WO2022100287A1 - 一种全干式阻燃光缆及其成型方法 - Google Patents

一种全干式阻燃光缆及其成型方法 Download PDF

Info

Publication number
WO2022100287A1
WO2022100287A1 PCT/CN2021/119598 CN2021119598W WO2022100287A1 WO 2022100287 A1 WO2022100287 A1 WO 2022100287A1 CN 2021119598 W CN2021119598 W CN 2021119598W WO 2022100287 A1 WO2022100287 A1 WO 2022100287A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame
optical fiber
blocking powder
flame retardant
dry
Prior art date
Application number
PCT/CN2021/119598
Other languages
English (en)
French (fr)
Inventor
钟鑫宇
刘沛东
丁志飞
周珍福
韩宇峰
李智临
钱晓倩
张萍
Original Assignee
江苏亨通光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏亨通光电股份有限公司 filed Critical 江苏亨通光电股份有限公司
Publication of WO2022100287A1 publication Critical patent/WO2022100287A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/4436Heat resistant
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • G02B6/4432Protective covering with fibre reinforcements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/44384Means specially adapted for strengthening or protecting the cables the means comprising water blocking or hydrophobic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables

Definitions

  • the invention relates to the technical field of communication optical cable manufacturing, in particular to a fully dry flame-retardant optical cable and a forming method thereof.
  • optical fiber communication is widely used as a communication method with the fastest signal transmission speed and the best transmission quality.
  • the application of optical cables is becoming more and more extensive.
  • the traditional all-dry flame retardant optical cable forming steps are generally as follows: 1) add water blocking yarn in the loose tube; 2) twist the formed loose tube together with the filling rope on the central reinforcement 3) Form a stable cable core structure after longitudinally wrapping the water blocking tape; 4) Extrude flame retardant sheath material outside the cable core, or use high flame retardant sheath material for secondary sheathing.
  • the fully dry flame retardant optical cable formed by the above method has the advantages of lighter weight and better flame retardant effect, it also has the following problems: the material of the water blocking yarn is softer than the optical fiber, and its modulus and The strength is low, and in the manufacturing process, it will produce a large difference in residual length relative to the optical fiber, which is easy to cause disturbance to the optical fiber, thereby causing an increase in the additional attenuation of the optical fiber. High and low temperature performance; in addition, the water blocking yarn also occupies a large space in the loose tube, which seriously limits the free space of the optical fiber in the loose tube, which is not conducive to the penetration of the optical fiber. Therefore, there is an urgent need for technicians to solve the above problems.
  • the present invention relates to a cable core, an inner sheath layer, a first flame retardant layer and an outer sheath layer that are concentrically sheathed from the inside to the outside, wherein the cable core includes a central reinforcement components, optical fiber units, filling ropes, and a second flame retardant layer.
  • the central reinforcement and the second flame retardant layer form an annular cavity due to nesting.
  • the number of optical fiber units and filling ropes is set to be multiple, and they are all built in the annular cavity.
  • it includes an optical fiber, a first water blocking powder filling body and a loose tube. The optical fiber is passed through the loose tube.
  • the first water blocking powder filling body is placed in the loose tube, and fully surrounds the optical fiber.
  • the cable core also includes a second water blocking powder filler.
  • the second water-blocking powder filling body is placed in the second flame-retardant layer, and completely surrounds the optical fiber unit, the central reinforcing member and the filling rope.
  • the cable core is preferably a layered structure, and both the optical fiber unit and the filling rope are twisted around the central reinforcing member.
  • the cable core further includes a low-smoke halogen-free sheath layer sleeved on the central reinforcing member.
  • the central reinforcement is preferably a FRP reinforcement.
  • both the first flame retardant layer and the second flame retardant layer are formed by circumferentially winding flame retardant glass fiber tapes.
  • the inner sheath layer is preferably extruded from a ceramicized low-smoke halogen-free polyolefin; and the outer sheath layer is preferably extruded from a low-smoke halogen-free flame retardant material.
  • the loose tube is filled with water blocking powder to ensure its flame retardant performance.
  • the water-blocking powder filling makes the optical fiber have a larger free space in the loose tube, which can effectively reduce the inner diameter of the loose tube under the premise of the same accommodation space, and The penetration process of the optical fiber is basically undisturbed, thereby ensuring that the optical cable has good optical and mechanical properties.
  • the present invention also discloses a method for forming a fully dry flame retardant optical cable, which comprises the following steps:
  • a loose tube is formed on the periphery of the optical fiber, and then the dry water blocking powder is filled into the inner cavity of the loose tube to form the first water blocking powder filling body;
  • An inner sheath layer is formed on the periphery of the cable core
  • a flame retardant tape is wound around the periphery of the inner sheath layer to form a first flame retardant layer
  • An outer sheath layer is formed on the periphery of the first flame retardant layer.
  • the dry water-blocking powder is filled into the loose tube by means of the first water-blocking powder filling device, and the details are as follows: the first water-blocking powder is filled with The device includes a first material box, a first powder pushing unit and a first material conveying pipe; a first material feeding port is opened on the first material box to put in dry water blocking powder; the first material conveying pipe is connected to the first material Between the material box and the loose tube; the first powder pushing unit is installed on the side wall of the first material box, and when it acts, the dry water-blocking powder is sent to the inside the loose tube.
  • the dry-type water-blocking powder is filled into the second flame-retardant layer by means of the second water-blocking powder filling device, and the details are as follows: the second water-blocking powder
  • the filling device includes a second material tank and a second material delivery pipe.
  • a second feeding port is opened on the second material box to put in the dry water blocking powder.
  • the second feeding pipe is connected directly below the second feeding box, and its outlet is corresponding to the second flame retardant layer.
  • the dry water blocking powder is applied to the periphery of the second flame retardant layer through the second feeding pipe by means of gravity.
  • FIG. 1 is a schematic structural diagram of a fully dry flame retardant optical cable in the present invention.
  • FIG. 2 is a schematic diagram of the structure of the cable core in the fully dry flame retardant optical cable of the present invention.
  • FIG. 3 is a schematic structural diagram of an optical fiber unit in a fully dry flame retardant optical cable of the present invention.
  • FIG. 4 is a schematic structural diagram of a first water-blocking powder filling device in the method for forming a fully dry flame-retardant optical cable according to the present invention.
  • FIG. 5 is a schematic structural diagram of a second water blocking powder filling device in the method for forming a fully dry flame retardant optical cable according to the present invention.
  • 1-Fully dry flame retardant optical cable 11-Cable core; 111-Central strength member; 112-Optical fiber unit; 1121-Optical fiber; 1122-First water blocking powder filler; 1123-Loose tube; 113-Filling rope; 114 - the second flame retardant layer; 115 - the second water blocking powder filling body; 12 - the inner sheath layer; 13 - the first flame retardant layer; 14 - the outer sheath layer; 2 - the first water blocking powder filling device; 21 - the first A material box; 22- the first powder pushing unit; 23- the first material conveying pipe; 3- the second water blocking powder filling device; 31- the second material box; 32- the second material conveying pipe; 33- the blanking control module .
  • the core 11, the inner sheath layer 12, the first flame retardant layer 13 and the outer sheath layer 14 are composed of several parts, wherein, as shown in FIG.
  • the central reinforcement 111 and the second flame retardant layer 114 form an annular cavity due to nesting.
  • the number of the optical fiber units 112 and the filling ropes 113 is set to be plural, and they are all built in the above-mentioned annular cavity.
  • a single optical fiber unit 112 it includes an optical fiber 1121 and a loose tube 1123 .
  • the optical fiber 1121 is passed through the loose tube 1123 .
  • the optical fiber 1121 is extremely sensitive to HO- generated by water and moisture, and the water and moisture will accelerate the crack propagation on the surface of the optical fiber 1121, thereby causing the tensile strength and bending strength of the optical fiber 1121 to decrease significantly.
  • the hydrogen gas produced by the chemical reaction between the moisture and the metal material will cause hydrogen loss of the optical fiber 1121 , which will increase the transmission loss of the optical fiber 1121 and seriously affect the transmission signal quality and service life of the optical fiber cable 1121 .
  • the water resistance of the optical fiber unit is optimized, and a first water blocking filler 1122 is also added in the optical fiber unit 112 as required.
  • the first water blocking powder filling body 1122 is built in the loose tube 1123 and completely surrounds the optical fiber 1121 .
  • the filling of the first water blocking filling body 1122 in the loose tube 1123 is compared with the filling processes such as water blocking yarns in the traditional sense, so that the optical fiber 1121 has sufficient capacity in the loose tube 1123 There is a free space, so that the penetration process of the optical fiber 1121 is basically undisturbed, thereby ensuring that the optical cable has good optical performance and mechanical performance; on the other hand, under the premise of the same accommodation space, the loose tube 1123 can be effectively reduced. On the other hand, it also reduces the additional attenuation rate of the optical fiber 1121 as much as possible, and ensures that the formed optical cable has good tensile strength. elongation and high and low temperature properties.
  • the second flame retardant layer 114 can also be filled with a second flame retardant.
  • Water blocking powder filling body 115 (as shown in FIG. 2 ). After the molding is completed, the second water-blocking powder filling body 115 completely surrounds the optical fiber unit 112 , the central reinforcing member 111 and the filling rope 113 .
  • the cable core 11 is preferably a layered structure, that is, the optical fiber unit 112 and the filling rope 113 are both twisted around the central strength member 111, so that the formed cable core 11 is effectively improved. structural stability and its tensile strength.
  • FRP materials have the following characteristics: 1) The relative density of FRP is between 1.5 and 2.0, which is only 1/4-1/5 of that of carbon steel. However, the tensile strength of the two is close to or even exceeds that of carbon steel. , while the specific strength can be compared with high-grade alloy steels. The tensile, flexural and compressive strength of some epoxy FRP can reach more than 400Mpa; 2) FRP also has excellent corrosion resistance, and is resistant to the atmosphere, water and general concentrations of acids, alkalis, salts, and various oils and solvents. All have good resistance; 3) FRP is also an excellent insulating material, and it can still protect good dielectric properties at high frequencies. In view of this, the above-mentioned center reinforcement 111 is preferably an FRP reinforcement.
  • a low-smoke halogen-free sheath layer may also be sheathed on the above-mentioned central reinforcing member 111 according to the actual situation. Even if the fully dry flame retardant optical cable burns, the existence of the low-smoke halogen-free sheath layer can effectively reduce the generation of combustion exhaust gas.
  • first flame retardant layer 13 and second flame retardant layer 114 are preferably formed by circumferentially winding flame retardant glass fiber tapes.
  • the inner sheath layer 12 is preferably extruded from a ceramicized low-smoke halogen-free polyolefin, and the outer sheath layer 14 is preferably extruded from a low-smoke halogen-free flame retardant material.
  • the fully dry flame retardant optical cable has stronger flame retardant properties, such as burning resistance, nucleation, smoke suppression and drip resistance;
  • the heat release of the optical cable during the combustion process is greatly reduced, so that the optical cable can meet the European requirements for the test standards of CPRCca, s1a, burning drop d0, and combustion gas acidity a1 for cables in permanent buildings.
  • the present invention also discloses a method for forming a fully dry flame retardant optical cable, which has relatively simple forming steps, high forming efficiency and high final forming quality.
  • the forming method of the fully dry flame retardant optical cable comprises the following steps:
  • Forming of the optical fiber unit 112 A loose tube 1123 is formed on the periphery of the optical fiber 1121, and then the dry water blocking powder is filled into the inner cavity of the loose tube 1123 to form the first water blocking powder filling body 1122;
  • the plurality of optical fiber units 112 and the plurality of filling ropes 113 are twisted around the periphery of the central reinforcing member 111, and then a flame retardant tape is wound around the periphery of the optical fiber units 112 and the filling ropes 113 to form the second flame retardant layer 114;
  • An inner sheath layer 12 is formed on the periphery of the cable core 11;
  • a flame retardant tape is wound around the periphery of the inner sheath layer 12 to form the first flame retardant layer 13;
  • An outer sheath layer 14 is formed on the periphery of the first flame retardant layer 13 .
  • the first water blocking powder filling device 2 includes a first material box 21, a first powder pushing unit 22 and a first material conveying pipe 23; on the first material box 21 A first feeding port is opened to put dry water blocking powder; the first feeding pipe 23 is connected between the first feeding box 21 and the loose tube 1123; the first powder pushing unit 22 is installed in the first feeding box 21.
  • the dry water blocking powder is fed into the loose tube 1123 through the first feeding pipe 23 by means of compressed gas to form the first water blocking powder filling body 1122 .
  • the compressed gas emitted by the first powder pushing unit 22 and used to push the dry water-blocking powder is preferably an inert gas (eg nitrogen), so as to avoid the denaturation phenomenon caused by the contact with the outside air happened.
  • an inert gas eg nitrogen
  • the second water-blocking powder filling device 3 fills the dry water-blocking powder into the second flame retardant layer 114 , the details are as follows: As shown in FIG. 5 , the second water-blocking powder filling device 3 includes a second material box 31 and a second material conveying pipe 32 . A second feeding port is opened on the second material box 31 for placing the dry water blocking powder. The second feeding pipe 32 is connected directly below the second feeding box 31 , and its outlet is corresponding to the second flame retardant layer 114 . The dry water blocking powder is applied to the periphery of the second flame retardant layer 114 via the second feeding pipe 32 by means of gravity.
  • the second water blocking powder filling device 3 is additionally provided with a blanking control module 33 according to the actual situation.
  • the blanking control module is detachably connected between the second material box 31 and the second material conveying pipe 32 .

Abstract

一种全干式阻燃光缆及其成型方法,全干式阻燃光缆包括缆芯(11)、内护套层(12)、第一阻燃层(13)以及外护套层(14),其中,缆芯(11)包括有中心加强件(111)、光纤单元(112)、填充绳(113)以及第二阻燃层(114)。中心加强件(111)和第二阻燃层(114)因套合而形成有一环形空腔。光纤单元(112)和填充绳(113)的数量均设置为多个,且均内置于环形空腔内。针对于单根光纤单元(112)来说,其包括有光纤(1121)、第一阻水粉填充体(1122)以及松套管(1123)。第一阻水粉填充体(1122)内置于松套管(1123)内,且对光纤(1121)进行全包围。通过采用上述技术方案进行设置,从而使得光纤(1121)在松套管(1123)内具有较大的自由空间,使得光纤(1121)的穿入进程基本不受干扰,进而确保了成型后的光缆具有较好的光学性能及机械性能。

Description

一种全干式阻燃光缆及其成型方法 技术领域
本发明涉及通信光缆制造技术领域,特别是涉及一种全干式阻燃光缆及其成型方法。
背景技术
随着信息需求的持续增长,光纤通信作为信号传输速度最快、传输质量最好的通信方式而被广泛使用。然而,在网络建设高速发展的今天,光缆的应用日益广泛。
如图1中所示,传统的全干式阻燃光缆成型步骤大体如下:1)在松套管内添加阻水纱;2)将成型后的松套管连同填充绳绞合于中心加强件上;3)纵包阻水带后形成稳定的缆芯结构;4)在缆芯外挤制阻燃护套料,或进行二次护套使用高阻燃护套料。虽说采用上述方法成型的全干式阻燃光缆具有较轻的质量,且阻燃效果较好等优点,但是亦存在有以下问题:阻水纱的材质相对光纤质地较软,且其模量以及强度较低,在制造工艺中其相对于光纤会产生数值较大的余长差,容易造成对光纤的扰动,进而造成光纤附加衰减的增加,情况严重时还会影响到光缆的拉伸率和高低温性能;另外,阻水纱在松套管内还占用较大的空间,严重地局限了光纤在松套管内的自由空间,不利于光纤的穿入。因而,亟待技术人员解决上述问题。
发明内容
故,本发明设计人员鉴于上述现有的问题以及缺陷,乃搜集相关资料,经由多方的评估及考量,并经过从事于此行业的多年研发经验技术人员的不断实验以及修改,最终导致该全干式阻燃光缆的出现。
为了解决上述技术问题,本发明涉及了一种包括由内而外依序同心套合的缆芯、内护套层、第一阻燃层以及外护套层,其中,缆芯包括有中心加强件、光纤单元、填充绳以及第二阻燃层。中心加强件和第二阻 燃层因套合而形成有一环形空腔。光纤单元和填充绳的数量均设置为多个,且均内置于环形空腔内。针对于单根光纤单元来说,其包括有光纤、第一阻水粉填充体以及松套管。光纤穿设于松套管内。第一阻水粉填充体内置于松套管内,且对光纤进行全包围。
作为本发明技术方案的进一步改进,缆芯还包括有第二阻水粉填充体。第二阻水粉填充体内置于第二阻燃层内,且对光纤单元、中心加强件以及填充绳进行全包围。
作为本发明技术方案的进一步改进,缆芯优选为层绞式结构,光纤单元以及填充绳均围绕中心加强件进行绞合。
作为本发明技术方案的更进一步改进,缆芯还包括有套合于中心加强件上的低烟无卤护套层。
作为本发明技术方案的更进一步改进,中心加强件优选为FRP加强件。
作为本发明技术方案的更进一步改进,第一阻燃层和第二阻燃层均由阻燃玻纤带周向缠绕而成。
作为本发明技术方案的更进一步改进,内护套层优选由陶瓷化低烟无卤聚烯烃挤塑而成;而外护套层优选由低烟无卤阻燃材料挤塑而成。
在本发明所公开的全干式阻燃光缆中,其松套管内填充阻水粉以确保其阻燃性能。阻水粉填充相比传统意义上的阻水纱等填充工艺,使得光纤在松套管内具有较大的自由空间,在相同容置空间的前提下可以有效地减小松套管的内径尺寸,且光纤的穿入进程基本不受干扰,从而确保光缆具有较好的光学性能及机械性能。
另外,本发明还公开了一种全干式阻燃光缆的成型方法,其包括以下步骤:
a、光纤单元的成型:在光纤的外围成型出有松套管,随后将干式阻水粉充入到松套管的内腔,以形成第一阻水粉填充体;
c、缆芯的成型:多根光纤单元以及多根填充绳均围绕于中心加强件的外围进行绞合,随后在光纤单元和填充绳的外围缠绕阻燃带,以形成 第二阻燃层;
d、将干式阻水粉充入到第二阻燃层的内腔中,以形成第二阻水粉填充体;
e、在缆芯的外围成型出有内护套层;
f、在内护套层的外围缠绕阻燃带,以形成第一阻燃层;
g、在第一阻燃层的外围成型出有外护套层。
作为上述全干式阻燃光缆的成型方法的进一步改进,在步骤a中,借助于第一阻水粉填充装置将干式阻水粉充入到松套管内,具体如下:所述第一阻水粉填充装置包括有第一料箱、第一推粉单元以及第一输料管;在第一料箱上开设有第一投料口,以置入干式阻水粉;第一输料管连接于第一料箱和松套管之间;第一推粉单元安装于第一料箱的侧壁上,当其发生动作时,以借助于压缩气体将干式阻水粉经由第一输料管送入到松套管内。
作为上述全干式阻燃光缆的成型方法的进一步改进,在步骤c中,借助于第二阻水粉填充装置将干式阻水粉充入到第二阻燃层内,具体如下:第二阻水粉填充装置包括有第二料箱以及第二输料管。在第二料箱上开设有第二投料口,以置入干式阻水粉。第二输料管连接于第二料箱的正下方,且其出口正对应于第二阻燃层。借助于重力将干式阻水粉经由第二输料管涂覆至第二阻燃层的外围。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明中全干式阻燃光缆的结构示意图。
图2是本发明全干式阻燃光缆中缆芯的结构示意图。
图3是本发明全干式阻燃光缆中光纤单元的结构示意图。
图4是本发明全干式阻燃光缆成型方法中第一阻水粉填充装置的结构示意图。
图5是本发明全干式阻燃光缆成型方法中第二阻水粉填充装置的结构示意图。
1-全干式阻燃光缆;11-缆芯;111-中心加强件;112-光纤单元;1121-光纤;1122-第一阻水粉填充体;1123-松套管;113-填充绳;114-第二阻燃层;115-第二阻水粉填充体;12-内护套层;13-第一阻燃层;14-外护套层;2-第一阻水粉填充装置;21-第一料箱;22-第一推粉单元;23-第一输料管;3-第二阻水粉填充装置;31-第二料箱;32-第二输料管;33-落料控制模块。
具体实施方式
下面结合具体实施例,对本发明的内容做进一步的详细说明,图1示出了本发明中全干式阻燃光缆的结构示意图,可知,其主要由由内而外依序同心套合的缆芯11、内护套层12、第一阻燃层13以及外护套层14等几部分构成,其中,如图2中所示,缆芯11包括有中心加强件111、光纤单元112、填充绳113以及第二阻燃层114。中心加强件111和第二阻燃层114因套合而形成有一环形空腔。光纤单元112和填充绳113的数量均设置为多个,且均内置于上述环形空腔内。
如图3中所示,针对于单根光纤单元112来说,其包括有光纤1121以及松套管1123。光纤1121穿设于松套管1123内。已知,光纤1121对水和潮气产生的HO-极为敏感,水和潮气会加快光纤1121表面的裂纹扩张,从而造成光纤1121的抗拉强度和弯折强度显著下降。另外,水分与金属材料之间的化学反应所产生的氢气会引起光纤1121的氢损,导致光纤1121的传输损耗增加,严重影响光缆1121的传输信号质量和使用寿命。鉴于此,在本发明中对光纤单元作了阻水性优化,光纤单元112内还根据需要增设有第一阻水分填充体1122。第一阻水粉填充体1122 内置于松套管1123内,且对光纤1121进行全包围。通过采用上述技术方案进行设置,一方面,第一阻水分填充体1122在松套管1123内的填充相比传统意义上的阻水纱等填充工艺,使得光纤1121在松套管1123内具有充足的自由空间,使得光纤1121的穿入进程基本不受干扰,从而确保光缆具有较好的光学性能及机械性能;另一方面,在相同容置空间的前提下可以有效地减小松套管1123的内径尺寸,进而在一定程度上减小了全干式阻燃光缆的整体外径尺寸;再一方面,还尽可能地降低了光纤1121附加衰减率,且确保成型后的光缆具有良好的拉伸率以及高低温性能。
出于进一步提高缆芯的耐火性能,进而提高全干式阻燃光缆的整体耐火性能,作为全干式阻燃光缆结构的进一步优化,还可以在其第二阻燃层114内填充有第二阻水粉填充体115(如图2中所示)。成型完成后,第二阻水粉填充体115对光纤单元112、中心加强件111以及填充绳113进行全包围。
再者,在实际制造过程中,缆芯11优选为层绞式结构,即光纤单元112以及填充绳113均围绕中心加强件111进行绞合,如此一来,有效地提升了成型后缆芯11的结构稳定性及其抗拉强度。
已知,FRP材料具有以下特性:1)FRP的相对密度在1.5-2.0之间,只有碳钢的1/4-1/5,然而,两者的拉伸强度却接近,甚至超过碳素钢,而比强度可以与高级合金钢相比。某些环氧FRP的拉伸、弯曲和压缩强度均能达到400Mpa以上;2)FRP还具有优良的耐腐性,对大气、水和一般浓度的酸、碱、盐以及多种油类和溶剂都有较好的抵抗能力;3)FRP还是优良的绝缘材料,高频下仍能保护良好介电性。鉴于此,上述中心加强件111优选为FRP加强件。
更为上述技术方案更进一步的优化,在上述中心加强件111上根据实际情况还可以套合有低烟无卤护套层。即使全干式阻燃光缆发生燃烧,低烟无卤护套层的存在亦可有效地降低燃烧废气的生成。
再者,上述的第一阻燃层13和第二阻燃层114均优选由阻燃玻纤带 周向缠绕而成。且内护套层12优选由陶瓷化低烟无卤聚烯烃挤塑而成,而外护套层14优选由低烟无卤阻燃材料挤塑而成。如此一来,使得全干式阻燃光缆具有更强的阻燃性能,诸如耐烧性能、成核性能、抑烟性能和抗滴落性能;同时显著降低纤膏或缆膏等可燃物数量,使光缆在燃烧过程中热释放量大幅降低、使光缆能够达到欧洲对于永久建筑物内线缆必须满足CPRCca、s1a、燃烧滴落物d0、燃烧气体酸度a1测试标准的要求。
另外,本发明还公开了一种全干式阻燃光缆的成型方法,其成型步骤较为简洁,成型效率较高,且最终成型质量较高。全干式阻燃光缆的成型方法包括以下步骤:
a、光纤单元112的成型:在光纤1121的外围成型出有松套管1123,随后将干式阻水粉充入到松套管1123的内腔,以形成第一阻水粉填充体1122;
c、缆芯11的成型:多根光纤单元112以及多根填充绳113均围绕于中心加强件111的外围进行绞合,随后在光纤单元112和填充绳113的外围缠绕阻燃带,以形成第二阻燃层114;
d、将干式阻水粉充入到第二阻燃层114的内腔中,以形成第二阻水粉填充体115;
e、在缆芯11的外围成型出有内护套层12;
f、在内护套层12的外围缠绕阻燃带,以形成第一阻燃层13;
g、在第一阻燃层13的外围成型出有外护套层14。
出于确保第一阻水粉填充体1122具有较高的成型效率以及成型的均匀性方面考虑,在上述步骤a中,优选借助于第一阻水粉填充装置2将干式阻水粉充入到松套管1123内,具体如下:如图4中所示,第一阻水粉填充装置2包括有第一料箱21、第一推粉单元22以及第一输料管23;在第一料箱21上开设有第一投料口,以置入干式阻水粉;第一输料管23连接于第一料箱21和松套管1123之间;第一推粉单元22安装于第一料箱21的侧壁上,当其发生动作时,以借助于压缩气体将干式阻水 粉经由第一输料管23送入到松套管1123内,以成型第一阻水粉填充体1122。
在此需要说明的是,由第一推粉单元22发出的,用来对干式阻水粉进行推动的压缩气体优选为惰性气体(例如氮气),从而避免由于与外部空气的接触而导致变性现象的发生。
另外,类比于上述的第一阻水粉填充装置2,出于确保第二阻水粉填充体115具有较高的成型效率以及成型的均匀性方面考虑,在步骤c中,优选借助于第二阻水粉填充装置3将干式阻水粉充入到第二阻燃层114内,具体如下:如图5中所示,第二阻水粉填充装置3包括有第二料箱31以及第二输料管32。在第二料箱31上开设有第二投料口,以置入干式阻水粉。第二输料管32连接于第二料箱31的正下方,且其出口正对应于第二阻燃层114。借助于重力将干式阻水粉经由第二输料管32涂覆至第二阻燃层114的外围。
最后需要说明的是,出于更好地控制干式阻水粉向着第二阻燃层114落料量的精准性,确保第一阻燃层13成型的均匀性方面考虑,如图5中所示,第二阻水粉填充装置3根据实际情况还额外增设有落料控制模块33。落料控制模块可拆卸地连接于第二料箱31和第二输料管32之间。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种全干式阻燃光缆,其特征在于,包括由内而外依序同心套合的缆芯、内护套层、第一阻燃层以及外护套层;其中,所述缆芯包括有中心加强件、光纤单元、填充绳以及第二阻燃层;所述中心加强件和所述第二阻燃层因套合而形成有一环形空腔;所述光纤单元和所述填充绳的数量均设置为多个,且均内置于所述环形空腔内;针对于单根所述光纤单元来说,其包括有光纤、第一阻水粉填充体以及松套管;所述光纤穿设于所述松套管内;所述第一阻水粉填充体内置于所述松套管内,且对所述光纤进行全包围。
  2. 根据权利要求1所述的全干式阻燃光缆,其特征在于,所述缆芯还包括有第二阻水粉填充体;所述第二阻水粉填充体内置于所述第二阻燃层内,且对所述光纤单元、所述中心加强件以及所述填充绳进行全包围。
  3. 根据权利要求1-2中任一项所述的全干式阻燃光缆,其特征在于,所述缆芯为层绞式结构,所述光纤单元以及所述填充绳均围绕所述中心加强件进行绞合。
  4. 根据权利要求3所述的全干式阻燃光缆,其特征在于,所述缆芯还包括有套合于所述中心加强件上的低烟无卤护套层。
  5. 根据权利要求4所述的全干式阻燃光缆,其特征在于,所述中心加强件为FRP加强件。
  6. 根据权利要求3所述的全干式阻燃光缆,其特征在于,所述第一阻燃层和所述第二阻燃层均由阻燃玻纤带周向缠绕而成。
  7. 根据权利要求3所述的全干式阻燃光缆,其特征在于,所述内护套层由陶瓷化低烟无卤聚烯烃挤塑而成;而所述外护套层由低烟无卤阻燃材料挤塑而成。
  8. 一种全干式阻燃光缆的成型方法,其特征在于,包括以下步骤:
    a、光纤单元的成型:在光纤的外围成型出有松套管,随后将干式阻水粉充入到松套管的内腔,以形成第一阻水粉填充体;
    b、缆芯的成型:多根光纤单元以及多根填充绳均围绕于中心加强件 的外围进行绞合,随后在光纤单元和填充绳的外围缠绕阻燃带,以形成第二阻燃层;
    c、将干式阻水粉充入到第二阻燃层的内腔中,以形成第二阻水粉填充体;
    d、在缆芯的外围成型出有内护套层;
    e、在内护套层的外围缠绕阻燃带,以形成第一阻燃层;
    f、在第一阻燃层的外围成型出有外护套层。
  9. 一种全干式阻燃光缆的成型方法,其特征在于,在步骤a中,借助于第一阻水粉填充装置将干式阻水粉充入到松套管内,具体如下:所述第一阻水粉填充装置包括有第一料箱、第一推粉单元以及第一输料管;在第一料箱上开设有第一投料口,以置入干式阻水粉;第一输料管连接于第一料箱和松套管之间;第一推粉单元安装于第一料箱的侧壁上,当其发生动作时,以借助于压缩气体将干式阻水粉经由第一输料管送入到松套管内。
  10. 一种全干式阻燃光缆的成型方法,其特征在于,在步骤c中,借助于第二阻水粉填充装置将干式阻水粉充入到第二阻燃层内,具体如下:所述第二阻水粉填充装置包括有第二料箱以及第二输料管;在第二料箱上开设有第二投料口,以置入干式阻水粉;第二输料管连接于第二料箱的正下方,且其出口正对应于所述第二阻燃层;借助于重力将干式阻水粉经由第二输料管涂覆至第二阻燃层的外围。
PCT/CN2021/119598 2020-11-16 2021-09-22 一种全干式阻燃光缆及其成型方法 WO2022100287A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011279940.0 2020-11-16
CN202011279940.0A CN112255747A (zh) 2020-11-16 2020-11-16 一种全干式阻燃光缆及其成型方法

Publications (1)

Publication Number Publication Date
WO2022100287A1 true WO2022100287A1 (zh) 2022-05-19

Family

ID=74266223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119598 WO2022100287A1 (zh) 2020-11-16 2021-09-22 一种全干式阻燃光缆及其成型方法

Country Status (2)

Country Link
CN (1) CN112255747A (zh)
WO (1) WO2022100287A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115685466A (zh) * 2022-11-14 2023-02-03 长飞光纤光缆股份有限公司 一种中心束管气吹微缆、挤出模具及制备方法
CN115933084A (zh) * 2022-12-07 2023-04-07 江苏华脉光电科技有限公司 一种小型耐高温抗辐射光缆
CN116047682A (zh) * 2022-10-28 2023-05-02 海昊智能科技有限公司 一种室外层绞式玻璃陶瓷光缆

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112255747A (zh) * 2020-11-16 2021-01-22 江苏亨通光电股份有限公司 一种全干式阻燃光缆及其成型方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103064163A (zh) * 2013-01-18 2013-04-24 长飞光纤光缆有限公司 一种阻燃耐火光缆
CN203396997U (zh) * 2013-08-14 2014-01-15 长飞光纤光缆四川有限公司 一种非金属层绞式煤矿用阻燃通信光缆
CN204044415U (zh) * 2014-08-28 2014-12-24 北京鸿讯基业通信设备检测有限公司 全干式光缆
CN207336862U (zh) * 2017-06-16 2018-05-08 扬州市金鑫电缆有限公司 一种新型层绞式阻燃矿用光缆
CN108614339A (zh) * 2018-07-19 2018-10-02 北京亨通斯博通讯科技有限公司 一种地铁隧道用高阻燃光缆
CN209015759U (zh) * 2018-12-18 2019-06-21 四川新世纪线缆有限公司 一种建设工程用阻燃型护套电缆
CN110361820A (zh) * 2019-08-06 2019-10-22 江苏中天科技股份有限公司 气吹微缆
US20200271881A1 (en) * 2017-10-06 2020-08-27 Prysmian S.P.A Fire Resistant Fiber Optic Cable with High Fiber Count
CN112255747A (zh) * 2020-11-16 2021-01-22 江苏亨通光电股份有限公司 一种全干式阻燃光缆及其成型方法
CN213398996U (zh) * 2020-11-16 2021-06-08 江苏亨通光电股份有限公司 一种全干式阻燃光缆

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103064163A (zh) * 2013-01-18 2013-04-24 长飞光纤光缆有限公司 一种阻燃耐火光缆
CN203396997U (zh) * 2013-08-14 2014-01-15 长飞光纤光缆四川有限公司 一种非金属层绞式煤矿用阻燃通信光缆
CN204044415U (zh) * 2014-08-28 2014-12-24 北京鸿讯基业通信设备检测有限公司 全干式光缆
CN207336862U (zh) * 2017-06-16 2018-05-08 扬州市金鑫电缆有限公司 一种新型层绞式阻燃矿用光缆
US20200271881A1 (en) * 2017-10-06 2020-08-27 Prysmian S.P.A Fire Resistant Fiber Optic Cable with High Fiber Count
CN108614339A (zh) * 2018-07-19 2018-10-02 北京亨通斯博通讯科技有限公司 一种地铁隧道用高阻燃光缆
CN209015759U (zh) * 2018-12-18 2019-06-21 四川新世纪线缆有限公司 一种建设工程用阻燃型护套电缆
CN110361820A (zh) * 2019-08-06 2019-10-22 江苏中天科技股份有限公司 气吹微缆
CN112255747A (zh) * 2020-11-16 2021-01-22 江苏亨通光电股份有限公司 一种全干式阻燃光缆及其成型方法
CN213398996U (zh) * 2020-11-16 2021-06-08 江苏亨通光电股份有限公司 一种全干式阻燃光缆

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116047682A (zh) * 2022-10-28 2023-05-02 海昊智能科技有限公司 一种室外层绞式玻璃陶瓷光缆
CN115685466A (zh) * 2022-11-14 2023-02-03 长飞光纤光缆股份有限公司 一种中心束管气吹微缆、挤出模具及制备方法
CN115685466B (zh) * 2022-11-14 2023-12-19 长飞光纤光缆股份有限公司 一种中心束管气吹微缆及制备方法
CN115933084A (zh) * 2022-12-07 2023-04-07 江苏华脉光电科技有限公司 一种小型耐高温抗辐射光缆
CN115933084B (zh) * 2022-12-07 2023-11-03 江苏华脉光电科技有限公司 一种小型耐高温抗辐射光缆

Also Published As

Publication number Publication date
CN112255747A (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
WO2022100287A1 (zh) 一种全干式阻燃光缆及其成型方法
US10725257B2 (en) Fiber optic cable
US8682123B2 (en) Adhesively coupled optical fibers and enclosing tape
WO2015024443A1 (zh) 双层绞全干式光缆
US9052486B2 (en) Fiber optic cable and method of manufacture
WO2021093395A1 (zh) 光缆结构及其制备方法
CN213398996U (zh) 一种全干式阻燃光缆
US20230350146A1 (en) Flame retardant fiber optic cable with halogen free sheath for blowing applications
CN208706290U (zh) 动车用低烟无卤阻燃特种电缆
CN111856673A (zh) 新型水下设备与舱体内部设备通讯用光缆
WO2020151225A1 (zh) 一种碳纤维超轻微缆及其制造方法
CN207882528U (zh) 带有抗寒减震层的微型束状光缆
CN115755298A (zh) 一种轨道交通用高性能阻燃低烟光缆
AU2021104230A4 (en) Composite cable with both optical signal and electric energy transmission functions
CN211263885U (zh) 一种阻燃光缆
CN209912577U (zh) 一种b1级阻燃城际轨道交通电缆
CN217181870U (zh) 一种轨道交通用抗拉rru信号电缆
CN218728240U (zh) 一种大芯数防啮齿抗压型光缆
CN216772057U (zh) 一种耐高温防火消防通信光缆
KR20200138872A (ko) 난연 광케이블
CN217880925U (zh) 一种耐高温防腐火力电缆
CN211149002U (zh) 一种阻水全干式光缆
CN220171306U (zh) 一种高强度阻燃型光纤光缆
CN219872920U (zh) 一种石英纤维编织套管
CN210775936U (zh) 一种接入光缆

Legal Events

Date Code Title Description
REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021024809

Country of ref document: BR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21890815

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112021024809

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20211208

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21890815

Country of ref document: EP

Kind code of ref document: A1