WO2022100461A1 - 一种柔性膜底浆料池的面曝光光固化成型系统 - Google Patents

一种柔性膜底浆料池的面曝光光固化成型系统 Download PDF

Info

Publication number
WO2022100461A1
WO2022100461A1 PCT/CN2021/127396 CN2021127396W WO2022100461A1 WO 2022100461 A1 WO2022100461 A1 WO 2022100461A1 CN 2021127396 W CN2021127396 W CN 2021127396W WO 2022100461 A1 WO2022100461 A1 WO 2022100461A1
Authority
WO
WIPO (PCT)
Prior art keywords
release film
glass plate
film
liquid tank
printing
Prior art date
Application number
PCT/CN2021/127396
Other languages
English (en)
French (fr)
Inventor
连芩
王永辉
李涤尘
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Publication of WO2022100461A1 publication Critical patent/WO2022100461A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B17/00Details of, or accessories for, apparatus for shaping the material; Auxiliary measures taken in connection with such shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Definitions

  • the invention belongs to the field of additive manufacturing in mechanical manufacturing, and particularly relates to a surface-exposure light-curing molding system for a flexible film-bottom slurry pool.
  • Light-curing 3D printing technology is widely used in the rapid prototyping manufacturing process due to its high forming accuracy and good surface quality, and it is also the earliest commercialized technology in 3D printing technology. It is mainly that the light source selectively irradiates the photopolymerization paste according to the pattern of the current layer to cure one layer, and then the worktable moves to the position of the second layer for selective curing, so that the cycle accumulates layer by layer until the entire cut layer is printed. , to obtain a complete photocurable molded part.
  • Photocuring 3D printing technology currently mainly includes laser scanning photocuring and surface exposure photocuring. Among them, surface exposure photocuring greatly reduces printing time and improves printing efficiency because it forms one section at a time, so it is applied in photocuring technology. more extensive.
  • the forming size greatly depends on the separation force between the molded part and the release film.
  • the separation force can be guaranteed within the allowable range.
  • the separation force is large, and the separation may even be impossible, that is, the forming fails.
  • the device In order to achieve the formation of any structure, the device must not only ensure that the separation force is within the allowable range when printing large-size parts, but also When printing large-sized parts with insufficient stiffness, the deformation of the parts is within the allowable range, so these constraints restrict the development of surface exposure light curing technology for ceramic pastes.
  • the purpose of the present invention is to overcome the above-mentioned shortcomings of the prior art, and to provide a surface-exposure light-curing molding system for a slurry pool with a flexible film bottom.
  • the slurry pool is installed on the surface exposure light-curing molding equipment, which can ensure that the separation force, pressure and lateral viscous force are within the allowable range when printing ceramic parts of any structural size, and the forming accuracy is high and the surface quality is good.
  • the present invention adopts the following technical solutions to realize:
  • a surface exposure photocuring molding system for a flexible film-bottom slurry pool comprising a liquid tank module, a linear guide rail, a glass plate, a glass plate support frame, a glass plate translation motor, DLP projection equipment and a printing device;
  • the liquid tank module includes a release film and a release film tensioner, the release film tensioner is used to tension the release film, and the liquid tank is formed by the release film tensioner and the release film in close contact;
  • each linear guide rail is provided with a slider
  • the glass plate is arranged on the glass plate support frame under the release film
  • the two ends of the glass plate are respectively fixed on the two sliders
  • the two The two ends of the linear guide rail are respectively provided with a synchronous pulley
  • the synchronous belt is sleeved on the synchronous belt
  • the glass plate translation motor is used to drive one of the synchronous pulleys to rotate, and then drive the slider to move on the linear guide through the synchronous belt;
  • the printing device is set above the release film, and the DLP projection equipment is set directly below the liquid tank.
  • the release film tensioning frame includes a top film frame in the release film tensioning frame, and an upper sheet and a release film tensioner in the release film tensioning frame for tensioning the release film
  • the lower sheet in the frame, the liquid tank used to store the photocurable ceramic slurry during printing is formed by the close contact between the top film frame in the release film tensioning frame and the release film.
  • a further improvement of the present invention is that it also includes a glass plate leveling piece, which is connected to the glass plate support frame through a cylindrical pair, and extends from the glass plate support frame through two pairs of coaxial top wires to extend the upper portion of the glass plate leveling piece.
  • the surface and the lower surface are fixed to adjust the parallelism between the glass plate and the release film.
  • a further improvement of the present invention is that it also includes a spiral micro-feeding head, which is connected to the glass plate support frame through a top wire and a cylindrical pair, and the spiral micro-feeding head bears the slider to adjust the distance between the glass plate and the release film.
  • a further improvement of the present invention is that the printing device includes a Z-axis, a Z-axis cantilever beam disposed on the Z-axis, a printing platform disposed on the Z-axis cantilever beam, a Z-axis for driving the Z-axis cantilever beam to move up and down along the Z-axis motor.
  • a further improvement of the present invention is that the release film is suspended by the release film tensioner, and when the molding part or the printing platform is pressed down, the ceramic slurry between the release film and the molding part or the printing platform is discharged to the outside, Since the release film is suspended in the air, the release film dents downward when subjected to down pressure, but the release film is elastic, so the ceramic slurry will be slowly discharged outward. After the printing platform stops, the glass plate from the outside Close to the edge of the release film and move directly under the release film, and smooth the concave release film. Since the release film is gradually leveled, the pressure and lateral viscous force of the ceramic slurry are small, and it is not easy to Deformation of formed parts.
  • a further improvement of the present invention is, when working, comprising the following steps:
  • the glass plate moves from directly below the liquid tank to the outside of the liquid tank, the printing platform moves upward, the glass plate moves to the outside of the release film, and the peristaltic pump sprays the set amount of slurry in the liquid tank through the hose material;
  • the worktable moves down to the position of the second layer, the glass plate is moved directly under the release film, the DLP projection equipment projects the second layer of sliced pickled film, and the ultraviolet light passes through the glass plate and the release film for curing, The second cured layer is bonded to the first cured layer;
  • the surface exposure light curing molding system of the flexible film bottom slurry pool of the present invention can reduce the deformation caused by pressing down when printing thin-walled parts, and can greatly reduce the separation force.
  • a glass plate that can be translated is used.
  • the glass plate is translated to the outside of the release film, and the flexible release film is in a state that can be concave.
  • the glass plate is translated. Just below the flexible release film, this design reduces the lateral viscous force of the high-viscosity ceramic slurry, reduces the deformation of the parts, and improves the printing success rate of thin-walled parts.
  • the release film tensioner is used to tension the release film. Before the printing platform is raised, the glass plate is moved to the outside of the release film. When the printing platform is raised, the release film will be deformed upward and convex, and the release film will After deformation, a larger separation angle is generated between itself and the molded part. The larger the separation angle, the more favorable it is for the high-viscosity slurry to enter the area to be separated, effectively reducing the separation force.
  • FIG. 1 is a schematic three-dimensional structure diagram of the main components of a surface exposure photocuring molding system for a flexible film-bottom slurry pool of the present invention.
  • FIG. 2 is a schematic diagram of the main structure of a surface exposure light curing molding system for a flexible film bottom slurry pool of the invention.
  • FIG. 3 is a schematic diagram of the main structure of the liquid tank module of the surface exposure light curing molding system of a flexible film bottom slurry tank of the invention.
  • 1 is the Z-axis motor
  • 2 is the Z-axis cantilever beam
  • 3 is the printing platform
  • 4 is the top film frame in the release film tensioner
  • 5 is the upper film in the release film tensioner
  • 6 is the release film
  • 7 is the release film
  • 8 is the timing belt
  • 9 is the DLP projection equipment
  • 10 is the slider
  • 11 is the linear guide rail
  • 12 is the spiral micro-feeding head
  • 13 is the timing belt pulley
  • 14 is the Glass plate support frame
  • 15 is a glass plate leveling piece
  • 16 is a glass plate
  • 17 is a glass plate translation motor.
  • a surface exposure photocuring molding system for a flexible film bottom slurry pool provided by the present invention includes a liquid tank module, a linear guide 11, a spiral micro-feeding head 12, a glass plate support frame 14, Glass plate leveling piece 15 , glass plate 16 , glass plate translation motor 17 .
  • the liquid tank module is composed of the top film frame 4 in the release film tensioner, the upper film 5 in the release film tensioner, the lower film 6 in the release film tensioner, and the release film.
  • Membrane 7 composition After the release film 7 is tightened by the upper sheet 5 in the release film tensioning frame and the lower sheet 6 in the release film tensioning frame, after installing the top film frame 4 in the release film tensioning frame, the release film 7 is tensioned and leveled.
  • the slider 10 fixed on the linear guide 11 for sliding and translation, the slider 10 clamps the glass plate support frame 14, the slider 10 is fixed by the top wire and the cylinder pair on the glass plate support frame 14 Screw micro-feed head
  • the top of the 12 is held up, and the spiral micro-feeding head 12 is used to adjust the distance between the glass plate 16 and the release film 7 .
  • the glass plate leveling sheet 15 is connected to the glass plate support frame 14 through a pair of cylinders, and the upper and lower surfaces of the glass plate leveling sheet 15 are fixed by extending from the glass plate support frame 14 through two pairs of coaxial top wires. , used to adjust the parallelism between the glass plate 16 and the release film 7 .
  • the glass plate 16 is used to support the release film 7 .
  • the printing platform 3 is fixed under the Z-axis cantilever beam 2, and the Z-axis motor 1 drives the printing platform 3 to move up and down.
  • the DLP projection device 9 is located at a certain position just below the liquid tank.
  • the synchronous belt 8 is connected to the slider and is driven by the synchronous pulley 13 , and the synchronous pulley 13 is driven by the glass plate translation motor 17 .
  • the glass plate 16 is connected with the glass plate support frame 14, and is driven by the pulley motor 17 to move back and forth along the linear guide rail 11.
  • the high-viscosity ceramic paste is not easily removed from the release film 7 and the printing platform 3 or Flow out between the molded parts, so the release film will sag downward.
  • the glass plate 16 starts to move directly under the release film 7 against the edge of the release film 7, and the concave release film 7 is moved.
  • the film 7 is scraped flat, and the excess high-viscosity paste is indirectly extruded.
  • This design can ensure that the layer thickness of the high-viscosity paste is the thickness that needs to be printed, and can also reduce the high-viscosity ceramic paste when the platform is pressed down. Pressure and lateral viscous forces generated by the part.
  • the glass plate 16 is connected by the glass plate support frame 14, and is driven by the pulley motor 17 to move along the linear guide 11 to the outer side directly below the release film 7.
  • the release film 7 is suspended below and above In the bonding state with the cured layer, the printing platform rises at this time, because the release film 7 has high elasticity, as the printing platform 3 rises, the deformation of the release film 7 gradually increases, and the angle between it and the cured layer gradually increases. The larger the angle is, the easier it is for the high-viscosity paste to enter the bonding area. Therefore, as the deformation increases, the release film 7 is separated from the cured layer with a lower separation force.
  • the release film 7 is not directly adhered to the glass plate 7 below, so after the first layer is cured, the separation force is smaller when the printing platform is lifted upwards.
  • the present invention provides a surface exposure light-curing molding system for a flexible film bottom slurry pool, and the printing process includes the following steps:
  • the glass plate 16 is moved in translation to the position below the release film 7 to be in close contact with the release film 7 .
  • the DLP projection device 9 projects the first layer of dicing pickled film, the ultraviolet light passes through the transparent glass plate 16, the release film 7, and irradiates the coating paste, and the paste solidifies a layer, Adhesive on the printing platform 3.
  • the glass plate 16 moves from directly below the liquid tank to the outside of the liquid tank, the printing platform 3 moves upward, the glass plate 16 translates to the outside of the liquid tank, and the peristaltic pump sprays a certain amount in the liquid tank through a hose slurry.
  • the printing platform 3 moves down to the position of the second layer, the glass plate 16 is moved from the outside close to the edge of the release film and is translated directly under the release film, and the concave release film 7 is scraped flat, the DLP projector 9. Projecting the second layer of dicing pickled film, the ultraviolet light is cured through the glass plate 16 and the release film 7, and the second layer of cured layer is bonded to the first layer of cured layer.

Abstract

一种柔性膜底浆料池的面曝光光固化成型系统,包括液槽模块、线性导轨(11)、玻璃板(16)、玻璃板支撑架(14)、玻璃板平移电机(17)、DLP投影设备(9)和打印装置;液槽模块包括离型膜(7)和离型膜张紧架,离型膜张紧架用于张紧离型膜(7),液槽由离型膜张紧架与离型膜(7)紧密接触后形成;玻璃板(16)具有两种功能,一种功能为支撑离型膜(7),第二种功能为将向下凹陷的离型膜(7)刮平,因此玻璃板(16)可以平移;打印平台(3)位于离型膜(7)的上方设置,DLP投影设备(9)位于液槽正下方设置。该光固化成型系统能够保证在打印任意结构尺寸的陶瓷零件时,分离力、压力和横向粘滞力在允许范围内,并且成形精度高,表面质量好。

Description

一种柔性膜底浆料池的面曝光光固化成型系统 技术领域
本发明属于机械制造中增材制造领域,具体涉及一种柔性膜底浆料池的面曝光光固化成型系统。
背景技术
光固化3D打印技术由于其成形精度高,表面质量好,所以在快速成型制造工艺中应用较为广泛,也是3D打印技术中最早商业化的技术。其主要是通光源依据当前层的图案选择性照射光聚合浆料使其固化一层,然后工作台移动到第二层的位置进行选择性固化,如此循环层层累计,直到整个切层打印完,得到完整的光固化成形件。光固化3D打印技术目前主要有激光扫描光固化和面曝光光固化,其中面曝光光固化由于其一次成形一个截面,极大地减小了打印时间,提高了打印效率,因此在光固化技术中应用更为广泛。
但是对于陶瓷浆料的面曝光光固化技术成形尺寸极大地取决于成型零件与离型膜之间的分离力,当打印横截面较小,截面为宏观多孔结构,分离力能够保证在允许范围内,当打印横截面较大,截面内缺少宏观多孔时,分离力较大,甚至可能无法分离,即成型失败。同时,对于陶瓷浆料的面曝光光固化技术大尺寸打印时,当成型零件截面长宽比较大,且零件较高时,如航空发动机叶片,当这类型刚度不足的零件下压至打印区域时,多余的陶瓷浆料被从打印区域挤压出去同时带给零件一个压力和横向粘滞力,这种压力极易将微小的结构压断,并且这种横向粘滞力容易使零件变形甚至折断,而且一台设备被设计完成后,其应该满足成型尺寸内任何复杂零件的制造,要想实现任意结构的成形,就必须使设备既能保证打印大尺寸零件时分离力在允许范围内,也能够保证打印刚度不足的大尺寸零件时,零件变形在允许范围内,因此这些限制条件制约着陶瓷浆料的面曝光光固化技术的发展。
发明内容
本发明的目的在于克服上述现有技术的缺点,提供了一种柔性膜底浆料池的面曝光光固化成型系统。该浆料池安装在面曝光光固化成型设备上,能够保证在打印任意结构尺寸的陶瓷零件时,分离力、压力和横向粘滞力在允许范围内,并且成形精度高,表面质量好。
为达到上述目的,本发明采用如下技术方案来实现的:
一种柔性膜底浆料池的面曝光光固化成型系统,包括液槽模块、线性导轨、玻璃板、玻璃板支撑架、玻璃板平移电机、DLP投影设备和打印装置;
液槽模块包括离型膜和离型膜张紧架,离型膜张紧架用于张紧离型膜,液槽由离型膜张紧架与离型膜紧密接触后形成;
两条线性导轨平行设置,每个线性导轨上设置有一个滑块,玻璃板设置在位于离型膜下方的玻璃板支撑架上,且玻璃板的两端分别固定在两个滑块上,两条线性导轨的两端分别设置有一个同步带轮,同步带轮上套装有同步带,玻璃板平移电机用于驱动其中一个同步带轮转动,进而通过同步带带动滑块在线性导轨上移动;
打印装置位于离型膜的上方设置,DLP投影设备位于液槽正下方设置。
本发明进一步的改进在于,离型膜张紧架包括离型膜张紧架中的顶膜架以及用于张紧离型膜的离型膜张紧架中的上片和离型膜张紧架中的下片,用于打印时储存光固化陶瓷浆料的液槽由离型膜张紧架中的顶膜架与离型膜紧密接触后形成。
本发明进一步的改进在于,还包括玻璃板调平片,通过圆柱副连接在玻璃板支撑架上,通过两对同轴的顶丝从玻璃板支撑架上伸出将玻璃板调平片的上表面和下表面固定,用于调整玻璃板与离型膜之间的平行度。
本发明进一步的改进在于,还包括螺旋微进头,通过顶丝和圆柱副连接在玻璃板支撑架上,螺旋微进头顶住滑块,用于调节玻璃板与离型膜之间距离。
本发明进一步的改进在于,打印装置包括Z轴,设置在Z轴上的Z轴悬臂梁,设置在Z轴悬臂梁上的打印平台,用于带动Z轴悬臂梁沿Z轴上下移动的Z轴电机。
本发明进一步的改进在于,离型膜由离型膜张紧架张紧悬空,当成型零件或打印平台下压时,离型膜与成型零件或打印平台之间的陶瓷浆料向外排除,由于离型膜是悬空的,因此受到下压力时离型膜向下凹陷,但是离型膜又是具有弹性的,因此陶瓷浆料会向外缓慢排出,打印平台停下后,玻璃板从外侧紧贴着离型膜边缘向离型膜正下方平移,将下凹的离型膜刮平,由于离型膜是逐渐刮平的,因此陶瓷浆料的压力和横向粘滞力较小,不易使成型零件发生变形。
本发明进一步的改进在于,工作时,包括以下步骤:
S1,在3D打印软件中导入要打印的模型;
S2,通过控制蠕动泵在液槽内注入一定量的浆料;
S3,将玻璃板平移至离型膜下方紧贴着离型膜;
S4,向下移动打印平台,先以5mm/s的速度移动,到距液槽底部不足5mm时,采用0.5mm/s的速度继续下降,松开球接头,转动球接头,当出现0.4N·cm的时候采用速度为0.1mm/s,每次下降0.1mm的距离下降,当出现2.4N·cm时,转动球接头,找到平衡位置,然后拧紧球接头,设置零位;
S5,点击打印按钮进行打印,DLP投影设备投影出第一层切层腌膜,紫外光透过透明玻璃板,离型膜,照射到涂层浆料上,浆料固化一层,粘接在打印平台上;
S6,打印完第一层后,玻璃板由液槽正下方移动至液槽外侧,打印平台向上运动,玻璃板平移到离型膜外侧,蠕动泵通过软管在液槽内喷涂设定量浆料;
S7,工作台向下运动到第二层的位置,玻璃板平移到离型膜正下方,DLP投影设备投影出第二层切层腌膜,紫外光透过玻璃板与离型膜进行固化,第二层固化层粘接到第一层固化层上;
S8,重复S5至S7步骤,直到打印出完整的零件。
本发明至少具有如下有益的技术效果:
本发明所述的一种柔性膜底浆料池的面曝光光固化成型系统,可以降低薄壁零件打印时下压产生的形变,可以大幅度降低分离力。
进一步,采用可以平移的玻璃板,在大尺寸薄壁零件下压时,玻璃板平移至离型膜外侧,柔性离型膜处于可以下凹的状态,打印平台下降至指定位置后,玻璃板平移回柔性离型膜正下方,这种设计降低了高粘度陶瓷浆料的横向粘滞力,减少了零件的变形,提高薄壁零件的打印成功率。
进一步,采用离型膜张紧架张紧离型膜,在打印平台抬升前,玻璃板平移至离型膜外侧,在打印平台抬升时,离型膜会发生向上凸的变形,离型膜发生变形后自身与成型零件之间产生一个较大的分离角,这个分离角越大越有利于高粘度浆料进入待分离区域,有效降低分离力。
附图说明
图1是本发明一种柔性膜底浆料池的面曝光光固化成型系统主要部件的立体结构示意图。
图2是发明一种柔性膜底浆料池的面曝光光固化成型系统的主要结构示意图。
图3是发明一种柔性膜底浆料池的面曝光光固化成型系统液槽模块主要结构示意图。
附图标记说明:
1为Z轴电机,2为Z轴悬臂梁,3为打印平台,4为离型膜张紧架中的顶膜架,5为离型膜张紧架中的上片,6为离型膜张紧架中的下片,7为离型膜,8为同步带,9为DLP投影设备,10为滑块,11为线性导轨,12为螺旋微进头,13为同步带轮,14为玻璃板支撑架,15为玻璃板调平片,16为玻璃板,17为玻璃板平移电机。
具体实施方式
下面结合附图对本发明作进一步说明。
如图1和图2所示,本发明提供的一种柔性膜底浆料池的面曝光光固化成型系统,包括液槽模块、线性导轨11、螺旋微进头12、玻璃板支撑架14、玻璃板调平片15、玻璃板16、玻璃板平移电机17。
如图3所示为液槽模块,由离型膜张紧架中的顶膜架4、离型膜张紧架中的上片5、离型膜张紧架中的下片6及离型膜7组成。离型膜张紧架中的上片5和离型膜张紧架中的下片6将离型膜7加紧后,安装上离型膜张紧架中的顶膜架4后,离型膜7被张紧拉平。固定在线性导轨11上用于滑动平移的滑块10、滑块10将玻璃板支撑架14夹住、滑块10被玻璃板支撑架14上的顶丝和圆柱副固定住的螺旋微进头12的顶尖顶住,螺旋微进头12用来调节玻璃板16与离型膜7之间的距离。玻璃板调平片15,通过圆柱副连接在玻璃板支撑架14上,通过两对同轴的顶丝从玻璃板支撑架14上伸出将玻璃板调平片15的上表面和下表面固定,用于调整玻璃板16与离型膜7之间的平行度。玻璃板16用来支撑离型膜7。打印平台3固定在Z轴悬臂梁2的下方,由Z轴电机1带动打印平台3上下移动。DLP投影设备9位于液槽正下方一定位置。同步带8连接在滑块上由同步带轮13带动,同步带轮13由玻璃板平移电机17带动。
玻璃板16与玻璃板支撑架14连接,由带轮电机17驱动沿着线性导轨11来回平动,当打印平台3下压后,高粘度陶瓷浆料不易从离型膜7和打印平台3或成型零件之间流出,离型膜因此会向下凹陷,当打印平台下压到指定位置后玻璃板16开始紧贴着离型膜7边缘向离型膜7正下方移动,将下凹的离型膜7刮平,间接的将多余的高粘度浆料挤出,这样的设计可以保证高粘度浆料的层厚就是需要打印的层厚,也可以降低平台下压时高粘度陶瓷浆料对零件产生的压力和横向粘滞力。
当一层固化完成后,玻璃板16由玻璃板支撑架14连接,由带轮电机17驱动沿着线性导 轨11移动至离型膜7正下方外侧,此时离型膜7处于下方悬空、上方和固化层粘接状态,此时打印平台上升,因为离型膜7具有较高的弹性,随着打印平台3上升,离型膜7变形逐渐增大,其与固化层之间的夹角逐渐增加,这个夹角越大高粘度浆料越容易进入粘接区域,因此随着变形增加,离型膜7以较低的分离力从固化层上分离。
离型膜7与下方的玻璃板7并未直接粘连,因此一层固化好之后,打印平台向上抬升时,分离力更小。
本发明提供的一种柔性膜底浆料池的面曝光光固化成型系统,打印过程包括如下步骤:
S1,在3D打印软件中导入要打印的模型。
S2,控制蠕动泵在液槽内注入浆料。
S3,将玻璃板16平移至离型膜7下方紧贴着离型膜7。
S4,向下移动打印平台3,先以5mm/s的速度移动,到距液槽底部不足5mm时,采用0.5mm/s的速度继续下降,松开球接头,转动球接头,当出现稍许阻力的时候采用速度为0.1mm/s,每次下降0.1mm的距离下降,当出现较大阻力时,转动球接头,找到平衡位置,然后拧紧球接头,设置零位。
S5,点击打印按钮进行打印,DLP投影设备9投影出第一层切层腌膜,紫外光透过透明玻璃板16,离型膜7,照射到涂层浆料上,浆料固化一层,粘接在打印平台3上。
S6,打印完第一层后,玻璃板16由液槽正下方移动至液槽外侧,打印平台3向上运动,玻璃板16平移到液槽外侧,蠕动泵通过软管在液槽内喷涂一定量浆料。
S7,打印平台3向下运动到第二层的位置,玻璃板16从外侧紧贴着离型膜边缘向离型膜正下方平移,将下凹的离型膜7刮平,DLP投影光机9投影出第二层切层腌膜,紫外光透过玻璃板16与离型膜7进行固化,第二层固化层粘接到第一层固化层上。
S8,重复S6至S7步骤,直到打印出完整的零件。

Claims (6)

  1. 一种柔性膜底浆料池的面曝光光固化成型系统,其特征在于,包括液槽模块、线性导轨(11)、玻璃板(16)、玻璃板支撑架(14)、玻璃板平移电机(17)、DLP投影设备(9)和打印装置;
    液槽模块包括离型膜(7)和离型膜张紧架,离型膜张紧架用于张紧离型膜(7),液槽由离型膜张紧架与离型膜(7)紧密接触后形成;
    两条线性导轨(11)平行设置,每个线性导轨(11)上设置有一个滑块(10),玻璃板(16)设置在位于离型膜(7)下方的玻璃板支撑架(14)上,且玻璃板(16)的两端分别固定在两个滑块(10)上,两条线性导轨(11)的两端分别设置有一个同步带轮(13),同步带轮(13)上套装有同步带(8),玻璃板平移电机(17)用于驱动其中一个同步带轮(13)转动,进而通过同步带(8)带动滑块(10)在线性导轨(11)上移动;
    打印装置位于离型膜(7)的上方设置,DLP投影设备(9)位于液槽正下方设置。
  2. 根据权利要求1所述的一种柔性膜底浆料池的面曝光光固化成型系统,其特征在于,离型膜由离型膜张紧架张紧,使离型膜具有一定的松紧弹性,离型膜张紧架包括离型膜张紧架中的顶膜架(4)以及用于张紧离型膜(7)的离型膜张紧架中的上片(5)和离型膜张紧架中的下片(6),用于打印时储存光固化陶瓷浆料的液槽由离型膜张紧架中的顶膜架(4)与离型膜(7)紧密接触后形成。
  3. 根据权利要求1所述的一种柔性膜底浆料池的面曝光光固化成型系统,其特征在于,还包括玻璃板调平片(15),通过圆柱副连接在玻璃板支撑架(14)上,通过两对同轴的顶丝从玻璃板支撑架(14)上伸出将玻璃板调平片(15)的上表面和下表面固定,用于调整玻璃板与离型膜(7)之间的平行度,使玻璃板与离型膜之间平行。
  4. 根据权利要求1所述的一种柔性膜底浆料池的面曝光光固化成型系统,其特征在于,还包括螺旋微进头(12),通过顶丝和圆柱副连接在玻璃板支撑架上,螺旋微进头(12)顶住滑块(10),用于调节玻璃板与离型膜之间距离,使玻璃板与离型膜之间紧密接触。
  5. 根据权利要求5所述的一种柔性膜底浆料池的面曝光光固化成型系统,其特征在于,离型膜(7)由离型膜张紧架张紧悬空,当成型零件或打印平台(3)下压时,受到下压力时离型膜(7)向下凹陷,打印平台(3)停下后,玻璃板(16)从外侧紧贴着离型膜边缘向离型膜(7)正下方平移,将下凹的离型膜(7)刮平。
  6. 根据权利要求5所述的一种柔性膜底浆料池的面曝光光固化成型系统,其特征在于,工作时,包括以下步骤:
    S1,在3D打印软件中导入要打印的模型;
    S2,通过控制蠕动泵在液槽内注入一定量的浆料;
    S3,将玻璃板(16)移动至离型膜(7)下方紧贴着离型膜;
    S4,向下移动打印平台(3),先以5mm/s的速度移动,到距液槽底部不足5mm时,采用0.5mm/s的速度继续下降,松开球接头,转动球接头,当出现0.4N·cm的时候采用速度为0.1mm/s,每次下降0.1mm的距离下降,当出现2.4N·cm时,转动球接头,找到平衡位置,然后拧紧球接头,设置零位;
    S5,点击打印按钮进行打印,DLP投影设备(9)投影出第一层切层腌膜,紫外光透过透明玻璃板(16),离型膜(7),照射到涂层浆料上,浆料固化一层,粘接在打印平台(3)上;
    S6,打印完一层后,玻璃板(16)由液槽正下方移动至液槽外侧,打印平台(3)向上运动,玻璃板(16)平移到离型膜(7)外侧,蠕动泵通过软管在液槽内喷涂设定量浆料;
    S7,工作台向下运动到下一层的位置,玻璃板(16)刮平离型膜(7)并移动至其正下方,DLP投影设备(9)投影出第二层切层腌膜,紫外光透过玻璃板与离型膜进行固化,下一层固化层粘接到上一层固化层上;
    S8,重复S6至S7步骤,直到打印出完整的零件。
PCT/CN2021/127396 2020-11-12 2021-10-29 一种柔性膜底浆料池的面曝光光固化成型系统 WO2022100461A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011262392.0A CN112621979A (zh) 2020-11-12 2020-11-12 一种柔性膜底浆料池的面曝光光固化成型系统
CN202011262392.0 2020-11-12

Publications (1)

Publication Number Publication Date
WO2022100461A1 true WO2022100461A1 (zh) 2022-05-19

Family

ID=75303065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127396 WO2022100461A1 (zh) 2020-11-12 2021-10-29 一种柔性膜底浆料池的面曝光光固化成型系统

Country Status (2)

Country Link
CN (1) CN112621979A (zh)
WO (1) WO2022100461A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115042432A (zh) * 2022-06-20 2022-09-13 深圳摩方新材科技有限公司 一种采用离型膜平推液体进行涂层的3d打印装置和方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112621979A (zh) * 2020-11-12 2021-04-09 西安交通大学 一种柔性膜底浆料池的面曝光光固化成型系统
CN114801167A (zh) * 2022-03-22 2022-07-29 华南理工大学 一种高精度扫描式面成形3d打印设备和方法
CN114986881B (zh) * 2022-06-20 2023-03-03 深圳摩方新材科技有限公司 一种方便操作的3d打印装置和方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103587118A (zh) * 2013-10-30 2014-02-19 西安交通大学 一种基于螺旋扫描、柔性界面的光固化3d打印机
CN108099186A (zh) * 2017-12-12 2018-06-01 深圳摩方材料科技有限公司 一种光固化3d打印装置及打印方法
CN108724430A (zh) * 2018-06-15 2018-11-02 西安交通大学 一种陶瓷光固化3d打印系统及方法
KR20190119224A (ko) * 2018-04-03 2019-10-22 조규남 3d프린터의 소재트레이
CN110524877A (zh) * 2019-08-05 2019-12-03 杭州德迪智能科技有限公司 一种光固化成形控制装置及方法
CN210706051U (zh) * 2019-08-05 2020-06-09 杭州德迪智能科技有限公司 光固化成形控制装置
CN210820947U (zh) * 2019-08-27 2020-06-23 苏州铼赛智能科技有限公司 树脂槽及3d打印设备
US20200269505A1 (en) * 2019-02-21 2020-08-27 Sprintray Inc. Apparatus, system, and method for use in three-dimensional printing
CN112621979A (zh) * 2020-11-12 2021-04-09 西安交通大学 一种柔性膜底浆料池的面曝光光固化成型系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105946237B (zh) * 2016-06-27 2019-02-19 西安科技大学 采用紫外面曝光快速成型装置制备三维光弹性模型的方法
CN109501250B (zh) * 2017-09-14 2020-10-30 三纬国际立体列印科技股份有限公司 光固化3d打印机及其剥离方法
US10427246B2 (en) * 2018-02-21 2019-10-01 Hamilton Sundstrand Corporation Indirect surface finishing during hybrid manufacturing

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103587118A (zh) * 2013-10-30 2014-02-19 西安交通大学 一种基于螺旋扫描、柔性界面的光固化3d打印机
CN108099186A (zh) * 2017-12-12 2018-06-01 深圳摩方材料科技有限公司 一种光固化3d打印装置及打印方法
KR20190119224A (ko) * 2018-04-03 2019-10-22 조규남 3d프린터의 소재트레이
CN108724430A (zh) * 2018-06-15 2018-11-02 西安交通大学 一种陶瓷光固化3d打印系统及方法
US20200269505A1 (en) * 2019-02-21 2020-08-27 Sprintray Inc. Apparatus, system, and method for use in three-dimensional printing
CN110524877A (zh) * 2019-08-05 2019-12-03 杭州德迪智能科技有限公司 一种光固化成形控制装置及方法
CN210706051U (zh) * 2019-08-05 2020-06-09 杭州德迪智能科技有限公司 光固化成形控制装置
CN210820947U (zh) * 2019-08-27 2020-06-23 苏州铼赛智能科技有限公司 树脂槽及3d打印设备
CN112621979A (zh) * 2020-11-12 2021-04-09 西安交通大学 一种柔性膜底浆料池的面曝光光固化成型系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115042432A (zh) * 2022-06-20 2022-09-13 深圳摩方新材科技有限公司 一种采用离型膜平推液体进行涂层的3d打印装置和方法

Also Published As

Publication number Publication date
CN112621979A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
WO2022100461A1 (zh) 一种柔性膜底浆料池的面曝光光固化成型系统
CN210706051U (zh) 光固化成形控制装置
KR101577700B1 (ko) 정렬을 롤투롤하기 위한 uv 성형 장치 및 방법
JP2015507546A (ja) 積層品、積層品を形成する装置および方法
CN212041931U (zh) 一种显示屏玻璃盖板擦拭机
CN108724430A (zh) 一种陶瓷光固化3d打印系统及方法
US11951680B2 (en) Sunken 3D printer and 3D printing method
CN110524877B (zh) 一种光固化成形控制装置及方法
JP6336369B2 (ja) カバーガラスの貼合装置
CN113263722A (zh) 光固化成型装置
KR100730562B1 (ko) 액정패널 제조장치
CN115839367B (zh) 一种叶片模块粘接工装及方法
CN111199679B (zh) 一种显示屏的全贴合方法及设备
WO2020172899A1 (zh) 一种内部立体光投影固化成型3d打印设备及其成型方法
CN206601546U (zh) 一种lcd边框贴合装置
KR101426463B1 (ko) 미세 패턴필름 제조장치 및 미세 패턴필름 제조방법
CN212124193U (zh) 一种基于透气超润滑膜的高速连续3d打印机
CN104923438A (zh) 胶水自动抹平装置及其使用方法
WO2023245692A1 (zh) 一种方便操作的3d打印装置和方法
CN210880912U (zh) 高频剪切光固化三维成形装置
CN210721016U (zh) 光固化膜剥离装置
CN115008748A (zh) 一种光固化三维打印装置和打印方法
CN112497733A (zh) 一种光敏料脉动离型方法和装置
CN105965890A (zh) 一种dlp光固化3d打印用双料成型工作台组件
JP2004106399A (ja) 光学素子の成形方法及び製造装置及び光学スクリーン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21890988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21890988

Country of ref document: EP

Kind code of ref document: A1