WO2022100526A1 - 滑行扭矩的获取方法、装置、存储介质及计算机程序 - Google Patents

滑行扭矩的获取方法、装置、存储介质及计算机程序 Download PDF

Info

Publication number
WO2022100526A1
WO2022100526A1 PCT/CN2021/129031 CN2021129031W WO2022100526A1 WO 2022100526 A1 WO2022100526 A1 WO 2022100526A1 CN 2021129031 W CN2021129031 W CN 2021129031W WO 2022100526 A1 WO2022100526 A1 WO 2022100526A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
electric vehicle
coasting
additional
fuel cell
Prior art date
Application number
PCT/CN2021/129031
Other languages
English (en)
French (fr)
Inventor
吴麦青
宋丹丹
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Priority to US18/010,404 priority Critical patent/US20230226952A1/en
Priority to EP21891051.1A priority patent/EP4155112A4/en
Publication of WO2022100526A1 publication Critical patent/WO2022100526A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/24Coasting mode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present disclosure relates to the technical field of new energy vehicles, and in particular, to a method, device, storage medium and computer program for acquiring coasting torque.
  • the fuel cell using hydrogen energy as fuel will not produce CO2, NOX, SOX and other harmful gaseous substances during the chemical reaction process, thus avoiding pollution to the environment.
  • the fuel cell has the shortcomings of soft characteristic curve and slow power response. After the fuel cell system stops working, the fuel cell still reacts and continues to provide electric energy, resulting in the vehicle still in a state of accelerating or moving at a constant speed.
  • the purpose of the present disclosure is to provide a method, device, storage medium and computer program for obtaining coasting torque, so as to solve the problem in the prior art that after the fuel cell system stops working, the fuel cell still reacts and continues to provide electric energy, causing the vehicle
  • the technical problem is still in the state of accelerating or moving at a constant speed.
  • the present disclosure provides a method for obtaining a coasting torque, including the following steps: when the fuel cell system of the electric vehicle stops working and the electric vehicle enters a coasting state, obtaining the obtained coasting torque. State parameters of the electric vehicle;
  • the correction torque including the additional torque of the fuel cell system
  • the theoretical recovery torque is corrected according to the correction torque to obtain the coasting torque of the electric vehicle, and the coasting torque is used for energy recovery of the electric vehicle during coasting.
  • the correction of the theoretical recovery torque according to the correction torque includes:
  • F t represents the theoretical recovery torque
  • F fc represents the additional torque
  • F c represents the coasting torque
  • the state parameter includes the additional power generated by the fuel cell system and the vehicle speed of the electric vehicle, and the additional torque is determined in the following manner:
  • the additional torque of the fuel cell system of the electric vehicle is determined according to the additional power and the vehicle speed, as well as a pre-calibrated mapping relationship among the additional power, the vehicle speed and the additional torque.
  • the correction torque further includes a load torque
  • the correction of the theoretical recovery torque according to the correction torque includes:
  • F t is the theoretical recovery torque
  • F fc is the additional torque
  • F c is the coasting torque
  • F fmp is the load torque
  • the state parameter includes the load power consumption of the electric vehicle and the vehicle speed of the electric vehicle, and the load torque is determined in the following manner:
  • the load torque of the electric vehicle is determined according to the load consumption power and the vehicle speed, as well as a pre-calibrated mapping relationship between the load consumption power, the vehicle speed and the load torque.
  • the present disclosure provides a gliding torque acquisition device, including:
  • an acquisition module configured to acquire the state parameters of the electric vehicle when the fuel cell system of the electric vehicle stops working and the electric vehicle enters a coasting state
  • a first execution module configured to determine a theoretical recovery torque and a correction torque of the electric vehicle according to the state parameter, the correction torque including the additional torque of the fuel cell system;
  • a second execution module configured to correct the theoretical coasting torque according to the correction torque to obtain a coasting torque of the electric vehicle, where the coasting torque is used for energy recovery of the electric vehicle during coasting .
  • the second execution module is configured to bring the theoretical recovery torque and the additional torque into a first calculation formula to obtain a coasting torque of the electric vehicle;
  • F t represents the theoretical recovery torque
  • F fc represents the additional torque
  • F c represents the coasting torque
  • the second execution module is configured to bring the theoretical recovery torque, the additional torque and the load torque into a second calculation formula when the correction torque further includes a load torque , to obtain the coasting torque;
  • F t is the theoretical recovery torque
  • F fc is the additional torque
  • F c is the coasting torque
  • F fmp is the load torque
  • the present disclosure provides a computer program comprising computer-readable code, which, when executed on a computing processing device, causes the computing processing device to execute the first aspect of the present disclosure.
  • the method for obtaining the coasting torque provided by the embodiment of the aspect is not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to a computing processing device.
  • the present disclosure provides a computer-readable storage medium, in which the computer program proposed by the embodiments of the third aspect of the present disclosure is stored, and the computer program implements the above-mentioned gliding when executed by a processor How to get torque.
  • the present disclosure provides an electronic device, including:
  • the processor is configured to execute the computer program in the memory, so as to realize the above-mentioned method for obtaining the coasting torque.
  • the technical solutions provided by the embodiments of the present disclosure may include the following beneficial effects: in the present disclosure, when the fuel cell system stops working and the electric vehicle enters the coasting state, considering the shutdown characteristics of the fuel cell system, the theoretical recovery torque is corrected to obtain the coasting torque, and the electric vehicle During the coasting process, the energy is recovered according to the coasting torque, so as to prevent the electric vehicle from accelerating or moving at a constant speed after the fuel cell system stops working, so that the user can intuitively feel the deceleration process of the vehicle after releasing the accelerator pedal. experience.
  • 1 is a schematic diagram of the relationship between power and time when a fuel cell system stops working
  • FIG. 2 is a flow chart of a method for acquiring coasting torque according to an exemplary embodiment
  • FIG. 3 is a block diagram of a device for acquiring a coasting torque according to an exemplary embodiment
  • FIG. 4 is a block diagram of an electronic device according to an exemplary embodiment
  • FIG. 5 provides a schematic structural diagram of a computing processing device according to an embodiment of the present disclosure
  • FIG. 6 provides a schematic diagram of a storage unit for portable or fixed program code implementing the method according to the present disclosure according to an embodiment of the present disclosure.
  • the method for obtaining coasting torque provided by the present disclosure can be applied to automobiles.
  • Fuel cells that use hydrogen energy as fuel use the chemical action of hydrogen and oxygen to convert chemical energy into electrical energy or mechanical energy, and store the converted electrical or mechanical energy in batteries, or as kinetic energy for driving vehicles. Because hydrogen and oxygen do not produce CO2, NOX, SOX and other harmful gaseous substances in the chemical reaction process, the emission of electric vehicles using this fuel cell is generally water, which avoids further pollution to the environment, and hydrogen is rich in resources. And easy access will not cause energy shortage.
  • the fuel cell system stops working, that is, the fuel cell system jumps from the running state to the standby state. At this time, the fuel cell system no longer supplies fuel, and the fuel cell active substances are no longer externally supplied.
  • the chemical reaction in the fuel cell continues until the external All the active substances supplied to the fuel cell react, the chemical reaction in the fuel cell stops, the time when the fuel cell jumps from the fuel cell system to the standby state and the time when the chemical reaction in the fuel cell stops, continue to output power, and chemically react in the fuel cell After stopping, no more power is output.
  • the power between time t and time t1 will continue to drive the electric vehicle, causing the electric vehicle to be in a state of accelerating or moving at a constant speed between time t and time t1, causing the user to have an accelerator pedal failure and the illusion that the fuel cell continues to output kinetic energy. .
  • FIG. 2 is a flowchart of a method for acquiring coasting torque according to an exemplary embodiment. As shown in Figure 2, the method includes the following steps:
  • step S101 when the fuel cell system of the electric vehicle stops working and the electric vehicle enters the coasting state, the state parameters of the electric vehicle are acquired.
  • step S102 the theoretical recovery torque and the correction torque of the electric vehicle are determined according to the state parameters, and the correction torque includes the additional torque of the fuel cell system.
  • step S103 the theoretical recovery torque is corrected according to the correction torque to obtain the coasting torque of the electric vehicle, and the coasting torque is used for energy recovery of the electric vehicle during the coasting process.
  • the additional torque of the fuel cell system may be the torque corresponding to the electric energy generated by the fuel cell continuing to react after the fuel cell system stops working.
  • the theoretical recovery torque is corrected to obtain the coasting torque.
  • Energy recovery is performed to prevent the electric vehicle from accelerating or moving at a constant speed after the fuel cell system stops working, so that the user can intuitively feel the deceleration process of the vehicle after releasing the accelerator pedal and improve the user experience.
  • determining the theoretical recovery torque of the electric vehicle according to the state parameters may include:
  • coasting energy recovery level and vehicle speed of the electric vehicle As well as the mapping relationship between the pre-calibrated driving mode, coasting energy recovery level, vehicle speed and theoretical recovery torque, the theoretical recovery torque of the electric vehicle is determined.
  • the pre-calibrated driving modes include: a normal mode, an economical mode, a sports mode, and a power saving mode.
  • Different driving modes include high, medium and low energy recovery levels.
  • all gliding energy recovery levels are calibration values.
  • the power saving mode is a unique mode of a plug-in hybrid vehicle (PHEV) (Plug-in Hybrid Electric vehicle).
  • PHEV plug-in hybrid vehicle
  • the standard power of the battery in the power-saving mode of the plug-in hybrid vehicle PHEV be set to 70%, and the variable power parameter to be set to 10%.
  • the plug-in hybrid vehicle PHEV is in the power-saving mode, the standard power of the battery is reduced to 60%, and the engine is in a rest state, the engine will automatically start to generate power, part of the power is supplied to the vehicle to run, and part of the power is used to charge the battery.
  • Stop charging when the battery's power reaches 70% (at this time, the engine continues to work or enters a rest state according to the current working conditions of the vehicle); if the battery's standard power drops to 60%, the engine is in working state and there is no excess power to charge the battery Under the circumstance, the engine continues to work until the engine generates excess power to charge the battery, and stops charging when the battery's power reaches 70%.
  • step S103 the theoretical recovery torque is corrected according to the correction torque, which may include:
  • F t represents the theoretical recovery torque
  • F fc represents the additional torque
  • F c represents the coasting torque
  • the correction of the theoretical recovery torque according to the additional torque includes: : Subtract the additional torque of the fuel cell system from the theoretical recovery torque to obtain the coasting torque.
  • the additional torque in step S103 may be determined in the following manner:
  • the additional torque of the fuel cell system of the electric vehicle is determined according to the additional power and the vehicle speed, as well as the pre-calibrated mapping relationship between the additional power, the vehicle speed and the additional torque.
  • the electric energy generated by the fuel cell system transmits the torque to the wheel end of the electric vehicle is the ratio of the power output by the current fuel cell system to the vehicle speed, so according to the additional power and vehicle speed, as well as the pre-calibrated additional power, vehicle speed and additional torque between
  • the mapping relationship to determine the additional torque of the fuel cell system of the electric vehicle can include:
  • the additional torque of the fuel cell system of the electric vehicle is determined by bringing the additional power and the vehicle speed into the third calculation formula representing the mapping relationship between the additional power, the vehicle speed and the additional torque.
  • F fc represents additional torque
  • P fc represents additional power
  • v represents vehicle speed
  • the torque required by the power consumption of each load on the electric vehicle can also be considered, and the theoretical recovery torque of the electric vehicle can be further revised.
  • the correction torque further includes the load torque.
  • the theoretical recovery torque is corrected according to the correction torque, which may include:
  • F t is the theoretical recovery torque
  • F fc is the additional torque
  • F c is the coasting torque
  • F fmp is the load torque
  • the load torque is the torque required by the load to consume power.
  • Loads include air compressors, air circulation pumps, DC-to-DC converters (DCDC), etc.
  • the load torque provides the electric vehicle with braking force
  • the correction of the theoretical recovery torque according to the additional torque and the load torque includes: from the theoretical The additional torque of the fuel cell system is subtracted from the recovered torque, and the load torque of the electric vehicle is added to obtain the coasting torque.
  • the theoretical recovery torque is further revised, so as to realize the improvement of the existing coasting torque.
  • the optimization of the strategy enables electric vehicles that recover energy in the coasting state according to the coasting torque to have a shorter coasting distance than other new energy vehicles under the same conditions.
  • the load torque in step S103 may be determined in the following manner:
  • the load torque of the electric vehicle is determined according to the load consumption power and the vehicle speed, as well as the pre-calibrated mapping relationship between the load consumption power, the vehicle speed and the load torque.
  • the load torque is the torque required by the power consumed by the load on the electric vehicle.
  • the load torque is the ratio of the load power to the vehicle speed, so according to the load power consumption and the vehicle speed, and the pre-calibrated mapping relationship between the load power consumption, the vehicle speed and the load torque, determining the load torque of the electric vehicle may include:
  • the load torque of the electric vehicle is determined by bringing the load power consumption and the vehicle speed into the fourth calculation formula representing the mapping relationship between the load power consumption, the vehicle speed and the load torque.
  • F fmp represents load torque
  • P fmp represents load power consumption
  • v vehicle speed
  • the load power includes the DCDC boost power, the DCDC step-down power, the power of the air compressor and the power of the air circulation pump
  • the load torque is the DCDC boost torque, the DCDC step-down torque, and the torque of the air compressor. , the sum of the torque of the air circulation pump.
  • the DCDC boost torque is the ratio of the DCDC boost power to the vehicle speed
  • the DCDC buck torque is the ratio of the DCDC buck power and the vehicle speed
  • the torque of the air compressor is the ratio of the power of the air compressor to the vehicle speed
  • the air circulation pump Torque is the ratio of the torque of the air circulation pump to the speed of the vehicle.
  • F fmp represents the load torque
  • P dc represents the DCDC buck power
  • P fdc represents the DCDC boost power
  • P fac represents the air compressor power
  • P fp represents the air circulation pump power
  • v represents the vehicle speed.
  • FIG. 3 is a block diagram of a gliding torque acquiring apparatus according to an exemplary embodiment.
  • the gliding torque acquiring apparatus 1300 includes: an acquiring module 1301 , a first execution module 1302 and a second execution module 1303 .
  • the obtaining module 1301 is configured to obtain the state parameters of the electric vehicle when the fuel cell system of the electric vehicle stops working and the electric vehicle enters a coasting state.
  • the first execution module 1302 is configured to determine the theoretical recovery torque and the correction torque of the electric vehicle according to the state parameter, and the correction torque includes the additional torque of the fuel cell system.
  • the second execution module 1303 is configured to correct the theoretical coasting torque according to the correction torque to obtain the coasting torque of the electric vehicle, and the coasting torque is used for energy recovery of the electric vehicle during coasting.
  • the device for obtaining the coasting torque provided by the present disclosure, considering the shutdown characteristics of the fuel cell system, corrects the theoretical recovery torque to obtain the coasting torque, and the electric vehicle is in the coasting process according to the coasting torque Energy recovery is performed to prevent the electric vehicle from accelerating or moving at a constant speed after the fuel cell system stops working, so that the user can intuitively feel the deceleration process of the vehicle after releasing the accelerator pedal and improve the user experience.
  • the second execution module 1303 is specifically configured to bring the theoretical recovery torque and the additional torque into the first calculation formula to obtain the coasting torque of the electric vehicle;
  • F t represents the theoretical recovery torque
  • F fc represents the additional torque
  • F c represents the coasting torque
  • the second execution module 1303 is specifically configured to determine the additional torque of the fuel cell system of the electric vehicle according to the additional power and the vehicle speed, as well as the pre-calibrated mapping relationship between the additional power, the vehicle speed and the additional torque.
  • the second execution module 1303 is specifically configured to, when the corrected torque also includes the load torque, bring the theoretical recovery torque, the additional torque and the load torque into the second calculation formula to obtain the coasting torque;
  • F t is the theoretical recovery torque
  • F fc is the additional torque
  • F c is the coasting torque
  • F fmp is the load torque
  • the second execution module 1303 is specifically configured to determine the load torque of the electric vehicle according to the load consumption power and the vehicle speed, as well as the pre-calibrated mapping relationship between the load consumption power, the vehicle speed and the load torque.
  • the device for obtaining the coasting torque provided by the present disclosure, in the case of considering the shutdown characteristics of the fuel motor system, further considers the torque required by the power consumption of each load on the electric vehicle, further corrects the theoretical recovery torque, and realizes the existing coasting torque.
  • the optimization of the torque strategy enables electric vehicles that recover energy in the coasting state according to the coasting torque to have a shorter coasting distance than other new energy vehicles under the same conditions.
  • the present disclosure also provides a computer-readable storage medium on which computer program instructions are stored, and when the computer program instructions are executed by a processor, implement the steps of the gliding torque acquisition method provided by the present disclosure.
  • the computer-readable storage medium may be flash memory, hard disk, multimedia card, card-type memory (for example, SD or DX memory, etc.), random access memory (RAM), static random access memory (SRAM), read-only memory (ROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Programmable Read Only Memory (PROM), magnetic memory, magnetic disks, optical disks, servers, and the like.
  • flash memory hard disk
  • multimedia card card-type memory (for example, SD or DX memory, etc.)
  • RAM random access memory
  • SRAM static random access memory
  • ROM read-only memory
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • magnetic memory magnetic disks, optical disks, servers, and the like.
  • the present disclosure also provides an electronic device comprising:
  • the processor is configured to execute the computer program in the memory, so as to realize the steps of the above-mentioned method for obtaining the coasting torque.
  • the theoretical recovery torque is corrected to obtain the coasting torque.
  • Energy recovery is performed to prevent the electric vehicle from accelerating or moving at a constant speed after the fuel cell system stops working, so that the user can intuitively feel the deceleration process of the vehicle after releasing the accelerator pedal and improve the user experience.
  • the theoretical recovery torque is further revised, and the optimization of the existing coasting torque strategy is realized, so that according to the coasting torque Compared with other new energy vehicles, electric vehicles with energy recovery in the gliding state have a shorter gliding distance under the same conditions.
  • FIG. 4 is a block diagram of an electronic device 700 according to an exemplary embodiment, and the electronic device 500 can be applied to a vehicle.
  • the electronic device 700 may include: a processor 701 and a memory 702 .
  • the electronic device 700 may also include one or more of a multimedia component 703 , an input/output (I/O) interface 704 , and a communication component 705 .
  • I/O input/output
  • the processor 701 is used to control the overall operation of the electronic device 700 to complete all or part of the steps in the above-mentioned method for acquiring the coasting torque.
  • the memory 702 is used to store various types of data to support operations on the electronic device 700, such data may include, for example, instructions for any application or method operating on the electronic device 700, and application-related data, For example, the state parameters of electric vehicles.
  • the memory 702 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (Static Random Access Memory, SRAM for short), electrically erasable programmable read-only memory ( Electrically Erasable Programmable Read-Only Memory (EEPROM for short), Erasable Programmable Read-Only Memory (EPROM), Programmable Read-Only Memory (PROM), Read-Only Memory (Read-Only Memory, referred to as ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • static random access memory Static Random Access Memory, SRAM for short
  • electrically erasable programmable read-only memory Electrically Erasable Programmable Read-Only Memory (EEPROM for short), Erasable Programmable Read-Only Memory (EPROM), Programmable Read-Only Memory (PROM), Read-Only Memory (Read-Only Memory, referred to as ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • EEPROM Electrically Erasable Programmable Read
  • Multimedia components 703 may include screen and audio components.
  • the screen can be, for example, a touch screen, and the audio component is used for outputting and/or inputting audio signals.
  • the audio component may include a microphone for receiving external audio signals.
  • the received audio signal may be further stored in memory 702 or transmitted through communication component 705 .
  • the audio assembly also includes at least one speaker for outputting audio signals.
  • the I/O interface 704 provides an interface between the processor 701 and other interface modules, and the above-mentioned other interface modules may be a keyboard, a mouse, a button, and the like. These buttons can be virtual buttons or physical buttons.
  • the communication component 705 is used for wired or wireless communication between the electronic device 700 and other devices.
  • Wireless communication such as Wi-Fi, Bluetooth, Near Field Communication (NFC), 2G, 3G, 4G, NB-IOT, eMTC, or other 5G, etc., or one or more of them
  • the combination is not limited here. Therefore, the corresponding communication component 705 may include: Wi-Fi module, Bluetooth module, NFC module and so on.
  • the electronic device 700 may be implemented by one or more application-specific integrated circuits (Application Specific Integrated Circuit, ASIC for short), digital signal processors (Digital Signal Processor, DSP for short), digital signal processing devices (Digital Signal Processing Device (DSPD), Programmable Logic Device (PLD), Field Programmable Gate Array (FPGA), controller, microcontroller, microprocessor or other electronic components
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSP digital signal processing devices
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • controller microcontroller, microprocessor or other electronic components
  • microcontroller microprocessor or other electronic components
  • the present disclosure also provides a computer program product comprising a computer program executable by a programmable apparatus, the computer program having a function for performing the above-mentioned execution when executed by the programmable apparatus
  • the code part of the method of obtaining the coasting torque.
  • the present disclosure also proposes a computer program, comprising computer-readable codes, which, when the computer-readable codes are executed on a computing and processing device, cause the computing and processing device to perform the aforementioned acquisition of the coasting torque method.
  • the computer-readable storage medium proposed by the present disclosure may store the aforementioned computer program.
  • FIG. 5 provides a schematic structural diagram of a computing processing device according to an embodiment of the present disclosure.
  • the computing processing device typically includes a processor 1110 and a computer program product or computer readable medium in the form of a memory 1130 .
  • the memory 1130 may be electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 1130 has storage space 1150 for program code 1151 for performing any of the method steps in the above-described methods.
  • the storage space 1150 for program codes may include various program codes 1151 for implementing various steps in the above methods, respectively. These program codes can be read from or written to one or more computer program products.
  • These computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards or floppy disks. Such computer program products are typically portable or fixed storage units as shown in FIG. 6 .
  • the storage unit may have storage segments, storage spaces, etc. arranged similarly to the memory 1130 in the computing processing device of FIG. 5 .
  • the program code may, for example, be compressed in a suitable form.
  • the storage unit includes computer readable code 1151', ie code readable by a processor such as 1110, for example, which, when executed by a computing processing device, causes the computing processing device to perform any of the methods described above. of the various steps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

一种滑行扭矩的获取方法、装置(1300)、存储介质及计算机程序,方法包括:在电动汽车的燃料电池系统停止工作,电动汽车进入滑行状态的情况下,获取电动汽车的状态参数;根据状态参数确定电动汽车的理论回收扭矩和修正扭矩,修正扭矩包括燃料电池系统的附加扭矩;根据修正扭矩对理论回收扭矩进行修正,得到电动汽车的滑行扭矩,滑行扭矩用于电动汽车在滑行过程中进行能量回收。

Description

滑行扭矩的获取方法、装置、存储介质及计算机程序
相关申请的交叉引用
本公开要求在2020年11月10日提交中国专利局、申请号为202011248102.7、名称为“滑行扭矩的获取方法、装置、存储介质及计算机程序”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及新能源汽车技术领域,尤其涉及一种滑行扭矩的获取方法、装置、存储介质及计算机程序。
背景技术
随着能源的缺乏和环境污染的严重,新能源汽车得到了快速发展,其中采用燃料电池作为动能的电动汽车成为新能源汽车的主要研究方向之一。
采用氢能作为燃料的燃料电池在化学反应过程中不会产生CO2,NOX,SOX等有害气体物质,避免了对环境造成污染。但燃料电池存在特性曲线较软和功率响应慢的缺点,在燃料电池系统停止工作后,燃料电池仍然进行反应继续提供电能,造成车辆仍处于加速前进或者匀速前进状态。
发明内容
本公开的目的是提供一种滑行扭矩的获取方法、装置、存储介质及计算机程序,以解决现有技术中存在的,在燃料电池系统停止工作后,燃料电池仍然进行反应继续提供电能,造成车辆仍处于加速前进或者匀速前进状态的技术问题。
根据本公开实施例的第一方面,本公开提供一种滑行扭矩的获取方法,包括以下步骤:在所述电动汽车的燃料电池系统停止工作,所述电动汽车进入滑行状态的情况下,获取所述电动汽车的状态参数;
根据所述状态参数确定所述电动汽车的理论回收扭矩和修正扭矩,所述修正扭矩包括所述燃料电池系统的附加扭矩;
根据所述修正扭矩对所述理论回收扭矩进行修正,得到所述电动汽车的滑行扭矩,所述滑行扭矩用于所述电动汽车在滑行过程中进行能量回收。
可选地在一可实施例中,所述根据所述修正扭矩对所述理论回收扭矩进行修正,包括:
将所述理论回收扭矩和所述附加扭矩带入第一计算式,得到所述电动汽车的滑行扭矩;
所述第一计算式包括:F t-F fc=F c
其中,F t表示理论回收扭矩,F fc表示附加扭矩,F c表示滑行扭矩。
可选地,所述状态参数包括所述燃料电池系统产生的附加功率以及所述电动汽车的车速,所述附加扭矩是通入如下方式确定的:
根据所述附加功率和所述车速,以及预先标定的附加功率、车速以及附加扭矩之间的映射关系,确定所述电动汽车的燃料电池系统的附加扭矩。
可选地,所述修正扭矩还包括负载扭矩,所述根据所述修正扭矩对所述理论回收扭矩进行修正,包括:
将所述理论回收扭矩、所述附加扭矩和所述负载扭矩带入第二计算式,得到所述电动汽车的滑行扭矩;
所述第二计算式包括:F t-F fc+F fmp=F c
其中,F t表示理论回收扭矩,F fc表示附加扭矩,F c表示滑行扭矩,F fmp表示负载扭矩。
可选地,所述状态参数包括所述电动汽车的负载消耗功率和所述电动汽车的车速,所述负载扭矩是通过如下方式确定的:
根据所述负载消耗功率和所述车速,以及预先标定的负载消耗功率、车速以及负载扭矩之间的映射关系,确定所述电动汽车的所述负载扭矩。
根据本公开实施例的第二方面,本公开提供一种滑行扭矩的获取装置,包括:
获取模块,被配置成用于在所述电动汽车的燃料电池系统停止工作,所述电动汽车进入滑行状态的情况下,获取所述电动汽车的状态参数;
第一执行模块,被配置成用于根据所述状态参数确定所述电动汽车的理论回收扭矩和修正扭矩,所述修正扭矩包括所述燃料电池系统的附加扭矩;
第二执行模块,被配置成用于根据所述修正扭矩对所述理论滑行扭矩进行修正,得到所述电动汽车的滑行扭矩,所述滑行扭矩用于所述电动汽车在滑行过程中进行能量回收。
可选地,所述第二执行模块被配置成用于将所述理论回收扭矩和所述附加扭矩带入第一计算式,得到所述电动汽车的滑行扭矩;
所述第一计算式包括:F t-F fc=F c
其中,F t表示理论回收扭矩,F fc表示附加扭矩,F c表示滑行扭矩。
可选地,所述第二执行模块被配置成用于在所述修正扭矩还包括负载扭矩的情况下,将所述理论回收扭矩、所述附加扭矩和所述负载扭矩带入第二计算式,得到所述滑行扭矩;
所述第二计算式包括:F t-F fc+F fmp=F c
其中,F t表示理论回收扭矩,F fc表示附加扭矩,F c表示滑行扭矩,F fmp表示负载扭矩。
根据本公开实施例的第三方面,本公开提供一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行本公开第一方面实施例所提出的滑行扭矩的获取方法。
根据本公开实施例的第四方面,本公开提供一种计算机可读存储介质,其中存储了本公开第三方面实施例所提出的计算机程序,所述计算机程序被处理器执行时实现上述的滑行扭矩的获取方法。
根据本公开实施例的第五方面,本公开提供一种电子设备,包括:
存储器,其上存储有第三方面所述的计算机程序;
处理器,用于执行所述存储器中的所述计算机程序,以实现上述的滑行扭矩的获取方法。
本公开的实施例提供的技术方案可以包括以下有益效果:本公开在燃料电池系统停止工作电动汽车进入滑行状态时,考虑燃料电池系统的停机特性,对理论回收扭矩进行修正得到滑行扭矩,电动汽车在滑行过程中根据滑行扭矩进行能量回收,避免燃料电池系统停止工作后电动汽车仍处于加速前进或者匀速前进状态,使得用户在松开加速踏板后,可直观的感受到车辆的减速过程,提高用户体验感。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明 显和容易理解,其中:
图1是一种燃料电池系统停止工作时的功率与时间的关系示意图;
图2是根据一示例性实施例示出的一种滑行扭矩的获取方法的流程图;
图3是根据一示例性实施例示出的一种滑行扭矩的获取装置的框图;
图4是根据一示例性实施例示出的一种电子设备的框图;
图5为本公开实施例提供了一种计算处理设备的结构示意图;
图6为本公开实施例提供了一种用于便携式或者固定实现根据本发明的方法的程序代码的存储单元的示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
需要说明的是,在本公开中,说明书和权利要求书以及附图中的术语“S101”、“S102”等用于区别步骤,而不必理解为按照特定的顺序或先后次序执行方法步骤。
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
在介绍本公开实施例提供的一种滑行扭矩的获取方法、装置、存储介质及电子设备之前,首先对本公开的应用场景进行介绍,本公开提供的滑行扭矩的获取方法可以应用于汽车,该汽车可以是电动汽车。
随着能源的缺乏和环境污染的严重,采用燃料电池作为动能的电动汽车成为新能源汽车的主要研究方向之一。采用氢能作为燃料的燃料电池是利用氢气和氧气的化学作用将化学能转换为电能或者机械能,将转换后的电能或者机械能存储在蓄电池中,或者作为驱动车辆行驶的动能。因为氢气和氧气在化学反应过程中不会产生CO2,NOX,SOX等有害气体物质,使得采用该燃料电池的电动汽车的排放物一般为水,避免了对环境造成进一步污染,且氢气的资源丰富且获取方便不会造成能源缺乏。
但是发明人发现,如图1所示,电动汽车行驶过程中,燃料电池系统处于工作状态,持续输出一定功率。用户在时间t松开加速踏板后,燃料电池系统由运行状态跳转到待 机状态(即在时间t燃料电池系统停止供应燃料工作),电动汽车进入滑行状态进行能量回收,因为燃料电池是化学能到电能的转换,在燃料电池系统由工作状态转换到待机状态一段时间内,燃料电池仍然会工作一段时间,随着氢气的消耗,燃料电池输出的功率逐渐减小,直到燃料电池停止输出功率为止(即图1中在时间t1,功率为零)。燃料电池系统停止工作,即燃料电池系统由运行状态跳转到待机状态,此时,燃料电池系统不再进行燃料供应,不再外部供给燃料电池活性物,燃料电池中的化学反应继续,直至外部供给燃料电池的活性物质全部反应,燃料电池中的化学反应停止,燃料电池从燃料电池系统跳转到待机状态的时刻与燃料电池中化学反应停止的时刻,继续输出功率,在燃料电池中化学反应停止后,不再输出功率。在时间t到时间t1之间的功率会继续推动电动汽车行驶,导致电动汽车在时间t和时间t1之间处于加速前进或者匀速前进状态,给用户造成加速踏板故障,燃料电池持续输出动能的假象。
为了解决上述技术问题,本公开提供一种滑行扭矩的获取方法,以该方法应用于电动汽车为例,图2是根据一示例性实施例示出的一种滑行扭矩的获取方法的流程图,如图2所示,该方法包括以下步骤:
在步骤S101中,在电动汽车的燃料电池系统停止工作,电动汽车进入滑行状态的情况下,获取电动汽车的状态参数。
在步骤S102中,根据状态参数确定电动汽车的理论回收扭矩和修正扭矩,修正扭矩包括燃料电池系统的附加扭矩。
在步骤S103中,根据修正扭矩对理论回收扭矩进行修正,得到电动汽车的滑行扭矩,滑行扭矩用于电动汽车在滑行过程中进行能量回收。
其中,燃料电池系统的附加扭矩可以为在燃料电池系统停止工作后,燃料电池继续反应产生的电能对应的扭矩。
本公开提供的滑行扭矩的获取方法在燃料电池系统停止工作,电动汽车进入滑行状态时,考虑燃料电池系统的停机特性,对理论回收扭矩进行修正得到滑行扭矩,电动汽车在滑行过程中根据滑行扭矩进行能量回收,避免燃料电池系统停止工作后电动汽车仍处于加速前进或匀速前进状态,使得用户在松开加速踏板后,可直观的感受到车辆的减速过程,提高用户体验感。
具体的,状态参数包括电动汽车的驾驶模式、滑行能量回收等级以及车速的情况下,在步骤S102中,根据状态参数确定电动汽车的理论回收扭矩可以包括:
根据电动汽车的驾驶模式、滑行能量回收等级和车速,以及预先标定的驾驶模式、滑行能量回收等级、车速以及理论回收扭矩之间的映射关系,确定电动汽车的理论回收扭矩。
具体的,预先标定的驾驶模式包括:一般模式、经济模式、运动模式以及保电模式。不同的驾驶模式下包括高、中、低三种能量回收等级。
具体的,不同驾驶模式下的滑行能量回收等级如下表1所示。
Figure PCTCN2021129031-appb-000001
表1
其中,所有滑行能量回收等级均为标定值。
具体的,保电模式为插电式混合汽车PHEV(Plug-in Hybrid Electric vehicle)的一种特有模式。
举例说明,将插电式混合汽车PHEV的保电模式的蓄电池的标准电量设为70%,可变动电量参数设为10%。在插电式混合汽车PHEV处于保电模式,蓄电池的标准电量降为60%,发动机处于休息状态的情况下,则发动机自启动产生电力,部分电力供应车辆运行,部分电量为蓄电池进行充电,在蓄电池的电量达到70%后停止充电(此时发动机根据车辆的当前工况继续工作或者进入休息状态);若在蓄电池的标准电量降为60%,发动机处于工作状态且没有多余电量为蓄电池进行充电的情况下,发动机继续工作直到发动机产生多余电量为蓄电池充电,且蓄电池的电量达到70%后停止充电。
举例说明,在高等滑行能量回收等级下,各驾驶模式、车速以及理论回收扭矩之间的映射关系,如下表2所示。
Figure PCTCN2021129031-appb-000002
Figure PCTCN2021129031-appb-000003
表2
其中,所有理论回收扭矩均为标定值。
在高等滑行能量回收等级下,电动汽车当前处于经济模式,在电动汽车的车速为120km/s的情况下,理论回收扭矩为100Nm。
由于燃料电池系统的停机特性,在燃料电池系统停机后,燃料电池会继续为电动汽车提供能量驱动电动汽车行驶,需要结合燃料电池系统的停机特性,对电动汽车的理论回收扭矩进行修正。
在一可实施例中,在步骤S103中,根据修正扭矩对理论回收扭矩进行修正,可以包括:
将理论回收扭矩和附加扭矩带入第一计算式,得到电动汽车的滑行扭矩;
第一计算式包括:F t-F fc=F c
其中,F t表示理论回收扭矩,F fc表示附加扭矩,F c表示滑行扭矩。
具体的,由于理论回收扭矩为电动汽车提供的是制动力,而燃料电池系统的附加扭矩是驱动电动汽车前进的驱动力,两个力的方向相反,所以根据附加扭矩对理论回收扭矩进行修正包括:从理论回收扭矩中减去燃料电池系统的附加扭矩,得到滑行扭矩。
在一可实施例中,在状态参数包括燃料电池系统产生的附加功率以及电动汽车的车速的情况下,在步骤S103的附加扭矩可以通过以下方式确定:
根据附加功率和车速,以及预先标定的附加功率、车速以及附加扭矩之间的映射关系,确定电动汽车的燃料电池系统的附加扭矩。
具体的,由于燃料电池系统产生的电能传递到电动汽车轮端的扭矩为当前燃料电池系统输出的功率与车速的比值,所以根据附加功率和车速,以及预先标定的附加功率、车速以及附加扭矩之间的映射关系,确定电动汽车的燃料电池系统的附加扭矩,可以包括:
将附加功率和车速带入表征附加功率、车速以及附加扭矩之间的映射关系的第三计 算式中,确定电动汽车的燃料电池系统的附加扭矩。
其中,第三计算式可以包括:F fc=P fc/v,
F fc表示附加扭矩,P fc表示附加功率,v表示车速。
在考虑到燃料电池系统的停机特性的基础上,还可以考虑电动汽车上各负载的消耗功率所需要提供的扭矩,对电动汽车的理论回收扭矩进一步修正。
在一可实施例中,修正扭矩还包括负载扭矩,在步骤S103中,根据修正扭矩对理论回收扭矩进行修正,可以包括:
将理论回收扭矩、附加扭矩和负载扭矩带入第二计算式,得到电动汽车的滑行扭矩;
第二计算式包括:F t-F fc+F fmp=F c
其中,F t表示理论回收扭矩,F fc表示附加扭矩,F c表示滑行扭矩,F fmp表示负载扭矩。
其中,负载扭矩为负载消耗功率所需要提供的扭矩。负载包括空气压缩机、空气循环泵、直流转换器(DC-to-DC converter,DCDC)等。
具体的,由于在电动汽车燃料电池系统停止工作,电动汽车进入滑行状态的情况下,负载扭矩为电动汽车提供的是制动力,所以根据附加扭矩和负载扭矩对理论回收扭矩进行修正包括:从理论回收扭矩中减去燃料电池系统的附加扭矩,再加上电动汽车的负载扭矩,得到滑行扭矩。
本公开提供的滑行扭矩的获取方法,在考虑燃料电机系统的停机特性的情况下,进一步考虑到电动汽车上各负载消耗功率所需要的扭矩,对理论回收扭矩进一步修正,实现对现有滑行扭矩策略的优化,使得根据滑行扭矩在滑行状态进行能量回收的电动汽车相较于其它新能源车型,在同等条件下拥有更短的滑行距离。
在一可实施例中,在状态参数包括电动汽车的负载消耗功率和电动汽车的车速的情况下,在步骤S103中的负载扭矩可以通过以下方式确定:
根据负载消耗功率和车速,以及预先标定的负载消耗功率、车速以及负载扭矩之间的映射关系,确定电动汽车的负载扭矩。
其中,负载扭矩为电动汽车上负载消耗的功率所需要提供的扭矩。
具体的,负载扭矩为负载功率与车速的比值,所以根据负载消耗功率和车速,以及预先标定的负载消耗功率、车速以及负载扭矩之间的映射关系,确定电动汽车的负载扭矩可以包括:
将负载消耗功率和车速带入表征负载消耗功率、车速以及负载扭矩之间的映射关系的第四计算式中,确定电动汽车的负载扭矩。
其中,第四计算式可以包括:F fmp=P fmp/v,
F fmp表示负载扭矩,P fmp表示负载消耗功率,v表示车速。
具体的,在负载功率包括DCDC升压功率,DCDC降压功率、空气压缩机的功率和空气循环泵的功率的情况下,负载扭矩为DCDC升压扭矩、DCDC降压扭矩、空气压缩机的扭矩、空气循环泵的扭矩之和。
其中,DCDC升压扭矩为DCDC升压功率与车速的比值,DCDC降压扭矩为DCDC降压功率与车速的比值,空气压缩机的扭矩为空气压缩机的功率与车速的比值,空气循环泵的扭矩为空气循环泵的扭矩与车速的比值。
此时负载扭矩F fmp=P dc/v+P fdc/v+P fac/v+P fp/v,
其中,F fmp表示负载扭矩,P dc表示DCDC降压功率,P fdc表示DCDC升压功率,P fac表示空气压缩机功率,P fp表示空气循环泵功率,v表示车速。
图3是根据一示例性实施例示出的一种滑行扭矩的获取装置框,如图3所示,该滑行扭矩的获取装置1300包括:获取模块1301、第一执行模块1302以及第二执行模块1303。
其中,获取模块1301,被配置成用于在电动汽车的燃料电池系统停止工作,电动汽车进入滑行状态的情况下,获取电动汽车的状态参数。
第一执行模块1302,被配置成用于根据状态参数确定电动汽车的理论回收扭矩和修正扭矩,修正扭矩包括燃料电池系统的附加扭矩。
第二执行模块1303,被配置成用于根据修正扭矩对理论滑行扭矩进行修正,得到电动汽车的滑行扭矩,滑行扭矩用于电动汽车在滑行过程中进行能量回收。
本公开提供的滑行扭矩的获取装置在燃料电池系统停止工作,电动汽车进入滑行状态时,考虑燃料电池系统的停机特性,对理论回收扭矩进行修正得到滑行扭矩,电动汽车在滑行过程中根据滑行扭矩进行能量回收,避免燃料电池系统停止工作后电动汽车仍处于加速前进或匀速前进状态,使得用户在松开加速踏板后,可直观的感受到车辆的减速过程,提高用户体验感。
进一步的,第二执行模块1303具体被配置为用于将理论回收扭矩和附加扭矩带入第一计算式,得到电动汽车的滑行扭矩;
第一计算式包括:F t-F fc=F c
其中,F t表示理论回收扭矩,F fc表示附加扭矩,F c表示滑行扭矩。
进一步的,第二执行模块1303具体被配置为用于根据附加功率和车速,以及预先标定的附加功率、车速以及附加扭矩之间的映射关系,确定电动汽车的燃料电池系统的附加扭矩。
进一步的,第二执行模块1303具体还被配置为用于在修正扭矩还包括负载扭矩的情况下,将理论回收扭矩、附加扭矩和负载扭矩带入第二计算式,得到滑行扭矩;
第二计算式包括:F t-F fc+F fmp=F c
其中,F t表示理论回收扭矩,F fc表示附加扭矩,F c表示滑行扭矩,F fmp表示负载扭矩。
进一步的,第二执行模块1303具体被配置为用于根据负载消耗功率和车速,以及预先标定的负载消耗功率、车速以及负载扭矩之间的映射关系,确定电动汽车的负载扭矩。
本公开提供的滑行扭矩的获取装置,在考虑燃料电机系统的停机特性的的情况下,进一步考虑到电动汽车上各负载消耗功率所需要的扭矩,对理论回收扭矩进一步修正,实现对现有滑行扭矩策略的优化,使得根据滑行扭矩在滑行状态进行能量回收的电动汽车相较于其它新能源车型,在同等条件下拥有更短的滑行距离。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开还提供一种计算机可读存储介质,其上存储有计算机程序指令,该计算机程序指令被处理器执行时实现本公开提供的滑行扭矩的获取方法的步骤。
具体的,该计算机可读存储介质可以是闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等)、随机访问存储器(RAM)、静态随机访问存储器(SRAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、可编程只读存储器(PROM)、磁性存储器、磁盘、光盘、服务器等等。
关于上述实施例中的计算机可读存储介质,其上存储的计算机程序被执行时的车辆起步方法步骤已将在有关该方法的实施例中进行了详细描述,此处不做详细阐述。
本公开还提供一种电子设备,该电子设备包括:
存储器,其上存储有计算机程序;
处理器,用于执行所述存储器中的所述计算机程序,以实现上述的滑行扭矩的获取方法的步骤。
本公开提供的滑行扭矩的获取方法在燃料电池系统停止工作,电动汽车进入滑行状态时,考虑燃料电池系统的停机特性,对理论回收扭矩进行修正得到滑行扭矩,电动汽车在滑行过程中根据滑行扭矩进行能量回收,避免燃料电池系统停止工作后电动汽车仍处于加速前进或匀速前进状态,使得用户在松开加速踏板后,可直观的感受到车辆的减速过程,提高用户体验感。在考虑燃料电机系统的停机特性的的情况下,进一步考虑到电动汽车上各负载消耗功率所需要的扭矩,对理论回收扭矩进一步修正,实现对现有滑行扭矩策略的优化,使得根据滑行扭矩在滑行状态进行能量回收的电动汽车相较于其它新能源车型,在同等条件下拥有更短的滑行距离。
图4是根据一示例性实施例示出的一种电子设备700的框图,该电子设备500可以应用在车辆上。如图4所示,该电子设备700可以包括:处理器701,存储器702。该电子设备700还可以包括多媒体组件703,输入/输出(I/O)接口704,以及通信组件705中的一者或多者。
其中,处理器701用于控制该电子设备700的整体操作,以完成上述的滑行扭矩的获取方法中的全部或部分步骤。
存储器702用于存储各种类型的数据以支持在该电子设备700的操作,这些数据例如可以包括用于在该电子设备700上操作的任何应用程序或方法的指令,以及应用程序相关的数据,例如电动汽车的状态参数。
该存储器702可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,例如静态随机存取存储器(Static Random Access Memory,简称SRAM),电可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,简称EEPROM),可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,简称EPROM),可编程只读存储器(Programmable Read-Only Memory,简称PROM),只读存储器(Read-Only Memory,简称ROM),磁存储器,快闪存储器,磁盘或光盘。
多媒体组件703可以包括屏幕和音频组件。其中屏幕例如可以是触摸屏,音频组件用于输出和/或输入音频信号。例如,音频组件可以包括一个麦克风,麦克风用于接收外部音频信号。所接收的音频信号可以被进一步存储在存储器702或通过通信组件705发送。音频组件还包括至少一个扬声器,用于输出音频信号。
I/O接口704为处理器701和其他接口模块之间提供接口,上述其他接口模块可以是键盘,鼠标,按钮等。这些按钮可以是虚拟按钮或者实体按钮。
通信组件705用于该电子设备700与其他设备之间进行有线或无线通信。无线通信,例如Wi-Fi,蓝牙,近场通信(Near Field Communication,简称NFC),2G、3G、4G、NB-IOT、eMTC、或其他5G等等,或它们中的一种或几种的组合,在此不做限定。因此相应的该通信组件705可以包括:Wi-Fi模块,蓝牙模块,NFC模块等等。
在一示例性实施例中,电子设备700可以被一个或多个应用专用集成电路(Application Specific Integrated Circuit,简称ASIC)、数字信号处理器(Digital Signal Processor,简称DSP)、数字信号处理设备(Digital Signal Processing Device,简称DSPD)、可编程逻辑器件(Programmable Logic Device,简称PLD)、现场可编程门阵列(Field Programmable Gate Array,简称FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述的滑行扭矩的获取方法。
为了实现上述实施例,本公开还提供一种计算机程序产品,该计算机程序产品包含能够由可编程的装置执行的计算机程序,该计算机程序具有当由该可编程的装置执行时用于执行上述的滑行扭矩的获取方法的代码部分。
为了实现上述实施例,本公开还提出了一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行前述的滑行扭矩的获取方法。
为了实现上述实施例,本公开提出所的计算机可读存储介质,可以存储了前述的计算机程序。
图5为本公开实施例提供了一种计算处理设备的结构示意图。该计算处理设备通常包括处理器1110和以存储器1130形式的计算机程序产品或者计算机可读介质。存储器1130可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器1130具有用于执行上述方法中的任何方法步骤的程序代码1151的存储空间1150。例如,用于程序代码的存储空间1150可以包括分别用于实现上面的方法中的各种步骤的各个程序代码1151。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如图6所示的便携式或者固定存储单元。该存储单元可以具有与图5的计算处理设备中的存储器1130类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码1151’,即可以由例如诸如1110之类的 处理器读取的代码,这些代码当由计算处理设备运行时,导致该计算处理设备执行上面所描述的方法中的各个步骤。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (11)

  1. 一种滑行扭矩的获取方法,其特征在于,应用于电动汽车,所述方法包括:
    在所述电动汽车的燃料电池系统停止工作,所述电动汽车进入滑行状态的情况下,获取所述电动汽车的状态参数;
    根据所述状态参数确定所述电动汽车的理论回收扭矩和修正扭矩,所述修正扭矩包括所述燃料电池系统的附加扭矩;
    根据所述修正扭矩对所述理论回收扭矩进行修正,得到所述电动汽车的滑行扭矩,所述滑行扭矩用于所述电动汽车在滑行过程中进行能量回收。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述修正扭矩对所述理论回收扭矩进行修正,包括:
    将所述理论回收扭矩和所述附加扭矩带入第一计算式,得到所述电动汽车的滑行扭矩;
    所述第一计算式包括:F t-F fc=F c
    其中,F t表示理论回收扭矩,F fc表示附加扭矩,F c表示滑行扭矩。
  3. 根据权利要求2所述的方法,其特征在于,所述状态参数包括所述燃料电池系统产生的附加功率以及所述电动汽车的车速,所述附加扭矩是通入如下方式确定的:
    根据所述附加功率和所述车速,以及预先标定的附加功率、车速以及附加扭矩之间的映射关系,确定所述电动汽车的燃料电池系统的附加扭矩。
  4. 根据权利要求1所述的方法,其特征在于,所述修正扭矩还包括负载扭矩,所述根据所述修正扭矩对所述理论回收扭矩进行修正,包括:
    将所述理论回收扭矩、所述附加扭矩和所述负载扭矩带入第二计算式,得到所述电动汽车的滑行扭矩;
    所述第二计算式包括:F t-F fc+F fmp=F c
    其中,F t表示理论回收扭矩,F fc表示附加扭矩,F c表示滑行扭矩,F fmp表示负载扭矩。
  5. 根据权利要求4所述的方法,其特征在于,所述状态参数包括所述电动汽车的负载消耗功率和所述电动汽车的车速,所述负载扭矩是通过如下方式确定的:
    根据所述负载消耗功率和所述车速,以及预先标定的负载消耗功率、车速以及负载扭矩之间的映射关系,确定所述电动汽车的所述负载扭矩。
  6. 一种滑行扭矩的获取装置,其特征在于,应用于电动汽车,所述装置包括:
    获取模块,被配置成用于在所述电动汽车的燃料电池系统停止工作,所述电动汽车进入滑行状态的情况下,获取所述电动汽车的状态参数;
    第一执行模块,被配置成用于根据所述状态参数确定所述电动汽车的理论回收扭矩和修正扭矩,所述修正扭矩包括所述燃料电池系统的附加扭矩;
    第二执行模块,被配置成用于根据所述修正扭矩对所述理论滑行扭矩进行修正,得到所述电动汽车的滑行扭矩,所述滑行扭矩用于所述电动汽车在滑行过程中进行能量回收。
  7. 根据权利要求6所述的装置,其特征在于,所述第二执行模块被配置成用于将所述理论回收扭矩和所述附加扭矩带入第一计算式,得到所述电动汽车的滑行扭矩;
    所述第一计算式包括:F t-F fc=F c
    其中,F t表示理论回收扭矩,F fc表示附加扭矩,F c表示滑行扭矩。
  8. 根据权利要求6所述的装置,其特征在于,所述第二执行模块被配置成用于在所述修正扭矩还包括负载扭矩的情况下,将所述理论回收扭矩、所述附加扭矩和所述负载扭矩带入第二计算式,得到所述滑行扭矩;
    所述第二计算式包括:F t-F fc+F fmp=F c
    其中,F t表示理论回收扭矩,F fc表示附加扭矩,F c表示滑行扭矩,F fmp表示负载扭矩。
  9. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行根据权利要求1-5中任一项所述的滑行扭矩的获取方法。
  10. 一种计算机可读存储介质,其上存储有如权利要求9所述计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1-5中任一项所述的滑行扭矩的获取方法的步骤。
  11. 一种电子设备,其特征在于,包括:
    存储器,其上存储有计算机程序;
    处理器,用于执行所述存储器中的所述计算机程序,以实现权利要求1-5中任一项所述的滑行扭矩的获取方法的步骤。
PCT/CN2021/129031 2020-11-10 2021-11-05 滑行扭矩的获取方法、装置、存储介质及计算机程序 WO2022100526A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/010,404 US20230226952A1 (en) 2020-11-10 2021-11-05 Method for determining coasting torque, storage medium and electronic device
EP21891051.1A EP4155112A4 (en) 2020-11-10 2021-11-05 METHOD AND APPARATUS FOR OBTAINING FREEWHEEL TORQUE, STORAGE MEDIUM AND COMPUTER PROGRAM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011248102.7 2020-11-10
CN202011248102.7A CN112356678B (zh) 2020-11-10 2020-11-10 滑行扭矩的获取方法、装置、存储介质及计算机程序

Publications (1)

Publication Number Publication Date
WO2022100526A1 true WO2022100526A1 (zh) 2022-05-19

Family

ID=74508668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129031 WO2022100526A1 (zh) 2020-11-10 2021-11-05 滑行扭矩的获取方法、装置、存储介质及计算机程序

Country Status (4)

Country Link
US (1) US20230226952A1 (zh)
EP (1) EP4155112A4 (zh)
CN (1) CN112356678B (zh)
WO (1) WO2022100526A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112356678B (zh) * 2020-11-10 2022-04-19 长城汽车股份有限公司 滑行扭矩的获取方法、装置、存储介质及计算机程序

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6488345B1 (en) * 2001-08-16 2002-12-03 General Motors Corporation Regenerative braking system for a batteriless fuel cell vehicle
CN105799693A (zh) * 2014-09-05 2016-07-27 现代自动车株式会社 用于控制混合动力交通工具的滑行转矩的方法、装置和计算机可读介质
CN109823202A (zh) * 2019-01-24 2019-05-31 武汉格罗夫氢能汽车有限公司 一种燃料电池汽车
CN111319470A (zh) * 2020-03-27 2020-06-23 武汉格罗夫氢能汽车有限公司 一种氢燃料汽车能量回馈管理系统及其控制方法
CN112356678A (zh) * 2020-11-10 2021-02-12 长城汽车股份有限公司 滑行扭矩的获取方法、装置、存储介质及计算机程序

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4135302B2 (ja) * 2000-08-09 2008-08-20 トヨタ自動車株式会社 燃料電池を搭載したハイブリッド車両
KR20080044097A (ko) * 2006-11-15 2008-05-20 현대자동차주식회사 수퍼커패시터를 이용한 연료전지 차량의 회생제동 시스템
JP5023374B2 (ja) * 2007-02-05 2012-09-12 トヨタ自動車株式会社 燃料電池システム
JP4624457B2 (ja) * 2008-10-27 2011-02-02 本田技研工業株式会社 燃料電池車両の制御装置および燃料電池車両の制御方法
KR101439059B1 (ko) * 2013-10-29 2014-11-04 현대자동차주식회사 저전압 배터리 충전 제어 방법 및 장치
KR20160022028A (ko) * 2014-08-19 2016-02-29 현대자동차주식회사 연료전지 차량의 오토크루즈 모드시 제어 방법
JP6222049B2 (ja) * 2014-11-14 2017-11-01 トヨタ自動車株式会社 燃料電池システム、燃料電池車両、および、燃料電池システムの制御方法
KR101786332B1 (ko) * 2016-04-20 2017-11-16 현대자동차주식회사 연료전지 차량의 전력 분배 방법 및 시스템
KR102507227B1 (ko) * 2017-11-27 2023-03-08 현대자동차주식회사 연료전지 차량의 전력 분배 시스템 및 방법
JP7114944B2 (ja) * 2018-03-07 2022-08-09 トヨタ自動車株式会社 車両に搭載される燃料電池システム
JP7156005B2 (ja) * 2018-12-25 2022-10-19 トヨタ自動車株式会社 燃料電池システム
JP7180509B2 (ja) * 2019-04-03 2022-11-30 トヨタ自動車株式会社 燃料電池車両
JP2020170628A (ja) * 2019-04-03 2020-10-15 トヨタ自動車株式会社 燃料電池システム
JP7247727B2 (ja) * 2019-04-16 2023-03-29 トヨタ自動車株式会社 燃料電池車両および燃料電池車両の制御方法
CN110576749A (zh) * 2019-08-22 2019-12-17 武汉格罗夫氢能汽车有限公司 一种氢能汽车的燃料电池制动能量回收系统
CN110834625B (zh) * 2019-11-11 2021-02-09 常熟理工学院 一种自适应异步粒子群的双电耦合燃料电池汽车能效优化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6488345B1 (en) * 2001-08-16 2002-12-03 General Motors Corporation Regenerative braking system for a batteriless fuel cell vehicle
CN105799693A (zh) * 2014-09-05 2016-07-27 现代自动车株式会社 用于控制混合动力交通工具的滑行转矩的方法、装置和计算机可读介质
CN109823202A (zh) * 2019-01-24 2019-05-31 武汉格罗夫氢能汽车有限公司 一种燃料电池汽车
CN111319470A (zh) * 2020-03-27 2020-06-23 武汉格罗夫氢能汽车有限公司 一种氢燃料汽车能量回馈管理系统及其控制方法
CN112356678A (zh) * 2020-11-10 2021-02-12 长城汽车股份有限公司 滑行扭矩的获取方法、装置、存储介质及计算机程序

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4155112A4

Also Published As

Publication number Publication date
US20230226952A1 (en) 2023-07-20
CN112356678B (zh) 2022-04-19
EP4155112A4 (en) 2024-01-17
CN112356678A (zh) 2021-02-12
EP4155112A1 (en) 2023-03-29

Similar Documents

Publication Publication Date Title
US9242573B2 (en) System and method for controlling air supply of fuel cell vehicle
US9168845B2 (en) Method of controlling operation mode of fuel cell in fuel cell vehicle
CN110040038B (zh) 一种氢-电混合燃料电池客车能量管理控制方法及系统
CN110834621B (zh) 轻混汽车扭矩分配控制方法、存储介质及车辆
US8855840B2 (en) Method and system for more efficient operation of plug-in electric vehicles
CN103843182B (zh) 燃料电池系统的控制装置
EP3381756A1 (en) Exhaust gas control system and exhaust gas control method for hybrid vehicle
US20140145500A1 (en) Power distribution device and method for fuel cell-supercapacitor hybrid vehicle
US8815460B2 (en) Fuel cell system
WO2022100526A1 (zh) 滑行扭矩的获取方法、装置、存储介质及计算机程序
KR101759140B1 (ko) 연료전지의 출력 제어 방법 및 장치
KR102460194B1 (ko) 차량 구동 시스템과 에너지 제어 방법
WO2023071620A1 (zh) 电机轮端扭矩能力确定方法、装置、电子设备及存储介质
JPWO2011021263A1 (ja) 燃料電池システム
CN112298157B (zh) 一种控制方法、装置、设备及存储介质
CN113147721B (zh) 控制发动机起动方法、装置、电子设备以及存储介质
JP2006210100A (ja) 電源装置
EP2006946A1 (en) Fuel cell vehicle
US20200395624A1 (en) Fuel cell system
WO2023071619A1 (zh) 混合轮端扭矩能力确定方法、装置、电子设备及存储介质
JP2009043545A (ja) 燃料電池システム
US11631874B2 (en) System and method for controlling fuel cell
CN114394083A (zh) 混合动力汽车扭矩分配方法和系统
KR20120052465A (ko) 연료전지 전류제어를 이용한 연료전지 하이브리드 차량의 전력 분배 방법
CN112208393B (zh) 车辆控制方法、车辆及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891051

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021891051

Country of ref document: EP

Effective date: 20221223

NENP Non-entry into the national phase

Ref country code: DE