 2019-03-28 2020-10-08 群栄化学工業株式会社 砂組成物およびその製造方法と、鋳型の製造方法

Also Published As

Publication number Publication date
CN116234647A (zh) 2023-06-06
JP7102639B1 (ja) 2022-07-19
JPWO2022102089A1 (ja) 2022-05-19
TW202229492A (zh) 2022-08-01

Similar Documents

Publication Publication Date Title
JP6010426B2 (ja) 鋳型造型用粘結剤組成物
JP6363938B2 (ja) 鋳型造型用組成物
WO1995009892A1 (en) Ester cured no-bake foundry binder system
JP6097135B2 (ja) 鋳型造型用粘結剤組成物
JP6062715B2 (ja) 鋳型造型用粘結剤組成物
JP7102639B1 (ja) 鋳型造型用粘結剤組成物
JP5683941B2 (ja) 鋳型造型用粘結剤組成物の製造方法
JP5430313B2 (ja) 鋳型造型用粘結剤組成物
CN112512722B (zh) 铸型造型用粘结剂组合物
JP6761943B2 (ja) 鋳型造型用粘結剤組成物
JP6770528B2 (ja) 鋳型造型用キット
WO2020035922A1 (ja) 鋳型造型用粘結剤組成物
JP6971412B2 (ja) 鋳型造型用粘結剤組成物
JP5486295B2 (ja) 鋳型造型用粘結剤組成物
TW202311482A (zh) 鑄模造模用黏結劑樹脂之製造方法
WO2024117039A1 (ja) 鋳型造型用粘結剤組成物
JP6934414B2 (ja) 鋳型造型用粘結剤組成物
JPS6228043A (ja) 鋳物用粘結剤樹脂組成物
JP5944259B2 (ja) 鋳型造型用粘結剤組成物
JP6607725B2 (ja) 鋳型造型用粘結剤組成物
JPH0550177A (ja) 鋳物砂用樹脂組成物
JP6512983B2 (ja) 鋳型造型用粘結剤組成物
JP6063219B2 (ja) 鋳型造型用粘結剤組成物
JP2016107328A (ja) 鋳型造型用粘結剤組成物
JP2020022985A (ja) 鋳型造型用粘結剤組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022504620

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961617

Country of ref document: EP

Kind code of ref document: A1