WO2020151225A1 - 一种碳纤维超轻微缆及其制造方法 - Google Patents

一种碳纤维超轻微缆及其制造方法 Download PDF

Info

Publication number
WO2020151225A1
WO2020151225A1 PCT/CN2019/102015 CN2019102015W WO2020151225A1 WO 2020151225 A1 WO2020151225 A1 WO 2020151225A1 CN 2019102015 W CN2019102015 W CN 2019102015W WO 2020151225 A1 WO2020151225 A1 WO 2020151225A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
cable
hole
placing box
cable core
Prior art date
Application number
PCT/CN2019/102015
Other languages
English (en)
French (fr)
Inventor
吉松松
Original Assignee
南京华信藤仓光通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京华信藤仓光通信有限公司 filed Critical 南京华信藤仓光通信有限公司
Publication of WO2020151225A1 publication Critical patent/WO2020151225A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/4486Protective covering

Definitions

  • the invention relates to the field of optical cables, and more specifically, it relates to a carbon fiber ultra-light cable and a manufacturing method thereof.
  • Optical cables have been widely used in all aspects of life, such as pipeline optical cables, overhead optical cables, and marine optical cables.
  • aviation optical cable market There is huge demand in the aviation optical cable market.
  • Aviation optical cables have high requirements for lightweight.
  • the purpose of the present invention is to provide a carbon fiber super light cable, which has the advantage of reducing the weight of the optical cable.
  • a carbon fiber ultra-light cable including a cable core, a Kevlar layer and a carbon fiber outer sheath sequentially arranged outside the cable core from the inside to the outside.
  • the carbon fiber outer sheath has good tensile strength, high elastic modulus, and strong plasticity.
  • the minimum outer diameter of the carbon fiber ultra-light cable can be produced to 1.25mm, which is compared with the conventional micro-cable size of 3.0mm.
  • the size is reduced by 58.33%, which makes the optical cable miniaturized, with low carbon fiber density and high strength.
  • the net weight of the optical cable is 2kg/km, which is 67% lower than the net weight of the traditional micro cable of 6kg/km, making the optical cable lighter.
  • the fiber optic cable can withstand an ultra-high temperature use environment of 200°C. Compared with the use environment of a traditional optical fiber cable at 70°C, the performance is improved by 280%.
  • the cable core is an optical fiber filament of 250 microns.
  • the 250-micron optical fiber wire makes the cable core small in size and reduces the weight of the optical cable.
  • Another object of the present invention is to provide a method for manufacturing a carbon fiber ultra-light cable as described above, which includes the following steps:
  • Step 1 Dip several layers of carbon fiber cloth with glue to bond each layer of carbon fiber cloth, and then put it on the wrapping machine;
  • Step 2 Put the cable core and Kevlar on the pay-off rack, and then pass the cable core and Kevlar through the winding machine, the cable core is twisted with a lay length of 1000mm, so that the carbon fiber cloth is wound on the cable core;
  • Step 3 Pass the optical cable wrapped around the carbon fiber cloth through a curing oven, the oven of the curing oven cures the glue on the carbon fiber cloth at high temperature, so that the carbon fiber cloth forms a carbon fiber outer sheath;
  • Step 4 The fiber optic cable pulled out from the curing oven is reeled by a wire take-up machine.
  • the thickness of the carbon fiber cloth is 0.1 mm, and the baking temperature of the curing furnace is 120°C to 180°C.
  • the baking temperature of the curing furnace is 120°C to 180°C, which facilitates the quick drying of the glue on the carbon fiber cloth.
  • the curing oven includes a hollow placing box, the placing box is provided with a through hole for the optical cable to pass through, and a plurality of heating wires are provided on the upper and lower opposite walls of the placing box. Evenly distributed along the moving direction of the optical cable.
  • the carbon fiber cloth and the cable core enter the placing box through the through hole, and are baked and heated by the upper and lower heating wires, and the structure is simple.
  • the bottom of the placing box is provided with rollers, and a plurality of vertical partition plates are arranged in the placing box, and each of the partition plates divides the placing box into a number of independent spaces, and the heating wires are distributed in each In the space, and the lengths of the heating wires in each space along the transmission direction of the optical cable are different, the number of the through holes is set to be several, and each of the through holes is opened on the wall of the storage box corresponding to each space.
  • the partition plate makes the baking length in the storage box different, and the user can pass the cable core and the carbon fiber cloth according to the needs.
  • the required length of the space in the box, and the setting of the roller is convenient to move the position of the box.
  • the placing box is horizontally slidingly connected with a closing plate for closing each passing hole on the wall of the box provided with the passing hole, and the closing plate is provided with the size of the passing hole on one side of the passing hole.
  • the distance between the center of each adjusting hole and the center of the penetrating hole from left to right gradually increases in an arithmetic sequence, and the tolerance is the diameter of the penetrating hole.
  • the present invention has the following beneficial effects: the carbon fiber outer sheath has good tensile strength, high elastic modulus, and strong plasticity.
  • the smallest carbon fiber cable can produce an outer diameter to 1.25mm, which is compared with conventional micro
  • the size of the cable is 3.0mm, and the size is reduced by 58.33%, which makes the optical cable miniaturized, with low carbon fiber density and high strength.
  • the net weight of the optical cable is 2kg/km, which is 67% lower than the net weight of the traditional micro cable of 6kg/km.
  • the light weight of the optical cable in addition to Kevlar as a reinforcement and combined with the carbon fiber outer sheath, enables the optical cable to withstand an ultra-high temperature use environment of 200 °C, which is 280% higher than that of a traditional optical cable at 70 °C.
  • Figure 1 is a schematic diagram of the structure of Embodiment 1;
  • Embodiment 2 is a schematic diagram of the structure of Embodiment 2;
  • FIG. 3 is a schematic diagram of the structure of the embodiment 2 for embodying the placement box
  • Fig. 4 is a schematic diagram of the structure of the embodiment 2 used to embody the roller.
  • a carbon fiber ultra-light cable as shown in Fig. 1, includes a cable core 1 and a Kevlar layer 11 and a carbon fiber outer sheath 12 which are sequentially arranged outside the cable core 1 from the inside to the outside.
  • the carbon fiber outer sheath 12 has good tensile strength, high elastic modulus, and strong plasticity.
  • the minimum outer diameter of the carbon fiber ultra-light cable can be produced to 1.25mm, which is compared with the conventional micro-cable of 3.0mm. Reduced by 58.33%, the optical cable is miniaturized.
  • the cable core 1 is a 250-micron optical fiber, which makes the cable core 1 small in size.
  • the optical fiber can be set as a high temperature resistant layer to improve the high temperature resistance of the optical cable; low carbon fiber density,
  • the characteristics of high strength, the net weight of the optical cable is 2kg/km, which is 67% lower than the net weight of the traditional micro-cable of 6kg/km, which makes the optical cable lighter.
  • Kevlar is used as a reinforcement and combined with the carbon fiber outer sheath 12, making The optical cable can withstand an ultra-high temperature of 200°C, and its performance is improved by 280% compared to the 70°C of traditional optical cable.
  • a method of manufacturing the above embodiment 1, as shown in Fig. 2, includes the following steps:
  • Step 1 Dip several layers of carbon fiber cloth with glue to bond each layer of carbon fiber cloth, and then put it on the wrapping machine; the number of layers of carbon fiber cloth is two to five layers, each layer of carbon fiber cloth is 20mm wide and 0.1mm thick;
  • Step 2 Put the cable core 1 and Kevlar on the pay-off rack, and then pass the cable core 1 and Kevlar through the winding machine, and the cable core 1 is twisted with a lay length of 1000mm, so that the carbon fiber cloth is wound around the cable core 1 on;
  • Step 3 Pass the fiber optic cable wrapped around the carbon fiber cloth through a curing oven.
  • the oven of the curing oven cures the glue on the carbon fiber cloth at a high temperature so that the carbon fiber cloth forms a carbon fiber outer sheath 12.
  • the baking temperature of the curing oven is 120°C to 180°C;
  • Step 4 The fiber optic cable pulled out from the curing oven is reeled by a wire take-up machine.
  • the curing furnace includes a hollow placing box 2, which is provided with a through hole 21 for the optical cable to pass through horizontally, and a plurality of heating wires 22 are provided on the upper and lower opposite walls of the placing box 2.
  • the heating wires 22 are evenly distributed along the moving direction of the optical cable, and the carbon fiber cloth and the cable core 1 enter the placing box 2 through the through holes 21, and are baked and heated by the upper and lower heating wires 22, and the structure is simple.
  • a roller 23 is provided at the bottom of the placing box 2 for placing
  • the box 2 is provided with three vertical partition plates 24.
  • the partition plates 24 are distributed along the length of the optical cable.
  • Each partition plate 24 divides the box 2 into a number of independent spaces 241, and the heating wires 22 are distributed in each space 241
  • the heating wires 22 in each space 241 have different distribution lengths along the optical cable transmission direction.
  • the number of through holes 21 is set to be several, and each through hole 21 is opened on the wall of the storage box 2 corresponding to each space 241.
  • the partition plate 24 makes the baking length in the storage box 2 different, and the user can change the cable core 1 according to needs.
  • the carbon fiber cloth and the carbon fiber cloth pass through the space 241 in the storage box 2 of the required length. At this time, only the position of the storage box 2 needs to be moved by the roller 23.
  • the placing box 2 is horizontally slidingly connected with a closing plate 25 that closes each of the passing holes 21 on the wall of the box provided with the passing holes 21.
  • the closing plates 25 are opened on the side of the passing holes 21.
  • move the closing plate 25 so that the adjusting hole 26 on the closing plate 25 is opposite to the through hole 21, which is convenient for the cable core 1 to pass through.
  • the penetrating holes 21 are distributed in an arithmetic sequence to facilitate the movement of the closing plate 25 in the same direction, so as to open each penetrating hole 21 in turn while closing other penetrating holes 21.

Abstract

一种碳纤维超轻微缆及制造方法,解决了减小光缆重量的问题,涉及光缆领域。碳纤维超轻微缆包括缆芯(1)以及从内至外依次设置在缆芯外的凯夫拉层(11)、碳纤维外护套(12)。

Description

一种碳纤维超轻微缆及其制造方法 技术领域
本发明涉及光缆领域,更具体地说,它涉及一种碳纤维超轻微缆及其制造方法。
背景技术
光缆已普遍使用在生活的方方面面,管道光缆、架空光缆、海洋光缆。航空用光缆市场需求巨大,全球第二大市场研究机构Markets and Markets日前发布报告称,2018年全球军用和航空航天光缆市场需求将达到18.2亿美元,预计到2023年,这一数据将增至20亿美元。航空用光缆对轻量化有高的要求。
发明内容
本发明的目的是提供一种碳纤维超轻微缆,其优点在于,减小光缆的重量。
本发明的上述技术目的是通过以下技术方案得以实现的:一种碳纤维超轻微缆,包括缆芯以及从内至外依次设置在缆芯外的凯夫拉层、碳纤维外护套。
通过采用上述技术方案,碳纤维外护套具有良好的抗拉强度、弹性模量高,可塑性强,碳纤维超轻微缆最小可将外径生产到1.25mm,相较与常规微缆3.0mm的尺寸,尺寸减小58.33%,使得光缆微型化,碳纤维密度低、强度高的特性,光缆净重2kg/km,相较于传统微缆6kg/km的净重,重量降低67%,使得光缆轻量化,此外凯夫拉作为加强件以及与碳纤维外护套结合,使得光缆可承受200℃的超高温使用环境,相较于传统光缆70℃的使用环境,性能 提升280%。
优选的,所述缆芯为250微米的光纤丝。
通过采用上述技术方案,250微米的光纤丝使得缆芯尺寸小,减小光缆的重量。
本发明的另一个目的是提供一种制造如上述一种碳纤维超轻微缆的方法,包括以下步骤,
步骤一:将若干层碳纤维布浸胶,使得各层碳纤维布粘结,随后放在绕包机上;
步骤二:将缆芯和凯夫拉放在放线架上,随后将缆芯和凯夫拉通过绕包机,缆芯进行1000mm的绞距进行螺旋绞,使得碳纤维布缠绕在缆芯上;
步骤三:将缠绕了碳纤维布上的光缆经过固化炉,固化炉的烤炉高温固化碳纤维布上的胶,使得碳纤维布形成碳纤维外护套;
步骤四:将从固化炉内拉出的光缆,通过收线机进行收卷。
通过采用上述技术方案,若干层碳纤维布浸胶后缠绕在缆芯外壁,随后经过固化炉的烘烤,将碳纤维布之间的胶烤干,此时碳纤维布形成碳纤维外护套,随后被收线机收缆,结构简单。
优选的,所述碳纤维布的厚度为0.1mm,所述固化炉的烘烤温度为120℃到180℃。
通过采用上述技术方案,固化炉的烘烤温度为120℃到180℃方便将碳纤维布上的胶,快速烘烤干。
优选的,所述固化炉包括中空的放置箱,所述放置箱上开设有供光缆穿过的穿过孔,所述放置箱的上下相对箱壁上均设有若干加热丝,所述加热丝 沿光缆的移动方向均匀分布。
通过采用上述技术方案,将碳纤维布和缆芯通过穿过孔进入放置箱内,被上下两层的加热丝烘烤加热,结构简单。
优选的,所述放置箱底部设有滚轮,所述放置箱内设有若干竖直的分隔板,各个所述分隔板将放置箱分隔成若干独立的空间,所述加热丝分布在各个空间内,且各个所述空间内加热丝沿光缆传输方向分布的长度不同,所述穿过孔的数量设为若干,且各个所述穿过孔开设在放置箱对应各个空间的箱壁上。
通过采用上述技术方案,当碳纤维布层数较多时,需要经过较长时间的烘烤,此时分隔板使得放置箱内的烘烤长度不同,使用者可以根据需求,将缆芯和碳纤维布通过所需长度的放置箱内的空间,滚轮的设置便于移动放置箱的位置。
优选的,所述放置箱在设有穿过孔的箱壁上水平滑移连接有封闭各个穿过孔的封闭板,所述封闭板在穿过孔的一侧均开设有与穿过孔大小一致的调节孔,从左往右各个所述调节孔中心与穿过孔中心之间的距离呈等差数列逐渐递增,公差为穿过孔的直径。
通过采用上述技术方案,当需要打开某一个空间对应的穿过孔时,移动封闭板使得封闭板上的调节孔与穿过孔相对,便于缆芯的穿过,此外将各个调节孔与穿过孔呈等差数列分布便于以同一个方向移动封闭板,进而依次打开各个穿过孔,同时封闭其他穿过孔。
综上所述,本发明具有以下有益效果:碳纤维外护套具有良好的抗拉强度、弹性模量高,可塑性强,碳纤维超轻微缆最小可将外径生产到1.25mm, 相较与常规微缆3.0mm的尺寸,尺寸减小58.33%,使得光缆微型化,碳纤维密度低、强度高的特性,光缆净重2kg/km,相较于传统微缆6kg/km的净重,重量降低67%,使得光缆轻量化,此外凯夫拉作为加强件以及与碳纤维外护套结合,使得光缆可承受200℃的超高温使用环境,相较于传统光缆70℃的使用环境,性能提升280%。
附图说明
图1是实施例1的结构示意图;
图2是实施例2的结构示意图;
图3是实施例2的用于体现放置箱的结构示意图;
图4是实施例2的用于体现滚轮的结构示意图。
图中:1、缆芯;11、凯夫拉层;12、碳纤维外护套;2、放置箱;21、穿过孔;22、加热丝;23、滚轮;24、分隔板;241、空间;25、封闭板;26、调节孔。
具体实施方式
以下结合附图对本发明作进一步详细说明。
实施例1:
一种碳纤维超轻微缆,如图1,包括缆芯1以及从内至外依次设置在缆芯1外的凯夫拉层11、碳纤维外护套12。
如图1,碳纤维外护套12具有良好的抗拉强度、弹性模量高,可塑性强,碳纤维超轻微缆最小可将外径生产到1.25mm,相较与常规微缆3.0mm的尺寸,尺寸减小58.33%,使得光缆微型化,此外,缆芯1为250微米的光纤丝,使得缆芯1尺寸小,可以将光纤设为耐高温层,进而提高光缆的耐高温性能; 碳纤维密度低、强度高的特性,光缆净重2kg/km,相较于传统微缆6kg/km的净重,重量降低67%,使得光缆轻量化,此外凯夫拉作为加强件以及与碳纤维外护套12结合,使得光缆可承受200℃的超高温使用环境,相较于传统光缆70℃的使用环境,性能提升280%。
实施例2:
一种制造上述实施例1的方法,如图2,包括以下步骤,
步骤一:将若干层碳纤维布浸胶,使得各层碳纤维布粘结,随后放在绕包机上;碳纤维布的层数为两层到五层,每层碳纤维布尺寸宽度20mm,厚度0.1mm;
步骤二:将缆芯1和凯夫拉放在放线架上,随后将缆芯1和凯夫拉通过绕包机,缆芯1进行1000mm的绞距进行螺旋绞,使得碳纤维布缠绕在缆芯1上;
步骤三:将缠绕了碳纤维布上的光缆经过固化炉,固化炉的烤炉高温固化碳纤维布上的胶,使得碳纤维布形成碳纤维外护套12,此时固化炉的烘烤温度为120℃到180℃;
步骤四:将从固化炉内拉出的光缆,通过收线机进行收卷。
如图3和图4,固化炉包括中空的放置箱2,放置箱2上开设有供光缆水平穿过的穿过孔21,放置箱2的上下相对箱壁上均设有若干加热丝22,加热丝22沿光缆的移动方向均匀分布,将碳纤维布和缆芯1通过穿过孔21进入放置箱2内,被上下两层的加热丝22烘烤加热,结构简单。
如图3和图4,当碳纤维布的层数不一样时,需要烘烤的时间长度不同,因此需要加热丝22分布的长度也不一样,此时在放置箱2底部设有滚轮23, 放置箱2内设有三个竖直的分隔板24,分隔板24沿光缆的长度方向分布,各个分隔板24将放置箱2分隔成若干独立的空间241,加热丝22分布在各个空间241内,且各个空间241内加热丝22沿光缆传输方向分布的长度不同,穿过孔21的数量设为若干,且各个穿过孔21开设在放置箱2对应各个空间241的箱壁上。
如图3和图4,当碳纤维布层数较多时,需要经过较长时间的烘烤,此时分隔板24使得放置箱2内的烘烤长度不同,使用者可以根据需求,将缆芯1和碳纤维布通过所需长度的放置箱2内的空间241,此时只需要通过滚轮23移动放置箱2的位置即可。
如图3和图4,放置箱2在设有穿过孔21的箱壁上水平滑移连接有封闭各个穿过孔21的封闭板25,封闭板25在穿过孔21的一侧均开设有与穿过孔21大小一致的调节孔26,从左往右各个调节孔26中心与穿过孔21中心之间的距离呈等差数列逐渐递增,公差为穿过孔21的直径。当需要打开某一个空间241对应的穿过孔21时,移动封闭板25使得封闭板25上的调节孔26与穿过孔21相对,便于缆芯1的穿过,此外将各个调节孔26与穿过孔21呈等差数列分布便于以同一个方向移动封闭板25,进而依次打开各个穿过孔21,同时封闭其它穿过孔21。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

  1. 一种碳纤维超轻微缆,其特征是:包括缆芯(1)以及从内至外依次设置在缆芯(1)外的凯夫拉层(11)、碳纤维外护套(12)。
  2. 根据权利要求1所述的一种碳纤维超轻微缆,其特征是:所述缆芯(1)为250微米的光纤丝。
  3. 一种制造如上述权利要求1或2所述的一种碳纤维超轻微缆的方法,其特征是:包括以下步骤,
    步骤一:将若干层碳纤维布浸胶,使得各层碳纤维布粘结,随后放在绕包机上;
    步骤二:将缆芯(1)和凯夫拉放在放线架上,随后将缆芯(1)和凯夫拉通过绕包机,缆芯(1)进行1000mm的绞距进行螺旋绞,使得碳纤维布缠绕在缆芯(1)上;
    步骤三:将缠绕了碳纤维布上的光缆经过固化炉,固化炉的烤炉高温固化碳纤维布上的胶,使得碳纤维布形成碳纤维外护套(12);
    步骤四:将从固化炉内拉出的光缆,通过收线机进行收卷。
  4. 根据权利要求3所述的一种碳纤维超轻微缆制造方法,其特征是:所述碳纤维布的厚度为0.1mm,所述固化炉的烘烤温度为120℃到180℃。
  5. 根据权利要求3所述的一种碳纤维超轻微缆制造方法,其特征是:所述固化炉包括中空的放置箱(2),所述放置箱(2)上开设有供光缆穿过的穿过孔(21),所述放置箱(2)的上下相对箱壁上均设有若干加热丝(22),所述加热丝(22)沿光缆的移动方向均匀分布。
  6. 根据权利要求5所述的一种碳纤维超轻微缆制造方法,其特征是:所述放置箱(2)底部设有滚轮(23),所述放置箱(2)内设有若干竖直的分隔板(24),各个所述分隔板(24)将放置箱(2)分隔成若干独立的空间(241),所述加热丝(22)分布在各个空间(241)内,且各个所述空间(241)内加热丝(22)沿光缆传输方向分布的长度不同,所述穿过孔(21)的数量设为若干,且各个所述穿过孔(21)开设在放置箱(2)对应各个空间(241)的箱壁上。
  7. 根据权利要求6所述的一种碳纤维超轻微缆制造方法,其特征是:所述放置箱(2)在设有穿过孔(21)的箱壁上水平滑移连接有封闭各个穿过孔(21)的封闭板(25),所述封闭板(25)在穿过孔(21)的一侧均开设有与穿过孔(21)大小一致的调节孔(26),从左往右各个所述调节孔(26)中心与穿过孔(21)中心之间的距离呈等差数列逐渐递增,公差为穿过孔(21)的直径。
PCT/CN2019/102015 2019-01-21 2019-08-22 一种碳纤维超轻微缆及其制造方法 WO2020151225A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910051076.X 2019-01-21
CN201910051076.XA CN109407248B (zh) 2019-01-21 2019-01-21 一种碳纤维超轻微缆及其制造方法

Publications (1)

Publication Number Publication Date
WO2020151225A1 true WO2020151225A1 (zh) 2020-07-30

Family

ID=65461994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102015 WO2020151225A1 (zh) 2019-01-21 2019-08-22 一种碳纤维超轻微缆及其制造方法

Country Status (2)

Country Link
CN (1) CN109407248B (zh)
WO (1) WO2020151225A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109407248B (zh) * 2019-01-21 2019-05-14 南京华信藤仓光通信有限公司 一种碳纤维超轻微缆及其制造方法
CN109991711A (zh) * 2019-04-09 2019-07-09 国网宁夏电力有限公司中卫供电公司 一种adss光缆防电腐蚀装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11133277A (ja) * 1997-10-28 1999-05-21 Fujikura Ltd 極細径光ファイバコードおよびその製法
JP2009204947A (ja) * 2008-02-28 2009-09-10 Sumitomo Electric Ind Ltd 光ケーブル
CN101923199A (zh) * 2010-08-20 2010-12-22 烽火通信科技股份有限公司 一种制备纤维增强塑料加强件一体化光缆的方法及该光缆
CN103117123A (zh) * 2013-01-31 2013-05-22 东华大学 具有高伸长率的碳纤维复合材料电缆芯材及其制造方法
CN204270724U (zh) * 2014-11-12 2015-04-15 南京华脉科技股份有限公司 一种超柔型拉远光电混合缆
CN204883002U (zh) * 2015-08-28 2015-12-16 北京鸿讯基业通信设备检测有限公司 轻型铠装防弯折室内光缆
CN105304178A (zh) * 2014-06-12 2016-02-03 上海源锋电缆有限公司 高强度柔性拖链电缆
CN208013500U (zh) * 2018-02-27 2018-10-26 河南天罗光电科技有限公司 一种便于光缆批量固化的固化炉
CN109407248A (zh) * 2019-01-21 2019-03-01 南京华信藤仓光通信有限公司 一种碳纤维超轻微缆及其制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20040208A1 (it) * 2004-03-29 2004-06-29 Alenia Aeronautica Spa Tessuti nastri di filamenti continui e trespoli per formare gli strati di rinforzo per un elemento composito con una matrice resinosa.
US20110262089A1 (en) * 2010-04-23 2011-10-27 Kuang-Bang Hsu Small-diameter high bending-resistance fiber optic cable
CN206204164U (zh) * 2016-10-18 2017-05-31 许昌学院 一种用于光纤的着色涂覆装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11133277A (ja) * 1997-10-28 1999-05-21 Fujikura Ltd 極細径光ファイバコードおよびその製法
JP2009204947A (ja) * 2008-02-28 2009-09-10 Sumitomo Electric Ind Ltd 光ケーブル
CN101923199A (zh) * 2010-08-20 2010-12-22 烽火通信科技股份有限公司 一种制备纤维增强塑料加强件一体化光缆的方法及该光缆
CN103117123A (zh) * 2013-01-31 2013-05-22 东华大学 具有高伸长率的碳纤维复合材料电缆芯材及其制造方法
CN105304178A (zh) * 2014-06-12 2016-02-03 上海源锋电缆有限公司 高强度柔性拖链电缆
CN204270724U (zh) * 2014-11-12 2015-04-15 南京华脉科技股份有限公司 一种超柔型拉远光电混合缆
CN204883002U (zh) * 2015-08-28 2015-12-16 北京鸿讯基业通信设备检测有限公司 轻型铠装防弯折室内光缆
CN208013500U (zh) * 2018-02-27 2018-10-26 河南天罗光电科技有限公司 一种便于光缆批量固化的固化炉
CN109407248A (zh) * 2019-01-21 2019-03-01 南京华信藤仓光通信有限公司 一种碳纤维超轻微缆及其制造方法

Also Published As

Publication number Publication date
CN109407248B (zh) 2019-05-14
CN109407248A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
WO2020151225A1 (zh) 一种碳纤维超轻微缆及其制造方法
US20190361185A1 (en) Optical fiber cable
CN104714283B (zh) 一种混合型松套层绞式光缆及其制作方法
CN107422435B (zh) 一种超柔耐温防弹光缆
WO2015024443A1 (zh) 双层绞全干式光缆
WO2022100287A1 (zh) 一种全干式阻燃光缆及其成型方法
US11079561B2 (en) Fire retardant and low-smoke optical communications cable
WO2020107960A1 (zh) 一种护套嵌入式掏接光缆及生产方法
WO2022135030A1 (zh) 一种易开剥扁平分支拉远光缆
CN104267471B (zh) 一种pe纤维中心管束式光缆及其制造方法
WO2022036943A1 (zh) 一种新型全干式光纤带高阻燃耐火束管式光缆
CN113866922A (zh) 一种大芯数微束管室外光缆及其工艺制造方法
CN213398996U (zh) 一种全干式阻燃光缆
US10036863B2 (en) Optical fiber cables with flat ribbon fibers
EP3974884A1 (en) Metal tube-type lightweight armored flame-retardant fire-resistant optical cable
WO2017020369A1 (zh) 一种轻型全介质自承式光缆
CN201051166Y (zh) 加强型室内外铠装软光缆
CN109932797A (zh) 一种双铠中心管防鸟防鼠光缆
CN207663109U (zh) 城市接入网用抗弯曲大芯数光缆
CN206411302U (zh) 一种低烟无卤阻燃野外光缆
CN212872996U (zh) 新型水下设备与舱体内部设备通讯用光缆
CN211014742U (zh) 一种全介质多用途室外光缆
CN209640553U (zh) Fttx用光纤带光缆
CN111880272A (zh) 一种抗辐照光缆及其制作方法
CN107015330B (zh) 一种骨架式光电混合缆及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911254

Country of ref document: EP

Kind code of ref document: A1