WO2022100674A1 - 一种数据读写系统和方法 - Google Patents

一种数据读写系统和方法 Download PDF

Info

Publication number
WO2022100674A1
WO2022100674A1 PCT/CN2021/130165 CN2021130165W WO2022100674A1 WO 2022100674 A1 WO2022100674 A1 WO 2022100674A1 CN 2021130165 W CN2021130165 W CN 2021130165W WO 2022100674 A1 WO2022100674 A1 WO 2022100674A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
data
optical signal
servo
read
Prior art date
Application number
PCT/CN2021/130165
Other languages
English (en)
French (fr)
Inventor
唐泓炜
徐君
徐佳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020237019509A priority Critical patent/KR20230104941A/ko
Priority to EP21891194.9A priority patent/EP4235665A1/en
Priority to JP2023528388A priority patent/JP2023549212A/ja
Publication of WO2022100674A1 publication Critical patent/WO2022100674A1/zh
Priority to US18/314,456 priority patent/US20230282233A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/14Heads, e.g. forming of the optical beam spot or modulation of the optical beam specially adapted to record on, or to reproduce from, more than one track simultaneously
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00451Recording involving ablation of the recording layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/085Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam into, or out of, its operative position or across tracks, otherwise than during the transducing operation, e.g. for adjustment or preliminary positioning or track change or selection
    • G11B7/08547Arrangements for positioning the light beam only without moving the head, e.g. using static electro-optical elements
    • G11B7/08558Arrangements for positioning the light beam only without moving the head, e.g. using static electro-optical elements using acousto-optical elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/094Methods and circuits for servo offset compensation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0945Methods for initialising servos, start-up sequences
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1362Mirrors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers

Definitions

  • the present application relates to the technical field of optical storage, and in particular, to a data reading and writing system and method.
  • Traditional optical storage technology usually by fixing the read-write optical head for outputting the optical signal, and using a high-speed rotating motor to drive the optical storage medium (such as an optical disc) to rotate at a high speed, to realize the optical signal reading and writing data on the optical storage medium.
  • the traditional method is usually achieved by increasing the rotational speed of the optical storage medium.
  • increasing the rotational speed of the optical storage medium will increase the jitter noise of the optical storage medium, thereby increasing the difficulty of the optical path servo.
  • the present application provides a data reading and writing system and method, which can improve the reading and writing speed of optical storage without increasing the rotational speed of the optical storage medium.
  • the present application provides a data reading and writing system, the system comprising: an optical deflector for sequentially deflecting a first optical signal by a plurality of angles to obtain a plurality of second optical signals.
  • the read-write optical head is used for receiving the plurality of second optical signals, and focusing the plurality of second optical signals on the optical storage medium respectively, so as to realize the reading and writing of the plurality of data points.
  • the data reading and writing system provided by the present application can sequentially deflect the first optical signal used for reading and writing data through the optical deflector, thereby realizing reading and writing of a row of data points on the optical storage medium.
  • the data reading and writing system provided in this application can simultaneously read and write on the optical storage medium without increasing the rotational speed of the optical storage medium by controlling a single beam of light signal.
  • the multiple data tracks in the data band realize the effect of reading and writing data in parallel through a single beam of optical signal, thereby improving the efficiency of reading and writing data in the data reading and writing system.
  • the system further includes: a moving platform for placing the optical storage medium, and for controlling the optical storage medium to rotate or rotate on a plane perpendicular to the axial direction of the optical head.
  • Pan a moving platform for placing the optical storage medium, and for controlling the optical storage medium to rotate or rotate on a plane perpendicular to the axial direction of the optical head.
  • the above-mentioned optical deflector is specifically used for sequentially deflecting the first optical signal by multiple angles in each preset period of the multiple preset periods, so as to obtain multiple second optical signals.
  • the above-mentioned read-write optical head is also used to receive the plurality of second optical signals in each preset period, and respectively focus the plurality of second optical signals on the optical storage medium, so as to realize the data tracking of the plurality of data tracks. of reading and writing.
  • the multiple data tracks include the aforementioned multiple data points, and the multiple data tracks correspond to the aforementioned multiple data points one-to-one.
  • the data reading and writing system realizes reading and writing data on a moving optical storage medium, thereby realizing that by controlling a single-beam optical signal, without increasing the rotational speed of the optical storage medium, Simultaneous reading and writing of multiple data tracks in the data band on the optical storage medium realizes the effect of parallel reading and writing of data through a single beam of optical signal, thereby improving the efficiency of data reading and writing system for reading and writing data.
  • the above-mentioned optical deflector includes at least one of the following devices: a polygon mirror, a galvanometer, an acousto-optic deflector or an electro-optic deflector.
  • the data reading and writing system provided by this application can meet different design requirements.
  • the above-mentioned multiple data tracks include at least one servo track, and multiple servo points on the servo track are discretely distributed.
  • the servo point is used to adjust the focus position of the above-mentioned read-write optical head when the optical signal is focused when the data read-write system reads data.
  • the distance between any two adjacent servo points in the above-mentioned plurality of servo points is greater than or equal to a preset distance.
  • servo can be performed when the data reading and writing system reads data, thereby improving the accuracy of the data reading and writing system when reading data.
  • the above-mentioned optical storage medium includes a plurality of storage layers, and the servo points in the plurality of storage layers are discretely distributed in the axial direction of the read-write optical head.
  • the servo point is used to adjust the focus position of the above-mentioned read-write optical head when the optical signal is focused when the data read-write system reads data.
  • the optical storage medium includes multiple storage layers
  • this possible design can reduce the attenuation of the optical signal for reading the servo point , thereby ensuring the accurate servo of the servo point to the data reading and writing system, thereby improving the accuracy of the data reading and writing system when reading data.
  • the above-mentioned multiple data tracks may form a data band.
  • the above-mentioned system also includes: a radial moving stage, used for reading and writing the first data band on the first storage layer in the plurality of storage layers of the above-mentioned optical storage medium, and then reading and writing the data to the optical deflector in the system. and a read-write optical head, moving a preset distance in a plane perpendicular to the axial direction of the read-write optical head, so as to realize reading and writing of the second data band in the first storage layer.
  • the first storage layer includes a plurality of data bands.
  • the above-mentioned system further includes: a signal processing module for receiving a third optical signal when the data reading and writing system reads data; and for receiving a third optical signal when the third optical signal is a servo optical signal when the third optical signal is used to generate a servo control signal for adjusting the focus position of the read-write optical head in the data read-write system when the optical signal is focused on the optical signal; and, for when the third optical signal is a data optical signal, based on the The third optical signal determines the data to be read.
  • the third optical signal is an optical signal returned by the optical storage medium after any one of the plurality of second optical signals acts on any data point on the optical storage medium. If the any one of the data points is a servo point, the third optical signal is a servo optical signal; if the any one of the data points is used to store data, the third optical signal is a data optical signal.
  • the above-mentioned system further includes: a light source component for obtaining the above-mentioned first optical signal.
  • the present application provides a data reading and writing method, which is applied to a data reading and writing system.
  • the method includes: sequentially deflecting the first optical signal by a plurality of angles to obtain a plurality of second optical signals.
  • the plurality of second optical signals are focused on the optical storage medium to realize reading and writing of a plurality of data points.
  • the above method further includes: controlling the optical storage medium to rotate or translate on a plane perpendicular to the axial direction of the read/write optical head in the above data read/write system.
  • the above-mentioned "sequentially deflecting the first optical signal by multiple angles to obtain multiple second optical signals" specifically includes: in each preset period of the multiple preset periods, sequentially deflecting the first optical signal by multiple angles. angle to obtain a plurality of second optical signals.
  • the above method further includes: in each preset period, focusing a plurality of second optical signals on the optical storage medium, so as to realize reading and writing of a plurality of data tracks.
  • the multiple data tracks include multiple data points, and the multiple data tracks are in one-to-one correspondence with the multiple data points.
  • the above-mentioned “deflecting the first optical signal by multiple angles in sequence to obtain multiple second optical signals” specifically includes: the optical deflector in the above-mentioned data reading and writing system deflects the first optical signal Deviating multiple angles in sequence to obtain multiple second optical signals.
  • the light deflector includes at least one of the following components: a polygon mirror, a galvanometer, an acousto-optic deflector or an electro-optic deflector.
  • the above-mentioned multiple data tracks include at least one servo track, and multiple servo points on the servo track are discretely distributed.
  • the servo point is used to adjust the focus position of the read-write optical head when the optical signal is focused when the data read-write system reads data.
  • the distance between any two adjacent servo points in the above-mentioned plurality of servo points is greater than or equal to a preset distance.
  • the above-mentioned optical storage medium includes a plurality of storage layers, and the servo points in the plurality of storage layers are discretely distributed in the axial direction of the read-write optical head in the above-mentioned data read-write system.
  • the servo point is used for the data read-write system to adjust the focus position of the read-write optical head when focusing the optical signal when reading data.
  • the above-mentioned multiple data tracks form a data band.
  • the above method further includes: after the read and write operations are performed on the first data tape on the first storage layer of the plurality of storage layers of the optical storage medium, the optical deflector and the read and write optical head in the above data read and write system are placed on the first storage layer. A preset distance is moved in a plane perpendicular to the axial direction of the read/write optical head, so as to realize read/write of the second data band in the first storage layer.
  • the first storage layer includes a plurality of data bands.
  • the above method further includes: when the third optical signal is a servo optical signal, generating a focus for adjusting the focus of the optical signal by the read/write optical head in the data read/write system based on the third optical signal a servo control signal for the position; and, when the third optical signal is a data optical signal, determining the data to be read based on the third optical signal.
  • the third optical signal is an optical signal returned by the optical storage medium after any one of the plurality of second optical signals acts on any data point on the optical storage medium. If the any one of the data points is a servo point, the third optical signal is a servo optical signal; if the any one of the data points is used to store data, the third optical signal is a data optical signal.
  • the above method further includes: generating the first optical signal.
  • the present application provides a data reading and writing control device.
  • the data read and write control device includes a processor and a memory.
  • the processor is used for calling and running the computer program stored in the memory from the memory, so as to control the data reading and writing system to execute the data reading and writing method in the second aspect and any possible design manner thereof.
  • the present application provides a computer program product that, when running on a data reading and writing control device, can control the data reading and writing system to perform the data reading and writing in the second aspect and any possible design methods thereof. method.
  • the present application provides a computer readable storage medium, such as a computer non-transitory readable storage medium.
  • a computer program (or instruction) is stored thereon, and when the computer program (or instruction) runs on the data read/write control device, the data read/write system can be controlled to execute the data read/write method provided in the second aspect.
  • any of the data read-write control devices, computer program products or computer storage media provided above can be applied to the corresponding methods provided above. Therefore, the beneficial effects that can be achieved can refer to the corresponding methods. The beneficial effects of the method are not repeated here.
  • FIG. 1 is a schematic diagram of a deflected optical signal of an acousto-optic deflector in the prior art
  • FIG. 2 is a schematic diagram of a focus error in a data reading system provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a tracking error in a data reading system provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram 1 of a data reading and writing system provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a light source assembly according to an embodiment of the present application.
  • FIG. 6 is a second structural schematic diagram of a data reading and writing system provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the optical deflector according to an embodiment of the present application deflecting three optical pulse signals in a first optical signal received in a preset period in turn by different angles;
  • FIG. 8 is a schematic diagram of data points written by a read-write optical head on an optical storage medium according to an embodiment of the present application
  • FIG. 9 is a schematic structural diagram three of a data reading and writing system provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of writing different data bands by controlling a radial mobile station to move a preset distance in a data reading and writing system provided by an embodiment of the application;
  • FIG. 11 is a schematic diagram of discrete distribution of servo points on a circular servo track that overlaps in an axial direction according to an embodiment of the application;
  • FIG. 12 is a schematic diagram of a plurality of storage layers in which servo tracks in data bands that overlap in an axial direction on each storage layer do not overlap in the axial direction according to an embodiment of the present application;
  • FIG. 13 is a schematic diagram of the distribution of servo points on a circular servo track that overlaps in an axial direction according to an embodiment of the application;
  • FIG. 14 is a fourth schematic structural diagram of a data reading and writing system provided by an embodiment of the application.
  • 15 is a schematic diagram of adjusting the position of the focal point of the optical signal focused by the read-write optical head in the radial direction by moving the mirror by the third moving platform according to the embodiment of the application;
  • 16 is a schematic diagram of determining the adjustment direction when adjusting the focus position of the optical signal focused by the read-write optical head in the servo control signal according to the size and shape of the light spot provided by an embodiment of the application;
  • 17 is a schematic diagram of another embodiment of the present application to determine the adjustment direction when adjusting the focus position of the optical signal focused by the read-write optical head in the servo control signal according to the size and shape of the light spot;
  • FIG. 18 is a schematic diagram of a data band including a plurality of data blocks according to an embodiment of the present application.
  • FIG. 19 is a schematic flowchart of a data reading and writing method provided by an embodiment of the present application.
  • An optical deflector is a device that deflects the propagation direction of an optical signal by using optical deflection technology.
  • Optical deflectors are widely used in various equipment such as laser scanning precision measuring equipment, laser processing equipment and laser pattern generating devices.
  • Commonly used light deflection techniques include mechanical deflection techniques and non-mechanical deflection techniques.
  • the mechanical deflection technology usually realizes the deflection of the propagation direction of the optical signal by using optical devices such as a polygon mirror or a galvanometer.
  • the non-mechanical deflection technology includes the use of acousto-optic effect or electro-optic effect to change the refractive index of the transparent medium to realize the deflection of the propagation direction of the optical signal.
  • the working principle of the optical deflector is briefly explained: the sound wave propagates in a transparent medium (such as a crystal), which can change the transparent medium. , so that the phase diffraction grating is formed on the transparent medium.
  • a transparent medium such as a crystal
  • the optical signal passes through the diffraction grating, the propagation direction of the optical signal is deflected.
  • An acousto-optic deflector can deflect an optical signal over an angular range proportional to the frequency change of an acoustic wave propagating within a transparent medium.
  • the angle range ⁇ of the optical signal deflected by the acousto-optic deflector can be calculated by the following formula (1):
  • is the wavelength of the deflected optical signal
  • f1 can be the starting frequency of the acoustic wave propagating in the transparent medium
  • f2 can be the end frequency of the acoustic wave propagating in the transparent medium
  • v is the sound wave propagating in the transparent medium speed of transmission.
  • the acoustic wave used to change the refractive index of the transparent medium in the acousto-optic deflector is usually obtained by electro-acoustic conversion of the radio frequency (Radio Frequency, RF) signal received by the acousto-optic deflector.
  • RF Radio Frequency
  • the frequency of the RF signal input to the acousto-optic deflector is usually an RF signal whose frequency changes continuously. Therefore, the frequency of the acoustic wave signal obtained after electro-optical conversion also changes continuously. In this way, the optical signal can be continuously deflected as it passes through the transparent medium that is acted upon by the acoustic waves of the continuously varying frequency.
  • the angular range over which the optical signal can be deflected by the acousto-optic deflector is ⁇ .
  • the time required for the frequency of the sound wave propagating in the transparent medium to change from f 1 to f 2 (or from f 2 to f 1 ) is called a preset period. It can also be understood that within the preset period, the angle range over which the acousto-optic deflector can deflect the optical signal is ⁇ .
  • the acousto-optic deflector deflects the optical signal within the preset period One-way directionality.
  • FIG. 1 shows a schematic diagram of the deflected optical signal of the acousto-optic deflector.
  • the acousto-optic deflector 11 receives an RF signal whose frequency continuously changes, and converts the RF signal into an acoustic wave whose frequency continuously changes (eg, frequency changes from f 1 to f 2 ).
  • the incident optical signal 12 received by the acousto-optic deflector 11 can be within the range of the angle ⁇ (or within the above-mentioned range of ⁇ ). within the preset period) is continuously deflected, thereby obtaining the outgoing optical signal 1, optical signal 2, . . . , and optical signal n in sequence.
  • the incident optical signal 12 is a continuous optical signal.
  • optical signal 12 is deflected to obtain optical signal 1
  • optical signal 12 is deflected to obtain optical signal 2
  • optical signal 12 is deflected to obtain optical signal n.
  • time 1, time 2, . . . , and time n are consecutive times within a preset period.
  • the acousto-optic deflector 11 deflects the optical signal 12 in turn according to the direction indicated by the direction 1 in FIG. 1 to obtain the optical signal with different exit angles.
  • the outgoing angle is the angle between the outgoing optical signal and the incoming optical signal.
  • the incident optical signal 12 may also be a pulsed optical signal.
  • the acousto-optic deflector receives n (n is an integer greater than 1) optical pulse signals, then the n optical pulse signals within the preset period T can be acousto-optical
  • the optical deflectors 11 are sequentially deflected in the directions shown in direction 1 in FIG. 1 to obtain n optical signals with different exit angles. Between n optical signals with different exit angles, the largest included angle is less than or equal to ⁇ .
  • the optical deflector that uses the acousto-optic effect to deflect the optical signal controls the deflection of the optical signal propagation direction through the frequency change of the RF signal.
  • the mechanical loss is small.
  • Focus error can also be called axial error, or defocus amount.
  • the optical signal When the distance between the focus of the optical signal after being focused by the read-write optical head and the above-mentioned storage layer 1 for storing data is not 0, that is, in the direction of the optical axis of the optical signal, the optical signal is transmitted by the read-write optical head. There is a certain distance between the focus after focusing and the storage layer 1 . In this case, the optical signal is not focused on the storage layer 1 for storing data. In this case, the distance between the focus of the optical signal after being focused by the read-write optical head and the storage layer 1 can be called the focus error of the data read system.
  • FIG. 2 a schematic diagram of focus error in a read data system is shown.
  • a data point A for recording data is included on the storage layer 20 for storing data in the optical storage medium.
  • the focal point of the optical signal 21 used for reading data after being focused by the read-write optical head is the focal point B
  • the optical axis of the optical signal 21 is the optical axis 211 . It can be seen that, in the direction of the optical axis 211, the distance between the focal point B and the data point A is ⁇ z. That is to say, the current focus error of the data read system shown in FIG. 2 is ⁇ z.
  • Tracking error also known as radial error.
  • the optical signal used for reading data needs to be focused by the read-write optical head Only when the rear focus coincides with the data point on the optical storage medium for recording data in the radial direction, the data stored on the optical storage medium can be read.
  • the radial direction here refers to a direction perpendicular to the optical axis of the optical signal used for reading data.
  • the specific value of the preset threshold here is not limited in this embodiment of the present application.
  • the focal point of the optical signal used for reading data after being focused by the optical head does not coincide with the data point on the optical storage medium in the radial direction, that is, the focal point of the optical signal after being focused by the read-write optical head, and the data point on the optical storage medium
  • the data points have a certain offset in the radial direction.
  • the offset can be called the tracking error of the read data system.
  • the radial offset may include an x-axis offset and a y-axis offset.
  • FIG. 3 a schematic diagram of tracking errors in a data read system is shown.
  • the two-dimensional plane formed by the x-axis and the y-axis is a plane perpendicular to the optical axis of the optical signal for reading data.
  • the focal point of the optical signal after being focused by the read-write optical head is the focal point 31 .
  • Data points 32 for recording data are included on the optical storage medium.
  • the radial offset between focus 31 and data point 32 includes an x-axis offset ⁇ x and a y-axis offset ⁇ y.
  • ⁇ x represents the distance between the focal point 31 and the data point 32 in the x-axis direction
  • ⁇ y represents the distance between the focal point 31 and the data point 32 in the y-axis direction.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or illustrations. Any embodiments or designs described in the embodiments of the present application as “exemplary” or “such as” should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present the related concepts in a specific manner.
  • first and second are only used for description purposes, and cannot be understood as indicating or implying relative importance or implying the number of indicated technical features.
  • a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • plural means two or more.
  • the meaning of the term “at least one” refers to one or more, and the meaning of the term “plurality” in this application refers to two or more.
  • a plurality of second messages refers to two or more more than one second message.
  • system and “network” are often used interchangeably herein.
  • the size of the sequence number of each process does not mean the sequence of execution, and the execution sequence of each process should be determined by its function and internal logic, and should not be used in the embodiment of the present application. Implementation constitutes any limitation.
  • determining B according to A does not mean that B is only determined according to A, and B may also be determined according to A and/or other information.
  • the term “if” may be interpreted to mean “when” or “upon” or “in response to determining” or “in response to detecting.”
  • the phrases “if it is determined" or “if a [statement or event] is detected” can be interpreted to mean “when determining" or “in response to determining... ” or “on detection of [recited condition or event]” or “in response to detection of [recited condition or event]”.
  • references throughout the specification to "one embodiment,” “an embodiment,” and “one possible implementation” mean that a particular feature, structure, or characteristic related to the embodiment or implementation is included in the present application at least one embodiment of .
  • appearances of "in one embodiment” or “in an embodiment” or “one possible implementation” in various places throughout this specification are not necessarily necessarily referring to the same embodiment.
  • the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
  • the embodiments of the present application provide a data reading and writing system, which deflects an optical signal and moves an optical storage medium at the same time, so that simultaneous reading and writing of multiple data tracks can be realized. In this way, the speed of reading and writing data can be improved without increasing the moving speed of the optical storage medium.
  • FIG. 4 shows a schematic structural diagram of a data reading and writing system 40 provided by an embodiment of the present application.
  • the data reading and writing system 40 includes a light source assembly 41 , an optical deflector 42 and a reading and writing optical head 43 .
  • the light source assembly 41 is used to generate an initial optical signal, and the initial optical signal is a pulsed optical signal, such as a high-frequency pulsed laser signal.
  • the optical pulse signal in the initial optical signal is an optical pulse signal with a first preset power.
  • the optical pulse signal in the initial optical signal acts on the optical storage medium 44 after passing through the optical deflector 42 and the read-write optical head 43 to generate physical and/or chemical properties corresponding to the data to be written, thereby realizing the Write data write.
  • the first preset power corresponds to the physical and/or chemical properties presented by the optical storage medium 44 one-to-one.
  • the specific value of the first preset power is not limited in this embodiment of the present application.
  • the data to be written may be encoded data obtained by encoding the data to be stored.
  • the data to be written may be binary data obtained by encoding the data to be stored, or the data to be written may be decimal data obtained by encoding the data to be stored, etc., without limitation.
  • the optical storage medium 44 needs to exhibit two physical and/or chemical properties after being acted upon by the optical signal.
  • the above-mentioned first preset power includes two different preset powers, and the two different preset powers correspond to the two physical and/or chemical properties in a one-to-one correspondence.
  • the physical and/or chemical properties of the optical storage medium 44 are required to exhibit two states.
  • state 1 of the optical storage medium 44 may be used to represent a "0" and state 2 of the optical storage medium 44 may be used to represent a "1".
  • optical storage medium 44 state 1 may be used to represent a "1” and optical storage medium 44 state 2 may be used to represent a "0".
  • the above-mentioned optical signal with the first preset power includes optical signals with two preset powers.
  • the optical signal with preset power 1 can be used to generate state 1 on the optical storage medium 44, thereby realizing the writing of "0", and the optical signal with preset power 2 can be used in the optical storage medium 44.
  • a state is generated on the upper side, thereby realizing the writing of "1".
  • the optical storage medium 44 exhibits ten physical and/or chemical properties after being acted upon by the optical signal.
  • the above-mentioned first preset power includes ten different preset powers, and the ten different preset powers are in one-to-one correspondence with the ten physical and/or chemical properties. No longer.
  • optical storage medium 44 when the optical storage medium 44 records data in a reflective light type, different physical and/or chemical properties generated by the optical storage medium 44 can cause the optical storage medium 44 to have different reflectivity.
  • the optical storage medium 44 when the optical storage medium 44 records data in an autofluorescence type, the optical storage medium 44 can have different fluorescence radiance due to different physical and/or chemical properties generated by the optical storage medium 44 .
  • FIG. 5 shows a schematic structural diagram of the light source assembly 41 .
  • the light source assembly 41 includes a light source 411 .
  • the light source assembly 41 can also be a shaping device 412 and an optical power adjusting module 413 .
  • the light source 411 is used to generate an original optical signal, where the original optical signal is a pulsed optical signal, for example, a high-frequency pulsed laser signal.
  • the light source 411 may be a laser generator, such as a diode laser generator, etc., of course, it is not limited thereto.
  • the power of each optical pulse signal in the original optical signal generated by the light source 411 is obtained in advance by the light source 411 .
  • the power of the optical pulse signal obtained in advance by the light source 411 is a first preset power that is predetermined based on the data to be written.
  • the power of the optical pulse signal pre-obtained by the light source 411 is the second preset power.
  • the specific value of the second preset power is not limited in this embodiment of the present application.
  • the servo point is used to adjust the position of the focal point of the optical signal focused by the read-write optical head 43 when reading data.
  • the second preset power of the optical pulse signal used for writing each servo point may be the same or different, which is not limited.
  • the optical storage medium 44 is used to indicate The area of each servo point has the same physical and/or chemical properties. If the second preset power of the optical pulse signal used for writing each servo point is different, after the data reading and writing system 40 writes the servo point on the optical storage medium 44, the optical storage medium 44 is used to represent each servo point Areas of dots with different physical and/or chemical properties. For simple description, the embodiments of the present application are described by taking an example that the second preset power of the optical pulse signal used for writing each servo point is the same.
  • the second preset power of the optical pulse signal used for writing the servo dots is different from the first preset power of the optical pulse signal used to write the data to be written.
  • the original optical signal is the above-mentioned initial optical signal.
  • the shaping device 412 is used to modulate the shape of the original optical signal generated by the light source 411 .
  • the shaping device 412 may be a beam expander for beam expanding the original optical signal generated by the light source 411 .
  • the shaping device 412 may be a collimator, for collimating the original optical signal generated by the light source 411 .
  • the optical signal outputted by the above-mentioned original optical signal after being shaped by the shaping device 412 is the above-mentioned initial optical signal.
  • the optical power adjustment module 413 is used to monitor whether the actual output power of each optical pulse signal in the original optical signal generated by the light source 411 meets the rated requirements, and the actual output of the optical pulse signal in the original optical signal generated by the light source 411 When the power does not meet the rated requirements, the parameters of the light source 411 are adjusted so that the actual output power of the next optical pulse signal generated by the light source 411 meets the rated requirements.
  • whether the actual output power of each optical pulse signal in the original optical signal generated by the light source 411 meets the rated requirements refers to the power of the optical pulse signal pre-obtained by the light source 411, and the optical pulse signal actually output by the light source 411 based on the power.
  • Whether the power difference is less than or equal to the first preset threshold.
  • the difference is smaller than the first preset threshold, it means that the actual output power of the optical pulse signal output by the light source 411 meets the rated requirement.
  • the difference is greater than the first preset threshold, it indicates that the actual output power of the optical pulse signal output by the light source 411 does not meet the rated requirement.
  • the specific value of the first preset threshold is not limited in this embodiment of the present application.
  • the embodiment of the present application does not limit the case where the difference is equal to the first preset threshold.
  • the difference when the difference is equal to the first preset threshold, it can be determined that the actual output power of each optical pulse signal in the original optical signal generated by the light source 411 meets the rated requirement.
  • the difference when the difference is equal to the first preset threshold, it may be determined that the actual output power of each optical pulse signal in the original optical signal generated by the light source 411 does not meet the rated requirement.
  • the optical power adjustment module 413 may include an optical beam splitter 4131 , an optical detector 4132 and a processor 4133 .
  • the optical beam splitter 4131 may be used to split the original optical signal received from the light source 411 into two optical signals (eg, a first original optical signal and a second original optical signal). Alternatively, the optical beam splitter 4131 may be used to divide the optical signal received from the shaping module 412 into the first original optical signal and the second original optical signal.
  • the beam splitter 4131 may be a transflective prism or a beam splitter lens, or the beam splitter 4131 may be a beam splitter prism or a beam splitter lens with a preset beam splitting ratio, which is not limited thereto.
  • the light splitting ratio may refer to the ratio of the transmitted light signal and the reflected light signal of the light beam splitter 4131 .
  • the optical beam splitter 4131 can transmit 95% of the incident light signal and reflect 5% of the incident light signal.
  • the first original optical signal may be an optical signal transmitted by the optical beam splitter 4131 or an optical signal reflected by the optical beam splitter 4131, which is not limited. If the first original optical signal is the optical signal transmitted by the optical beam splitter 4131 , the second original optical signal is the optical signal reflected by the optical beam splitter 4131 . If the first original optical signal is the optical signal reflected by the optical beam splitter 4131 , the second original optical signal is the optical signal transmitted by the optical beam splitter 4131 .
  • the first original optical signal is The optical signal is the initial optical signal output by the light source assembly 41
  • the second original optical signal is reflected to the photodetector 4132 and used to determine the actual output power of each optical pulse signal in the original optical signal generated by the light source 411 meet the rated requirements.
  • the optical detector 4132 is used to receive the second original optical signal reflected by the optical beam splitter 4131, and convert the optical pulse signal in the second original optical signal into an electrical signal, so as to obtain the difference of the optical pulse signal in the second original optical signal. Light intensity information. Then, the light detector 4132 sends the detected light intensity information to the processor 4133 .
  • the photodetector 4132 may be a photoelectric sensor, such as a charge coupled device (charge coupled device, CCD), which is not limited thereto.
  • CCD charge coupled device
  • the processor 4133 is configured to receive the light intensity information sent by the light detector 4132, and determine the actual output power of the light pulse signal in the original light signal generated by the light source 411 based on the light intensity information. Then, the processor 4133 may determine whether the actual output power meets the rated requirement based on the determined actual output power.
  • the processor 4133 determines that the actual output power does not meet the rated requirements, it generates a power adjustment signal based on the actual output power and the power of the optical pulse signal pre-obtained by the light source 411 . Specifically, the processor 4133 may generate a power adjustment signal based on the difference between the actual output power and the power of the optical pulse signal pre-obtained by the light source 411 .
  • the processor 4133 can then send the power adjustment signal to the light source 411 .
  • the light source 411 can adjust the parameters of the light source 411 according to the power adjustment signal, so that the output power of the next optical pulse signal generated by the light source 411 meets the rated requirements.
  • the light source assembly 41 includes the optical power adjustment module 413, when the light source 411 generates the original optical signal, if the optical pulse signal in the original optical signal is used to write the data to be written, the light source 411 obtains the data in advance.
  • the power of the optical pulse signal is greater than the aforementioned first preset power. If the optical pulse signal in the original optical signal is used for writing the servo point, the power of the optical pulse signal pre-obtained by the light source 411 is greater than the aforementioned second preset power.
  • optical beam splitter 4131 in the optical power module 413 needs to separate a part of the optical pulse signal generated by the light source 411 to determine whether the actual output power of the optical pulse signal in the original optical signal generated by the light source 411 meets the rated requirements. This will not be repeated.
  • the optical deflector 42 is used for receiving the first optical signal and deflecting the first optical signal.
  • the optical deflector 42 can receive the initial optical signal generated by the light source assembly 41 coaxial with the optical deflector 42 . In this case, there is no need to pass other optical devices between the light deflector 42 and the light source assembly 41 . That is to say, the initial optical signal generated by the light source assembly 41 is the first optical signal.
  • the deflector 42 may receive the initial optical signal generated by the light source assembly 41 having an optical axis different from that of the optical deflector 42 .
  • the data reading and writing system 40 may also include a mirror 46 .
  • the reflector 46 is used to reflect the initial light signal generated by the light source assembly 41 to the light deflector 42 .
  • the light deflector 42 can receive the initial light signal generated by the light source assembly 41 reflected by the mirror 46 .
  • the optical signal after the initial optical signal generated by the light source assembly 41 is reflected by the mirror 46 is the above-mentioned first optical signal.
  • the mirror 46 deflects the propagation direction of the original optical signal.
  • the mirror 46 deflects the propagation direction of the original optical signal by 90°.
  • the first optical signal is also a pulsed optical signal.
  • the reflector 46 may be a flat reflector or a prism reflector, which is not limited.
  • the light deflector 42 may be any type of light deflector.
  • the light deflector 42 is an acousto-optic deflector as an example for description.
  • the optical deflector 42 can sequentially deflect the first optical signal received within a preset period by multiple angles to obtain multiple second optical signals.
  • the multiple angles are in one-to-one correspondence with the multiple second optical signals.
  • the multiple angles are the exit angles of the multiple second optical signals, and the exit angles may be included angles between the multiple second optical signals and the first optical signals, which are not limited.
  • the preset period reference may be made to the above description about the preset period, which will not be repeated here.
  • the plurality of second optical signals are, within a preset period, the plurality of optical pulse signals in the first optical signal are sequentially deflected by the optical deflector 42 . obtained optical signal.
  • the optical deflector 42 in the embodiment of the present application can generally deflect the optical signal in a one-dimensional plane. Therefore, the plurality of second optical signals obtained by deflecting the first optical signal by the optical deflector 42 are in one plane.
  • FIG. 7 shows a schematic diagram of the optical deflector 42 deflecting three optical pulse signals in the first optical signal received in a preset period by different angles in turn according to the direction shown in direction 1.
  • the optical deflector 42 may receive the optical pulse signal 1 in the first optical signal at time 1 and deflect it by an angle of 1 to obtain the optical signal 1 .
  • the optical deflector 42 may receive the optical pulse signal 2 in the first optical signal at time 2 and deflect it by an angle 2 to obtain the optical signal 2 .
  • the optical deflector 42 can receive the optical pulse signal 3 in the first optical signal at time 3 and deflect it by an angle 3 to obtain the optical signal 3 .
  • the optical signal 1, the optical signal 2 and the optical signal 3 are the three second optical signals.
  • the angle 1 may be the angle between the optical pulse signal 1 and the optical signal 1 in the first optical signal
  • the angle 2 may be the angle between the optical pulse signal 2 and the optical signal 2 in the first optical signal
  • the angle 3 It may be the included angle between the optical pulse signal 3 and the optical signal 3 in the first optical signal.
  • the angle between the optical signal 1 and the optical signal 3 is less than or equal to the angular range (eg, ⁇ above) that the acousto-optic deflector 42 can deflect when deflecting the optical signal.
  • the read-write optical head 43 is used to sequentially focus the received multiple second optical signals on the optical storage medium 44, thereby realizing the writing of multiple data points.
  • the plurality of second optical signals are in one plane, the plurality of second optical signals are focused on the plurality of data points written on the optical storage medium 44 through the read-write optical head 43 and are arranged in a linear arrangement.
  • the read-write optical head 43 may be any optical device with a focusing function, such as a lens, an objective lens, etc., which is not limited thereto.
  • the lens may be any lens such as a single lens, a combination lens, and a small ball lens, and is not limited thereto.
  • the read/write optical head 43 can focus it on point A on the optical storage medium 44 , so as to realize the writing of the data point A.
  • the read-write optical head 43 can focus it on the point B on the optical storage medium 44, so as to realize the writing of the data point B.
  • the read-write optical head 43 can focus it on the point C on the optical storage medium 44, so as to realize the writing of the data point C. It can be seen that the read/write optical head 43 sequentially writes data point A, data point B and data point C on the optical storage medium 44 in the direction indicated by direction 1 at different times. It can be seen that data point A, data point B and data point C are in a linear arrangement.
  • the data points written by the read/write optical head 43 on the optical storage medium 44 are linearly arranged in the direction in which the optical deflector 42 deflects the first optical signal.
  • the data point A, data point B and data point C written by the read/write optical head 43 on the circular optical storage medium 44 are sequentially deflected along the light.
  • the data point A, data point B, and data point C written by the optical read/write head 43 on the optical storage medium 44 in the shape of a rectangle are deflected along the optical deflector 42 in turn. Linearly arranged in the direction (direction 1) of the optical signal.
  • the data points written by the read-write optical head 43 on the optical storage medium 44 have a predetermined direction in the direction in which the optical deflector 42 deflects the first optical signal. Linearly arranged in the direction of the included angle.
  • the preset angle is proportional to the moving speed of the optical storage medium 44 .
  • the data reading and writing system 40 may further include a first moving platform 45 for controlling the optical storage medium 44 to rotate or translate on a plane perpendicular to the axial direction of the read-write optical head 43 .
  • the axial direction of the read/write optical head 43 refers to the direction in which the optical axis of the read/write optical head 43 is located.
  • the "axial direction of the read-write optical head 43" is abbreviated as "axial direction”.
  • the first moving stage 45 When the first moving stage 45 is used to control the optical storage medium 44 to rotate on a plane perpendicular to the axial direction, the first moving stage 45 may be a rotating stage. When the first moving platform 45 is used to control the optical storage medium 44 to translate on a plane perpendicular to the axial direction, the first moving platform 45 may be a one-dimensional or multi-dimensional translation platform, which is not limited.
  • the read/write optical head 43 is in the optical storage
  • the data point A, data point B and data point C written on the medium 44 are sequentially linearly arranged along a direction 3 having a preset angle ⁇ with the direction 1 in which the optical deflector 42 deflects the first optical signal.
  • the read-write optical head 43 can receive a plurality of second optical signals in each preset period of the plurality of preset periods, and sequentially perform the plurality of second optical signals respectively.
  • the two optical signals are focused on the optical storage medium 44 to enable writing to multiple data tracks.
  • the number of the multiple data tracks corresponds to the number of multiple second optical signals obtained by deflecting the first optical signal by the read-write optical head 43 within a preset period, that is, the number of the multiple data tracks, It corresponds to the number of the multiple data points written on the optical storage medium 44 by the multiple second optical signals being sequentially focused on the optical storage medium 44 by the read-write optical head 43 .
  • the plurality of data tracks include the plurality of data points, and each data track in the plurality of data tracks passes through one data point among the plurality of data points, that is, the plurality of data tracks and the plurality of data points are one A correspondence.
  • the plurality of data tracks can constitute one data band.
  • the single-beam optical signal (ie, the initial optical signal) generated by the light source assembly 41 can pass through the optical path of the data reading and writing system 40 to write multiple data tracks on the optical storage medium 44 in parallel, thereby improving the performance of the optical storage medium 44. Data read and write efficiency.
  • the read/write optical head 43 can write 3 data tracks (including data track 1, data track 2 and data track 3) on the optical storage medium 44 within a plurality of preset cycles.
  • the data track 1 passes through the data point A
  • the data track 2 passes through the data point B
  • the data track 3 passes through the data point C.
  • the three data tracks can constitute a ring-shaped data band, such as the data band 441 shown in FIG. 4 or FIG. 6 .
  • the data strip 441 shown in FIG. 4 or FIG. 6 is a cross-sectional view of the data strip.
  • the read/write optical head 43 can write 3 data tracks (including data track 1, data track 2 and data track 3) on the optical storage medium 44 within a plurality of preset cycles.
  • the data track 1 passes through the data point A
  • the data track 2 passes through the data point B
  • the data track 3 passes through the data point C.
  • the three data tracks can constitute a rectangular-shaped data zone.
  • the number of data points on each of the above-mentioned multiple data tracks is the same as the number of preset cycles required by the read/write optical head 43 to write the multiple data tracks on the optical storage medium 44 .
  • the number of data points on each of the multiple data tracks is m.
  • m is a positive integer.
  • the above-mentioned first moving platform 45 can also be used to control the movement of the optical storage medium 44 in the axial direction, so that the read-write optical head 43 can The plurality of second optical signals are focused on different storage layers of the optical storage medium 44, thereby enabling the above-mentioned data strips to be written on each storage layer.
  • the data reading and writing system 40 may further include a radial moving stage 91 , the radial moving stage 91 is arranged on the main support 92 , the light deflector 42 , the mirror 46 and the reading and writing stage 91 .
  • the optical head 43 can also be mounted on the main support 92 by means of optical frames and the like.
  • the radial movement stage 91 can be used to perform the operation in the direction perpendicular to the axial direction after the read/write head 43 completes the writing of the first data band on the first storage layer of the plurality of storage layers of the optical storage medium 44 .
  • the optical deflector 42 , the mirror 46 and the read/write optical head 43 are moved by a first preset distance, so as to realize the writing of the second data band in the first storage layer.
  • the first preset distance is greater than the width of the first data band.
  • the value of the first preset distance is not specifically limited in this embodiment of the present application.
  • the first data band and the second data band may be two adjacent data bands or two non-adjacent data bands, which are not limited.
  • the light source assembly 41 and the read/write optical head 43 in the data reading and writing system 40 are coaxial with each other, the light source assembly 41 may also be disposed on the main support 92 .
  • the radial movement stage 91 can be used to perform the operation in the direction perpendicular to the axial direction after the read/write head 43 completes the writing of the first data band on the first storage layer of the plurality of storage layers of the optical storage medium 44 .
  • the light source assembly 41 , the light deflector 42 , the mirror 46 and the read/write optical head 43 are moved by a first preset distance to realize the writing of the second data band in the first storage layer.
  • FIG. 10 shows a schematic diagram of writing different data bands by controlling the radial moving stage 91 to move a preset distance by the data reading and writing system 40 .
  • the radial movement stage 91 can be controlled in the direction perpendicular to the axis direction (that is, the radial direction). Move the preset distance d1 in the direction), so that the writing of the annular data band 2 can be realized. where d1 is greater than or equal to the width of data strip 1.
  • the radial movement stage 91 can be controlled in the direction perpendicular to the axis direction (ie, the radial direction).
  • the preset distance d2 is moved up in the direction), so that the writing of the data strip 2 in the shape of a rectangle can be realized. where d2 is greater than or equal to the width of data strip 1.
  • the data band written in the optical storage medium 44 by the data read/write system 40 through the read/write optical head 43 includes data points for storing data and data points for serving as servo points.
  • the servo point is used to adjust the position of the focal point of the optical signal focused by the read/write optical head 43 .
  • a data track including a servo point is referred to as a servo track.
  • At least one servo track may be included. Any one of the at least one servo track includes a plurality of servo points.
  • one data band includes one servo track as an example for description.
  • the plurality of servo points can be continuously distributed on the servo track or discretely distributed on the servo track. Not limited.
  • the plurality of servo points may be evenly distributed on the servo track at intervals of a second preset distance.
  • the plurality of servo points may also be randomly and discretely distributed on the servo track, which is not limited.
  • the distance between any two adjacent servo points in the plurality of servo points is less than or equal to the second preset threshold, and the values of the second preset distance and the second preset threshold are not specified in this embodiment of the present application. limited.
  • the servo dots on each of the plurality of storage layers are discretely distributed in the axial direction.
  • the optical storage medium 44 includes p (p is an integer greater than 1) storage layers as an example for description below.
  • the servo tracks in the data bands that are located on each storage layer and overlap in the axial direction, in the axial direction coincide.
  • q is a positive integer greater than 1
  • storage layers among the p storage layers if the first servo track and the second storage layer on the first storage layer are If the second servo track on the layer coincides in the axial direction, a straight line that passes through any servo point on the first servo track and is parallel to the axial direction also passes through the servo point on the second servo track.
  • the first servo track is any servo track on the first storage layer
  • the second servo track is a servo track in the second storage layer that coincides with the first servo track in the axial direction.
  • first storage tier and the second storage tier is the third storage tier, and the third servo track on the third storage tier, and the first servo track (or the second storage tier in the first storage tier)
  • the second servo track in the layer coincides in the axial direction, then a straight line that passes through any servo point on the third servo track and is parallel to the axial direction does not pass through the first storage layer, the second storage layer, and the first storage layer.
  • the servo points on the p storage layers are discretely distributed at intervals of q storage layers in the axial direction, and the servo points on any servo track on each storage layer are discretely distributed.
  • FIG. 11 exemplarily shows a schematic diagram of discrete distribution of servo points on circular servo tracks that overlap in the axial direction.
  • FIG. 11 shows a front view of 16 circular servo tracks that overlap in the axial direction.
  • the 16 servo tracks that overlap in the axial direction respectively include: servo track 1-1 on storage layer 1, servo track 2-1 on storage layer 2, and storage layer 2.
  • Servo track 3-1 on storage layer 3 servo track 4-1 on storage layer 4
  • servo track 1-1 that is, the above-mentioned first servo track
  • servo track 5-1 that is, the above-mentioned second servo track
  • Storage layer 3 and storage layer 4 the servo point s1-1 on the servo track 1-1 and the servo point s5-1 on the servo track 5-1 coincide in the axial direction.
  • the servo point s4-1 on the servo track 4-1 and the straight line L3 parallel to the axial direction do not pass through any of the servo points on the storage layer 1, the storage layer 2, the storage layer 3, and the storage layer 4. That is, the servo dots on each storage layer between storage layer 1 and storage layer 4 do not coincide in the axial direction.
  • the axial direction is the direction shown by the optical axis 110 in FIG. 11 .
  • FIG. 11 shows a top view of the 16 circular servo tracks that overlap in the axial direction shown in (a) of FIG. 11 .
  • the servo point s1-1 and the servo point s1-2 are the servo points on the servo track 1-1 in the storage layer 1, respectively
  • the servo point s2-1 and the servo point 2-2 are respectively the servo points on the servo track 1-1 in the storage layer 1 is the servo point on servo track 2-1 in storage layer 2
  • servo point s3-1 and servo point 3-2 are the servo point on servo track 3-1 in storage layer
  • servo point s4-1 and servo point respectively 4-2 are servo points on servo tracks 4-1 in storage layer 4, respectively.
  • the servo point s1-1, the servo point s2-1, the servo point s3-1 and the servo point s4-1 do not coincide in the axial direction.
  • the positions of the servo point s1-1 and the servo point s1-2 on the servo track 1-1 are discretely distributed at three data points in the radial direction.
  • the positions of the servo point s2-1 and the servo point s2-2 on the servo track 2-1 are discretely distributed at three data points in the radial direction.
  • the positions of the servo point s3-1 and the servo point s3-2 on the servo track 3-1 are discretely distributed at three data points in the radial direction.
  • the servo point s4-1 and the servo point s4-2 on the servo track 4-1 are discretely distributed at positions of 3 data points in the radial direction.
  • the radial direction refers to a direction perpendicular to the axial direction.
  • servo point s5-1 on servo track 5-1 and servo point s9-1 on servo track 9-1 coincide in the axial direction, on each storage layer between storage layer 5 and storage layer 8
  • the servo points of are not coincident in the axial direction.
  • Servo point s9-1 on servo track 9-1 and servo point s13-1 on servo track 13-1 coincide in the axial direction, servo point on each storage layer between storage layer 9 and storage layer 12 not coincident in the axial direction.
  • the servo dots on each storage layer between storage layer 13 and storage layer 16 do not coincide in the axial direction. In this way, for the above-mentioned 16 storage layers, the servo points on the servo tracks that overlap in the axial direction on the 16 storage layers are discretely distributed at intervals of three storage layers in the axial direction.
  • the positions of the data points between the discretely distributed servo points on the servo track are empty, that is, these positions are not Write anything.
  • the data reading and writing system 40 reads data
  • the optical signal used for reading data acts on the servo point on the storage layer far from the surface of the optical storage medium 44
  • the attenuation of the optical signal can be effectively reduced, so that the data can be read and written.
  • the system 40 can accurately read the servo points on the storage layer far from the surface of the optical storage medium 44 , thereby effectively improving the servo efficiency of the data reading and writing system 40 .
  • the servo tracks in the data bands that overlap in the axial direction on each storage layer do not overlap in the axial direction.
  • the servo points on each of the p storage layers do not coincide in the axial direction.
  • the servo points on any servo track in the optical storage medium 44 may be distributed discretely or continuously, which is not limited.
  • the distance between any two adjacent servo points on the servo track is less than or equal to the second preset threshold.
  • FIG. 12 exemplarily shows a method in which servo tracks in data stripes that are coincident in an axial direction on each memory layer in a plurality of memory layers are not coincident in the axial direction.
  • FIG. 12 shows a front view of five annular data bands (hereinafter referred to as data rings) that overlap in the axial direction.
  • data ring 1-1 is a data ring on storage layer 1
  • data ring 2-1 is a data ring on storage layer 2
  • data ring 3-1 is a data ring on storage layer 3
  • Data ring data ring 4-1 is the data ring on storage layer 4
  • data ring 5-1 is the data ring on storage layer 5. It can be seen that the data ring 1-1, the data ring 2-1, the data ring 3-1, the data ring 4-1 and the data ring 5-1 overlap in the axial direction.
  • the axial direction is the direction shown by the optical axis 120 in FIG. 12 .
  • FIG. 12 shows a front view of circular servo tracks that do not overlap in the axial direction on the five data rings that overlap in the axial direction shown in (a) of FIG. 12 .
  • the servo tracks on the data ring are typically circular servo tracks.
  • servo track 1-1 is a servo track in data loop 1-1
  • servo track 2-1 is a servo track in data loop 2-1
  • servo track 3-1 is a data loop Servo track in loop 3-1
  • servo track 4-1 is the servo track in data loop 4-1
  • servo track 5-1 is the servo track in data loop 5-1.
  • the radius of servo track 1-1 differs from that of servo track 2-1 by d1
  • the radius of servo track 2-1 differs from that of servo track 3-1 by d2
  • the radius of servo track 3-1 differs from that of servo track 3-1.
  • the radius of 4-1 differs by d3, and the radius of servo track 4-1 differs from that of servo track 5-1 by d4.
  • the values of d1, d2, d3 and d4 may be the same or different, which is not limited. That is, servo track 1-1, servo track 2-1, servo track 3-1, servo track 4-1, and servo track 5-1 do not coincide in the axial direction.
  • the servo points on servo track 1-1, servo track 2-1, servo track 3-1, servo track 4-1 and servo track 5-1 do not coincide in the axial direction, that is, data loop 1- 1.
  • the servo points on the data ring 2-1, the data ring 3-1, the data ring 4-1 and the data ring 5-1 do not overlap in the axial direction.
  • (c) in FIG. 12 shows the above-mentioned five data rings that overlap in the axial direction and the circular servo bands that do not overlap in the axial direction on the five data rings. top view.
  • the data ring 1-1, the data ring 2-1, the data ring 3-1, the data ring 4-1 and the data ring 5-1 overlap in the axial direction, and the servo track 1- 1.
  • Servo track 2-1, servo track 3-1, servo track 4-1 and servo track 5-1 do not overlap in the axial direction. That is, the servo points on servo track 1-1, servo track 2-1, servo track 3-1, servo track 4-1, and servo track 5-1 do not coincide in the axial direction.
  • the data points in the data track are empty, that is, the data reading and writing system 40 is not on the data track.
  • Write anything when the data reading and writing system 40 reads data, when the optical signal used for reading data acts on the servo point on the storage layer far from the surface of the optical storage medium 44, the attenuation of the optical signal can be effectively reduced, so that the optical signal can be effectively reduced.
  • the servo points on the storage layer far from the surface of the optical storage medium 44 are accurately read, thereby improving the servo efficiency of the system.
  • the data point reading and writing system 40 may adopt First possible implementation and second possible implementation to write servo dots.
  • the way in which the optical storage medium 44 records data may be of a reflected light type. In this way, by arranging the servo points in these two ways, the servo efficiency of the data reading and writing system 40 when reading data can be effectively improved.
  • the servo tracks in the data bands that overlap in the axial direction on each storage layer overlap in the axial direction.
  • the servo points on any servo track in the optical storage medium 44 may be distributed discretely or continuously, which is not limited.
  • the distance between any two adjacent servo points on the servo track is less than or equal to the second preset threshold.
  • FIG. 13 exemplarily shows a schematic diagram of the distribution of servo points on a circular servo track that overlaps in the axial direction.
  • (a) in FIG. 13 shows a front view of eight circular servo tracks that overlap in the axial direction.
  • the servo track on storage layer 1 is servo track 1-1
  • the servo track on storage layer 2 is servo track 2-1, . . .
  • the servo track on storage layer 8 for servo track 8-1.
  • servo track 1-1, servo track 2-1, . . . , and servo track 8-1 coincide in the axial direction.
  • the axial direction is the direction shown by the optical axis 130 in FIG. 13 .
  • FIG. 13 shows a top view of eight circular servo tracks that overlap in the axial direction.
  • the servo points may be continuously distributed as shown in (b) of FIG. 13 , of course, they may also be distributed discretely. This is not limited.
  • the data point reading and writing system 40 may adopt The third possible implementation is to write servo points.
  • the manner in which the optical storage medium 44 records data may be of an autofluorescence type.
  • the servo points by arranging the servo points in this way, the servo efficiency of the data reading and writing system 40 when reading data can be effectively improved.
  • the autofluorescence type reference may be made to the above, which will not be repeated here.
  • the optical storage medium 44 may also record data by reflecting light. type.
  • the data reading and writing system 40 is realized by deflecting the optical signal in a plurality of preset periods respectively, and in the process of moving the optical storage medium 44, at different times, on the optical storage medium 44 Write data points at different locations. Therefore, the data reading and writing system 40 can control the light source assembly 41 to generate the power of the initial optical signal for writing the servo point at a plurality of preset times, so as to realize any of the above possible implementations on the optical storage medium 44 Writes the servo points laid out by the mode.
  • the plurality of preset moments correspond one-to-one with the servo points laid out in any of the above possible implementation manners.
  • the data reading and writing system uses the optical deflector to modulate the first optical signal obtained by the initial optical signal generated by the light source assembly. Sequential deflection to achieve writing a row of data points on the optical storage medium within a preset period. At the same time, by controlling the movement of the optical storage medium, the data reading and writing system realizes writing multiple rows of data points on the optical storage medium along the moving direction of the optical storage medium within a plurality of preset periods, so as to realize writing including multiple data points.
  • the embodiments of the present application improve the data writing efficiency of the data reading and writing system without increasing the rotational speed of the optical storage medium.
  • the data reading and writing system 40 when used for reading data, it further includes an optical signal separation module and an information processing module.
  • the data reading and writing system 40 further includes an optical signal separation module 141 and an information processing module 142 .
  • the relevant descriptions of the light source assembly 41, the mirror 46, the optical deflector 42, the reading and writing optical head 43 and the radial moving stage 91 in the data reading and writing system 40 can be Reference is made to the above description of the light source assembly 41 , the mirror 46 , the optical deflector 42 , the read/write optical head 43 and the radial moving stage 91 when the data reading and writing system 40 is used for writing data, which will not be repeated here.
  • the data reading and writing system 40 when the data reading and writing system 40 is used for reading data, a plurality of second optical signals obtained after the initial optical signal generated by the light source assembly 41 passes through the mirror 46 and the optical deflector 42 are read and written.
  • the optical head 43 sequentially focuses on the optical storage medium 44 without changing its physical and/or chemical properties.
  • the embodiments of the present application are described by taking an example in which the power of the initial optical signal generated by the light source assembly 41 is the third preset power when the data reading and writing system 40 is used for reading data. It should be understood that when the optical signal with the third preset power acts on the optical storage medium 44, its physical and/or chemical properties will not be changed.
  • the read-write optical head 43 may be arranged on the second mobile platform 143 .
  • the second moving platform 143 can be used to move the read/write optical head 43 in the axial direction, so as to adjust the position of the focal point of the optical signal focused by the read/write optical head 43 in the axial direction.
  • the second moving platform 143 can receive the axial servo signal sent by the processor 1422 in the signal processing module 142, and then can move the read-write optical head 43 in the axial direction according to the instructions of the axial servo signal, so as to realize the axial servo signal.
  • the position of the focal point of the optical signal focused by the read/write optical head 43 is adjusted upward.
  • the relevant description of the axial servo signal can be referred to the following, which will not be repeated here.
  • the second moving platform 143 may be a one-dimensional motorized linear motion platform.
  • the second moving stage 143 may be a z-axis motorized stage, which is not limited thereto.
  • the mirror 46 may be disposed on the third moving platform 144 .
  • the third moving platform 144 can be used to move the mirror 46 in the radial direction perpendicular to the axial direction (hereinafter referred to as the radial direction), so as to adjust the focus of the optical signal focused by the read-write optical head 43 in the radial direction. Location.
  • the third moving platform 144 can receive the radial servo signal sent by the processor 1422 in the signal processing module 142, and then can move the mirror 46 in the radial direction according to the indication of the radial servo signal, so as to realize the radial servo signal.
  • the position of the focal point of the optical signal focused by the read/write optical head 43 is adjusted in the direction.
  • the related description of the radial servo signal can be referred to the following, which will not be repeated here.
  • the third mobile stage 144 may be a two-dimensional motorized linear motion stage.
  • the third moving stage 144 may be an xy-axis motorized stage, but is not limited thereto.
  • FIG. 15 shows a schematic diagram of moving the mirror 46 by the third moving platform 144 to adjust the position of the focus of the optical signal focused by the read-write optical head 43 in the radial direction.
  • the reflector 46 when the reflector 46 is in position 1, the reflector 46 reflects the initial light signal incident on the light source assembly 41 to obtain the reflected light signal 1 .
  • the reflected optical signal 1 acts on the optical storage medium 44 through the optical signal separation module 141 , the optical deflector 42 and the read-write optical head 43 to realize the reading of the data point 1 on the optical storage medium 44 .
  • the position of the data point 1 is the position of the focal point when the optical signal is focused by the read-write optical head 43 when the mirror 46 is in the position 1.
  • the third moving platform 144 controls the mirror 46 to move to position 2 along the x-axis in the plane of the radial direction, in this case, the initial light signal incident on the light source assembly 41 by the mirror 46 After reflection, the reflected light signal 2 can be obtained.
  • the reflected optical signal 2 acts on the optical storage medium 44 via the optical signal separation module 141 , the optical deflector 42 and the read-write optical head 43 , so that the data point 2 can be read on the optical storage medium 44 .
  • the position of the data point 2 is the position of the focal point when the optical signal is focused by the read-write head 43 when the mirror 46 moves to the position 2 .
  • the third moving platform 144 controls the mirror 46 to move in the radial direction, so that the position of the focal point of the optical signal focused by the read-write optical head 43 can be moved in the radial direction.
  • FIG. 15 schematically shows a schematic diagram of the axial direction and the radial direction.
  • the z-axis is the axial direction of the read/write optical head 43, and the planes where the x-axis and the y-axis are located are the planes perpendicular to the axial direction. Therefore, the x-axis and the y-axis are for the radial direction.
  • the optical signal separation module 141 is used to separate the optical storage medium 44 from the optical path where the optical signal used to act on the optical storage medium 44 is located when the data reading and writing system 40 is used to read data. Return the optical signal to obtain the third optical signal.
  • optical path of the optical signal used to act on the optical storage medium 44 is generally opposite to the optical path of the optical signal returned after the optical storage medium 44 is acted upon.
  • optical path is reversed means that the optical path channels are the same, but the propagation directions of the optical signals are opposite.
  • the optical signal for reading data may act on the optical storage medium 44 along the direction indicated by direction 2 . Then, after the optical storage medium 44 is acted on by the optical signal, the optical signal returned by the optical storage medium 44 can be returned along the direction shown by the direction 3 in FIG. The optical signal of the storage medium 44 is separated from the optical path to obtain the third optical signal.
  • the optical signal separation module 141 includes a dichroic mirror.
  • the dichroic mirror can transmit long-wavelength laser light and reflect short-wavelength fluorescence.
  • the optical signal returned by the optical storage medium 44 can be separated from the optical path used to act on the optical signal of the optical storage medium to obtain the third optical signal.
  • the optical signal returned by the optical storage medium 44 is after the above-mentioned plurality of second optical signals act on the optical storage medium 44 in sequence. , the optical signal reflected by the optical storage medium 44 .
  • the optical signal separation module 141 may include a polarizing beam splitter 1411 and a wavelength plate 1412 . In this way, through the polarizing beam splitter 1411 and the wavelength plate 1412, the optical signal returned by the optical storage medium 44 can be separated from the optical path used to act on the optical signal of the optical storage medium 44 to obtain the third optical signal.
  • the process of applying the optical signal for reading data to the optical storage medium 44 may refer to the process of applying the optical signal for writing data to the optical storage medium 44 above, which will not be repeated here.
  • the polarizing beam splitter 1411 is used to receive the initial optical signal reflected by the mirror 46 and transmit the initial optical signal to the wavelength plate 1412 .
  • the optical signal transmitted to the wavelength plate 1412 is referred to as the fourth optical signal.
  • the polarizing beam splitter 1411 can be used to transmit the p-polarized light in the initial optical signal and reflect the s-polarized light of the initial optical signal after receiving the initial optical signal.
  • the fourth optical signal may be the p-polarized light or the s-polarized light, which is not limited. As shown in FIG. 14 , in the embodiment of the present application, the fourth optical signal is p-polarized light as an example for description.
  • the polarized beam splitter 1411 may be a polarized beam splitter prism, and of course other polarized beam splitters, which are not limited thereto.
  • the wavelength plate 1412 is used for receiving the fourth optical signal transmitted by the polarizing beam splitter 1411, and adjusting the phase of the fourth optical signal to output the first optical signal. And, it is used to receive the optical signal returned by the optical storage medium 44 via the read-write optical head 43 and the optical deflector 42, and adjust the phase of the optical signal to output the fifth optical signal.
  • the deflection states of the fourth optical signal and the fifth optical signal are different. For example, if the fourth optical signal is p-polarized light, the fifth optical signal is s-polarized light, and if the fourth optical signal is s-polarized light, the fifth optical signal is p-polarized light.
  • the embodiments of the present application are described by taking as an example that the fourth optical signal is p-polarized light and the fifth optical signal is s-polarized light.
  • the optical signal returned by the optical storage medium 44 is reversely processed by the read-write optical head 43 and the optical deflector 42 in turn,
  • the optical signal obtained after passing through the wavelength plate 1412 is the fifth optical signal.
  • the above-mentioned wavelength plate 1412 may be a 1/4 wavelength plate.
  • the 1/4 wavelength plate can shift the phase of the received optical signal by 1/4 wavelength. Therefore, when the optical signal passes through the quarter-wave plate twice in a row, the deflection state of the optical signal will change. For example, when p-polarized light passes through a quarter-wave plate twice in a row, it becomes s-polarized light. Alternatively, the s-polarized light becomes p-polarized light after passing through the quarter-wave plate twice in a row.
  • a wavelength plate 1412 is usually provided.
  • the optical storage medium 44 can return the optical signal to the original path. In this way, the returned optical signal will pass through the wavelength plate 1412 . In this way, it is equivalent to the optical signal passing through the wavelength plate 1412 twice in a row.
  • the fourth optical signal processed by the wavelength plate 1412 for the first time is p-polarized light
  • the fourth optical signal acts on the optical storage medium 44 after passing through the wavelength plate 1412, the optical deflector 42 and the read-write optical head 43, and the optical
  • the fifth optical signal obtained by the storage medium 44 after returning the optical signal to the original path and passing through the wavelength plate 1412 again is s-polarized light.
  • the polarizing beam splitter 1411 can also be used to receive the fifth optical signal, and based on the principle of polarized beam splitting, reflect and output the fifth optical signal, that is, the above-mentioned third optical signal is obtained.
  • the p-polarized light in the initial optical signal passes through the working surface of the polarizing beam splitter 1411 (that is, the diagonal surface of the polarizing beam splitter 1411 , Fig. 14 is shown with an oblique line in a square), thereby obtaining a fourth optical signal, which is p-polarized light.
  • the fourth optical signal reaches the wavelength plate 1412 along the direction 2, and passes through the wavelength plate 1412 to obtain the first optical signal whose phase is changed by 1/4 wavelength.
  • the optical signal returned by the optical storage medium 44 can reach the wavelength along the direction 3 opposite to the direction 2.
  • Board 1412. When the returned optical signal passes through the wavelength plate 1412, a fifth optical signal is obtained. Compared with the optical signal returned from the optical storage medium 44, the phase of the fifth optical signal changes by 1/4 wavelength. That is, the phase of the fifth optical signal is changed by 1/2 wavelength compared to the fourth optical signal. In this case, the fifth optical signal is s-polarized light.
  • the polarizing beam splitter 1411 receives the fifth optical signal. Since the fifth optical signal is s-polarized light, the fifth optical signal is reflected and output by the working surface of the polarizing beam splitter 1411, thereby obtaining the above-mentioned third optical signal. In this way, by changing the polarization state of the optical signal and using a polarizing beam splitter, the optical signal separation module 141 realizes the separation of the optical storage medium 44 from the optical path used to act on the optical signal of the optical storage medium 44 after being acted by the optical signal. Returned light signal.
  • the information processing module 142 includes a light detector 1421 and a processor 1422 .
  • the processor 1422 may be the same processor as the processor 4133 in FIG. 5 , or may be different processors, which is not limited.
  • the photodetector 1421 is configured to receive the third optical signal separated by the optical signal separation module 141, convert the received third optical signal into an electrical signal, and send the electrical signal to the processor 1422 for processing.
  • the processor 1422 may further process the electrical signal received from the photodetector 1421 to determine the data to be read, or to determine the servo control signal.
  • the photodetector 1421 may be a photoelectric sensor, for example, a CCD, which is not limited.
  • the light intensity of the third optical signal and the light spot information of the light spot formed by the third optical signal on the photodetector 1421 can be determined.
  • the spot information includes spot shape and spot size.
  • the light detector 1421 may send the determined light intensity and light spot information of the third light signal to the processor 1422 for further processing.
  • the third optical signal is an optical signal returned by the data reading and writing system 40 after acting on the data points used to store data on the optical storage medium 44
  • the third optical signal is data light Signal.
  • the processor 1422 can decode the data to be read based on the light intensity of the third optical signal and the preset decoding rule.
  • the data stored in the data reading and writing system 40 is the data obtained after the data to be read is encoded by the preset encoding rules. Therefore, the data reading and writing system 40 is preset with a decoding rule corresponding to the encoding rule. In this way, when the data reading and writing system 40 reads the data to be read, the data read from the optical storage medium can be decoded based on the preset decoding rule, that is, the data to be read can be obtained.
  • the third optical signal is the optical signal returned by the data reading and writing system 40 after acting on the servo point on the optical storage medium 44
  • the third optical signal is the servo optical signal.
  • the processor 1422 can generate a servo control signal based on the preset information of the servo point and the light intensity and spot information of the third optical signal to adjust the position of the focal point of the optical signal focused by the read-write optical head 43 .
  • the data reading and writing system 40 can generate the power of the initial optical signal for writing the servo point by controlling the light source assembly 41 at a plurality of preset times, so as to realize the optical storage medium 44
  • the multiple preset moments correspond one-to-one with the servo points laid out by any of the possible implementations. Therefore, the data reading and writing system 40 can determine whether the third optical signal is a servo optical signal by determining whether the moment when the third optical signal is received is a preset moment corresponding to the servo point.
  • the processor 1422 is preset with the corresponding relationship between the preset time and the servo point.
  • the preset information of the servo point includes the light intensity and light spot information of the servo point.
  • the light intensity and light spot information refer to the light intensity and light spot information of the optical signal returned by the servo point detected by the photodetector 1421 when the light signal used for reading data is accurately focused on the servo point.
  • the returned light signal may be a reflected light signal or a fluorescent signal, which is not limited.
  • the power of the optical signal used for reading data may be the above-mentioned third preset power.
  • the light intensity and light spot information in the preset information of the servo point may be measured in advance.
  • the data reading and writing system 40 can use the optical signal with the third preset power to accurately focus on any servo point on the optical storage medium 44 through the optical path of the data reading and writing system 40 in FIG. 14 (to write all the The power of the servo point is the same as the example). Then, the light detector 1421 receives the light signal returned by any one of the servo points, and determines the light intensity and light spot information of the light signal. In this way, the light intensity and light spot information are the preset information of the above-mentioned servo point.
  • the light intensity in the above preset information is referred to as the first light intensity
  • the light spot information in the above preset information is referred to as the first light spot information.
  • the light intensity of the third optical signal received by the processor 1422 is called the second light intensity
  • the light spot information of the third optical signal received by the processor 1422 is called the second light spot information.
  • the processor 1422 can determine the servo control signal according to the received second light intensity and the second light spot information, and the preset first light intensity and the first light spot information.
  • the servo control signal includes at least one of a focus servo signal or a tracking servo signal.
  • the processor 1422 can determine the focus of the servo control signal for adjusting the optical signal focused by the read-write head 43 according to the spot size and spot shape in the first spot information and the spot size and spot shape in the second spot information Adjustment direction at the time of position.
  • FIG. 16 shows a schematic diagram of determining the adjustment direction when adjusting the focus position of the optical signal focused by the read-write optical head 43 in the servo control signal according to the spot size and shape.
  • the solid line circle represents the light spot 161 in the preset information of the servo point.
  • the overlapping portion of the solid-line circle and the dotted-line circle represents the light spot 162 corresponding to the third optical signal.
  • the processor 1422 can determine, according to the shapes and sizes of the light spot 161 and the light spot 162 , that the read/write optical head 43 does not accurately focus the optical signal used for the servo spot on the optical storage medium 44 .
  • the processor 1422 can also determine that, in the axial direction of the read/write optical head 43, the focal position when the read/write optical head 43 focuses the optical signal needs to be adjusted toward the direction close to the optical storage medium 44.
  • FIG. 17 shows another schematic diagram of determining the adjustment direction when adjusting the focus position of the optical signal focused by the read-write optical head 43 in the servo control signal according to the size and shape of the light spot.
  • the solid line circle represents the light spot 171 in the preset information of the servo point.
  • the overlapping portion of the solid-line circle and the dotted-line circle represents the light spot 172 corresponding to the third optical signal.
  • the processor 1422 can determine, according to the shapes and sizes of the light spots 171 and 172 , that the read/write optical head 43 needs to be in the radial direction (ie, the x-axis direction and the y-axis direction shown in FIG. 13 ), along the In the positive direction of the x-axis and the positive direction of the y-axis, the position of the focal point when the optical signal is focused by the read/write optical head 43 is adjusted.
  • the processor 1422 can determine the focus error and the tracking error of the data reading and writing system 40 according to the first light intensity and the second light intensity.
  • the processor 1422 can make a difference between the first light intensity and the second light intensity, and determine the focus error and the tracking error of the data reading and writing system 40 according to the difference.
  • the designer can preset the correspondence between the difference between different light intensities and the first light intensity and the focus error and tracking error of the data reading and writing system 40 through a large number of test results in advance in the processor 1422 .
  • the processor 1422 can determine the focus error and the tracking error of the data reading and writing system 40 according to the corresponding relationship and the difference between the first light intensity and the second light intensity.
  • the processor 1422 may generate a focus servo signal according to the above-determined adjustment direction and the determined focus error, where the focus servo signal is used to indicate that the reading
  • the position of the optical writing head 43 is adjusted in the axial direction of the optical writing head 43, so as to realize the adjustment of the focal position of the optical writing head 43 in the axial direction when focusing the optical signal.
  • the data reading system 40 can accurately read the data stored in the optical storage medium.
  • the read data system 40 may not perform the focus servo. That is, the data read system 40 does not need to adjust the focal position of the read/write optical head 43 in the axial direction when focusing the optical signal.
  • the embodiment of the present application does not specifically limit the case where the focus error is equal to the third preset threshold.
  • the processor 1422 may generate a focus servo signal, or may not generate a focus servo signal, which is not limited thereto.
  • the processor 1422 may be preset with a corresponding relationship between different focusing errors and the adjustment amount for adjusting the position of the read/write optical head 43 in the axial direction, and the corresponding relationship may be determined in advance according to a large number of experiments, which is not specifically limited.
  • the processor 1422 may generate a tracking servo signal according to the above-determined adjustment direction and the determined tracking error, and the tracking servo signal is used to indicate The position of the mirror 46 is adjusted in the radial direction, so as to realize the adjustment in the radial direction of the focal position of the read-write optical head 43 when focusing the optical signal.
  • the data reading system 40 can accurately read the data stored in the optical storage medium 44 .
  • the read data system 40 may not perform the tracking servo. That is, the data read system 40 does not need to adjust the focal position of the read/write optical head 43 in the radial direction when focusing the optical signal.
  • the embodiment of the present application does not specifically limit the case where the radial error is equal to the fourth preset threshold.
  • the processor 1422 may generate a radial servo signal, or may not generate a radial servo signal, which is not limited.
  • the processor 1422 may be preset with a corresponding relationship between different tracking errors and the adjustment amount for adjusting the position of the mirror 46 in the radial direction, and the corresponding relationship may be determined in advance according to a large number of experiments, which will not be specified. limited.
  • the embodiments of the present application do not specifically limit the values of the third preset threshold and the fourth preset threshold.
  • the focus servo signal can be sent to the second moving platform 143 shown in FIG. 14 , so that the second moving platform 143 can control reading and writing according to the instruction of the focus servo signal
  • the optical head 43 moves in the axial direction, so that the position of the focal point when the read-write optical head 43 focuses the optical signal can be adjusted in the axial direction.
  • the tracking servo signal can be sent to the third mobile platform 144 shown in FIG. 14, so that the third mobile platform 144 can follow the instructions of the tracking servo signal,
  • the mirror 46 is controlled to move in the radial direction, so that the position of the focal point when the optical signal is focused by the read/write optical head 43 is adjusted in the radial direction.
  • the data reading and writing system 40 usually firstly performs servo on the focus error of the system. In this way, when the data reading and writing system 40 reads the next data point of the current data point, the optical signal for reading the next data point can be focused on the next data point after being focused by the read-write optical head 43 , which eliminates the focusing error of the system. Then, the data reading and writing system 40 performs servo on the tracking error of the system to eliminate the tracking error of the system.
  • the data point servo addressing scheme adopted in the embodiment of the present application when reading data is to perform servo addressing by using a single data point as a servo point.
  • the solution provided by the embodiments of the present application is more convenient and efficient.
  • the data reading and writing system through the optical deflector, sequentially modulates the first optical signal obtained by the initial optical signal generated by the light source assembly. Deflection to enable the reading of a row of data points on the optical storage medium within a preset period.
  • the data reading and writing system realizes reading multiple rows of data points on the optical storage medium along the moving direction of the optical storage medium within a plurality of preset periods, so as to realize reading including multiple data points.
  • the embodiments of the present application improve the data reading efficiency of the data reading and writing system without increasing the rotational speed of the optical storage medium.
  • the data reading and writing system 40 shown in FIG. 14 only shows the core devices/modules of the data reading and writing system 40, and the structure shown in FIG. 14 does not constitute the data reading and writing system. 40 limit.
  • the data reading and writing system 40 may include more or less devices or modules than shown, or different device/module arrangements, and the like.
  • the optical deflector in the above-mentioned data reading and writing system 40 is a rotating mirror
  • the above-mentioned data reading and writing system 40 may further include an f- ⁇ mirror.
  • the above-mentioned data reading and writing system 40 may also include the processor 1422 and the first The connection circuit between the mobile platforms 45 , the connection circuit between the processor 1422 and the second mobile platform 143 , and the connection circuit between the processor 1422 and the third mobile platform 144 , etc. will not be repeated here.
  • the optical deflector 42 deflecting the first optical signal including only a single beam of optical signal as an example.
  • the optical deflector 42 can also deflect an array optical signal including multiple optical signals, so as to obtain a plurality of array optical signals, so that one data block can be read and written.
  • the array optical signal is sequentially deflected by the optical deflector 42 in each preset period of the multiple preset periods to obtain multiple array optical signals, which can realize reading and writing of a data strip including multiple data blocks. In this way, the speed of reading and writing data can be further improved.
  • the array optical signal may be a one-dimensional or two-dimensional array signal, for example, the array optical signal includes 1*j optical signals, or the array optical signal includes k*j optical signals, which is not limited. where j and k are both integers greater than 1.
  • the arrayed optical signal is a one-dimensional array optical signal
  • the plane on which the one-dimensional array optical signal is located is different from the optical signal deflected by the optical deflector 42.
  • Planes have preset angles. That is, the plane where the one-dimensional array column optical signal is located is not in the same plane as the plane where the optical deflector 42 deflects the optical signal.
  • the one-dimensional array-column optical signal can be deflected into a plurality of one-dimensional array-column optical signals by the optical deflector 42 within a preset period, so as to realize reading and writing of a data strip including a plurality of data blocks.
  • the above-mentioned data reading and writing system 40 may further include optical devices such as a beam splitter for splitting the optical signal generated by the light source assembly into an array optical signal, which will not be repeated here.
  • optical devices such as a beam splitter for splitting the optical signal generated by the light source assembly into an array optical signal, which will not be repeated here.
  • FIG. 18 shows a schematic diagram of a data strip including a plurality of data blocks.
  • data track 1, data track 2 and data track 3 constitute an annular data band.
  • data block 1 is a set of data points on data track 1
  • data block 2 is a set of data points on data track 2
  • data block 3 is a set of data points on data track 3.
  • a plurality of data points in a data point set are written simultaneously on an optical storage medium after an array optical signal is deflected by an optical deflector.
  • FIG. 19 shows a schematic flowchart of a data reading and writing method provided by an embodiment of the present application. The method is applied to the data reading and writing system 40 shown in FIG. 14, and the method may include the following steps:
  • the data reading and writing system generates a first optical signal.
  • the data reading and writing system sequentially deflects the first optical signal by multiple angles to obtain multiple second optical signals.
  • the data reading and writing system can sequentially deflect the first optical signal by the multiple angles within a preset period to obtain multiple second optical signals.
  • the data reading and writing system sequentially deflects the first optical signal by the plurality of angles within a preset period to obtain a plurality of second optical signals
  • the optical deflector 42 to deflect the first optical signal in turn Multiple angles are used to obtain descriptions of multiple second optical signals, which will not be repeated here.
  • the data reading and writing system focuses the above-mentioned multiple second optical signals on the optical storage medium, so as to realize the reading and writing of multiple data points, and the data reading and writing system performs each preset period in multiple preset cycles. Within a preset period, a plurality of second optical signals corresponding to each preset period are focused on the optical storage medium, so as to realize reading and writing of multiple data tracks.
  • the multiple data tracks include multiple data points read and written by the data reading and writing system within a preset period, and the multiple data tracks correspond to the multiple data points one-to-one.
  • the data reading and writing system focuses the above-mentioned multiple second optical signals on the optical storage medium, so as to realize the description of reading and writing of multiple data points, and the data reading and writing system in multiple preset cycles each Within each preset period, a plurality of second optical signals corresponding to each preset period are focused on the optical storage medium, so as to realize the reading and writing of multiple data tracks.
  • a second optical signal is focused on the optical storage medium to realize the description of reading and writing of multiple data points and data tracks, which will not be repeated here.
  • the data reading and writing system when the data reading and writing system reads data, after the data reading and writing system controls any one of the multiple second optical signals to act on the optical storage medium, that is, any one of the multiple second optical signals acts on the optical storage medium. After the data point on the optical storage medium, the data point on the optical storage medium can return a third optical signal. In this way, the data reading and writing system can generate the servo control signal based on the third optical signal. Or, the data reading and writing system determines the data to be read based on the third optical signal.
  • the third optical signal is a servo optical signal, that is, the data reading and writing system can generate a servo control signal based on the third optical signal.
  • the third optical signal is a data optical signal, that is, the data reading and writing system can determine the data to be read based on the third optical signal.
  • the data reading and writing system generates the servo control signal based on the third optical signal, and the data reading and writing system determines the data to be read based on the third optical signal.
  • the information processing module 142 Please refer to the information processing module 142 above to generate the servo control signal based on the third optical signal. , and the description of determining the data to be read based on the third optical signal, which will not be repeated here.
  • the optical deflector and the reading and writing optical head in the data reading and writing system are perpendicular to the The read-write optical head moves a preset distance in the plane of the axial direction, so as to realize the read-write of the second data band in any one of the storage layers.
  • the optical deflector and the reading and writing optical head in the data reading and writing system are perpendicular to the
  • the read-write optical head moves a preset distance in the plane of the axial direction to realize the read-write of the second data band in any one of the storage layers, you can refer to the data read-write system above to move the optical deflector through the radial moving stage 91 and the read-write optical head to realize the description of the read-write of different data bands, which will not be repeated here.
  • the embodiments of the present application provide a data reading and writing system and method.
  • the system uses an optical deflector to sequentially deflect a first optical signal obtained by modulating an initial optical signal generated by a light source assembly, so as to achieve a pre- In the set period, a row of data points is read and written on the optical storage medium.
  • the data reading and writing system realizes reading and writing multiple rows of data points on the optical storage medium along the movement direction of the optical storage medium within a plurality of preset periods, so as to realize reading and writing including multiple data points.
  • a data strip of a data track is arranged in a data track.
  • the embodiments of the present application improve the efficiency of reading and writing data by the data reading and writing system without increasing the rotational speed of the optical storage medium.
  • the initial optical signal generated by the light source assembly is a single-beam optical signal
  • the optical deflector is an acousto-optic deflector
  • the frequency of the deflected optical signal is 300KHz.
  • the position range of the optical write head focused on the optical storage medium is 300 ⁇ m
  • the diameter of a single bit that is, a single data point (one data point represents one bit)
  • the rotation speed of the outer ring of the first moving platform for rotating the optical disc is: If the outer diameter D of the optical disc is 240mm and the inner diameter D is 40mm, the rotational speed of the first moving platform for rotating the disc is:

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)

Abstract

本申请公开了一种数据读写系统和方法,涉及光存储技术领域,该方法能够在不提高光存储介质转速的情况下,提高光存储的读写速度。该系统包括光偏转器和读写光头,所述光偏转器用于将第一光信号依次偏转多个角度,以得到多个第二光信号。所述读写光头用于接收该多个第二光信号,并分别将该多个第二光信号聚焦在光存储介质上,以实现对多个数据点的读写。

Description

一种数据读写系统和方法 技术领域
本申请涉及光存储技术领域,尤其涉及一种数据读写系统和方法。
背景技术
随着信息技术的发展,各种信息的计算量和存储量呈指数级增长。光存储作为信息存储的一种重要手段被广泛应用。
传统的光存储技术,通常是通过固定用于出射光信号的读写光头不动,并利用高速旋转电机带动光存储介质(例如光盘)高速旋转,来实现光信号在光存储介质上读写数据。为了提高读写数据的速度,传统的做法通常是通过提高光存储介质的转速来实现。然而,提高光存储介质的转速,会导致光存储介质的抖动噪声增大,进而使得光路伺服的难度增大。
基于此,如何在不提高光存储介质转速的情况下,提高光存储的读写速度,是亟待的技术问题。
发明内容
本申请提供了一种数据读写系统和方法,能够在不提高光存储介质转速的情况下,提高光存储的读写速度。
为达上述目的,本申请提供如下技术方案:
第一方面,本申请提供了一种数据读写系统,该系统包括:光偏转器,用于将第一光信号依次偏转多个角度,以得到多个第二光信号。读写光头,用于接收该多个第二光信号,并分别将该多个第二光信号聚焦在光存储介质上,以实现对多个数据点的读写。
本申请提供的数据读写系统,可以通过光偏转器对用于读写数据的第一光信号进行顺序偏转,从而实现在光存储介质上读写一排数据点。通过本申请提供的数据读写系统在移动中的光存储介质上读写数据,实现了通过控制单束光信号,在不提高光存储介质转速的情况下,能够在光存储介质上同时读写数据带中的多个数据道,实现了通过单束光信号实现并行读写数据的效果,从而提高了数据读写系统读写数据的效率。
在一种可能的设计方式中,上述系统还包括:移动平台,用于安置上述的光存储介质,以及用于控制该光存储介质在与上述读写光头的轴向方向垂直的平面上旋转或平移。上述的光偏转器,具体用于在多个预设周期中的每个预设周期内,依次将第一光信号偏转多个角度,以得到多个第二光信号。上述的读写光头,还用于在该每个预设周期内接收该多个第二光信号,并分别将该多个第二光信号聚焦在光存储介质上,以实现对多个数据道的读写。其中,该多个数据道包括上述的多个数据点,该多个数据道和上述的多个数据点一一对应。
通过该可能的设计,本申请所提供的数据读写系统实现了在移动中的光存储介质上读写数据,从而实现了通过控制单束光信号,在不提高光存储介质转速的情况下,在光存储介质上同时读写数据带中的多个数据道,实现了通过单束光信号实现并行读写数据的效果,从而提高了数据读写系统读写数据的效率。
在另一种可能的设计方式中,上述的光偏转器包括下列器件中的至少一种:多面转镜、振镜、声光偏转器或电光偏转器。
通过该可能的设计,本申请所提供的数据读写系统可以满足不同的设计需求。
在另一种可能的设计方式中,上述的多个数据道中包括至少一个伺服道,该伺服道上的多个伺服点离散分布。其中,伺服点用于在数据读写系统读数据时调整上述读写光头聚焦光信号时的焦点位置。
在另一种可能的设计方式中,上述的多个伺服点中任意相邻的两个伺服点之间的距离大于或等于预设距离。
通过该两种可能的设计,可以在数据读写系统读数据时进行伺服,从而提高数据读写系统读数据时的准确度。
在另一种可能的设计方式中,上述的光存储介质包括多个存储层,该多个存储层中的伺服点在读写光头轴向方向上离散分布。其中,伺服点用于在数据读写系统读数据时调整上述读写光头聚焦光信号时的焦点位置。
当光存储介质包括多个存储层时,则在数据读写系统读取远离读写光头的存储层上的伺服点时,通过该可能的设计,可以减少读取该伺服点的光信号的衰减,从而保证了该伺服点对数据读写系统的准确伺服,进而提高了数据读写系统读数据时的准确度。
在另一种可能的设计方式中,上述的多个数据道可以组成一个数据带。上述的系统还包括:径向移动台,用于在上述的光存储介质的多个存储层中的第一存储层上读写完成第一数据带后,将数据读写系统中的光偏转器和读写光头,在垂直于该读写光头轴向方向的平面内移动预设距离,以实现对该第一存储层中的第二数据带的读写。其中,该第一存储层包括多个数据带。
通过该可能的设计方式,可以实现全盘读写光存储介质。
在另一种可能的设计方式中,上述的系统还包括:信号处理模块,用于在数据读写系统读数据时接收第三光信号;以及,用于当该第三光信号是伺服光信号时,基于该第三光信号生成用于调整数据读写系统中读写光头聚焦光信号时的焦点位置的伺服控制信号;以及,用于当该第三光信号是数据光信号时,基于该第三光信号确定待读数据。其中,第三光信号是多个第二光信号中的任一个光信号作用于光存储介质上的任一个数据点后,光存储介质返回的光信号。如果该任一个数据点是伺服点,则第三光信号是伺服光信号;如果该任一个数据点用于存储数据,则第三光信号是数据光信号。
在另一种可能的设计方式中,上述系统还包括:光源组件,用于得到上述的第一光信号。
第二方面,本申请提供一种数据读写方法,应用于数据读写系统。该方法包括:将第一光信号依次偏转多个角度,以得到多个第二光信号。将该多个第二光信号聚焦在光存储介质上,以实现对多个数据点的读写。
在一种可能的设计方式中,上述方法还包括:控制光存储介质在与上述数据读写系统中的读写光头的轴向方向垂直的平面上旋转或平移。上述的“将第一光信号依次偏转多个角度,以得到多个第二光信号”,具体包括:在多个预设周期中的每个预设周期内,依次将第一光信号偏转多个角度,以得到多个第二光信号。上述方法还包括:在该每个预设周期内,将多个第二光信号聚焦在光存储介质上,以实现对多个数据道的读写。其中,多个数据道包括多个数据点,多个数据道和多个数据点一一对应。
在另一种可能的设计方式中,上述“将第一光信号依次偏转多个角度,以得到多个第二光信号”具体包括:上述数据读写系统中的光偏转器将第一光信号依次偏转多个角度,以得到多个第二光信号。其中,该光偏转器包括下列器件中的至少一种:多面转镜、振镜、声光偏转器或电光偏转器。
在另一种可能的设计方式中,上述的多个数据道中包括至少一个伺服道,伺服道上的多 个伺服点离散分布。其中,伺服点用于在上述数据读写系统读数据时调整读写光头聚焦光信号时的焦点位置。
在另一种可能的设计方式中,上述的多个伺服点中任意相邻的两个伺服点之间的距离大于或等于预设距离。
在另一种可能的设计方式中,上述的光存储介质包括多个存储层,该多个存储层中的伺服点在上述数据读写系统中的读写光头的轴向方向上离散分布。其中,伺服点用于该数据读写系统在读数据时调整读写光头聚焦光信号时的焦点位置。
在另一种可能的设计方式中,上述的多个数据道组成一个数据带。上述方法还包括:在光存储介质的多个存储层中的第一存储层上对第一数据带执行完读写操作后,将上述数据读写系统中的光偏转器和读写光头,在垂直于该读写光头轴向方向的平面内移动预设距离,以实现对该第一存储层中的第二数据带的读写。其中,该第一存储层包括多个数据带。
在另一种可能的设计方式中,上述方法还包括:当第三光信号是伺服光信号时,基于该第三光信号生成用于调整数据读写系统中读写光头聚焦光信号时的焦点位置的伺服控制信号;以及,当第三光信号是数据光信号时,基于该第三光信号确定待读数据。其中,第三光信号是多个第二光信号中的任一个光信号作用于光存储介质上的任一个数据点后,光存储介质返回的光信号。如果该任一个数据点是伺服点,则第三光信号是伺服光信号;如果该任一个数据点用于存储数据,则第三光信号是数据光信号。
在另一种可能的设计方式中,上述“将第一光信号依次偏转多个角度,以得到多个第二光信号”之前,上述方法还包括:生成该第一光信号。
关于第二方面所提供的数据读写方法的解释以及有益效果的描述,均可以参考第一方面及其任一种可能的设计方式所提供的数据读写系统的解释以及有益效果,不再赘述。
第三方面,本申请提供一种数据读写控制装置。该数据读写控制装置包括处理器和存储器。该处理器用于从存储器中调用并运行该存储器中存储的计算机程序,以控制数据读写系统执行第二方面及其任一种可能的设计方式中的数据读写方法。
第四方面,本申请提供了一种计算机程序产品,当其在数据读写控制装置上运行时,可以控制数据读写系统执行第二方面及其任一种可能的设计方式中的数据读写方法。
第五方面,本申请提供了一种计算机可读存储介质,如计算机非瞬态的可读存储介质。其上储存有计算机程序(或指令),当该计算机程序(或指令)在数据读写控制装置上运行时,可以控制数据读写系统执行上述第二方面中提供的数据读写方法。
可以理解的是,上述提供的任一种数据读写控制装置、计算机程序产品或计算机存储介质等均可以应用于上文所提供的对应的方法,因此,其所能达到的有益效果可参考对应的方法中的有益效果,此处不再赘述。
在本申请中,上述数据读写系统内或数据读写控制装置的名字对设备或功能模块本身不构成限定,在实际实现中,这些设备或功能模块可以以其他名称出现。只要各个设备或功能模块的功能和本申请类似,属于本申请权利要求及其等同技术的范围之内。
本申请的这些方面或其他方面在以下的描述中会更加简明易懂。
附图说明
图1为现有技术中声光偏转器的偏转光信号的示意图;
图2为本申请实施例提供的读数据系统中聚焦误差的示意图;
图3为本申请实施例提供的读数据系统中寻迹误差的示意图;
图4为本申请实施例提供的一种数据读写系统的结构示意图一;
图5为本申请实施例提供的一种光源组件的结构示意图;
图6为本申请实施例提供的一种数据读写系统的结构示意图二;
图7为本申请实施例提供的光偏转器将预设周期内接收到的第一光信号中的3个光脉冲信号依次偏转不同角度的示意图;
图8为本申请实施例提供的一种读写光头在光存储介质上写入的数据点的示意图;
图9为本申请实施例提供的一种数据读写系统的结构示意图三;
图10为本申请实施例提供的一种数据读写系统通过控制径向移动台移动预设距离,以实现写入不同数据带的示意图;
图11为本申请实施例提供的一种在轴向方向上重合的圆形伺服道上的伺服点离散分布的示意图;
图12为本申请实施例提供的一种在多个存储层中,每个存储层上在轴向方向上重合的数据带中的伺服道在该轴向方向上不重合的示意图;
图13为本申请实施例提供的一种在轴向方向上重合的圆形伺服道上的伺服点的分布示意图;
图14为本申请实施例提供的一种数据读写系统的结构示意图四;
图15为本申请实施例提供的一种通过第三移动平台移动反射镜,从而实现在径向方向上调节读写光头所聚焦光信号的焦点的位置的示意图;
图16为本申请实施例提供的一种根据光斑大小及形状确定伺服控制信号中调节读写光头所聚焦光信号的焦点位置时的调节方向的示意图;
图17为本申请实施例提供的另一种根据光斑大小及形状确定伺服控制信号中调节读写光头所聚焦光信号的焦点位置时的调节方向的示意图;
图18为本申请实施例提供的一种包括多个数据块的数据带的示意图;
图19为本申请实施例提供的一种数据读写方法的流程示意图。
具体实施方式
为了更清楚的理解本申请实施例,下面对本申请实施例中涉及的部分术语或技术进行说明:
1)、光偏转器
光偏转器是通过采用光偏转技术偏转光信号传播方向的器件。光偏转器被广泛的应用在激光扫描精密计量设备、激光加工设备以及激光图形发生器件等各种设备中。常用的光偏转技术,包括机械偏转技术和非机械偏转技术。
其中,机械偏转技术通常通过采用多面转镜或振镜等光学器件,来实现光信号传播方向的偏转。非机械偏转技术包括采用声光效应或电光效应改变透明介质的折射率,来实现光信号传播方向的偏转。
以光偏转器是采用声光效应来实现偏转光信号传播方向的声光偏转器为例,对光偏转器的工作原理予以简单说明:声波在透明介质(例如晶体)内传播,可以改变透明介质的折射率,从而使得透明介质上形成相位型衍射光栅。当光信号通过该衍射光栅,该光信号的传播方向即发生偏转。
声光偏转器可以偏转光信号的角度范围,与在透明介质内传播的声波的频率变化成正比。具体的,声光偏转器偏转光信号的角度范围△θ,可以通过下述公式(1)计算得到:
公式(1)      
Figure PCTCN2021130165-appb-000001
其中,λ是被偏转的光信号的波长,f 1可以是在透明介质内传播的声波的起始频率,f 2可以是在透明介质内传播的声波的结束频率,v是声波在透明介质内传播的速度。
其中,声光偏转器中用于改变透明介质折射率的声波,通常是通过将声光偏转器接收到的射频(Radio Frequency,RF)信号进行电-声转换得到的。这样,通过控制输入到声光偏转器的RF信号的频率,既可得到不同频率的声波信号,进而,该不同频率的声波信号在透明介质内传播,使得透明介质上形成的相位型衍射光栅,从而对通过该相位型衍射光栅的光信号的传播方向进行不同角度的偏转。
在实际应用中,向声光偏转器输入的RF信号的频率通常是频率连续变化的RF信号。因此,经电-光转换后所得到的声波信号的频率也是连续变化的。这样的话,光信号在通过被该频率连续变化的声波作用的透明介质时,可以被连续偏转。
应理解,在声光偏转器中,如果在透明介质内传播的声波的频率从f 1变化到f 2,或者从f 2变化到f 1,光信号可以被该声光偏转器偏转的角度范围是△θ。本申请实施例将在透明介质内传播的声波的频率从f 1变化到f 2(或者从f 2变化到f 1)所需的时间,称为预设周期。也可以理解为,在该预设周期内,声光偏转器可以将光信号偏转的角度范围为△θ。
应理解,在一个预设周期内,声波的频率变化是单向变化的,即从小到大变化,或者从大到小变化,因此,声光偏转器在预设周期内对光信号的偏转具有单向方向性。
示例性的,参考图1,图1示出了声光偏转器的偏转光信号的示意图。如图1所示,声光偏转器11接收频率连续变化的RF信号,并将该RF信号转化为频率连续变化(例如频率从f 1变化至f 2)的声波。这样,当该频率连续变化的声波在声光偏转器11中的透明介质内传播时,声光偏转器11接收到的入射的光信号12,可以在角度为△θ的范围内(或在上述所述的预设周期内)被连续偏转,从而依次得到出射的光信号1、光信号2、…、以及光信号n。
这种情况下,该入射的光信号12是连续型的光信号。例如,在时刻1,光信号12被偏转得到光信号1,在时刻2,光信号12被偏转得到光信号2,以及,在时刻n,光信号12被偏转得到光信号n。这里,时刻1、时刻2、….、以及时刻n是预设周期内连续的时刻。可以看出,声光偏转器11是按照图1中方向1所示方向,依次将光信号12偏转得到具有不同出射角度的光信号。这里,该出射角度为出射的光信号和入射的光信号的夹角。
当然,该入射的光信号12也可以是脉冲型的光信号。这种情况下,如果在预设周期T内,声光偏转器接收到n(n是大于1的整数)个光脉冲信号,则该n个光脉冲信号在预设周期T内,可以被声光偏转器11在图1方向1所示的方向上依次偏转,以得到n个具有不同出射角度的光信号。n个具有不同出射角度的光信号之间,最大的夹角小于或等于△θ。
可以看出,采用声光效应偏转光信号的光偏转器,是通过RF信号的频率变化来控制光信号传播方向的偏转,其不受机械转动元件的限制,因此具有偏转速度快、无惯性、机械损耗小的特点。
2)聚焦误差
聚焦误差也可以称为轴向误差,或者称为离焦量。
在读数据系统中使用光信号读取光存储介质中所存储的数据时,通常需要读写光头将该光信号聚焦在光存储介质中用于存储数据的存储层1上,这样才能实现该存储层1上所存储数据的读取。这种情况下,在该光信号的光轴方向上,该光信号经读写光头聚焦后的焦点,与用于存储数据的存储层1之间的距离为0。
当该光信号经读写光头聚焦后的焦点,与上述用于存储数据的存储层1之间的距离不为0时,即在该光信号的光轴方向上,该光信号经读写光头聚焦后的焦点,与该存储层1之间存在一定的距离。这种情况下,该光信号没有被聚焦到用于存储数据的存储层1上。这样的话,该光信号经读写光头聚焦后的焦点,与该存储层1之间的距离,即可称为该读数据系统的聚焦误差。
参考图2,图2示出了读数据系统中聚焦误差的示意图。如图2所示,在光存储介质中用于存储数据的存储层20上,包括用于记录数据的数据点A。用于读数据的光信号21经读写光头聚焦后的焦点为焦点B,光信号21的光轴为光轴211。可以看出,在光轴211的方向上,焦点B和数据点A之间的距离为Δz。也就是说,图2所示的读数据系统在当前的聚焦误差为Δz。
3)寻迹误差
寻迹误差,也可以称为径向误差。
在读数据系统中使用光信号读取光存储介质中所存储的数据时,当聚焦误差为0、或者聚焦误差小于或等于预设阈值时,还需要用于读数据的光信号经读写光头聚焦后的焦点,和光存储介质上用于记录数据的数据点在径向方向上重合时,才能实现该光存储介质上所存储的数据的读取。这里的径向方向,是指与用于读数据的光信号的光轴垂直的方向。本申请实施例对这里的预设阈值的具体取值不作限定。
当上述用于读数据的光信号经光头聚焦后的焦点,和光存储介质上的数据点在径向方向上不重合时,即该光信号经读写光头聚焦后的焦点,和光存储介质上的数据点在径向方向上的具有一定的偏移量。这种情况下,该偏移量即可称为该读数据系统的寻迹误差。
应理解,在径向方向所在的二维平面上,径向偏移量可以包括x轴偏移量和y轴偏移量。
参考图3,图3示出了读数据系统中寻迹误差的示意图。如图3所示,x轴和y轴构成的二维平面,是与用于读数据的光信号的光轴垂直的平面。该光信号经读写光头聚焦后的焦点为焦点31。光存储介质上包括用于记录数据的数据点32。可以看出,焦点31和数据点32之间的径向偏移量包括x轴偏移量Δx和y轴偏移量Δy。其中,Δx表示在x轴方向上,焦点31与数据点32之间的距离,Δy表示在y轴方向上,焦点31与数据点32之间的距离。
4)其他术语
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请的实施例中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本申请中术语“至少一个”的含义是指一个或多个,本申请中术语“多个”的含义是指两个或两个以上,例如,多个第二报文是指两个或两个以上的第二报文。本文中术语“系统”和“网络”经常可互换使用。
应理解,在本文中对各种所述示例的描述中所使用的术语只是为了描述特定示例,而并非旨在进行限制。如在对各种所述示例的描述和所附权利要求书中所使用的那样,单数形式“一个(“a”,“an”)”和“该”旨在也包括复数形式,除非上下文另外明确地指示。
还应理解,本文中所使用的术语“和/或”是指并且涵盖相关联的所列出的项目中的一个或多个项目的任何和全部可能的组合。术语“和/或”,是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中的字符“/”,一般表示前后关联对象是一种“或”的关系。
还应理解,在本申请的各个实施例中,各个过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
还应理解,术语“包括”(也称“includes”、“including”、“comprises”和/或“comprising”)当在本说明书中使用时指定存在所陈述的特征、整数、步骤、操作、元素、和/或部件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元素、部件、和/或其分组。
还应理解,术语“如果”可被解释为意指“当...时”(“when”或“upon”)或“响应于确定”或“响应于检测到”。类似地,根据上下文,短语“如果确定...”或“如果检测到[所陈述的条件或事件]”可被解释为意指“在确定...时”或“响应于确定...”或“在检测到[所陈述的条件或事件]时”或“响应于检测到[所陈述的条件或事件]”。
应理解,说明书通篇中提到的“一个实施例”、“一实施例”、“一种可能的实现方式”意味着与实施例或实现方式有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”、“一种可能的实现方式”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
本申请实施例提供了一种数据读写系统,该数据读写系统对光信号进行偏转,以及同时移动光存储介质,从而可以实现多个数据道的同时读写。这样的话,即可在不提高光存储介质移动速度的情况下,提高数据读写的速度。
下面,先以上述数据读写系统用于写数据,对该数据读写系统予以说明。
参考图4,图4示出了本申请实施例提供的一种数据读写系统40的结构示意图。如图4所示,数据读写系统40包括光源组件41、光偏转器42以及读写光头43。
其中,光源组件41用于产生初始光信号,该初始光信号是脉冲型的光信号,例如可以是高频脉冲激光信号。
该初始光信号中的光脉冲信号是具有第一预设功率的光脉冲信号。这样的话,该初始光信号中的光脉冲信号在通过光偏转器42和读写光头43后作用在光存储介质44上,可以产生与待写数据对应的物理和/或化学性质,从而实现待写数据的写入。应理解,该第一预设功率,与光存储介质44所呈现的物理和/或化学性质一一对应。这里,本申请实施例对该第一预设功率的具体取值不作限定。
其中,待写数据可以是待存储数据经编码后得到的编码数据。例如,待写数据可以是待存储数据经编码后得到的二进制数据,或者,待写数据可以是待存储数据经编码后得到的十进制数据,等等,不限于此。
应理解,如果待写数据是二进制数据,则需要光存储介质44被光信号作用后呈现两种物理和/或化学性质。这样的话,上述的第一预设功率包括两种不同的预设功率,该两种不同的预设功率,与该两种物理和/或化学性质一一对应对应。
示例性的,当上述待写数据是二进制数时,则需要光存储介质44的物理和/或化学性质 呈现两种状态。这样,光存储介质44的状态1可以用于表示“0”,光存储介质44的状态2可以用于表示“1”。或者,光存储介质44状态1可以用于表示“1”,光存储介质44状态2可以用于表示“0”。这种情况下,上述具有第一预设功率的光信号包括具有两种预设功率的光信号。其中,具有预设功率1的光信号,可以用于在光存储介质44上产生状态1,从而实现“0”的写入,具有预设功率2的光信号,可以用于在光存储介质44上产生状态,从而实现“1”的写入。
类似的,如果待写数据是十进制数据,则需要光存储介质44被光信号作用后呈现十种物理和/或化学性质。这样的话,上述的第一预设功率包括十种不同的预设功率,该十种不同的预设功率与该十种物理和/或化学性质对应一一对应。不再赘述。
其中,当光存储介质44记录数据的方式是反射光型,则光存储介质44所产生的不同的物理和/或化学性质,可以使光存储介质44具有不同的反射率(reflectivity)。当光存储介质44记录数据的方式是自发荧光型,则光存储介质44所产生的不同的物理和/或化学性质,可以使光存储介质44具有不同的荧光辐射率。
具体的,参考图5,图5示出了光源组件41的结构示意图。如图5所示,光源组件41包括光源411。可选的,光源组件41还可以整形器件412和光功率调节模块413。
光源411,用于产生原始光信号,该原始光信号是脉冲型的光信号,例如可以是高频脉冲激光信号。
可选的,光源411可以是激光发生器,例如可以是二极管激光发生器等,当然不限于此。
其中,光源411所产生的原始光信号中的每个光脉冲信号的功率是光源411预先获取的。这里,如果该原始光信号中的光脉冲信号用于写入待写数据,则光源411预先获取的该光脉冲信号的功率,是基于待写数据预先确定第一预设功率。如果该原始光信号中的光脉冲信号用于写入伺服点,则光源411预先获取的该光脉冲信号的功率是第二预设功率。这里,本申请实施例对该第二预设功率的具体取值不作限定。
其中,伺服点用于在读数据时调整读写光头43所聚焦光信号的焦点的位置。其中,用于写入每个伺服点的光脉冲信号的第二预设功率可以相同,也可以不同,对此不作限定。
应理解,如果用于写入每个伺服点的光脉冲信号的第二预设功率相同,则数据读写系统40在光存储介质44上写入伺服点后,光存储介质44上用于表示每个伺服点的区域,具有相同的物理和/或化学性质。如果用于写入每个伺服点的光脉冲信号的第二预设功率不同,则数据读写系统40在光存储介质44上写入伺服点后,光存储介质44上用于表示每个伺服点的区域,具有不同的物理和/或化学性质。为简单描述,本申请实施例以用于写入每个伺服点的光脉冲信号的第二预设功率相同为例进行说明。
需要说明的是,用于写入伺服点的光脉冲信号的第二预设功率,不同于用于写入待写数据的光脉冲信号的第一预设功率。
可选的,该原始光信号即为上述的初始光信号。
整形器件412,用于对光源411产生的原始光信号的形状进行调制。
示例性的,整形器件412可以是扩束器,用于对光源411产生的原始光信号进行扩束。
又示例性的,整形器件412可以是准直器,用于对光源411产生的原始光信号进行准直。
可选的,在不考虑光路中的损耗时,上述的原始光信号经整形器件412整形后所输出的光信号,即为上述的初始光信号。
光功率调整模块413,用于监控光源411所产生的原始光信号中每个光脉冲信号的实际输出功率是否满足额定要求,以及在光源411所产生的原始光信号中的光脉冲信号的实际输出功率不满足额定要求时,调节光源411的参数,以使光源411所产生的下一个光脉冲信号 的实际输出功率满足额定要求。
这里,光源411所产生的原始光信号中每个光脉冲信号的实际输出功率是否满足额定要求,是指光源411预先获取的光脉冲信号的功率,与光源411基于该功率实际输出的光脉冲信号的功率的差值,是否小于或等于第一预设阈值。当该差值小于该第一预设阈值时,表示光源411所输出的光脉冲信号的实际输出功率满足额定要求。当该差值大于该第一预设阈值时,表示光源411所输出的光脉冲信号的实际输出功率不满足额定要求。其中,本申请实施例对该第一预设阈值的具体取值不作限定。
这里,本申请实施例对该差值等于第一预设阈值的情况不进行限定。例如,本申请实施例可以在该差值等于第一预设阈值时,确定光源411所产生的原始光信号中每个光脉冲信号的实际输出功率满足额定要求。当然,本申请实施例也可以在该差值等于第一预设阈值时,确定光源411所产生的原始光信号中每个光脉冲信号的实际输出功率不满足额定要求。
具体的,光功率调整模块413可以包括光分束器4131、光探测器4132以及处理器4133。
其中,光分束器4131可以用于将从光源411接收到的原始光信号分为两束光信号(例如第一原始光信号和第二原始光信号)。或者,光分束器4131可以用于将从整形模块412接收到的光信号分为第一原始光信号和第二原始光信号。
这里,作为示例,光分束器4131可以是半透半反式的分光棱镜或分光镜片,或者,光分束器4131可以是预设分光比例的分光棱镜或分光镜片,对此不作限定。
其中,分光比例可以是指光分束器4131透射光信号和反射光信号的比例。以光分束器4131是分光比例为95:5的光分束器为例,光分束器4131可以将入射光信号的95%透射,以及将入射光信号的5%反射。
其中,第一原始光信号可以是光分束器4131透射的光信号,也可以是光分束器4131反射的光信号,对此不作限定。如果第一原始光信号是光分束器4131透射的光信号,则第二原始光信号是光分束器4131反射的光信号。如果第一原始光信号是光分束器4131反射的光信号,则第二原始光信号是光分束器4131透射的光信号。
如图5所示,以第一原始光信号是光分束器4131透射的光信号,第二原始光信号是光分束器4131反射的光信号为例,这种情况下,该第一原始光信号即为光源组件41所输出的初始光信号,该第二原始光信号则被反射至光探测器4132,并用于判定光源411所产生的原始光信号中每个光脉冲信号的实际输出功率是否满足额定要求。
光探测器4132,用于接收光分束器4131反射的第二原始光信号,并将第二原始光信号中的光脉冲信号转换为电信号,从而得到第二原始光信号中光脉冲信号的光强信息。然后,光探测器4132将探测到的光强信息发送至处理器4133。
可选的,光探测器4132,可以是光电传感器,例如可以是电荷耦合器件(charge coupled device,CCD),对此不作限定。
处理器4133,用于接收光探测器4132发送的光强信息,并基于该光强信息确定出光源411产生的原始光信号中光脉冲信号的实际输出功率。然后,处理器4133可以基于确定出的实际输出功率,判断该实际输出功率是否满足额定要求。
当处理器4133确定该实际输出功率不满足额定要求时,则基于该实际输出功率,和光源411预先获取的光脉冲信号的功率,生成功率调节信号。具体的,处理器4133可以基于该实际输出功率,和光源411预先获取的光脉冲信号的功率的差值,生成功率调节信号。
然后,处理器4133可以将该功率调节信号发送至光源411。这样,光源411即可根据该功率调节信号,调节光源411的参数,以使光源411所产生的下一个光脉冲信号的输出功率 满足额定要求。
需要说明的是,如果光源组件41中包括光功率调整模块413,则光源411在产生原始光信号时,如果原始光信号中的光脉冲信号用于写入待写数据,则光源411预先获取的该光脉冲信号功率,大于上述的第一预设功率。如果原始光信号中的光脉冲信号用于写入伺服点,则光源411预先获取的该光脉冲信号功率,大于上述的第二预设功率。这是由于,光功率模块413中的光分束器4131需要将光源411所产生的光脉冲信号分出一部分,用以判断光源411所产生原始光信号中的光脉冲信号的实际输出功率是否满足额定要求。对此不予赘述。
继续参考图4,光偏转器42,用于接收第一光信号,以及对该第一光信号进行偏转。
一种可能的实现方式,如图4所示,光偏转器42可以接收到与光偏转器42同光轴的光源组件41所产生的初始光信号。这种情况下,光偏转器42和光源组件41之间可以无需经过其他光学器件。也就是说,光源组件41所产生的初始光信号,即为该第一光信号。
另一种可能的实现方式,如图6所示,偏转器42可以接收到与光偏转器42不同光轴的光源组件41所产生的初始光信号。
这种情况下,数据读写系统40还可以包括反射镜46。反射镜46用于将光源组件41所产生的初始光信号,反射至光偏转器42。这样的话,光偏转器42可以接收到经反射镜46反射的光源组件41所产生的初始光信号。这种情况下,光源组件41所产生的初始光信号经反射镜46反射后的光信号,即为上述的第一光信号。
可以看出,在这种情况下,反射镜46偏转了初始光信号的传播方向。例如,如图6所示,反射镜46将初始光信号的传播方向偏转了90°。
需要说明的是,由于初始光信号是脉冲型光信号,因此该第一光信号也是脉冲型光信号。
可选的,反射镜46可以是平板式的反射镜,也可以是棱镜式的反射镜,对此不作限定。
需要说明的是,图6中所示的反射镜46的设置位置仅为示例性说说明,不限于此。
应理解,光偏转器42可以是任意类型的光偏转器。这里,光偏转器的相关说明可以参考上文描述,这里不予赘述。为方便描述,在本申请实施例中,以光偏转器42是声光偏转器为例进行说明。
具体的,基于上文中有关声光偏转器的相关描述可知,光偏转器42可以将预设周期内接收到的第一光信号依次偏转多个角度,以得到多个第二光信号。该多个角度和该多个第二光信号一一对应。该多个角度即为该多个第二光信号的出射角度,该出射角度可以是该多个第二光信号分别和第一光信号之间的夹角,对此不作限定。其中,预设周期的相关说明可以参考上文中有关预设周期的描述,这里不再赘述。
这里需要说明的是,由于第一光信号是脉冲型光信号,因此该多个第二光信号是预设周期内,第一光信号中的多个光脉冲信号依次被光偏转器42偏转后得到的光信号。
应理解,本申请实施例中的光偏转器42,通常可以在一维平面内偏转光信号。因此,光偏转器42偏转第一光信号后所得到的多个第二光信号在一个平面内。
示例性的,参考图7,图7示出了光偏转器42按照方向1所示的方向,将预设周期内接收到的第一光信号中的3个光脉冲信号依次偏转不同角度的示意图。如图7所示,光偏转器42可以在时刻1接收到第一光信号中的光脉冲信号1,并将其偏转角度1,以得到光信号1。类似的,光偏转器42可以在时刻2接收到第一光信号中的光脉冲信号2,并将其偏转角度2,以得到光信号2。光偏转器42可以在时刻3接收到第一光信号中的光脉冲信号3,并将其偏转角度3,以得到光信号3。其中,光信号1、光信号2以及光信号3即为3个第二光信号。
其中,角度1可以是第一光信号中的光脉冲信号1和光信号1之间的夹角,角度2可以 是第一光信号中的光脉冲信号2和光信号2之间的夹角,角度3可以是第一光信号中的光脉冲信号3和光信号3之间的夹角。
应理解,光信号1和光信号3之间的夹角,小于或等于声光偏转器42偏转光信号时所能够偏转的角度范围(例如上文中的△θ)。
读写光头43,用于将接收到的多个第二光信号依次聚焦在光存储介质44上,从而实现多个数据点的写入。
应理解,由于多个第二光信号处于一个平面内,因此,该多个第二光信号经读写光头43聚焦在光存储介质44上所写入的多个数据点,成线性排列。
其中,读写光头43可以是任意具有聚焦功能的光学器件,例如透镜、物镜等,对此不作限定。这里,透镜可以是单透镜、组合透镜、小球透镜等任意一种透镜,不限于此。
示例性的,如图7所示,读写光头43可以在接收到光信号1后,将其聚焦于光存储介质44上的A点,从而实现数据点A的写入。类似的,读写光头43可以在接收到光信号2后,将其聚焦于光存储介质44上的B点,从而实现数据点B的写入。读写光头43可以在接收到光信号3后,将其聚焦于光存储介质44上的C点,从而实现数据点C的写入。可以看出,读写光头43在方向1所示的方向上,在不同时刻,依次在光存储介质44上写入数据点A、数据点B以及数据点C。可以看出,数据点A、数据点B以及数据点C成线性排列。
在一种可能的实现方式中,光存储介质44静止不动,则读写光头43在光存储介质44上写入的数据点,在光偏转器42偏转第一光信号的方向上线性排列。
示例性的,如图8中的(a)所示,读写光头43在形状为圆形的光存储介质44上写入的数据点A、数据点B以及数据点C,依次沿着光偏转器42的偏转第一光信号的方向(方向1)上线性排列。
如图8中的(c)所示,读写光头43在形状为矩形的光存储介质44上写入的数据点A、数据点B以及数据点C,依次沿着光偏转器42偏转第一光信号的方向(方向1)上线性排列。
在另一种可能的实现方式中,光存储介质44处于运动状态,则读写光头43在光存储介质44上写入的数据点,在与光偏转器42偏转第一光信号的方向具有预设夹角的方向上线性排列。这里,该预设夹角和光存储介质44的运动速度成正比。
这种情况下,数据读写系统40还可以包括第一移动平台45,第一移动平台45用于控制光存储介质44在与读写光头43轴向方向垂直的平面上旋转或平移。其中,读写光头43的轴向方向是指读写光头43的光轴所在的方向。为简单描述,本申请实施例将“读写光头43轴向方向”简写为“轴向方向”。
当第一移动平台45用于控制光存储介质44在与轴向方向垂直的平面上旋转时,第一移动平台45可以是旋转平台。当第一移动平台45用于控制光存储介质44在与轴向方向垂直的平面上平移时,第一移动平台45可以是一维或多维的直动平台,对此不作限定。
示例性的,如图8中的(b)所示,当第一移动平台45控制形状为圆形的光存储介质44沿着图8中的(b)所示的旋转方向旋转时,读写光头43在光存储介质44上写入的数据点A、数据点B以及数据点C,依次沿着与光偏转器42偏转第一光信号的方向1具有预设夹角α的方向2上线性排列。
如图8中的(d)所示,当第一移动平台45控制形状为矩形的光存储介质44沿着图8中的(b)所示的移动方向平移时,读写光头43在光存储介质44上写入的数据点A、数据点B以及数据点C,依次沿着与光偏转器42偏转第一光信号的方向1具有预设夹角β的方向3上线性排列。
这样的话,在光存储介质44连续运动的过程中,读写光头43可以在多个预设周期中的每个预设周期内,接收多个第二光信号,并分别依次将该多个第二光信号聚焦在光存储介质44上,以实现对多个数据道的写入。
其中,该多个数据道的数量,与读写光头43在一个预设周期内偏转第一光信号所得到的多个第二光信号的数量对应,也即,该多个数据道的数量,与该多个第二光信号依次经读写光头43聚焦在光存储介质44上所写入的多个数据点的数量对应。并且,该多个数据道包括该多个数据点,该多个数据道中的每个数据道,经过该多个数据点中的一个数据点,即该多个数据道和该多个数据点一一对应。
这种情况下,该多个数据道即可构成一个数据带。通过这种方式,可以使光源组件41所产生的单束光信号(即初始光信号)经数据读写系统40的光路,并行的在光存储介质44上写入多个数据道,从而提高了数据的读写效率。
示例性的,如图8中的(b)所示,当第一移动平台45控制形状为圆形的光存储介质44沿着图8中的(b)所示的旋转方向旋转时,读写光头43在一个预设周期内所写入的数据点包括数据点A、数据点B以及数据点C。那么,读写光头43在多个预设周期内,可以在光存储介质44上写入3个数据道(包括数据道1、数据道2以及数据道3)。其中,数据道1经过数据点A,数据道2经过数据点B,数据道3经过数据点C。这里,该3个数据道即可构成一个环状的数据带,例如图4或图6中所示的数据带441。应理解,在图4或图6中所示出的数据带441,为该数据带的剖面图。
如图8中的(d)所示,当第一移动平台45控制形状为矩形的光存储介质44沿着图8中的(b)所示的移动方向平移时,读写光头43在一个预设周期内所写入的数据点包括数据点A、数据点B以及数据点C。那么,读写光头43在多个预设周期内,可以在光存储介质44上写入3个数据道(包括数据道1、数据道2以及数据道3)。其中,数据道1经过数据点A,数据道2经过数据点B,数据道3经过数据点C。这里,该3个数据道即可构成一个矩形形状的数据带。
应理解,上述多个数据道中每个数据道上的数据点的数量,与读写光头43在光存储介质44上写入该多个数据道所需的预设周期的数量相同。
示例性的,如果读写光头43在m个预设周期内,在光存储介质44上写入该多个数据道,则该多个数据道中每个数据道上的数据点的数量为m个。这里,m是正整数。
应理解,如果光存储介质44是包括多个存储层的光存储介质,则上述的第一移动平台45还可以用于控制光存储介质44在轴向方向上移动,以实现读写光头43将多个第二光信号聚焦在光存储介质44的不同存储层上,从而实现在每个存储层上写入上述数据带。
可选的,结合图5,参考图9,数据读写系统40还可以包括径向移动台91,径向移动台91设置于主支架上92上,光偏转器42、反射镜46以及读写光头43也可以通过光学镜架等器件安置于主支架92上。这样的话,径向移动台91可以用于在读写光头43在光存储介质44的多个存储层中的第一存储层上完成第一数据带的写入后,在与轴向方向垂直的平面内,将光偏转器42、反射镜46以及读写光头43移动第一预设距离,以实现对该第一存储层中的第二数据带的写入。
其中,该第一预设距离大于第一数据带的宽度。本申请实施例对该第一预设距离的取值不作具体限定。
其中,第一数据带和第二数据带,可以是相邻的两个数据带,也可以是不相邻的两个数据带,对此不作限定。
应理解,如果数据读写系统40中光源组件41和读写光头43同光轴,则光源组件41也可以设置于主支架92上。这样的话,径向移动台91可以用于在读写光头43在光存储介质44的多个存储层中的第一存储层上完成第一数据带的写入后,在与轴向方向垂直的平面内,将光源组件41、光偏转器42、反射镜46以及读写光头43移动第一预设距离,以实现对该第一存储层中的第二数据带的写入。
示例性的,参考图10,图10示出了数据读写系统40通过控制径向移动台91移动预设距离,以实现写入不同数据带的示意图。
如图10中的(a)所示,数据读写系统40在光存储介质44上写入环状的数据带1后,可以通过控制径向移动台91在与轴线方向垂直的方向(即径向方向)上移动预设距离d1,从而可以实现环状的数据带2的写入。其中,d1大于或等于数据带1的宽度。
如图10中的(b)所示,数据读写系统40在光存储介质44上写入矩形形状的数据带1后,可以通过控制径向移动台91在与轴线方向垂直的方向(即径向方向)上移动预设距离d2,从而可以实现矩形形状的数据带2的写入。其中,d2大于或等于数据带1的宽度。
应理解,上述数据读写系统40通过读写光头43在光存储介质44中写入的数据带中,包括用于存储数据的数据点,还包括用作伺服点的数据点。这里,伺服点用于调整读写光头43所聚焦光信号的焦点的位置。本申请实施例中将包括伺服点的数据道称为伺服道。
其中,在一个数据带中,可以包括至少一个伺服道。该至少一个伺服道中的任一个伺服道上,包括多个伺服点。为简单描述,本申请实施例在下文的描述中,以一个数据带中包括一个伺服道为例进行说明。
一方面,对于光存储介质44中的任一个数据带中伺服道上的多个伺服点而言,该多个伺服点可以连续的分布该伺服道上,也可以离散的分布在该伺服道上,对此不作限定。
如果该多个伺服点离散的分布在该伺服道上时,该多个伺服点可以以第二预设距离为间隔,平均的分布在该伺服道上。当然,该多个伺服点也可以随机离散的分布在该伺服道上,对此不作限定。其中,该多个伺服点中任意相邻的两个伺服点之间的距离小于或等于第二预设阈值,本申请实施例对第二预设距离和第二预设阈值的取值不作具体限定。
另一方面,对于包括有多个存储层的光存储介质44而言,该多个存储层中每个存储层上的伺服点,在轴向方向上离散分布。为方便描述,下文中以光存储介质44中包括有p(p是大于1的整数)个存储层为例进行说明。
第一种可能实现的方式,在光存储介质44所包括的p个存储层中,位于每个存储层上、且在轴向方向上重合的数据带中的伺服道,在该轴向方向上重合。并且,对于p个存储层中相隔q(q是大于1的正整数)个存储层的第一存储层和第二存储层而言,如果第一存储层上的第一伺服道和第二存储层上的第二伺服道在轴向方向上重合,则经过第一伺服道上的任一个伺服点、且与轴向方向平行的直线,还经过第二伺服道上的伺服点。其中,第一伺服道是第一存储层上的任一个伺服道,第二伺服道是第二存储层中与第一伺服道在轴向方向上重合的伺服道。
如果第一存储层和第二存储层中的任一个存储层是第三存储层,且第三存储层上的第三伺服道,和第一存储层中的第一伺服道(或第二存储层中的第二伺服道)在轴向方向上重合,则经过第三伺服道上的任一个伺服点、且与轴向方向平行的直线,不经过第一存储层、第二存储层、以及第一存储层和第二存储层之间除第三存储层之外的任一个存储层上的伺服点。这样,即表示在第一存储层和第二存储层之前一个存储层之间的每个存储层上的伺服点在轴向方向上不重合。
这样的话,对于上述p个存储层而言,p个存储层上的伺服点,在轴向方向上间隔q个存储层离散分布,每个存储层上的任一个伺服道上的伺服点离散分布。
作为示例,请参考图11,图11示例性的示出了一种在轴向方向上重合的圆形伺服道上的伺服点离散分布的示意图。其中,图11中的(a)示出了16个在轴向方向上重合的圆形伺服道的正视图。如图11中的(a)所示,该16个在轴向方向上重合的伺服道分别包括:存储层1上的伺服道1-1、存储层2上的伺服道2-1、存储层3上的伺服道3-1、存储层4上的伺服道4-1、存储层5上的伺服道5-1、….、以及存储层16上的伺服道16-1。
如图11中的(a)所示,伺服道1-1(即上述的第一伺服道)和伺服道5-1(即上述的第二伺服道)间隔3个存储层(分别为存储层2、存储层3以及存储层4),伺服道1-1上的伺服点s1-1和伺服道5-1上的伺服点s5-1在轴向方向上重合。经过伺服道2-1上的伺服点s2-1、且与轴向方向平行的直线L1,经过伺服道3-1上的伺服点s3-1、且与轴向方向平行的直线L2,以及经过伺服道4-1上的伺服点s4-1、且与轴向方向平行的直线L3,不经过存储层1、存储层2、存储层3以及存储层4上的任一个伺服点。也就是说,存储层1和存储层4之间的每个存储层上的伺服点在轴向方向上不重合。其中,轴向方向即为图11中光轴110所示的方向。
图11中的(b)示出了图11中的(a)所示的16个在轴向方向上重合的圆形伺服道的俯视图。如图11中的(b)所示,伺服点s1-1和伺服点s1-2分别是存储层1中伺服道1-1上的伺服点,伺服点s2-1和伺服点2-2分别是存储层2中伺服道2-1上的伺服点,伺服点s3-1和伺服点3-2分别是存储层3中伺服道3-1上的伺服点,伺服点s4-1和伺服点4-2分别是存储层4中伺服道4-1上的伺服点。
可以看出,伺服点s1-1、伺服点s2-1、伺服点s3-1以及伺服点s4-1在轴向方向上不重合。伺服道1-1上的伺服点s1-1和伺服点s1-2在径向方向上间隔3个数据点的位置离散分布。伺服道2-1上的伺服点s2-1和伺服点s2-2在径向方向上间隔3个数据点的位置离散分布。伺服道3-1上的伺服点s3-1和伺服点s3-2在径向方向上间隔3个数据点的位置离散分布。伺服道4-1上的伺服点s4-1和伺服点s4-2在径向方向上间隔3个数据点的位置离散分布。这里,径向方向是指和轴向方向相垂直的方向。
类似的,伺服道5-1上的伺服点s5-1和伺服道9-1上的伺服点s9-1在轴向方向上重合,存储层5和存储层8之间的每个存储层上的伺服点在轴向方向上不重合。伺服道9-1上的伺服点s9-1和伺服道13-1上的伺服点s13-1在轴向方向上重合,存储层9和存储层12之间的每个存储层上的伺服点在轴向方向上不重合。存储层13和存储层16之间的每个存储层上的伺服点在轴向方向上不重合。这样的话,对于上述16个存储层而言,16个存储层上在轴向方向重合的伺服道上的伺服点,在轴向方向上间隔3个存储层离散分布。
应理解,对于p个存储层上在轴向方向上重合的p个伺服道中的任一个伺服道而言,该伺服道上离散分布的伺服点之间的数据点的位置为空,即这些位置不写入任何内容。这样的话,在数据读写系统40读数据时,用于读数据的光信号在作用远离光存储介质44表面的存储层上的伺服点时,可以有效减少该光信号的衰减,从而数据读写系统40可以准确读取到远离光存储介质44表面的存储层上的伺服点,从而有效提高数据读写系统40的伺服效率。
示例性的,如图11中的(a)所示,当用于读数据的光信号通过存储层1至存储层12后作用于存储层13中的伺服点s13-1时,这种情况下,该光信号在经过了三个伺服点(分别为存储层1上的伺服点s1-1、存储层5上的伺服点s5-1以及存储层9上的伺服点s9-1)时光功率发生一定衰减。而在存储层1至存储层12里除存储层1、存储层5以存储层9之外的存储层中,由于与伺服点s13-1在轴向方向上重合的数据点的位置没有写入数据内容,即存储层 上这些数据点所在位置的反射率没有发生变化。这样的话,该光信号在作用s13-1时经过这些数据点位置,该光信号的光功率衰减将大大减少。这样,该光信号在读取伺服点s13-1时的准确度将得以提高,从而可以有效提高系统的伺服效率。
第二种可能实现的方式,在光存储介质44所包括的p个存储层中,每个存储层上在轴向方向上重合的数据带中的伺服道,在该轴向方向上不重合。这样的话,该p个存储层中每个存储层上的伺服点,在轴向方向上不重合。
可以理解的是,在这种情况下,光存储介质44中任一个伺服道上的伺服点,可以离散分布,也可以连续分布,对此不作限定。当该伺服道上的伺服点离散分布时,该伺服道上任意两个相邻的伺服点之间的距离小于或等于第二预设阈值。
作为示例,参考图12,图12示例性的示出了一种在多个存储层中,每个存储层上在轴向方向上重合的数据带中的伺服道在该轴向方向上不重合的示意图。
其中,图12中的(a)示出了5个在轴向方向上重合的环形数据带(以下简称数据环)的正视图。如图12中的(a)所示,数据环1-1是存储层1上的数据环,数据环2-1是存储层2上的数据环,数据环3-1是存储层3上的数据环,数据环4-1是存储层4上的数据环,数据环5-1是存储层5上的数据环。可以看出,数据环1-1、数据环2-1、数据环3-1、数据环4-1以及数据环5-1在轴向方向重合。其中,轴向方向即图12中光轴120所示的方向。
图12中的(b)示出了图12中的(a)所示的5个在轴向方向上重合的数据环上的、在轴向方向上不重合的圆形伺服道的正视图。应理解,数据环上的伺服道通常为圆形的伺服道。如图12中的(b)所示,伺服道1-1是数据环1-1中的伺服道,伺服道2-1是数据环2-1中的伺服道,伺服道3-1是数据环3-1中的伺服道,伺服道4-1是数据环4-1中的伺服道,伺服道5-1是数据环5-1中的伺服道。
可以看出,伺服道1-1的半径与伺服道2-1的半径相差d1,伺服道2-1的半径与伺服道3-1的半径相差d2,伺服道3-1的半径与伺服道4-1的半径相差d3,伺服道4-1的半径与伺服道5-1的半径相差d4。这里,d1、d2、d3以及d4的取值可以相同,也可以不同,对此不作限定。也就是说,伺服道1-1、伺服道2-1、伺服道3-1、伺服道4-1以及伺服道5-1在轴向方向上不重合。这样的话,伺服道1-1、伺服道2-1、伺服道3-1、伺服道4-1以及伺服道5-1上的伺服点,在轴向方向上不重合,即数据环1-1、数据环2-1、数据环3-1、数据环4-1以及数据环5-1上的伺服点在轴向方向上不重合。
为了更清楚的说明,图12中的(c)示出了上述的5个在轴向方向上重合的数据环上、以及该5个数据环上在轴向方向上不重合的圆形伺服带的俯视图。如图12中的(c)所示,数据环1-1、数据环2-1、数据环3-1、数据环4-1以及数据环5-1在轴向方向重合,伺服道1-1、伺服道2-1、伺服道3-1、伺服道4-1以及伺服道5-1,在轴向方向上不重合。也即,伺服道1-1、伺服道2-1、伺服道3-1、伺服道4-1以及伺服道5-1上的伺服点,在轴向方向上不重合。
应理解,在p个存储层中任意一层存储层上,与任一个伺服道在轴向方向上重合的数据道中,该数据道中的数据点为空,即数据读写系统40不在该数据道上写入任何内容。通过这种设计,在数据读写系统40读数据时,用于读数据的光信号在作用远离光存储介质44表面的存储层上的伺服点时,可以有效减少该光信号的衰减,从而可以准确读取到远离光存储介质44表面的存储层上的伺服点,从而提高系统的伺服效率。具体说明可以参考上文第一种可能的实现方式中提高系统伺服效率的描述,这里不再赘述。
需要说明的是,当光存储介质44所包括的存储层较多时(例如光存储介质44的存储层 可以是50层、100层等等,对此不作限定),数据点读写系统40可以采第一种可能的实现方式和第二种可能的实现方式来写入伺服点。这种情况下,光存储介质44记录数据的方式可以是反射光型。这样的话,通过这两种方式布局伺服点,可以有效提高数据读写系统40在读数据时的伺服效率。
第三种可能的实现方式,在光存储介质44所包括的p个存储层中,每个存储层上在轴向方向上重合的数据带中的伺服道,在该轴向方向重合。
在这种情况下,光存储介质44中任一个伺服道上的伺服点,可以离散分布,也可以连续分布,对此不作限定。当该伺服道上的伺服点离散分布时,该伺服道上任意两个相邻的伺服点之间的距离小于或等于第二预设阈值。
作为示例,参考图13,图13示例性的示出了一种在轴向方向上重合的圆形伺服道上的伺服点的分布示意图。其中,图13中的(a)示出了8个在轴向方向上重合的圆形伺服道的正视图。如图13中的(a)所示,存储层1上的伺服道为伺服道1-1,存储层2上的伺服道为伺服道2-1,….,以及存储层8上的伺服道为伺服道8-1。可以看出,伺服道1-1、伺服道2-1、…、以及伺服道8-1在轴向方向上重合。其中,轴向方向即为图13中光轴130所示的方向。
图13中的(b)示出了8个在轴向方向上重合的圆形伺服道的俯视图。如图13中的(b)所示,轴向方向上重合的伺服道中的任一个伺服道上,伺服点可以如图13中的(b)所示的连续分布,当然,也可以离散分布,对此不作限定。
需要说明的是,当光存储介质44所包括的存储层较多时(例如光存储介质44的存储层可以是50层、100层等等,对此不作限定),数据点读写系统40可以采用该第三种可能的实现方来写入伺服点。这种情况下,光存储介质44记录数据的方式可以是自发荧光型。这样的话,通过这种方式布局伺服点,可以有效提高数据读写系统40在读数据时的伺服效率。其中,自发荧光型的相关描述可以参考上文,这里不予赘述。
当然,在光存储介质44所包括的存储层较少时,数据读写系统40采用第三种可能的实现方式布局写入的伺服点时,光存储介质44记录数据的方式也可以是反射光型。
应理解,由上文描述可知,数据读写系统40是通过在多个预设周期内分别偏转光信号,并在光存储介质44移动的过程中,实现在不同时刻,在光存储介质44上的不同位置写入数据点。因此,数据读写系统40可以通过控制光源组件41在多个预设时刻,产生用于写入伺服点的初始光信号的功率,以实现在光存储介质44上以上述任一种可能的实现方式所布局的伺服点的写入。其中,该多个预设时刻,与上述任一种可能的实现方式所布局的伺服点一一对应。
至此,通过本申请实施例所提供的数据读写系统在写数据时,可以简单理解为,数据读写系统通过光偏转器,对光源组件产生的初始光信号调制后得到的第一光信号进行顺序偏转,以实现在一个预设周期内,在光存储介质上写入一排数据点。同时,数据读写系统通过控制光存储介质的移动,从而实现在多个预设周期内沿着光存储介质的移动方向,在光存储介质上写入多排数据点,从而实现写入包括多个数据道的数据带。也就是说,通过本申请实施例提供的数据读写系统在移动中的光存储介质上写数据,实现了通过控制单束光信号,在光存储介质上同时写入多个数据道的效果,也即实现了通过单束光信号在光存储介质上并行写数据的效果。这样,本申请实施例在不提高光存储介质转速的情况下,提高了数据读写系统写数据的效率。
进一步的,本申请实施例所提供的数据读写系统40用于读数据时,还包括光信号分离模块以及信息处理模块。
结合图9,参考图14,如图14所示,数据读写系统40还包括光信号分离模块141以及信息处理模块142。
应理解,在数据读写系统40用于读取光存储介质44上所存储的数据时,该光存储介质44所存储的数据,是通过上文中所描述的数据读写系统40的光路写入数据的。
应理解,在数据读写系统40用于读数据时,数据读写系统40中的光源组件41、反射镜46、光偏转器42、读写光头43以及径向移动台91的相关描述,可以参考上文中数据读写系统40用于写数据时,光源组件41、反射镜46、光偏转器42、读写光头43以及径向移动台91的相关说明,这里不予赘述。
其中,需要说明的是,在数据读写系统40用于读数据时,光源组件41所产生的初始光信号经反射镜46、光偏转器42后所得到的多个第二光信号被读写光头43依次聚焦在光存储介质44时,不会改变其物理和/或化学性质。本申请实施例以在数据读写系统40用于读数据时,光源组件41所产生的初始光信号的功率为第三预设功率为例进行说明。应理解,具有第三预设功率的光信号作用于光存储介质44时,不会改变其物理和/或化学性质。
其中,可选的,读写光头43可以设置在第二移动平台143上。第二移动平台143可以用于在轴向方向上移动读写光头43,从而实现在轴向方向上调节读写光头43所聚焦光信号的的焦点的位置。
其中,第二移动平台143可以接收信号处理模块142中处理器1422发送的轴向伺服信号,进而可以根据该轴向伺服信号的指示,在轴向方向上移动读写光头43,从而实现在轴向方向上调节读写光头43所聚焦光信号的焦点的位置。这里,轴向伺服信号的相关描述可以参考下文,这里不作赘述。
作为示例,第二移动平台143可以是一维的电动直动平台。例如,第二移动平台143可以是z轴电动平台,不限于此。
可选的,反射镜46可以设置于第三移动平台144上。第三移动平台144可以用于在与轴向方向垂直的径向方向(以下简称径向方向)上移动反射镜46,从而实现在径向方向上调节读写光头43所聚焦光信号的焦点的位置。
其中,第三移动平台144可以接收信号处理模块142中处理器1422发送的径向伺服信号,进而可以根据该径向伺服信号的指示,在径向方向上移动反射镜46,从而实现在径向方向上调节读写光头43所聚焦光信号的焦点的位置。这里,径向伺服信号的相关描述可以参考下文,这里不作赘述。
作为示例,第三移动平台144可以是二维的电动直动平台。例如,第三移动平台144可以是xy轴电动平台,不限于此。
作为示例,结合图14,参考图15,图15示出了通过第三移动平台144移动反射镜46,从而实现在径向方向上调节读写光头43所聚焦光信号的焦点的位置的示意图。
如图15中的(a)所示,当反射镜46处于位置1,反射镜46对光源组件41入射的初始光信号进行反射,得到反射光信号1。反射光信号1经光信号分离模块141、光偏转器42以及读写光头43作用于光存储介质上44,以实现在光存储介质44上读取数据点1。应理解,数据点1所在位置,即为反射镜46处于位置1时,读写光头43聚焦光信号时的焦点的位置。
当第三移动平台144(图15中未示出)控制反射镜46在径向方向所在平面内的x轴移动至位置2,这种情况下,反射镜46对光源组件41入射的初始光信号进行反射后,可以得到反射光信号2。这样,反射光信号2经光信号分离模块141、光偏转器42以及读写光头43作用于光存储介质上44,从而可以在光存储介质44实现数据点2的读取。应理解,数据点2 所在位置,即为反射镜46移动至位置2时,读写光头43聚焦光信号时的焦点的位置。
可以看出,第三移动平台144控制反射镜46在径向方向上移动,即可实现在径向方向上移动读写光头43所聚焦光信号的焦点的位置。
其中,图15中的(b)示意性的示出了轴向方向以及径向方向的示意图。如图15中的(b)所示,z轴即为读写光头43的轴向方向,x轴和y轴所在平面即为与轴向方向相垂直的平面,因此,x轴和y轴即为径向方向。
继续参考图14,光信号分离模块141,用于在数据读写系统40用于读数据时,从用于作用光存储介质44的光信号所在的光路中,分离出光存储介质44被作用后所返回的光信号,以得到第三光信号。
应理解,用于作用光存储介质44的光信号的光路,通常与光存储介质44被作用后所返回的光信号的光路相逆。这里,光路相逆是指光路通道相同,而光信号的传播方向相反。
示例性的,如图14所示,用于读数据的光信号可以沿着方向2所示的方向作用于光存储介质44上。然后,当光存储介质44被该光信号作用后,光存储介质44返回的光信号可以沿着图13中方向3所示的方向返回,并通过光信号分离模块141将其从用于作用光存储介质44的光信号的光路中分离出来,以得到第三光信号。
在一种可能的情况中,如果光存储介质44记录数据的方式是自发荧光型,则光存储介质44所返回的光信号,是上述多个第二光信号依次作用于光存储介质44后,光存储介质44自主发射的荧光信号。这种情况下,光信号分离模块141包括二向色镜。这里,二向色镜可以透射长波长的激光,反射短波长的荧光。
这样的话,通过二向色镜,即可将光存储介质44所返回的光信号,从用于作用光存储介质的光信号的光路中分离出来,以得到第三光信号。
在另一种可能的情况中,如果光存储介质44记录数据的方式是反射光型,则光存储介质44所返回的光信号,是上述多个第二光信号依次作用于光存储介质44后,光存储介质44所反射的光信号。这种情况下,光信号分离模块141可以包括偏光分光镜1411和波长板1412。这样的话,通过偏光分光镜1411和波长板1412,即可将光存储介质44所返回的光信号,从用于作用光存储介质44的光信号的光路中分离出来,以得到第三光信号。
其中,用于读数据的光信号作用光存储介质44的过程,可以参考上文中用于写数据的光信号作用光存储介质44的过程,这里不予赘述。
其中,偏光分光镜1411,用于接收反射镜46反射的初始光信号,并将该初始光信号透射至波长板1412。本申请实施例将透射至波长板1412的光信号称为第四光信号。
具体的,偏光分光镜1411可以用于在接收到初始光信号后,透射初始光信号中的p偏光,反射初始光信号的s偏光。这里,第四光信号可以是该p偏光,也可以是该s偏光,对此不作限定。如图14所示,本申请实施例中以第四光信号是p偏光为例进行说明。
示例性的,偏光分光镜1411可以是偏光分光棱镜,当然也可以其他偏光类的分光镜,对此不作限定。
波长板1412,用于接收偏光分光镜1411透射的第四光信号,并对该第四光信号进行相位调整,以输出第一光信号。以及,用于接收光存储介质44经读写光头43和光偏转器42返回的光信号,并调整该光信号的相位,以出射第五光信号。这里,第四光信号和第五光信号的偏转状态不同。例如,如果第四光信号为p偏光,则第五光信号为s偏光,如果第四光信号为s偏光,则第五光信号为p偏光。本申请实施例以第四光信号为p偏光,第五光信号是s偏光为例进行说明。
其中,上述的第一光信号经光偏转器42和读写光头43处理并作用于光存储介质44后,光存储介质44返回的光信号依次经过读写光头43和光偏转器42逆处理后,再通过波长板1412后所得到的光信号,即为第五光信号。
作为示例,上述的波长板1412可以是1/4波长板。1/4波长板可以将接收到的光信号的相位移动1/4波长。因此,当光信号连续两次经过1/4波长板,该光信号的偏转状态将发生改变。例如,p偏光连续两次经过1/4波长板后,即变为s偏光。或者,s偏光连续两次经过1/4波长板后,即变为p偏光。
在本申请实施例所提供的数据读写系统40中,通常设置一个波长板1412。当光信号通过波长板1412后作用在光存储介质44上,光存储介质44可以将该光信号原路返回。这样,该返回的光信号会经过波长板1412。这样,即相当于光信号连续两次经过波长板1412。这样的话,如果第一次经波长板1412处理的第四光信号是p偏光,则第四光信号经波长板1412、光偏转器42以及读写光头43后作用在光存储介质44上,光存储介质44可以将该光信号原路返回并再次经过波长板1412后得到的第五光信号,即为s偏光。
这样,偏光分光镜1411,还可以用于接收该第五光信号,并基于偏光分光原理,将该第五光信号反射输出,即得到了上述的第三光信号。
示例性的,下面结合图14,对通过光信号分离模块141分离光存储介质44所返回的光信号的过程予以说明。
如图14所示,经反射镜46反射的初始光信号到达偏光分光镜1411后,初始光信号中的p偏光透过偏光分光镜1411的工作面(即偏光分光镜1411的对角面,图14中以正方形中的斜线示出),从而得到第四光信号,该第四光信号为p偏光。
然后,第四光信号沿着方向2到达波长板1412,并透过波长板1412,得到相位发生1/4波长变化的第一光信号。接着,第一光信号经光偏转器42偏转,以及经读写光头43聚焦于光存储介质44后,光存储介质44所返回的光信号可以沿着与方向2相逆的方向3,到达波长板1412。当该返回的光信号透过波长板1412后即得到第五光信号,该第五光信号相比光存储介质44所返回的光信号,其相位发生1/4波长变化。也即,该第五光信号相比第四光信号,其相位发生1/2波长变化。这种情况下,该第五光信号即为s偏光。
进一步的,偏光分光镜1411接收到第五光信号,由于第五光信号是s偏光,因此第五光信号被偏光分光镜1411的工作面反射输出,从而得到上述的第三光信号。这样,光信号分离模块141即通过改变光信号的偏振状态,以及使用偏光分光镜,实现了从用于作用光存储介质44的光信号的光路中,分离出光存储介质44被光信号作用后所返回的光信号。
信息处理模块142,包括光探测器1421和处理器1422。其中,该处理器1422,可以是图5中的处理器4133是同一个处理器,也可以是不同的处理器,对此不作限定。
其中,光探测器1421用于接收光信号分离模块141分离得到的第三光信号,以及将接收到的第三光信号转换为电信号,以及将电信号发送至处理器1422进行处理。处理器1422可以对从光探测器1421接收到电信号做进一步处理,从而确定出待读数据,或者确定伺服控制信号。
其中,光探测器1421,可以是光电传感器,例如可以是CCD,对此不作限定。
具体的,光探测器1421接收到第三光信号后,可以确定出第三光信号的光强,以及第三光信号在光探测器1421上所形成光斑的光斑信息。其中,光斑信息包括光斑形状和光斑大小。接着,光探测器1421可以将确定出的第三光信号的光强和光斑信息发送至处理器1422做进一步处理。
然后,在一种情况下,如果上述第三光信号是数据读写系统40在作用于光存储介质44上用于存储数据的数据点后所返回的光信号,则第三光信号为数据光信号。这样的话,处理器1422即可基于第三光信号的光强,以及预置的解码规则,解码得到待读数据。
应理解,数据读写系统40所存储的数据,是待读数据经预设编码规则编码后所得到数据。因此,数据读写系统40预置有与该编码规则对应的解码规则。这样,在数据读写系统40读取待读数据时,可以基于该预置的解码规则,对从光存储介质上读到的数据进行解码,即得到待读数据。
在另一种情况下,如果上述第三光信号是数据读写系统40在作用于光存储介质44上的伺服点后所返回的光信号,则第三光信号即为伺服光信号。这样的话,处理器1422即可基于伺服点的预设信息,以及第三光信号的光强和光斑信息,生成伺服控制信号,以用于调节读写光头43所聚焦光信号的焦点的位置。
其中,应理解,由上文描述可知,数据读写系统40可以通过控制光源组件41在多个预设时刻,产生用于写入伺服点的初始光信号的功率,以实现在光存储介质44上以上文中任一种可能的实现方式所布局的伺服点的写入。该多个预设时刻,与该任一种可能的实现方式所布局的伺服点一一对应。因此,数据读写系统40可以通过确定接收到第三光信号的时刻,是否是与伺服点对应的预设时刻来确定第三光信号是否是伺服光信号。其中,处理器1422预置有预设时刻和伺服点的对应关系。
其中,伺服点的预设信息,包括伺服点的光强和光斑信息。该光强和光斑信息,是指用于读数据的光信号准确聚焦在伺服点上时,该伺服点所返回的光信号被光探测器1421探测到的光强和光斑信息。其中,该返回的光信号可以是反射光信号或荧光信号,对此不作限定。其中,该用于读数据的光信号的功率可以是上述的第三预设功率。
其中,伺服点的预设信息中的光强和光斑信息,可以是预先测定得到的。
例如,数据读写系统40可以使用具有第三预设功率的光信号,经如图14中数据读写系统40的光路,准确聚焦于光存储介质44上的任一个伺服点(以写入所有伺服点的功率相同为例)上。然后,光探测器1421接收该任一个伺服点所返回的光信号,并确定出该光信号的光强和光斑信息。这样,该光强和光斑信息,即为上述的伺服点的预设信息。
为方便描述,本申请实施例将上述预设信息中的光强称为第一光强,将上述预设信息中的光斑信息称为第一光斑信息。此外,本申请实施例将处理器1422接收到的第三光信号的光强称为第二光强,将处理器1422接收到的第三光信号的光斑信息称为第二光斑信息。
这样的话,处理器1422即可根据接收到的第二光强和第二光斑信息,以及预置的第一光强和第一光斑信息,确定伺服控制信号。其中,伺服控制信号包括聚焦伺服信号或寻迹伺服信号中的至少一种。
在一方面,处理器1422可以根据第一光斑信息中的光斑大小和光斑形状,以及第二光斑信息中的光斑大小和光斑形状,确定伺服控制信号中调节读写光头43所聚焦光信号的焦点位置时的调节方向。
作为示例,参考图16,图16示出了一种根据光斑大小及形状确定伺服控制信号中调节读写光头43所聚焦光信号的焦点位置时的调节方向的示意图。
如图16所示,实线圆表示伺服点的预设信息中的光斑161。实线圆和虚线圆重叠的部分,表示第三光信号对应的光斑162。如图16所示,处理器1422可以根据光斑161和光斑162的形状和大小,确定读写光头43没有将用于作用伺服点的光信号准确聚焦在光存储介质44上。并且,处理器1422还可以确定,需要在读写光头43的轴向方向上,向靠近光存储介质 44的方向调整读写光头43聚焦光信号时的焦点位置。
参考图17,图17示出了另一种根据光斑大小及形状确定伺服控制信号中调节读写光头43所聚焦光信号的焦点位置时的调节方向的示意图。
如图17所示,实线圆表示伺服点预设信息中的光斑171。实线圆和虚线圆重叠的部分,表示第三光信号对应的光斑172。如图17所示,处理器1422可以根据光斑171和光斑172的形状和大小,确定读写光头43需要在径向方向(即图13中所示的x轴方向和y轴方向)上,沿着x轴的正方向和y轴正方向,调整读写光头43聚焦光信号时的焦点的位置。
在另一方面,处理器1422可以根据第一光强和第二光强,确定数据读写系统40的聚焦误差和寻迹误差。
具体的,对于任一个伺服点而言,处理器1422可以将第一光强和第二光强做差,并根据该差值,确定数据读写系统40的聚焦误差和寻迹误差。
可选的,设计人员可以预先通过大量的测试结果,在处理器1422中预置不同光强和第一光强的差值,与数据读写系统40的聚焦误差和寻迹误差的对应关系。
这样,处理器1422即可根据该对应关系,以及根据第一光强和第二光强的差值,确定数据读写系统40的聚焦误差和寻迹误差。
然后,当处理器1422所确定的聚焦误差大于第三预设阈值时,处理器1422可以根据上述确定的调节方向以及所确定的聚焦误差,生成聚焦伺服信号,该聚焦伺服信号用于指示在读写光头43的轴向方向上调整读写光头43的位置,从而实现在轴向方向上调整读写光头43聚焦光信号时的焦点位置。
应理解,当处理器1422所确定的聚焦误差小于第三预设阈值时,读数据系统40可以准确的读取光存储介质中所存储的数据。这种情况下,读数据系统40可以不进行聚焦伺服。即,读数据系统40无需在轴向方向上调整读写光头43聚焦光信号时的焦点位置。
其中,本申请实施例对聚焦误差等于第三预设阈值的情况不作具体限定。例如,即当聚焦误差等于第三预设阈值时,处理器1422可以生成聚焦伺服信号,也可以不生成聚焦伺服信号,对此不作限定。
可选的,处理器1422可以预置有不同聚焦误差和在轴向方向上调节读写光头43位置的调节量的对应关系,该对应关系可以是预先根据大量的实验测定的,对此不作具体限定。
当处理器1422所确定的寻迹误差大于第四预设阈值时,处理器1422可以根据上述确定的调节方向以及所确定的寻迹误差,生成寻迹伺服信号,该寻迹伺服信号用于指示在径向方向上调整反射镜46的位置,从而实现在径向方向上调整读写光头43聚焦光信号时的焦点位置。
应理解,当处理器1422所确定的寻迹误差小于第四预设阈值时,读数据系统40可以准确的读取光存储介质44中所存储的数据。这种情况下,读数据系统40可以不进行寻迹伺服。即,读数据系统40无需在径向方向上调整读写光头43聚焦光信号时的焦点位置。
其中,本申请实施例对径向误差等于第四预设阈值的情况不作具体限定。例如,即当径向误差等于第四预设阈值时,处理器1422可以生成径向伺服信号,也可以不生成径向伺服信号,对此不作限定。
可选的,处理器1422可以预置有不同寻迹误差和在径向方向上调节反射镜46位置的调节量的对应关系,该对应关系可以是预先根据大量的实验测定的,对此不作具体限定。
其中,本申请实施例对上述的第三预设阈值以及第四预设阈值的取值不作具体限定。
然后,当处理器1422生成聚焦伺服信号后,可以将该聚焦伺服信号发送至图14中所示 的第二移动平台143,以使第二移动平台143按照该聚焦伺服信号的指示,控制读写光头43在轴向方向上移动,从而实现在轴向方向上调整读写光头43聚焦光信号时的焦点的位置。
接着,当处理器1422生成寻迹伺服信号后,可以将该寻迹伺服信号发送至图14中所示的第三移动平台144,以使第三移动平台144按照该寻迹伺服信号的指示,控制反射镜46在径向方向上移动,从而实现在径向方向上调整读写光头43聚焦光信号时的焦点的位置。
可以理解的是,数据读写系统40通常先对系统的的聚焦误差进行伺服。这样,当数据读写系统40在读取当前数据点的下一个数据点时,用于读取该下一个数据点的光信号经读写光头43聚焦后,可以聚焦在该下一个数据点上,即消除了系统的聚焦误差。然后,数据读写系统40再对系统的寻迹误差进行伺服,以消除系统的寻迹误差。
可以看出,本申请实施例在读取数据时所采用的数据点伺服寻址方案,是通过单独的数据点作为伺服点来进行伺服寻址的。相比现有技术中需要从数据光信号中根据频率信息来提取用于确定伺服控制信号的伺服光信号的方案,本申请实施例所提供的方案更加方便高效。
这样,通过本申请实施例所提供的数据读写系统在读数据时,可以简单理解为,数据读写系统通过光偏转器,对光源组件产生的初始光信号调制后得到的第一光信号进行顺序偏转,以实现在一个预设周期内,在光存储介质上读取一排数据点。同时,数据读写系统通过控制光存储介质的移动,从而实现在多个预设周期内沿着光存储介质的移动方向,在光存储介质上读取多排数据点,从而实现读取包括多个数据道的数据带。也就是说,通过本申请实施例提供的数据读写系统在移动中的光存储介质上读数据,实现了通过控制单束光信号,在光存储介质上同时读取多个数据道的效果,也即实现了通过单束光信号在光存储介质上并行读数据的效果。这样,本申请实施例在不提高光存储介质转速的情况下,提高了数据读写系统读数据的效率。
此外,通过本申请实施例所提供的数据读写系统,可以在高效读取数据的同时,还可以进行高效的伺服寻址,从而提高了数据读取的准确率。
需要指出的是,图14中示出的数据读写系统40,仅示出了该数据读写系统4 0的核心器件/模块,图14所示出的结构并不构成对该数据读写系统40的限定。除图14所示器件/模块之外,该数据读写系统40可以包括比图示更多或更少的器件或模块,或者不同的器件/模块布置等。例如,上述数据读写系统40中的光偏转器是转镜,则上述数据读写系统40还可以包括f-θ镜,又例如,上述数据读写系统40中还可以处理器1422和第一移动平台45之间的连接电路,处理器1422和第二移动平台143之间的连接电路以及处理器1422和第三移动平台144之间的连接电路,等等,这里不再赘述。
还应理解,上述对数据读写系统40的介绍,是以光偏转器42对仅包括单束光信号的第一光信号进行偏转为例进行说明的。当然,光偏转器42也可以对包括多束光信号的阵列光信号进行偏转,以得到多个阵列光信号,从而可以实现一个数据块的读写。这样的话,该阵列光信号通过光偏转器42在多个预设周期中的每个预设周期内依次偏转得到多个阵列光信号,可以实现包括多个数据块的数据带的读写。这样,可以进一步提高数据读写的速度。
其中,该阵列光信号可以是一维或二维的阵列信号,例如该阵列光信号中包括1*j个光信号,或者该阵列光信号中包括k*j个光信号,对此不作限定。其中,j和k均是大于1的整数。
还应理解,该阵列列光信号是一维阵列光信号时,该一维阵列光信号在输入光偏转器42时,该一维阵列光信号所在的平面,与光偏转器42偏转光信号的平面具有预设夹角。也即,该一维阵列列光信号所在的平面与光偏转器42偏转光信号的平面不在同一个平面内。这样, 该一维阵列列光信号即可被光偏转器42在预设周期内偏转为多个一维阵列列光信号,从而实现包括多个数据块的数据带的读写。
这种情况下,上述的数据读写系统40中还可以包括将光源组件所产生的光信号分束为阵列光信号的分束器等光学器件,此处不予赘述。
参考图18,图18示出了一种包括多个数据块的数据带的示意图。如图18所示,在圆形的光存储介质上,数据道1、数据道2以及数据道3构成了一个环状数据带。其中,数据块1是数据道1上的数据点集,数据块2是数据道2上的数据点集,数据块3是数据道3上的数据点集。其中,一个数据点集中的多个数据点,是一个阵列光信号被光偏转器偏转后在光存储介质上同时写入的。
下面结合附图,对本申请实施例提供的数据读写方法予以说明。
参考图19,图19示出了本申请实施例提供的数据读写方法的流程示意图,该方法应用于图14所示的数据读写系统40中,该方法可以包括以下步骤:
S101、数据读写系统生成第一光信号。
其中第一光信号的说明,可以参考上述第一光信号的相关说明,这里不予赘述。
具体的,数据读写系统生成第一光信号的过程,可以参考上文中基于光源组件41所产生的初始光信号得到第一光信号的描述,这里不再赘述。
S102、数据读写系统将第一光信号依次偏转多个角度,以得到多个第二光信号。
具体的,数据读写系统可以在预设周期内依次将第一光信号偏转所述多个角度,以得到多个第二光信号。
其中,数据读写系统在预设周期内依次将第一光信号偏转所述多个角度,以得到多个第二光信号的说明,可以参考上文中光偏转器42将第一光信号依次偏转多个角度,从而得到多个第二光信号的描述,这里不再赘述。
S103、数据读写系统将上述的多个第二光信号聚焦在光存储介质上,以实现对多个数据点的读写,以及,数据读写系统在多个预设周期中的每个预设周期内,将每个预设周期对应的多个第二光信号聚焦在光存储介质上,以实现对多个数据道的读写。
其中,该多个数据道包括一个预设周期内数据读写系统读写的多个数据点,该多个数据道和该多个数据点一一对应。
其中,数据读写系统将上述的多个第二光信号聚焦在光存储介质上,以实现对多个数据点的读写的说明,以及,数据读写系统在多个预设周期中的每个预设周期内,将每个预设周期对应的多个第二光信号聚焦在光存储介质上,以实现对多个数据道的读写的说明,可以参考上文中读写光头43将多个第二光信号聚焦在光存储介质上,以实现多个数据点以及数据道的读写的描述,这里不作赘述。
进一步的,在数据读写系统读数据时,当数据读写系统控制多个第二光信号中的任一个光信号作用于光存储介质后,即该多个任一个光信号作用于光存储介质上的数据点后,光存储介质上的该数据点可以返回第三光信号。这样的话,数据读写系统即可基于第三光信号,生成伺服控制信号。或者,数据读写系统基于该第三光信号,确定待读数据。
其中,如果该任一个数据点是伺服点,则第三光信号是伺服光信号,即数据读写系统可以基于第三光信号,生成伺服控制信号。
如果该任一个数据点用于存储数据,则第三光信号是数据光信号,即数据读写系统可以基于第三光信号,确定待读数据。
其中,数据读写系统基于第三光信号生成伺服控制信号,以及数据读写系统基于第三光 信号确定待读数据的说明,可以参考上文中信息处理模块142基于第三光信号生成伺服控制信号,以及基于第三光信号确定待读数据的描述,这里不予赘述。
S104、数据读写系统在光存储介质中任一个存储层上读写完成包括多个数据道的第一数据带后,将数据读写系统中的光偏转器和读写光头,在垂直于该读写光头轴向方向的平面内移动预设距离,以实现该任一个存储层中第二数据带的读写。
其中,数据读写系统在光存储介质中任一个存储层上读写完成包括多个数据道的第一数据带后,将数据读写系统中的光偏转器和读写光头,在垂直于该读写光头轴向方向的平面内移动预设距离,以实现该任一个存储层中第二数据带的读写的说明,可以参考上文数据读写系统通过径向移动台91移动光偏转器和读写光头,以实现不同数据带的读写的描述,这里不予赘述。
综上,本申请实施例提供了一种数据读写系统和方法,该系统通过光偏转器,对光源组件产生的初始光信号调制后得到的第一光信号进行顺序偏转,以实现在一个预设周期内,在光存储介质上读写一排数据点。同时,数据读写系统通过控制光存储介质的移动,从而实现在多个预设周期内沿着光存储介质的移动方向,在光存储介质上读写多排数据点,从而实现读写包括多个数据道的数据带。也即是说,通过本申请提供的数据读写系统在移动中的光存储介质上读写数据,实现了通过控制单束光信号,在光存储介质上同时读写多个数据道的效果,也即实现了通过单束光信号在光存储介质上并行读写数据的效果。这样,本申请实施例在不提高光存储介质转速的情况下,提高了数据读写系统读写数据的效率。
此外,通过本申请实施例所提供的数据读写系统,可以在高效读数据的同时,还可以进行高效的伺服寻址,从而提高了读数据的准确率。
为了更清楚的说明本申请实施例所提供的数据读写系统带来的有益效果,下面以实际应用例为例进行进一步说明。
以光源组件所产生的初始光信号是单束光信号,光偏转器是声光偏转器,且偏转光信号的频率为300KHz,读写光头扫描的范围(光偏转器偏转得到的光信号经读写光头聚焦在光存储介质上的位置范围)为300μm,单个比特(即单个数据点(一个数据点表示一个比特))的直径为200nm为例,通过本申请实施例所提供的数据读写系统可以实现的读写带宽为:300KHz×300μm÷200nm/bit=56.25MB/s。
这种情况下,以光存储介质是圆形的光盘,且光盘通过第一移动平台旋转为例,如果光盘上的相邻两个数据道的道间距为400nm(即两个数据道上并列的两个数据点的圆心之间的距离),则用于旋转光盘的第一移动平台的线速度仅为:v=300KHz×400nm=120mm/s。
这样的话,基于计算转速n的公式:
Figure PCTCN2021130165-appb-000002
当线速度v是120mm/s时,如果光盘的外圈直径D为120mm,内圈直径D为40mm,则用于旋转光盘的第一移动平台的外圈转速为:
Figure PCTCN2021130165-appb-000003
如果光盘的外圈直径D为240mm,内圈直径D为40mm,则用于旋转光盘的第一移动平台的转速为:
Figure PCTCN2021130165-appb-000004
Figure PCTCN2021130165-appb-000005
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种数据读写系统,其特征在于,所述系统包括:
    光偏转器,用于将第一光信号依次偏转多个角度,以得到多个第二光信号;
    读写光头,用于接收所述多个第二光信号,并分别将所述多个第二光信号聚焦在光存储介质上,以实现对多个数据点的读写。
  2. 根据权利要求1所述的系统,其特征在于,所述系统还包括:
    移动平台,用于安置所述光存储介质,以及用于控制所述光存储介质在与所述读写光头轴向方向垂直的平面上旋转或平移;
    所述光偏转器,具体用于在多个预设周期中的每个预设周期内,依次将所述第一光信号偏转所述多个角度,以得到所述多个第二光信号;
    所述读写光头,还用于在所述每个预设周期内接收所述多个第二光信号,并分别将所述多个第二光信号聚焦在所述光存储介质上,以实现对多个数据道的读写;其中,所述多个数据道包括所述多个数据点,所述多个数据道和所述多个数据点一一对应。
  3. 根据权利要求1或2所述的系统,其特征在于,所述光偏转器包括下列器件中的至少一种:多面转镜、振镜、声光偏转器或电光偏转器。
  4. 根据权利要求2或3所述的系统,其特征在于,
    所述多个数据道中包括至少一个伺服道,所述伺服道上的多个伺服点离散分布;其中,所述伺服点用于在读数据时调整所述读写光头聚焦光信号时的焦点位置。
  5. 根据权利要求4所述的系统,其特征在于,所述多个伺服点中任意相邻的两个伺服点之间的距离大于或等于预设距离。
  6. 根据权利要求1-5中任一项所述的系统,其特征在于,所述光存储介质包括多个存储层,所述多个存储层中的伺服点在所述读写光头轴向方向上离散分布;其中,所述伺服点用于在读数据时调整所述读写光头聚焦光信号时的焦点位置。
  7. 根据权利要求2-6中任一项所述的系统,其特征在于,所述多个数据道组成一个数据带;所述系统还包括:
    径向移动台,用于在所述光存储介质的多个存储层中的第一存储层上读写完成第一数据带后,将所述光偏转器和所述读写光头,在垂直于所述读写光头轴向方向的平面内移动预设距离,以实现对所述第一存储层中的第二数据带的读写,其中,所述第一存储层包括多个数据带。
  8. 根据权利要求1-7中任一项所述的系统,其特征在于,所述系统还包括信号处理模块:
    用于在读数据时接收第三光信号;所述第三光信号是所述多个第二光信号中的任一个光信号作用于所述光存储介质上的任一个数据点后,所述光存储介质返回的光信号;以及,
    用于当所述第三光信号是伺服光信号时,基于所述第三光信号生成伺服控制信号,所述伺服控制信号用于调整所述读写光头聚焦光信号时的焦点位置;以及,用于当所述第三光信号是数据光信号时,基于所述第三光信号确定待读数据;
    其中,如果所述任一个数据点是伺服点,则所述第三光信号是伺服光信号;如果所述任一个数据点用于存储数据,则所述第三光信号是数据光信号。
  9. 根据权利要求1-8中任一项所述的系统,其特征在于,所述系统还包括:
    光源组件,用于得到所述第一光信号。
  10. 一种数据读写方法,其特征在于,应用于数据读写系统,所述方法包括:
    将第一光信号依次偏转多个角度,以得到多个第二光信号;
    将所述多个第二光信号聚焦在光存储介质上,以实现对多个数据点的读写。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    控制所述光存储介质在与所述数据读写系统中的读写光头的轴向方向垂直的平面上旋转或平移;
    所述将第一光信号依次偏转多个角度,以得到多个第二光信号,包括:
    在多个预设周期中的每个预设周期内,依次将所述第一光信号偏转所述多个角度,以得到所述多个第二光信号;
    所述方法还包括:
    在所述每个预设周期内,将所述多个第二光信号聚焦在所述光存储介质上,以实现对多个数据道的读写;其中,所述多个数据道包括所述多个数据点,所述多个数据道和所述多个数据点一一对应。
  12. 根据权利要求10或11所述的方法,其特征在于,所述将第一光信号依次偏转多个角度,以得到多个第二光信号,包括:
    所述数据读写系统中的光偏转器将第一光信号依次偏转多个角度,以得到多个第二光信号;其中,所述光偏转器包括下列器件中的至少一种:多面转镜、振镜、声光偏转器或电光偏转器。
  13. 根据权利要求11或12所述的方法,其特征在于,
    所述多个数据道中包括至少一个伺服道,所述伺服道上的多个伺服点离散分布;其中,所述伺服点用于在读数据时调整所述读写光头聚焦光信号时的焦点位置。
  14. 根据权利要求13所述的方法,其特征在于,所述多个伺服点中任意相邻的两个伺服点之间的距离大于或等于预设距离。
  15. 根据权利要求10-14中任一项所述的方法,其特征在于,所述光存储介质包括多个存储层,所述多个存储层中的伺服点在所述数据读写系统中的读写光头的轴向方向上离散分布;其中,所述伺服点用于在读数据时调整所述读写光头聚焦光信号时的焦点位置。
  16. 根据权利要求11-15中任一项所述的方法,其特征在于,所述多个数据道组成一个数据带;所述方法还包括:
    在所述光存储介质的多个存储层中的第一存储层上对第一数据带执行完读写操作后,将所述数据读写系统中的光偏转器和读写光头,在垂直于所述读写光头轴向方向的平面内移动预设距离,以实现对所述第一存储层中的第二数据带的读写,其中,所述第一存储层包括多个数据带。
  17. 根据权利要求10-16中任一项所述的方法,其特征在于,所述方法还包括:
    当第三光信号是伺服光信号时,基于所述第三光信号生成伺服控制信号,所述伺服控制信号用于调整所述数据读写系统中读写光头聚焦光信号时的焦点位置;以及,当所述第三光信号是数据光信号时,基于所述第三光信号确定待读数据;
    其中,所述第三光信号是所述多个第二光信号中的任一个光信号作用于所述光存储介质上的任一个数据点后,所述光存储介质返回的光信号;
    其中,如果所述任一个数据点是伺服点,则所述第三光信号是伺服光信号;如果所述任一个数据点用于存储数据,则所述第三光信号是数据光信号。
  18. 根据权利要求10-17中任一项所述的方法,其特征在于,所述将第一光信号依次偏转多个角度,以得到多个第二光信号之前,所述方法还包括:生成所述第一光信号。
PCT/CN2021/130165 2020-11-12 2021-11-11 一种数据读写系统和方法 WO2022100674A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237019509A KR20230104941A (ko) 2020-11-12 2021-11-11 데이터 판독/기입 시스템 및 방법
EP21891194.9A EP4235665A1 (en) 2020-11-12 2021-11-11 Data read/write system and method
JP2023528388A JP2023549212A (ja) 2020-11-12 2021-11-11 データ読み取り/書き込みシステム及び方法
US18/314,456 US20230282233A1 (en) 2020-11-12 2023-05-09 Data read/write system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011265387.5 2020-11-12
CN202011265387.5A CN114495991A (zh) 2020-11-12 2020-11-12 一种数据读写系统和方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/314,456 Continuation US20230282233A1 (en) 2020-11-12 2023-05-09 Data read/write system and method

Publications (1)

Publication Number Publication Date
WO2022100674A1 true WO2022100674A1 (zh) 2022-05-19

Family

ID=81490520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130165 WO2022100674A1 (zh) 2020-11-12 2021-11-11 一种数据读写系统和方法

Country Status (6)

Country Link
US (1) US20230282233A1 (zh)
EP (1) EP4235665A1 (zh)
JP (1) JP2023549212A (zh)
KR (1) KR20230104941A (zh)
CN (1) CN114495991A (zh)
WO (1) WO2022100674A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116500306B (zh) * 2023-06-28 2023-10-27 鹏城实验室 高速并行写入读取系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4459690A (en) * 1981-07-30 1984-07-10 Rca Corporation Multi-beam optical record and playback apparatus having an improved beam splitter
CN1328324A (zh) * 2000-06-14 2001-12-26 财团法人工业技术研究院 声光布拉格衍射式多光束光学读写头
CN101053025A (zh) * 2004-11-03 2007-10-10 皇家飞利浦电子股份有限公司 便携式混合存储介质
CN103676499A (zh) * 2013-11-27 2014-03-26 中国科学院上海光学精密机械研究所 基于旋转达曼光栅的多路并行激光直写装置和方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0135750B1 (en) * 1983-08-26 1988-06-22 Hitachi, Ltd. Optical information recording and reproducing apparatus
JPS60197953A (ja) * 1984-03-21 1985-10-07 Hitachi Ltd 情報記録装置
GB2167202A (en) * 1984-11-16 1986-05-21 Stc Plc Data storage systems
JPH0731819B2 (ja) * 1985-03-22 1995-04-10 株式会社日立製作所 光デイスク装置
US4633455A (en) * 1985-03-25 1986-12-30 Rca Corporation Headwheel for a multiple beam optical tape playback system
US4760565A (en) * 1986-09-15 1988-07-26 International Business Machines Corporation High speed track access for optical disks using acousto-optic deflector
KR930009220B1 (ko) * 1991-08-20 1993-09-24 주식회사 금성사 광학기기의 옵티컬 픽-업장치
JP3005355B2 (ja) * 1992-02-24 2000-01-31 オリンパス光学工業株式会社 光学式記録装置
KR100215810B1 (ko) * 1996-12-31 1999-08-16 구자홍 광 디스크 기록/재생장치
US6307799B1 (en) * 1998-12-03 2001-10-23 Nanyang Technological University Acousto optic data storage system on a stationary and high density data storage media
JP2004212205A (ja) * 2002-12-27 2004-07-29 Olympus Corp 角度検出装置、光信号スイッチシステムおよび情報記録再生システム
JP3924549B2 (ja) * 2003-04-23 2007-06-06 Tdk株式会社 ホログラム記録再生方法及び装置
JP4351551B2 (ja) * 2004-02-17 2009-10-28 Tdk株式会社 ホログラフィック記録方法、ホログラフィック記録装置、ホログラフィック記録媒体、ホログラフィックメモリ再生方法及び装置
KR20080092054A (ko) * 2007-04-11 2008-10-15 엘지전자 주식회사 홀로그램 기록 및 재생 장치
JP2009116087A (ja) * 2007-11-07 2009-05-28 Sony Corp 光学ユニット、駆動制御方法、ホログラム装置
JP2010244669A (ja) * 2009-03-16 2010-10-28 Sony Corp 記録再生装置、及びその調整方法
JP2011192378A (ja) * 2010-02-19 2011-09-29 Panasonic Corp 光ディスク装置および光ディスクの再生方法
CN105518781B (zh) * 2013-09-18 2019-01-04 日立民用电子株式会社 全息图再现装置、全息图再现方法
CN111145790A (zh) * 2020-01-23 2020-05-12 广东紫晶信息存储技术股份有限公司 一种高速并行再现的全息光盘读取方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4459690A (en) * 1981-07-30 1984-07-10 Rca Corporation Multi-beam optical record and playback apparatus having an improved beam splitter
CN1328324A (zh) * 2000-06-14 2001-12-26 财团法人工业技术研究院 声光布拉格衍射式多光束光学读写头
CN101053025A (zh) * 2004-11-03 2007-10-10 皇家飞利浦电子股份有限公司 便携式混合存储介质
CN103676499A (zh) * 2013-11-27 2014-03-26 中国科学院上海光学精密机械研究所 基于旋转达曼光栅的多路并行激光直写装置和方法

Also Published As

Publication number Publication date
JP2023549212A (ja) 2023-11-22
KR20230104941A (ko) 2023-07-11
EP4235665A1 (en) 2023-08-30
CN114495991A (zh) 2022-05-13
US20230282233A1 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
US4520472A (en) Beam expansion and relay optics for laser diode array
EP1255134B1 (en) Reflection type compound prism and optical pickup apparatus employing the same
US4789977A (en) Optical data recording device
JPH07326065A (ja) 光情報処理装置
WO2022100674A1 (zh) 一种数据读写系统和方法
EP0360122A2 (en) Second harmonic generator and information processing system using the same
US4823335A (en) Optical head device having deflection means including means for reducing reflected light angle
CN1160713C (zh) 与多种光记录媒体兼容的光学头
JPS6047240A (ja) 光ヘツド装置
US6721258B1 (en) Optical device for super-resolution
JP3545008B2 (ja) 光ピックアップ装置
CN216487322U (zh) 一种具有快速读写功能的光存储蓝光光学头
JPS6251045A (ja) 光学的情報読取装置
KR100252170B1 (ko) 광헤드
KR19990003782A (ko) 광픽업 장치
US20110044151A1 (en) Electronic device
KR0170521B1 (ko) 광픽업시스템의 빔 정형장치
US5109376A (en) Optical axis monitoring device
JP3077426B2 (ja) 光情報記録再生装置
CN113764010A (zh) 一种具有快速读写功能的光存储蓝光光学头
JPS5945641A (ja) 複数ビ−ム・光学ヘツド
US9640215B2 (en) Holographic light-emitting module and holographic storage system using the same
JP2513237B2 (ja) 光ヘッド装置
JPH01267845A (ja) 光記録装置
JPS6251044A (ja) 光学ヘツド

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891194

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023528388

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2021891194

Country of ref document: EP

Effective date: 20230523

ENP Entry into the national phase

Ref document number: 20237019509

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE