WO2022100164A1 - 散热器结构和电机控制器 - Google Patents

散热器结构和电机控制器 Download PDF

Info

Publication number
WO2022100164A1
WO2022100164A1 PCT/CN2021/111750 CN2021111750W WO2022100164A1 WO 2022100164 A1 WO2022100164 A1 WO 2022100164A1 CN 2021111750 W CN2021111750 W CN 2021111750W WO 2022100164 A1 WO2022100164 A1 WO 2022100164A1
Authority
WO
WIPO (PCT)
Prior art keywords
baffle
flow channel
liquid
heat dissipation
cooling
Prior art date
Application number
PCT/CN2021/111750
Other languages
English (en)
French (fr)
Inventor
王帮伟
邵兆军
汪彬彬
顾以进
Original Assignee
苏州汇川联合动力系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州汇川联合动力系统有限公司 filed Critical 苏州汇川联合动力系统有限公司
Publication of WO2022100164A1 publication Critical patent/WO2022100164A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present application relates to the technical field of heat dissipation, and in particular, to a radiator structure and a motor controller.
  • a separate radiator needs to be set to dissipate the heat from the IGBT (Insulated Gate Bipolar Transistor) of the electronic control system and the busbar to reduce the temperature, thereby ensuring the safety of the electric vehicle.
  • the radiator and the box are usually connected to form a water channel loop, and the water flows in from one end and flows out from the other end, so as to achieve the effect of heat dissipation.
  • the flow direction of the cooling liquid is unstable, especially during the driving process of the car, the flow direction of the cooling liquid flow path will have a large sway, resulting in poor temperature uniformity of the entire radiator, resulting in heat dissipation capacity. unable to perform fully.
  • the main purpose of the present application is to provide a heat sink structure, aiming at directional flow of the heat sink structure to improve heat dissipation capability and temperature uniformity.
  • the radiator structure proposed in this application includes:
  • a casing a accommodating cavity is formed in the casing, and the casing is provided with a liquid inlet and a liquid outlet communicating with the accommodating cavity;
  • the heat dissipation fin is connected to the housing and located in the accommodating cavity;
  • the partition assembly is arranged in the accommodating cavity and is used to guide the cooling liquid to flow through the liquid inlet through the area where the heat dissipation fins are located, and then be discharged through the liquid outlet.
  • the partition assembly includes a first baffle plate and a second baffle plate, and the first baffle plate and the second baffle plate are both connected in the casing, so that the container
  • the cavities are separated to form a liquid-cooling flow channel, and the liquid-cooling flow channel at least partially covers the area where the heat dissipation fins are located, and communicates with the liquid inlet and the liquid outlet respectively.
  • the first baffle and the second baffle are respectively connected to opposite sides of the casing, and the first baffle and the second baffle are sandwiched to form a
  • the liquid cooling channel coincides with the area of the cooling fins.
  • the liquid inlet and the liquid outlet and the first baffle are located on the same side of the casing, and the first baffle is located at the liquid inlet and the Between the liquid outlets, the first baffle plate is formed with guide sections facing the liquid inlet and both ends of the liquid outlet, so as to guide the cooling liquid to flow to the cooling fins, and Discharge along the liquid outlet.
  • the liquid cooling flow channel includes a first flow channel, a second flow channel and a third flow channel that are communicated in sequence;
  • the first baffle is sandwiched with the casing to form the first flow channel
  • the second flow channel is formed between the first baffle and the second baffle
  • the second baffle is connected to the second baffle.
  • the third flow channel is formed between the shells;
  • the first flow channel is communicated with the liquid inlet
  • the third flow channel is communicated with the liquid outlet
  • the second flow channel covers the area where the cooling fins are located
  • the outlet of the first flow channel is connected to the liquid outlet.
  • the outlet of the second flow channel is arranged in a staggered position.
  • the casing has a length direction, and the first baffle extends along the length direction of the casing;
  • the second baffle includes a fixed section and a flow guide section, the fixed section is connected to the casing and is spaced from the end of the first baffle;
  • An outlet of the first flow channel is formed between the fixed section and the first baffle, and an outlet of the second flow channel is formed between the end of the flow guide section facing away from the fixed section and the casing,
  • the extending direction of the flow guiding section is parallel to the extending direction of the first baffle plate, and the flow guiding section is connected with the fixing section by bending.
  • the partition assembly further includes a third baffle, the third baffle is connected to the housing and is located in the third flow channel, the third baffle is connected to the third baffle.
  • the outlets of the second flow channels are arranged oppositely.
  • the casing has a length direction
  • the length of the third baffle is L1
  • the length of the casing is L2, and L1 ⁇ L2.
  • the housing includes:
  • the frame body is formed with an accommodating space having openings at both ends, the liquid inlet and the liquid outlet are opened in the frame body;
  • the two base plates are connected to the frame body and cover and seal the two openings respectively, so as to enclose and form the accommodating cavity, and the heat dissipation fins are located in the accommodating cavity and are connected to at least a said substrate.
  • the material of the substrate is different from the material of the frame body, and the heat dissipation coefficient of the material of the substrate is greater than the heat dissipation coefficient of the material of the frame body.
  • the base plate is provided with a first connection hole
  • the frame body is provided with a corresponding second connection hole corresponding to the first connection hole
  • a connector passes through the first connection in sequence hole and the second connection hole to fix the substrate to the frame body
  • the present application also proposes a motor controller including a radiator structure, wherein the radiator structure includes:
  • a casing a accommodating cavity is formed in the casing, and the casing is provided with a liquid inlet and a liquid outlet communicating with the accommodating cavity;
  • the heat dissipation fin is connected to the housing and located in the accommodating cavity;
  • the partition assembly is arranged in the accommodating cavity and is used to guide the cooling liquid to flow through the liquid inlet through the area where the heat dissipation fins are located, and then be discharged through the liquid outlet.
  • the radiator structure of the technical solution of the present application includes a casing, a heat dissipation fin and a partition assembly.
  • a accommodating cavity is formed in the casing.
  • the casing is provided with a liquid inlet and a liquid outlet that communicate with the accommodating cavity, and the radiating fins are connected to each other. It is in contact with the cooling liquid in the housing and in the accommodating cavity, which increases the contact area with the cooling liquid and improves the heat dissipation capacity.
  • the partition assembly is also located in the accommodating cavity to guide the cooling liquid to flow through the area where the cooling fins are located from the liquid inlet, and then be discharged through the liquid outlet.
  • the radiator structure is in contact with the external structure through the casing, and at the same time, the cooling liquid flows in from the liquid inlet, and is restricted from flowing through the cooling fins by the partition assembly, so that the cooling liquid is directed and quickly passes through the area where the cooling fins are located for the outside.
  • the structure cools and dissipates heat, thereby increasing the fluidity of the cooling liquid in the shell, and enabling the cooling liquid to quickly absorb the heat of the external structure and take away the heat, which improves the heat dissipation capacity.
  • Directional flow improves the temperature uniformity of the overall structure of the radiator.
  • FIG. 1 is a schematic cross-sectional structural diagram of an embodiment of a heat sink structure of the present application
  • Fig. 2 is the exploded structure schematic diagram of the radiator structure of Fig. 1;
  • FIG. 3 is a schematic cross-sectional structural diagram of another embodiment of the heat sink structure of the present application.
  • Fig. 4 is the exploded structure schematic diagram of the radiator structure of Fig. 3;
  • FIG. 5 is a schematic cross-sectional structural diagram of another embodiment of the heat sink structure of the present application.
  • FIG. 6 is a schematic cross-sectional structural diagram of still another embodiment of the heat sink structure of the present application.
  • FIG. 7 is a schematic diagram of an exploded structure of the heat sink structure of FIG. 6 .
  • the terms “connected”, “fixed” and the like should be understood in a broad sense, for example, “fixed” may be a fixed connection, a detachable connection, or an integrated; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be an internal communication between two elements or an interaction relationship between the two elements, unless otherwise explicitly defined.
  • “fixed” may be a fixed connection, a detachable connection, or an integrated; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be an internal communication between two elements or an interaction relationship between the two elements, unless otherwise explicitly defined.
  • the present application proposes a heat sink structure 100 .
  • the heat sink structure 100 includes a housing 10 , a heat dissipation fin 20 and a partition assembly 30 .
  • a accommodating cavity is formed in the housing 10 , and the housing 10
  • a liquid inlet 1121 and a liquid outlet 1122 are opened to communicate with the accommodating cavity;
  • the cooling fins 20 are connected to the housing 10 and located in the accommodating cavity;
  • the partition assembly 30 is provided in the It is used to guide the cooling liquid to flow through the area where the cooling fins 20 are located through the liquid inlet 1121 and then be discharged through the liquid outlet 1122 .
  • the number of the heat dissipation fins 20 is not limited, and the heat dissipation fins 20 may be a continuous integral structure.
  • the cooling liquid can be water or oil.
  • the cooling liquid synthesized by weak alkaline liquid can be selected.
  • the heat dissipation fins 20 and the partition components 30 may be guide blocks protruding from the inner surface of the housing 10 , and the arrangement and extension direction of the heat dissipation fins 20 are adapted to those of the guide blocks, so as to guide the cooling liquid flow.
  • the partition assembly 30 can be integrated with the casing 10 to ensure the stability and structural strength of the connection between the partition assembly 30 and the casing 10, and at the same time save the installation process.
  • the partition assembly 30 can also be composed of baffles, the baffles are connected to the inner wall of the housing 10 and play a guiding role, so that the baffles of different shapes are more convenient to adapt to the heat dissipation fins 20 of different shapes and sizes.
  • the radiator structure 100 may further include two water nozzles 13 interfaces, and the two water nozzles 13 interfaces are respectively connected to the liquid inlet 1121 and the liquid outlet 1122 of the housing 10 for connection with external water pipes. It can be understood that the positions of the liquid inlet 1121 and the liquid outlet 1122 can be interchanged as required.
  • the radiator structure 100 of the technical solution of the present application includes a casing 10 , a heat dissipation fin 20 and a partition assembly 30 , a accommodating cavity is formed in the casing 10 , and the casing 10 is provided with a liquid inlet 1121 communicating with the accommodating cavity and The liquid outlet 1122, the radiating fins 20 are connected to the housing 10 and are located in the accommodating cavity to be in contact with the cooling liquid, so as to increase the contact area with the cooling liquid and improve the heat dissipation capacity.
  • the partition assembly 30 is also located in the accommodating cavity for guiding the cooling liquid to flow through the area where the cooling fins 20 are located through the liquid inlet 1121 , and then to be discharged through the liquid outlet 1122 .
  • the radiator structure 100 is in contact with the external structure through the casing 10, and at the same time, the cooling liquid flows in through the liquid inlet 1121, and is restricted to flow through the cooling fins 20 by the partition assembly 30, so that the cooling liquid is directed and quickly passes through the cooling fins.
  • the area where 20 is located is used to cool the external structure and dissipate heat, thereby increasing the fluidity of the cooling liquid in the casing 10, and enabling the cooling liquid to quickly absorb the heat of the external structure and take away the heat, thereby improving the heat dissipation capacity. Since the cooling liquid flows directionally along the cooling liquid flow channel, the temperature uniformity of the overall structure of the radiator is improved.
  • the partition assembly 30 includes a first baffle 31 and a second baffle 32, both of which are Connected to the housing 10, so that the accommodating cavity is separated to form a liquid cooling flow channel 40, the liquid cooling flow channel 40 at least partially covers the area where the cooling fins 20 are located, and communicates with the liquid inlets respectively. port 1121 and the liquid outlet 1122.
  • the first baffle 31 and the second baffle 32 can be welded and fixed to the casing 10 by brazing technology, so that the liquid cooling flow channel 40 is only a closed water path that communicates with the liquid inlet 1121 and the liquid outlet 1122, and requires It is noted that, the partition assembly 30 may be provided with a plurality of baffles to change the shape and size of the liquid cooling channel 40 to meet the requirements of heat dissipation, which can be selected by those skilled in the art.
  • first baffle 31 and the second baffle 32 are respectively connected to opposite sides of the housing 10, and the first baffle 31 and the second baffle 32 are sandwiched to form a The liquid cooling channel 40 overlaps with the area of the cooling fins 20 .
  • the liquid cooling flow channel 40 is formed by sandwiching the first baffle 31 and the second baffle 32 , not only the liquid cooling flow channel 40 is located in the middle of the accommodating cavity, so that the cooling liquid flows through the liquid cooling flow channel 40
  • the liquid cooling channel 40 is overlapped with the area of the cooling fins 20, so that the cooling liquid passing through the liquid cooling channel 40 is in contact with the cooling fins 20, so as to further improve the The heat dissipation effect of the heat sink structure 100 .
  • the liquid inlet 1121 and the liquid outlet 1122 are located on the same side of the housing 10 as the first baffle 31 , and the first baffle 31 is located at the liquid inlet 1121 and the first baffle 31 .
  • a guide section 311 is formed on the two ends of the first baffle 31 toward the liquid inlet 1121 and the liquid outlet 1122, so as to guide the cooling liquid to flow to the liquid outlet 1122.
  • the cooling fins 20 are discharged along the liquid outlet 1122 .
  • the liquid inlet 1121 and the liquid outlet 1122 are located on the same side of the housing 10 as the first baffle 31 , so that the operator can connect the liquid inlet 1121 and the liquid outlet 1122 to the external water tank respectively.
  • the first baffle 31 is formed with guide sections 311 at both ends of the first baffle 31 toward the liquid inlet 1121 and the liquid outlet 1122.
  • the guide sections 311 can be arranged in a smooth transition, so that when the cooling liquid enters from the liquid inlet 1121, it is After the first baffle 31 comes into contact, it flows to the liquid cooling channel 40 through the guide section 311 .
  • the liquid outlet 1122 not only further ensures the directional flow of the cooling liquid, but also increases the flow rate of the cooling liquid, so as to further ensure the temperature uniformity of the radiator structure 100 and improve the heat dissipation capacity.
  • the liquid cooling flow channel 40 includes a first flow channel 41 , a second flow channel 42 and a third flow channel 43 connected in sequence; the first baffle plate 31 and the housing 10 are sandwiched to form the first flow channel 41 , the second flow channel 42 is formed between the first baffle 31 and the second baffle 32 , and the second baffle 32
  • the third flow channel 43 is formed between it and the housing 10; the first flow channel 41 communicates with the liquid inlet 1121, the third flow channel 43 communicates with the liquid outlet 1122, and the The second flow channel 42 covers the area where the heat dissipation fins 20 are located, and the outlet of the first flow channel 41 and the outlet of the second flow channel 42 are arranged in a staggered position.
  • the liquid cooling flow channel 40 is composed of a first flow channel 41, a second flow channel 42 and a third flow channel that are connected in sequence. 43, and the outlet of the first flow channel 41 and the outlet of the second flow channel 42 are dislocated to achieve the effect of backflow of the cooling liquid in the accommodating cavity, thereby ensuring the temperature uniformity of the radiator structure 100.
  • the first baffle 31 and the second baffle 32 can be welded to the housing 10 by brazing technology, so as to ensure the stability of the connection between the first baffle 31 and the second baffle 32 .
  • the first flow channel 41 , the second flow channel 42 and the third flow channel 43 can be arranged in an S shape, so as to increase the flow length of the cooling liquid in the accommodating cavity, so as to improve the heat dissipation efficiency, and at the same time make the cooling liquid along the first flow path.
  • the first flow channel 41 , the second flow channel 42 and the third flow channel 43 flow to multiple positions of the accommodating cavity, so that the cooling liquid in each position in the accommodating cavity flows in a stable and directional flow, thereby improving the radiator structure 100 temperature uniformity.
  • the cross-sectional area of the second flow channel 42 is larger than the cross-sectional area of the first flow channel 41 and the cross-sectional area of the third flow channel 43, and the second flow channel 42 covers the area where the heat dissipation fins 20 are located, that is, in the
  • the flow velocity of the cooling liquid in the second flow channel 42 is relatively slow, so that the cooling liquid can fully contact the cooling fins 20 when it flows to the second flow channel 42 , and the cooling liquid flows in the first flow channel 41 and the third flow channel 43 .
  • the flow rate of the radiator is relatively fast, so that the heat can be quickly taken away, which is beneficial to improve the heat dissipation efficiency, so as to further improve the heat dissipation effect of the heat sink structure 100 .
  • the casing 10 has a length direction
  • the first baffle 31 extends along the length direction of the casing 10
  • the second baffle 32 includes a fixed section 321 and a flow guide section 322 .
  • the segment 321 is connected to the housing 10 and is spaced apart from the end of the first baffle 31 ; an outlet of the first flow channel 41 is formed between the fixed segment 321 and the first baffle 31 ,
  • the outlet of the second flow channel 42 is formed between the end of the guide section 322 facing away from the fixed section 321 and the casing 10 , and the extension direction of the guide section 322 is the same as that of the first baffle 31 .
  • the extending direction is parallel, and the guide section 322 is connected to the fixing section 321 by bending.
  • the fixing section 321 and the guiding section 311 may be of an integral structure to ensure the overall structural strength of the second baffle 32 .
  • the extension direction of the first baffle plate 31 is the same as the length direction of the casing 10 , and the first baffle plate 31 is connected to the casing 10 and is disposed opposite to the liquid inlet 1121 , so that the cooling liquid entering from the liquid inlet 1121 The flow will follow the extension direction of the first baffle 31 to flow to the outlet of the first flow channel 41 and flow along the extension direction of the fixed section 321.
  • connection between the guide section 322 and the fixed section 321 is arranged in an arc shape, so as to guide the cooling liquid, so that the cooling liquid flows along the extending direction of the guide section 322 and flows from the second flow channel 42 After the outlet flows out, it flows to the third flow channel 43 , and finally flows out from the liquid outlet 1122 .
  • the cooling liquid flows directionally and rapidly along the first flow channel 41 , the second flow channel 42 and the third flow channel 43 , so as to further improve the heat dissipation capability and ensure the temperature uniformity of the heat sink structure 100 .
  • the partition assembly 30 further includes a third baffle 33, the third baffle 33 is connected to the housing 10 and located in the third flow channel 43 , the third baffle 33 is disposed opposite to the outlet of the second flow channel 42 .
  • the third baffle 33 is connected to the casing 10 and is arranged opposite to the outlet of the second flow channel 42, so that when the cooling liquid flows from the second flow channel 42 The outlet of the flow channel 42 will be blocked by the third baffle 33 when it flows out, so that the cooling liquid will be directed to flow along the extending direction of the third flow channel 43 and will not flow to other areas, so as to improve the heat dissipation efficiency.
  • the third flow channel 43 can be made to cover the area where the heat dissipation fins 20 are located, so that when the cooling liquid flows to the third flow channel 43, it contacts with the heat dissipation fins 20 to improve the heat dissipation capacity.
  • the casing 10 has a length direction
  • the length of the third baffle 33 is L1
  • the length of the casing 10 is L2, and L1 ⁇ L2.
  • the length value L1 of the third baffle 33 is smaller than the length value L2 of the casing 10, so that It is avoided that the third baffle 33 completely blocks the inner surface of the housing 10, so that the surface cannot dissipate heat to other components, so L1 ⁇ L2 can ensure that the third baffle 33 plays a role in guiding the cooling liquid along the third
  • the effect of flow in the extending direction of the flow channel 43 ensures the heat dissipation capability of the heat sink structure 100 at the same time.
  • the housing 10 includes a frame body 11 and a base plate 12 , the frame body 11 is formed with an accommodating space having openings 111 at both ends, the liquid inlet 1121 and The liquid outlet 1122 is opened in the frame main body 11; the two substrates 12 are connected to the frame main body 11 and cover and seal the two openings 111 respectively, so as to enclose and form the accommodating cavity.
  • the heat dissipation fins 20 are located in the accommodating cavity and connected to at least one of the substrates 12 .
  • the number of the substrates can be two, both of which are flat plates, the frame body 11 has openings 111 at both ends, and two substrates 12 are connected to the frame body 11 and cover and seal the two openings 111 to form a accommodating cavity.
  • the two substrates 12 can be fixed to the frame body 11 by detachable connection methods such as screws or buckles, so as to facilitate early installation and later maintenance and replacement.
  • the heat dissipation fins 20 are connected to at least one substrate 12 The cooling fins 20 are repaired and replaced.
  • the outer wall of the opening 111 of the frame body 11 is provided with a sealant, so that when the substrate 12 is connected to the frame body 11, the substrate 12 presses the sealant to ensure the sealing effect of the accommodating cavity, so as to further ensure that the cooling liquid is in Directional flow of the containment cavity.
  • the partition assembly 30 can be directly connected to the frame main body 11 and located in the accommodating space, and in order to improve the installation efficiency, there is an opening at the bottom of the frame main body 11, so that the partition assembly 30 can be installed through the opening opening It is fixed in the accommodating space of the frame main body 11 , and the frame main body 11 further includes a bottom plate 112 , which is used to block the cover and cover the accommodating opening, thereby ensuring the airtightness of the accommodating cavity.
  • the material of the substrate 12 is different from the material of the frame body 11 , and the heat dissipation coefficient of the material of the substrate 12 is greater than the heat dissipation coefficient of the material of the frame body 11 ;
  • the mass is too heavy and the heat dissipation efficiency of the heat sink structure 100 needs to be ensured at the same time, so the material of the substrate 12 is different from the material of the frame body 11. Since the heat dissipation fins 20 are connected to the two substrates 12, that is, the substrate 12 has a relatively high heat dissipation effect.
  • the material of the two substrates 12 can be a material with a high heat dissipation coefficient such as copper, and for areas with weak heat dissipation requirements, the frame body 11 and the water nozzle 13 can be used.
  • the structure is made of plastic and other alloy materials such as stainless steel, so that the cost and weight of the heat sink structure 100 can be reduced. In this way, the use of dissimilar materials can reduce the weight and reduce the cost of the entire radiator while retaining the heat dissipation performance of the original radiator.
  • the base plate 12 is provided with a first connection hole 121
  • the frame body 11 is provided with a corresponding second connection hole 113 corresponding to the first connection hole 121
  • a connector 50 passes through in sequence
  • the first connection hole 121 and the second connection hole 113 are used to fix the substrate 12 to the frame body 11 .
  • the first connection hole 121 and the second connection hole 113 can be screw holes
  • the fixing member can be a screw
  • the base plate 12 and the casing 10 are fixed by the screw.
  • This fixing method is relatively simple to install and easy to disassemble. It is convenient for subsequent maintenance.
  • the base plate 12 and the housing 10 may also be fixed by a common connection manner in the art, such as pin connection and rivet connection.
  • the present application also proposes a motor controller.
  • the motor controller includes a radiator structure 100.
  • the specific structure of the radiator structure 100 refers to the above embodiments. Since the motor controller adopts all the technical solutions of all the above embodiments, Therefore, there are at least all the beneficial effects brought about by the technical solutions of the above embodiments, which are not repeated here.

Abstract

本申请公开一种散热器结构和电机控制器,其中,散热器结构包括壳体、散热翅片以及分隔组件,所述壳体内形成有容置腔,所述壳体开设有连通所述容置腔的进液口和出液口;所述散热翅片连接于所述壳体,并位于所述容置腔内;所述分隔组件设于所述容置腔内,并用以导引冷却液由所述进液口流经所述散热翅片所在区域后,经由所述出液口排出。

Description

散热器结构和电机控制器
本申请要求2020年11月10日申请的,申请号为202022589025.3,名称为“散热器结构和电机控制器”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及散热技术领域,特别涉及一种散热器结构和电机控制器。
背景技术
在电动汽车的行驶过程中,需要设置分离式散热器将电控系统的IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)以及母排发出的热量进行散热以降低温度,从而保证电动汽车的电控系统的正常使用。相关技术中通常会使散热器与箱体连接形成水道回路,水流从一端流入,另外一端流出,以起到散热的效果。然而由于散热器内部结构限制使得冷却液的流向不稳定,尤其是在汽车行驶过程中,冷却液流路的流向会产生较大的晃动,造成整个散热器的均温性不好,导致散热能力无法充分发挥。
上述内容仅用于辅助理解本申请的技术方案,并不代表承认上述内容是现有技术。
技术问题
本申请的主要目的是提供一种散热器结构,旨在使散热器结构定向流动以提高散热能力和均温性。
技术解决方案
为实现上述目的,本申请提出的散热器结构,包括:
壳体,所述壳体内形成有容置腔,所述壳体开设有连通所述容置腔的进液口和出液口;
散热翅片,所述散热翅片连接于所述壳体,并位于所述容置腔内;以及
分隔组件,所述分隔组件设于所述容置腔内,并用以导引冷却液由所述进液口流经所述散热翅片所在区域后,经由所述出液口排出。
在本申请的一实施例中,所述分隔组件包括第一挡板和第二挡板,所述第一挡板和所述第二挡板均连接于所述壳体内,以使所述容置腔分隔形成液冷流道,所述液冷流道至少部分覆盖所述散热翅片所在区域,并分别连通所述进液口和所述出液口。
在本申请的一实施例中,所述第一挡板和所述第二挡板分别连接于所述壳体相对的两侧,所述第一挡板和所述第二挡板夹设形成所述液冷流道,所述液冷流道与所述散热翅片的区域重合。
在本申请的一实施例中,所述进液口和所述出液口与所述第一挡板位于所述壳体的同一侧,所述第一挡板位于所述进液口和所述出液口之间,所述第一挡板朝向所述进液口和所述出液口两端形成有导引段,以用于导引所述冷却液流向所述散热翅片,并沿所述出液口排出。
在本申请的一实施例中,所述液冷流道包括依次连通的第一流道、第二流道以及第三流道;
所述第一挡板与所述壳体夹设形成所述第一流道,所述第一挡板与所述第二挡板之间形成所述第二流道,所述第二挡板与所述壳体之间形成所述第三流道;
所述第一流道和所述进液口连通,所述第三流道与所述出液口连通,所述第二流道覆盖所述散热翅片所在区域,所述第一流道的出口和所述第二流道的出口错位设置。
在本申请的一实施例中,定义所述壳体具有长度方向,所述第一挡板沿所述壳体长度方向延伸;
所述第二挡板包括固定段和导流段,所述固定段连接于所述壳体,并与所述第一挡板的端部间隔设置;
所述固定段与所述第一挡板之间形成所述第一流道的出口,所述导流段背离所述固定段的端部与所述壳体之间形成第二流道的出口,所述导流段的延伸方向与所述第一挡板的延伸方向平行,所述导流段与所述固定段折弯连接。
在本申请的一实施例中,所述分隔组件还包括第三挡板,所述第三挡板连接于所述壳体并位于所述第三流道,所述第三挡板与所述第二流道的出口相对设置。
在本申请的一实施例中,定义所述壳体具有长度方向,所述第三挡板的长度值为L1,所述壳体的长度值为L2,L1<L2。
在本申请的一实施例中,所述壳体包括:
框架主体,所述框架主体形成有具有两端开口的容置空间,所述进液口和所述出液口开设于所述框架主体;和
基板,两个所述基板连接于所述框架主体并分别罩盖密封两所述开口,以围合形成所述容置腔,所述散热翅片位于所述容置腔内,并连接于至少一所述基板。
在本申请的一实施例中,所述基板的材质与所述框架主体的材质不同,且所述基板的材质的散热系数大于所述框架主体的材质的散热系数。
在本申请的一实施例中,所述基板开设有第一连接孔,所述框架主体对应所述第一连接孔开设有对应的第二连接孔,一连接件依次穿过所述第一连接孔和所述第二连接孔,以将所述基板固定于所述框架主体。
本申请还提出一种电机控制器,包括散热器结构,所述散热器结构包括:
壳体,所述壳体内形成有容置腔,所述壳体开设有连通所述容置腔的进液口和出液口;
散热翅片,所述散热翅片连接于所述壳体,并位于所述容置腔内;以及
分隔组件,所述分隔组件设于所述容置腔内,并用以导引冷却液由所述进液口流经所述散热翅片所在区域后,经由所述出液口排出。
有益效果
本申请技术方案的散热器结构包括壳体、散热翅片以及分隔组件,该壳体内形成有容置腔,该壳体开设有连通容置腔的进液口和出液口,散热翅片连接于壳体并位于容置腔内与冷却液接触,增大与冷却液的接触面积,提高散热能力。而该分隔组件也位于容置腔内用以导引冷却液由进液口流经散热翅片所在区域后,经由出液口排出。如此该散热器结构通过壳体与外部结构进行接触,同时冷却液由进液口流入,经由分隔组件限制流经散热翅片,从而使得冷却液定向且快速地经过散热翅片所在区域以对外部结构进行降温散热,进而增大了冷却液在壳体内的流动性,且使得冷却液能够快速吸走外部结构的热量并将热量带走,提高了散热能力,同时由于冷却液沿冷却液流道定向流通,以提高了该散热器整体结构的均温性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请散热器结构一实施例的剖视结构示意图;
图2为图1的散热器结构的爆炸结构示意图;
图3为本申请散热器结构另一实施例的剖视结构示意图;
图4为图3的散热器结构的爆炸结构示意图;
图5为本申请散热器结构又一实施例的剖视结构示意图;
图6为本申请散热器结构再一实施例的剖视结构示意图;
图7为图6的散热器结构的爆炸结构示意图。
附图标号说明:
标号 名称 标号 名称
100 散热器结构 30 分隔组件
10 壳体 31 第一挡板
11 框架主体 311 导引段
111 开口 32 第二挡板
112 底板 321 固定段
1121 进液口 322 导流段
1122 出液口 33 第三挡板
113 第二连接孔 40 液冷流道
12 基板 41 第一流道
121 第一连接孔 42 第二流道
13 水嘴 43 第三流道
20 散热翅片 50 连接件
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
在本申请中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
另外,在本申请中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,全文中出现的“和/或”的含义为,包括三个并列的方案,以“A和/或B为例”,包括A方案,或B方案,或A和B同时满足的方案。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出一种散热器结构100。
参照图1至图4,在本申请实施例中,该散热器结构100包括壳体10、散热翅片20以及分隔组件30,所述壳体10内形成有容置腔,所述壳体10开设有连通所述容置腔的进液口1121和出液口1122;所述散热翅片20连接于所述壳体10,并位于所述容置腔内;所述分隔组件30设于所述容置腔内,并用以导引冷却液由所述进液口1121流经所述散热翅片20所在区域后,经由所述出液口1122排出。
其中,散热翅片20的数量并不限制,散热翅片20可以是一连续的整体结构。而该冷却液可以选用水或者油,当然为了提高热传导性可以选用弱碱性液体合成的冷却液。而该散热翅片20该分隔组件30可以为凸设于壳体10内表面的导向块,同时该散热翅片20的排列延伸方向与导向块的相适配,从而起到导引冷却液流经散热翅片20所在区域的作用,即该分隔组件30可以与壳体10为一体结构,以保证分隔组件30与壳体10连接的稳定性和结构强度,同时省去安装工序。而该分隔组件30也可以为挡板组成,挡板连接于壳体10内壁并起到导引作用,从而通过不同形状的挡板更便于适配不同形状尺寸的散热翅片20。此外,该散热器结构100还可以包括两个水嘴13接口,两水嘴13接口分别连接于壳体10的进液口1121和出液口1122处,以用于与外部水管连接。可以理解的是,该进液口1121和出液口1122的位置可以根据需要进行互换。
本申请技术方案的散热器结构100包括壳体10、散热翅片20以及分隔组件30,该壳体10内形成有容置腔,该壳体10开设有连通容置腔的进液口1121和出液口1122,散热翅片20连接于壳体10并位于容置腔内与冷却液接触,增大与冷却液的接触面积,提高散热能力。而该分隔组件30也位于容置腔内用以导引冷却液由进液口1121流经散热翅片20所在区域后,经由出液口1122排出。如此该散热器结构100通过壳体10与外部结构进行接触,同时冷却液由进液口1121流入,经由分隔组件30限制流经散热翅片20,从而使得冷却液定向且快速地经过散热翅片20所在区域以对外部结构进行降温散热,进而增大了冷却液在壳体10内的流动性,且使得冷却液能够快速吸走外部结构的热量并将热量带走,提高了散热能力,同时由于冷却液沿冷却液流道定向流通,以提高了该散热器整体结构的均温性。
参照图1和图2,在本申请的一实施例中,所述分隔组件30包括第一挡板31和第二挡板32,所述第一挡板31和所述第二挡板32均连接于所述壳体10内,以使所述容置腔分隔形成液冷流道40,所述液冷流道40至少部分覆盖所述散热翅片20所在区域,并分别连通所述进液口1121和所述出液口1122。其中,通过设置第一挡板31和第二挡板32以使容置腔分隔形成液冷流道40,从而通过第一挡板31和第二挡板32的导引使得冷却液会沿着该液冷流道40流动,由于该液冷流道40至少部分覆盖散热翅片20所在区域,以使得该冷却液会与散热翅片20发生接触以达到散热效果。而该第一挡板31和第二挡板32可通过钎焊技术焊接固定于壳体10,以使液冷流道40只与进液口1121和出液口1122连通的闭合的水路,需要说明的是,该分隔组件30可以设置多个挡板以改变液冷流道40的形状尺寸,以满足散热的需求,具体可由本领域技术人员进行选择。
进一步地,所述第一挡板31和所述第二挡板32分别连接于所述壳体10相对的两侧,所述第一挡板31和所述第二挡板32夹设形成所述液冷流道40,所述液冷流道40与所述散热翅片20的区域重合。具体地,通过第一挡板31和第二挡板32夹设形成液冷流道40,不仅使液冷流道40位于所述容纳腔的中部,以使得冷却液流过液冷流道40时散热器结构100整体受力平衡,同时,该液冷流道40与散热翅片20的区域重合,以使得经过该液冷流道40的冷却液均与散热翅片20接触,以进一步提高散热器结构100的散热效果。
更进一步地,所述进液口1121和所述出液口1122与所述第一挡板31位于所述壳体10的同一侧,所述第一挡板31位于所述进液口1121和所述出液口1122之间,所述第一挡板31朝向所述进液口1121和所述出液口1122两端形成有导引段311,以用于导引所述冷却液流向所述散热翅片20,并沿所述出液口1122排出。具体地,该进液口1121和出液口1122与第一挡板31均位于壳体10的同一侧,以便于操作人员分别使进液口1121和出液口1122与外部水箱进行连接。而该第一挡板31朝向进液口1121和出液口1122两端形成有导引段311,该导引段311可呈圆滑过渡设置,从而使得当冷却液从进液口1121进入后与第一挡板31发生接触后,经过导引段311流向液冷流道40,当冷却液经过液冷流道40后,会与第一挡板31另一端的导引段311导引而流向出液口1122,如此不仅进一步保证冷却液的定向流动,同时提高了冷却液的流速,以进一步保证该散热器结构100的均温性,并提高了散热能力。
参照图5至图7,在本申请的一实施例中,所述液冷流道40包括依次连通的第一流道41、第二流道42以及第三流道43;所述第一挡板31与所述壳体10夹设形成所述第一流道41,所述第一挡板31与所述第二挡板32之间形成所述第二流道42,所述第二挡板32与所述壳体10之间形成所述第三流道43;所述第一流道41和所述进液口1121连通,所述第三流道43与所述出液口1122连通,所述第二流道42覆盖所述散热翅片20所在区域,所述第一流道41的出口和所述第二流道42的出口错位设置。其中为了防止水温逐渐升高后导致靠近出液口处散热效果相对靠近入水口处较差,从而该液冷流道40由依次连通的第一流道41、第二流道42以及第三流道43组成,且第一流道41的出口和第二流道42的出口错位设置,以达到冷却液在容置腔内回流的效果,从而保证散热器结构100的均温性。具体该第一挡板31和第二挡板32可通过钎焊技术焊接到壳体10处,以保证第一挡板31和第二挡板32连接的稳定性。而该第一流道41、第二流道42以及第三流道43可呈S型设置,如此以增大冷却液于容纳腔内的流动长度,以提高散热效率,同时使得冷却液沿着第一流道41、第二流道42以及第三流道43而流动至容纳腔的多个位置,使得容纳腔内的各个位置的冷却液均在稳定且定向的流动,进而提高该散热器结构100的均温性。此外,该第二流道42的横截面积均大于第一流道41的横截面积和第三流道43的横截面积,而该第二流道42覆盖散热翅片20所在区域,即在冷却液在第二流道42内的流速较慢,如此在冷却液流动至第二流道42时可以与散热翅片20充分接触,而冷却液在第一流道41和第三流道43内的流速较快,如此使得热量可以被快速带走有利于提高散热效率,以进一步提高该散热器结构100的散热效果。
进一步地,定义所述壳体10具有长度方向,所述第一挡板31沿所述壳体10长度方向延伸;所述第二挡板32包括固定段321和导流段322,所述固定段321连接于所述壳体10,并与所述第一挡板31的端部间隔设置;所述固定段321与所述第一挡板31之间形成所述第一流道41的出口,所述导流段322背离所述固定段321的端部与所述壳体10之间形成第二流道42的出口,所述导流段322的延伸方向与所述第一挡板31的延伸方向平行,所述导流段322与所述固定段321折弯连接。具体地,该固定段321和导引段311可以为一体结构,以保证第二挡板32整体的结构强度。该第一挡板31的延伸方向与壳体10的长度方向相同,同时该第一挡板31连接于壳体10与进液口1121正对设置,以使从进液口1121进入的冷却液会跟随第一挡板31延伸方向进行流动,以流向第一流道41的出口处,并沿固定段321的延伸方向进行流动,而通过使导流段322与固定段321折弯连接,即该导流段322与固定段321连接处呈弧形设置,如此起到对冷却液进行导流的作用,以使冷却液沿着导流段322的延伸方向进行流动,并从第二流道42出口流出后流向第三流道43,最终从出液口1122流出。如此使得冷却液定向且快速地沿第一流道41、第二流道42以及第三流道43进行流动,以进一步提高了散热能力,保证散热器结构100的均温性。
参照图6和图7,在本申请的一实施例中,所述分隔组件30还包括第三挡板33,所述第三挡板33连接于所述壳体10并位于所述第三流道43,所述第三挡板33与所述第二流道42的出口相对设置。其中,为了保证冷却液沿第三流道43的延伸方向进行流动,从而通过设置第三挡板33连接于壳体10并与第二流道42的出口相对设置,如此在冷却液从第二流道42的出口流出时会被第三挡板33所阻挡,进而使得冷却液被导流沿着第三流道43的延伸方向定向流动,不会串流至其他区域,以提升散热效率。需要说明的是,为了进一步提高散热效率,可使得第三流道43覆盖散热翅片20所在的区域,如此在冷却液流动至第三流道43时与散热翅片20接触以提高散热能力。
进一步地,定义所述壳体10具有长度方向,所述第三挡板33的长度值为L1,所述壳体10的长度值为L2,L1<L2。具体地,为了使该散热器结构100的各个表面均可以对外界起到较好的散热效果,从而使该第三挡板33的长度值为L1小于壳体10的长度值为L2,如此以避免该第三挡板33完全封堵壳体10的内表面,而导致该表面无法给其他器件散热,因此使L1<L2即可保证该第三挡板33起到了导引冷却液沿第三流道43延伸方向流动的效果,同时保证该散热器结构100的散热能力。
在本申请的一实施例中,参照图7,所述壳体10包括框架主体11和基板12,所述框架主体11形成有具有两端开口111的容置空间,所述进液口1121和所述出液口1122开设于所述框架主体11;两个所述基板12连接于所述框架主体11并分别罩盖密封两所述开口111,以围合形成所述容置腔,所述散热翅片20位于所述容置腔内,并连接于至少一所述基板12。其中,该基板的数量可以为两个且均为平面板体,该框架主体11两端开口111,再由两个基板12连接于框架主体11并分别罩盖密封两开口111以形成容置腔,两个基板12可通过螺钉或者卡扣等可拆卸连接的方式固定于框架主体11,以便于前期安装和后期维修更换,同时由于散热翅片20连接于至少一基板12处,进而也便于对散热翅片20进行维修更换。其次,框架主体11的开口111处的外壁环设有密封胶,以使该基板12连接于框架主体11时,基板12压制密封胶以保证容置腔的密封效果,以进一步保证该冷却液在容置腔的定向流动。此外,分隔组件30可以直接连接于框架主体11并位于容置空间,而为了提高安装效率,从而在框架主体11的底部开设有让位口,以便于使该分隔组件30可以通过让位口安装固定于框架主体11的容置空间内,而该框架主体11还包括底板112,以用于封堵罩盖该让位口,进而保证该容置腔的密封性。
进一步地,所述基板12的材质与所述框架主体11的材质不同,且所述基板12的材质的散热系数大于所述框架主体11的材质的散热系数;具体地,为了避免散热器结构100质量过重且需同时保证散热器结构100的散热效率,从而将基板12的材质与框架主体11的材质不同,而由于该散热翅片20连接于两基板12处,即基板12作为散热作用较大的区域,为了提高两基板12的散热效率,从而两基板12的材质可以为铜等散热系数较高的材质,而对于散热作用需求较弱的区域,可将框架主体11以及水嘴13等结构由塑料以及不锈钢等其他合金材料制成,进而可以降低散热器结构100的成本与重量。如此通过异种材料的使用在保留原有散热器散热性能的同时,降低了重量,减少整个散热器成本。
可选地,参照图4,所述基板12开设有第一连接孔121,所述框架主体11对应所述第一连接孔121开设有对应的第二连接孔113,一连接件50依次穿过所述第一连接孔121和所述第二连接孔113,以将所述基板12固定于所述框架主体11。其中,第一连接孔121和第二连接孔113可以螺纹孔,而固定件则可以是螺钉,利用螺钉将基板12与壳体10相固定,该固定方式安装操作较为简单,而且易于进行拆卸,方便后续进行维护保养。当然了,其它实施例中,也可以是销钉连接、铆钉连接等本领域常用的连接方式将基板12与壳体10相固定。
本申请还提出一种电机控制器,所述电机控制器包括散热器结构100,该散热器结构100的具体结构参照上述实施例,由于本电机控制器采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。
以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (12)

  1. 一种散热器结构,其中,包括:
    壳体,所述壳体内形成有容置腔,所述壳体开设有连通所述容置腔的进液口和出液口;
    散热翅片,所述散热翅片连接于所述壳体,并位于所述容置腔内;以及
    分隔组件,所述分隔组件设于所述容置腔内,并用以导引冷却液由所述进液口流经所述散热翅片所在区域后,经由所述出液口排出。
  2. 如权利要求1所述的散热器结构,其中,所述分隔组件包括第一挡板和第二挡板,所述第一挡板和所述第二挡板均连接于所述壳体内,以使所述容置腔分隔形成液冷流道,所述液冷流道至少部分覆盖所述散热翅片所在区域,并分别连通所述进液口和所述出液口。
  3. 如权利要求2所述的散热器结构,其中,所述第一挡板和所述第二挡板分别连接于所述壳体相对的两侧,所述第一挡板和所述第二挡板夹设形成所述液冷流道,所述液冷流道与所述散热翅片的区域重合。
  4. 如权利要求3所述的散热器结构,其中,所述进液口和所述出液口与所述第一挡板位于所述壳体的同一侧,所述第一挡板位于所述进液口和所述出液口之间,所述第一挡板朝向所述进液口和所述出液口两端形成有导引段,以用于导引所述冷却液流向所述散热翅片,并沿所述出液口排出。
  5. 如权利要求2所述的散热器结构,其中,所述液冷流道包括依次连通的第一流道、第二流道以及第三流道;
    所述第一挡板与所述壳体夹设形成所述第一流道,所述第一挡板与所述第二挡板之间形成所述第二流道,所述第二挡板与所述壳体之间形成所述第三流道;
    所述第一流道和所述进液口连通,所述第三流道与所述出液口连通,所述第二流道覆盖所述散热翅片所在区域,所述第一流道的出口和所述第二流道的出口错位设置。
  6. 如权利要求5所述的散热器结构,其中,定义所述壳体具有长度方向,所述第一挡板沿所述壳体长度方向延伸;
    所述第二挡板包括固定段和导流段,所述固定段连接于所述壳体,并与所述第一挡板的端部间隔设置;
    所述固定段与所述第一挡板之间形成所述第一流道的出口,所述导流段背离所述固定段的端部与所述壳体之间形成第二流道的出口,所述导流段的延伸方向与所述第一挡板的延伸方向平行,所述导流段与所述固定段折弯连接。
  7. 如权利要求5所述的散热器结构,其中,所述分隔组件还包括第三挡板,所述第三挡板连接于所述壳体并位于所述第三流道,所述第三挡板与所述第二流道的出口相对设置。
  8. 如权利要求7所述的散热器结构,其中,定义所述壳体具有长度方向,所述第三挡板的长度值为L1,所述壳体的长度值为L2,L1<L2。
  9. 如权利要求1至8任意一项所述的散热器结构,其中,所述壳体包括:
    框架主体,所述框架主体形成有具有两端开口的容置空间,所述进液口和所述出液口开设于所述框架主体;和
    基板,两个所述基板连接于所述框架主体并分别罩盖密封两所述开口,以围合形成所述容置腔,所述散热翅片位于所述容置腔内,并连接于至少一所述基板。
  10. 如权利要求9所述的散热器结构,其中,所述基板的材质与所述框架主体的材质不同,且所述基板的材质的散热系数大于所述框架主体的材质的散热系数。
  11. 如权利要求10所述的散热器结构,其中,所述基板开设有第一连接孔,所述框架主体对应所述第一连接孔开设有对应的第二连接孔,一连接件依次穿过所述第一连接孔和所述第二连接孔,以将所述基板固定于所述框架主体。
  12. 一种电机控制器,其中,包括如权利要求1至11任意一项所述的散热器结构。
PCT/CN2021/111750 2020-11-10 2021-08-10 散热器结构和电机控制器 WO2022100164A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202022589025.3 2020-11-10
CN202022589025.3U CN213403966U (zh) 2020-11-10 2020-11-10 散热器结构和电机控制器

Publications (1)

Publication Number Publication Date
WO2022100164A1 true WO2022100164A1 (zh) 2022-05-19

Family

ID=76193905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111750 WO2022100164A1 (zh) 2020-11-10 2021-08-10 散热器结构和电机控制器

Country Status (2)

Country Link
CN (1) CN213403966U (zh)
WO (1) WO2022100164A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114828594A (zh) * 2022-06-07 2022-07-29 珠海格莱克科技有限公司 散热装置、散热系统和电气设备
CN116428890A (zh) * 2023-06-14 2023-07-14 浙江吉利控股集团有限公司 用于车辆的散热器及车辆
CN116884930A (zh) * 2023-08-02 2023-10-13 河北冠泰电子技术有限公司 散热结构及其制作方法
CN117439321A (zh) * 2023-10-23 2024-01-23 江苏英雄车业有限公司 一种电动摩托车用中置电机组件
CN117439321B (zh) * 2023-10-23 2024-05-17 江苏英雄车业有限公司 一种电动摩托车用中置电机组件

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN213403966U (zh) * 2020-11-10 2021-06-08 苏州汇川联合动力系统有限公司 散热器结构和电机控制器
CN117062421B (zh) * 2023-10-13 2024-01-02 深圳基本半导体有限公司 一种液冷型针翅散热结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108962851A (zh) * 2018-08-29 2018-12-07 佛山市南海奔达模具有限公司 散热器以及其应用的壳单元、制造散热器的铸造模具
CN209344281U (zh) * 2018-12-28 2019-09-03 深圳欣锐科技股份有限公司 立体散热器及车载电源
CN110678043A (zh) * 2019-09-30 2020-01-10 潍柴动力股份有限公司 一种液冷散热器和一种电机控制器
CN110720140A (zh) * 2018-07-25 2020-01-21 深圳市大疆创新科技有限公司 控制器散热结构及控制器
US20200232711A1 (en) * 2019-01-17 2020-07-23 Lsis Co., Ltd. Heatsink module for inverter
CN213403966U (zh) * 2020-11-10 2021-06-08 苏州汇川联合动力系统有限公司 散热器结构和电机控制器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110720140A (zh) * 2018-07-25 2020-01-21 深圳市大疆创新科技有限公司 控制器散热结构及控制器
CN108962851A (zh) * 2018-08-29 2018-12-07 佛山市南海奔达模具有限公司 散热器以及其应用的壳单元、制造散热器的铸造模具
CN209344281U (zh) * 2018-12-28 2019-09-03 深圳欣锐科技股份有限公司 立体散热器及车载电源
US20200232711A1 (en) * 2019-01-17 2020-07-23 Lsis Co., Ltd. Heatsink module for inverter
CN110678043A (zh) * 2019-09-30 2020-01-10 潍柴动力股份有限公司 一种液冷散热器和一种电机控制器
CN213403966U (zh) * 2020-11-10 2021-06-08 苏州汇川联合动力系统有限公司 散热器结构和电机控制器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114828594A (zh) * 2022-06-07 2022-07-29 珠海格莱克科技有限公司 散热装置、散热系统和电气设备
CN116428890A (zh) * 2023-06-14 2023-07-14 浙江吉利控股集团有限公司 用于车辆的散热器及车辆
CN116884930A (zh) * 2023-08-02 2023-10-13 河北冠泰电子技术有限公司 散热结构及其制作方法
CN117439321A (zh) * 2023-10-23 2024-01-23 江苏英雄车业有限公司 一种电动摩托车用中置电机组件
CN117439321B (zh) * 2023-10-23 2024-05-17 江苏英雄车业有限公司 一种电动摩托车用中置电机组件

Also Published As

Publication number Publication date
CN213403966U (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
WO2022100164A1 (zh) 散热器结构和电机控制器
EP2610908B1 (en) Cooling device
US20080314559A1 (en) Heat exchange structure and heat dissipating apparatus having the same
CN212278664U (zh) 适于电子设备液冷散热的液冷板及具有其的散热单元
WO2021042781A1 (zh) 双面水冷散热器
CN112393626A (zh) 进水多流道多集水盒加水泵的液冷散热水排
CN112414164A (zh) 多流道式高效散热水冷排
AU2022424949A1 (en) Cooling device for motor controller, motor controller, and vehicle
JP2009170583A (ja) 液冷式冷却装置
WO2022100539A1 (zh) 液冷式车载电源
CN215500174U (zh) 电机控制器的冷却结构、电机控制器以及汽车
WO2019223285A1 (zh) 散热装置和变频器
CN211630683U (zh) 散热装置及电动汽车控制器
CN111799238A (zh) 一种双面水冷igbt散热器及其散热安装结构
CN219019334U (zh) 一种带散热器的车载控制器
WO2022262237A1 (zh) 电池液冷板组件、动力电池总成及电动车辆
CN107660011A (zh) 用于微波加热装置的冷却组件和微波加热装置
CN220965474U (zh) 控制器的散热结构及控制器
CN208862140U (zh) 一种用于真空环境中的波导负载组件
CN216626481U (zh) 电机控制器液冷结构及电机控制器
CN220776148U (zh) 一种水冷板结构
CN219917153U (zh) 大功率双层水冷散热板
CN216123390U (zh) 液冷模组和控制设备
CN220307647U (zh) 一种用于充电桩充电模块的散热部件
CN220254969U (zh) 一种加热器的散热流道结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21890693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21890693

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.10.2023)