WO2022100102A1 - 一种可激光焊接的毫米波雷达壳体材料及其制备方法 - Google Patents

一种可激光焊接的毫米波雷达壳体材料及其制备方法 Download PDF

Info

Publication number
WO2022100102A1
WO2022100102A1 PCT/CN2021/102326 CN2021102326W WO2022100102A1 WO 2022100102 A1 WO2022100102 A1 WO 2022100102A1 CN 2021102326 W CN2021102326 W CN 2021102326W WO 2022100102 A1 WO2022100102 A1 WO 2022100102A1
Authority
WO
WIPO (PCT)
Prior art keywords
millimeter
wave radar
laser
housing material
welded
Prior art date
Application number
PCT/CN2021/102326
Other languages
English (en)
French (fr)
Inventor
卢军
沈晓洁
李兰军
赵泳
邵禹通
董斌
刘曙阳
陆体超
Original Assignee
南京聚隆科技股份有限公司
南京东聚碳纤维复合材料研究院有限公司
南京旭宁新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京聚隆科技股份有限公司, 南京东聚碳纤维复合材料研究院有限公司, 南京旭宁新材料科技有限公司 filed Critical 南京聚隆科技股份有限公司
Priority to US17/907,829 priority Critical patent/US20230132076A1/en
Publication of WO2022100102A1 publication Critical patent/WO2022100102A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • C08J5/08Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials glass fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/027Constructional details of housings, e.g. form, type, material or ruggedness
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/132Phenols containing keto groups, e.g. benzophenones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/134Phenols containing ester groups
    • C08K5/1345Carboxylic esters of phenolcarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • C08K5/3435Piperidines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34926Triazines also containing heterocyclic groups other than triazine groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/524Esters of phosphorous acids, e.g. of H3PO3
    • C08K5/526Esters of phosphorous acids, e.g. of H3PO3 with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2451/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2451/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/06Pretreated ingredients and ingredients covered by the main groups C08K3/00 - C08K7/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/10Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles

Definitions

  • the invention relates to the technical field of millimeter-wave radar housing materials, in particular to a laser-welded 77 GHz millimeter-wave radar housing material.
  • Millimeter-wave radar is a radar that works in the millimeter-wave band, usually in the 30-300 GHz frequency band.
  • the automotive millimeter-wave radars mainly include 24GHz narrowband radar (24.00-24.25GHz), 24GHz ultra-wideband radar (24.25-24.65GHz), 77GHz radar (76-77GHz) and 79GHz radar (77-81GHz).
  • the 77GHz radar is smaller in size and has better detection accuracy, and the requirements for radar housing materials tend to be lower in dielectric constant, lower in dielectric loss, and lighter in weight.
  • Radar housing materials must meet the requirements of dielectric properties, mechanical properties, process properties and weight.
  • the dielectric properties of materials include dielectric constant and dielectric loss. If the dielectric constant is large, the reflectivity of the electromagnetic wave at the interface between the air and the radar casing will be large, which will increase the mirror lobe level and reduce the transmission efficiency. The dielectric loss is large, and the electromagnetic wave energy is converted into heat loss when penetrating the radar housing. Therefore, the dielectric constant and dielectric loss of the radar housing material are required to be as low as possible to achieve the purpose of maximum transmission and minimum reflection.
  • the low dielectric constant material brings a broadband response to the radar housing, allowing relaxed housing thickness tolerances, thereby reducing manufacturing costs.
  • the housing materials of millimeter-wave radars are made of fiber-reinforced thermoplastic composite materials, such as polyphenylene sulfide (PPS), polybutylene terephthalate (PBT), and polyimide (PI).
  • PPS polyphenylene sulfide
  • PBT polybutylene terephthalate
  • PI polyimide
  • SABIC polyimide
  • PBT and PI materials contain polar groups, and the dielectric constant of the material body is generally higher than 3, and it is more than 3.5 after glass fiber reinforcement, which limits the use in millimeter-wave radar.
  • Patent CN110527188A discloses a high wave-transmitting polypropylene composition and its preparation method. The frequency loss of the material is less than 3% in the millimeter wave range of 22GHz to 80GHz, and the dielectric constant is about 2.2 under the test condition of 1MHz. It has good wave-transmitting properties and low dielectric constant, but its strength and heat resistance are poor, so it is not suitable for radar housing applications.
  • the radar housing is fixed on the installation surface by means of screws, but this installation method has many disadvantages, such as easy loosening, falling off and poor sealing performance, which cannot protect the radar device well.
  • the method of laser welding plastic has the advantages of reliable connection, good sealing, convenient processing and impermeability, etc., which can better ensure the transmission performance of millimeter waves.
  • the principle of plastic laser welding is to press the two plastic parts to be welded together by pressure, and the near-infrared laser beam passes through the upper light-transmitting material, and is absorbed by the lower light-absorbing material to melt the plastic contact surface, and then the thermoplastic sheet, Technology for bonding films or molded parts together.
  • laser welding has the advantages of deep penetration, fast speed, small deformation, low requirements for the welding environment, high power density, not affected by magnetic fields, not limited to conductive materials, and does not require vacuum working conditions.
  • the welding process does not produce X-rays and other advantages. It is very suitable for the welding of micro parts and parts with poor accessibility. It is widely used in the field of high-end precision manufacturing.
  • the present invention provides a radar housing material with the advantages of low dielectric, light weight, high strength and high heat resistance, which can transmit near-infrared beams and has laser weldability.
  • the present invention adopts the following technical solutions:
  • a laser-weldable millimeter-wave radar housing material comprising the following components in parts by weight:
  • the polypropylene is one or more of high fluidity homopolymer polypropylene or copolymer polypropylene.
  • the glass fiber is one or more of alkali-free glass fiber yarns treated with silane-type sizing agent.
  • the nucleating agent is a nano-scale needle-shaped attapulgite rod with an aspect ratio of 30-50 and a particle size of 5-8 microns.
  • the compatibilizer is a graft of maleic anhydride and polyolefin, and the graft ratio of maleic anhydride is 1.0% to 2.5%.
  • the black colorant is compounded by solvent red, solvent blue, solvent green and solvent yellow according to weight ratio (6 ⁇ 8):(3 ⁇ 5):(1 ⁇ 3):(0.5 ⁇ 1) get.
  • solvent red is E2G
  • solvent blue is RR
  • solvent green is 5B
  • solvent yellow is Yellow G.
  • the antioxidant is one or more of hindered phenolic, amine, phosphite and thioester antioxidants.
  • the antioxidant is a compound of 1010 and 168 in a weight ratio of 1:1 or 1:2.
  • the light stabilizer is one or more of hindered amine, benzotriazole and benzophenone light stabilizers.
  • a preparation method of a laser-welded millimeter-wave radar housing material comprising the following steps:
  • the present invention has the following significant advantages:
  • the present invention adopts LFT-G process to prepare glass fiber reinforced PP material and nano-level nucleating agent to improve the crystallinity of PP, and the dual method gives the material the advantages of high strength and high heat resistance.
  • the PP material itself has high light transmittance, but the addition of glass fiber will cause more reflection and scattering of the laser beam in the material, and the addition of a high temperature-resistant ordinary black colorant will also absorb part of the beam, so the laser beam is transmitted through rate is greatly reduced.
  • the PP material of the present invention forms small-sized spherulites under the action of attapulgite-induced crystallization, reduces the scattering of the laser beam when passing through the material, improves the transmittance of the laser beam, and further increases the strength of laser welding.
  • the black colorant of the present invention solvent red, solvent blue, solvent green and solvent yellow are in weight ratio (6 ⁇ 8): (3 ⁇ 5): (1 ⁇ 3): (0.5-1)
  • the black colorant obtained by compounding can significantly transmit near-infrared light.
  • the attapulgite in the present invention refines the size of PP spherulites, improves the penetration of millimeter waves, and reduces the dielectric constant of the material.
  • the dielectric constant is about 2.6 under the test condition of 77GHz, which can be used for 77GHz millimeter wave radar housings .
  • the material of the present invention can be directly injection-molded, and is used for a radar casing and other casing structures requiring low dielectric constant, and the preparation process is simple.
  • the black millimeter-wave radar shell material is firmly fixed on the installation surface by laser welding, which solves the problems of easy falling off and poor sealing performance of the existing connection method, and can better protect the radar device.
  • a laser-weldable millimeter-wave radar housing material comprising the following components in parts by weight:
  • the polypropylene is one or more of high flow homopolypropylene or copolymer polypropylene.
  • the glass fiber is one or more of alkali-free glass fiber yarns treated with silane-type sizing agent.
  • the nucleating agent is nanometer needle-shaped attapulgite rods with an aspect ratio of 30-50 and a particle size distribution of 5-8 microns.
  • the compatibilizer is a graft of maleic anhydride and polyolefin, and the graft ratio of maleic anhydride is 1.0% to 2.5%.
  • the black colorant is obtained by compounding solvent red E2G, solvent blue RR, solvent green 5B and solvent yellow Yellow G in a weight ratio of 8:5:3:1.
  • Solvent yellow Yellow G chooses LANXESS solvent colorants Yellow G.
  • the antioxidant is one or more of hindered phenolic, amine, phosphite and thioester antioxidants.
  • the antioxidant is 1010 and 168 in a weight ratio of 1:1 or 1:2.
  • the light stabilizer is one or more of hindered amine, benzotriazole and benzophenone light stabilizers.
  • the pellets were dried at 90°C for 3 hours, and then injection-molded.
  • the working conditions of the injection molding machine were as follows: the temperature of the first zone was 200 to 220°C, the temperature of the second zone was 230 to 240°C, the temperature of the third zone was 240 to 250°C, and the temperature of the fourth zone was 240 to 250°C.
  • the zone temperature is 245 ⁇ 255°C, the pressure is 60 ⁇ 90MPa, and the speed is 30 ⁇ 50mm/s.
  • a set of standard splines were tested for mechanical properties, and the 60*20*2 splines were laser welded in a lapped manner.
  • test standards and conditions of the embodiment are as follows: tensile strength is tested by ISO 527, and the tensile speed is 50mm/min; flexural strength is tested by ISO 178, and the test speed is 2mm/min; Izod notched impact strength is tested by ISO 180, notched The shape is V-shaped; the unnotched impact strength of the simply supported beam is tested according to ISO179, the thermal deformation temperature is according to ISO75-2, and the load is 1.8MPa; the dielectric properties are according to SJ 20512-1995, and the frequency is 77GHz; light transmittance: UV-visible and near-infrared spectroscopy Photometer Lambda950, 60mm*60mm*2mm optical panel, wavelength is 800 ⁇ 1200nm.
  • Example 1 Example 2
  • Example 3 Example 4 Comparative Example 1 Homopolymer PP 60 50 60 70 Copolymerized PP 20 20 70 Continuous glass fiber 20 30 40 30 short glass fiber 30 Attapulgite 0.7 0.5 0.2 0.6 0 PP-g-MAH 0.5 0.5 0.8 1 1 black colorant 0.2 0.5 0.4 0.3 Charcoal Black Powder 0.5 Antioxidant 1010 0.1 0.1 0.2 0.2 0.2 Antioxidant 168 0.1 0.2 0.2 0.3 0.2 Stabilizer 770 0.3 0.2 0.2 0.3 Stabilizer 944 0.2 0.4 0.2 UV-531 0.5
  • the present invention selects general-purpose plastic polypropylene as the base material, adds alkali-free glass fiber yarn, produces through the LFT-G process and induces crystallization of the nucleating agent, and endows the material with the advantages of high strength and high heat resistance.
  • Attapulgite refines the size of PP spherulites, which is conducive to the penetration of millimeter waves, reduces the dielectric constant of the material, and meets the requirements of 5G for high strength, high heat resistance and high wave transmission of radar housings.
  • the refinement of the spherulite size of PP reduces the scattering effect of the material on the laser beam, improves the light transmittance of the material, and does not affect the light transmittance of the material under the action of organic dyes, realizing the millimeter wave radar housing. It is connected to the installation surface by laser welding, which has high welding strength and is not easy to be damaged, which solves a series of problems caused by easy loosening and poor sealing of the existing connection methods.
  • the present invention includes but is not limited to the above embodiments. According to the description of the present invention, improvements and modifications made without departing from the scope of the present invention should all fall within the protection scope of the present invention.
  • the material of the present invention can be used not only in millimeter-wave radar housings, but also in various fields of radomes requiring low dielectric constant.

Abstract

一种可激光焊接的毫米波雷达壳体材料及其制备方法,属于毫米波雷达壳体制造技术领域,具体包括以下重量份数的组分:聚丙烯50~90,玻璃纤维10~50,成核剂0.2~0.8,相容剂0.5~1,黑色着色剂0.1~0.5,抗氧剂0.1~0.5,光稳定剂0.1~0.8。本发明公开的雷达壳体材料具有低介电、轻量化、高强度和高耐热的优点,其能透过近红外光束,具有可激光焊接性。

Description

一种可激光焊接的毫米波雷达壳体材料及其制备方法 技术领域
本发明涉及毫米波雷达壳体材料技术领域,具体地说,涉及一种可激光焊接的77GHz毫米波雷达壳体材料。
背景技术
毫米波雷达,是工作在毫米波波段的雷达,通常是30~300GHz频段。其中,车用毫米波雷达主要有24GHz窄带雷达(24.00~24.25GHz)、24GHz超宽带雷达(24.25~24.65GHz)、77GHz雷达(76~77GHz)和79GHz雷达(77~81GHz)。相比24GHz雷达,77GHz雷达体积更小、检测精度更好,对雷达壳体材料要求更趋于低介电常数、低介电损耗以及轻量化。
雷达壳体材料要满足介电性能、力学性能、工艺性能和重量等要求,材料的介电性能包括介电常数和介电损耗。介电常数大,则电磁波在空气与雷达壳体界面上的反射率大,这将增加镜像波瓣电平、降低传输效率。介电损耗大,电磁波能量在穿透雷达壳体时转化成热量损耗的能量多。因此要求雷达壳体材料的介电常数和介电损耗尽可能低,以达到最大传输和最小反射的目的。低介电常数的材料给雷达壳体带来宽频带响应,允许放宽壳体厚度公差,从而降低制造成本。
通常毫米波雷达壳体材料采用纤维增强热塑性复合材料,如聚苯硫醚(PPS)、聚对苯二甲酸丁二酯(PBT)以及聚酰亚胺(PI)等材料。日本宝理开发了一种能够平衡各项性能的PPS。日本东丽开发了适用于毫米波雷达的聚酰亚胺(PI)材料。SABIC通过玻纤改性增强PBT开发出可透过雷达波的材料。这些材料具有高强度、耐高温、耐化学性等优点,但是密度大、成本高的问题限制了这些材料在毫米波雷达领域的广泛应用。另外,PBT和PI材料含有极性基团,材料本体的介电常数一般高于3,玻纤增强后达3.5以上,限制了在毫米波雷达中的使用。
玻纤增强聚丙烯材料的介电常数相对低,成本也低,近年来玻纤增强聚丙烯材料制备雷达壳体材料越来越受欢迎。专利CN110527188A公开了一种高透波聚丙烯组合物及其制备方法,在22GHz~80GHz毫米波范围该材料的频率损耗低于3%,在1MHz测试条件下介电常数在2.2左右,具备较高的透波性能和较低的介电常数,但其强度较低和耐热性较差,并不适用于雷达壳体的应用。
通常雷达壳体是通过螺钉的方式固定在安装面上,但是这种安装方式存在很多缺点,诸如易松动、脱落以及密封性能差等,不能很好地保护雷达器件。相比螺钉联接,激光焊接塑料的方式具有连接可靠、密封性好,加工方便以及不渗水等优点,能更大的保证毫米波的传输性能。
塑料激光焊接的原理是通过压力将两个待焊接塑料零部件压在一起,借助近红外激光束透过上层透光材料,被下层吸光材料吸收热能使塑料接触面熔化,进而将热塑性片材、薄膜或模塑零部件粘结在一起的技术。激光焊接作为一种现代焊接技术,具有熔深深、速 度快、变形小、对焊接环境要求不高、功率密度大、不受磁场的影响、不局限于导电材料、不需要真空的工作条件并且焊接过程中不产生X射线等优势,非常适合于微型零件和可达性很差的部位的焊接,被广泛应用于高端精密制造领域。
鉴于聚烯烃的结构特点,只有吸光的炭黑是聚烯烃理想的黑色颜料,无法实现激光透射焊接,上层材料的透近红外光率是衡量焊接质量的指标之一。因此,如何使黑色毫米波雷达壳体满足低介电常数、高强度、高耐热、轻量化要求的同时提高壳体的透近红外光率,采用激光焊接方式联接是扩大材料在毫米波雷达壳体领域应用的一项关键技术,目前仍未见相关技术专利报道。
发明内容
为解决上述技术问题,本发明提供一种雷达壳体材料同时具有低介电、轻量化、高强度和高耐热的优点,其能透过近红外光束,具有可激光焊接性。
为解决上述技术问题,本发明采用以下技术方案:
一种可激光焊接的毫米波雷达壳体材料,包括以下重量份数的组分:
Figure PCTCN2021102326-appb-000001
进一步的技术方案,所述聚丙烯是高流动性均聚聚丙烯或共聚聚丙烯中的一种或多种。
进一步的技术方案,所述玻璃纤维是硅烷型浸润剂处理过的无碱玻璃纤维纱的一种或多种。
进一步的技术方案,所述成核剂是纳米级针状的凹凸棒,其长径比为30~50,粒径为5~8微米。
进一步的技术方案,所述相容剂是马来酸酐与聚烯烃的接枝物,马来酸酐接枝率为1.0%~2.5%。
进一步的技术方案,所述黑色着色剂由溶剂红,溶剂蓝,溶剂绿和溶剂黄按照重量比(6~8):(3~5):(1~3):(0.5~1)复配得到。优选地,溶剂红为E2G,溶剂蓝为RR,溶剂绿为5B,溶剂黄为Yellow G。
进一步的技术方案,所述抗氧剂为受阻酚类、胺类、亚磷酸酯类和硫代酯类抗氧剂中的一种或多种。优选地,抗氧剂是1010和168按照重量比例1:1或1:2复配。
进一步的技术方案,所述光稳定剂为受阻胺类、苯并三唑类和二苯甲酮类光稳定剂中的一种或多种。
一种可激光焊接的毫米波雷达壳体材料的制备方法,包括以下步骤:
将聚丙烯、相容剂、抗氧剂、黑色着色剂、光稳定剂以及成核剂按照一定比例加入到混合机中使之充分混合均匀,将得到的混合物加入到双螺杆挤出机内,将得到的树脂熔体 挤入与双螺杆挤出机机头连接的浸渍模具中,继而将连续玻璃纤维通过浸渍模具,使连续玻璃纤维被熔体充分浸渍,最后冷却、牵引、切粒,即得到可激光焊接的毫米波雷达壳体材料。
有益效果:
与现技术相比,本发明具有如下显著优点:
1、本发明采用LFT-G工艺制备玻纤增强PP材料和纳米级成核剂提高PP的结晶度,双重方式赋予材料高强度和高耐热的优点。
2、PP材料本身透光率较高,但玻纤的添加会使激光束在材料中发生更多的反射和散射,耐高温的普通黑色着色剂的添加也会吸收部分光束,因此激光透过率大大降低。本发明的PP材料在凹凸棒诱导结晶的作用下形成小尺寸球晶,减少激光束通过该材料时的散射,提高激光束的透过率,进而提高激光焊接的强度。
3、跟传统的黑色着色剂相比,本发明的黑色着色剂,溶剂红,溶剂蓝,溶剂绿和溶剂黄按照重量比(6~8):(3~5):(1~3):(0.5~1)复配得到的黑色着色剂,能够显著透近红外光率。
4、本发明中凹凸棒使PP球晶尺寸细化,提高毫米波的穿透性,降低材料的介电常数,在77GHz测试条件下介电常数在2.6左右,可用于77GHz毫米波雷达壳体。
5、本发明的材料可以直接注塑成型,用于雷达壳体等要求低介电常数的壳体结构,制备工艺简单。将黑色毫米波雷达壳体材通过激光焊接的方式牢固地固定在安装面上,解决了现有联接方式易脱落以及密封性能差等问题,能更好的保护雷达器件。
具体实施方式
下面结合实施例对本发明作进一步详细的描述。
实施例
一种可激光焊接的毫米波雷达壳体材料,包括以下重量份数的组分:
Figure PCTCN2021102326-appb-000002
所述聚丙烯是高流动性均聚聚丙烯或共聚聚丙烯中的一种或多种。
所述玻璃纤维是硅烷型浸润剂处理过的无碱玻璃纤维纱的一种或多种。
所述成核剂是纳米级针状的凹凸棒,其长径比为30~50,粒径分布在5~8微米。
所述相容剂是马来酸酐与聚烯烃的接枝物,马来酸酐接枝率为1.0%~2.5%。
所述黑色着色剂由溶剂红E2G,溶剂蓝RR,溶剂绿5B和溶剂黄Yellow G按照重量比8:5:3:1复配得到。溶剂黄Yellow G选用朗盛溶剂色浆
Figure PCTCN2021102326-appb-000003
Yellow G。
所述抗氧剂为受阻酚类、胺类、亚磷酸酯类和硫代酯类抗氧剂中的一种或多种。优选 地,抗氧剂是1010和168按照重量比例1:1或1:2复配。
所述光稳定剂为受阻胺类、苯并三唑类和二苯甲酮类光稳定剂中的一种或多种。
实施例1~4的配方如表1所示,实施例的制备方法包括以下步骤:
将聚丙烯、相容剂、抗氧剂、黑色着色剂、成核剂和光稳定剂按照一定比例加入到混合机中使之充分混合均匀,将预混物加入到双螺杆挤出机内,将得到的树脂熔体挤入与双螺杆挤出机机头连接的浸渍模具中,继而将连续玻璃纤维通过浸渍模具,使连续玻璃纤维被熔体充分浸渍,最后冷却、牵引、切粒,即得到可激光焊接的毫米波雷达壳体粒料。
将粒料在90℃烘干3小时,注塑成型,其中,注塑机的工作条件为:一区温度200~220℃,二区温度为230~240℃,三区温度为240~250℃,四区温度为245~255℃,压力为60~90MPa,速度为30~50mm/s。其中,一套标准样条进行力学性能测试,60*20*2的样条按照搭接的方式进行激光焊接。
实施例的测试标准与条件如下:拉伸强度按ISO 527测试,拉伸速度为50mm/min;弯曲强度按ISO 178测试,测试速度为2mm/min;悬臂梁缺口冲击强度按ISO 180测试,缺口形状为V形;简支梁无缺口冲击强度按ISO179测试,热变形温度按ISO75-2,负荷1.8MPa;介电性能按SJ 20512-1995,频率为77GHz;透光率:紫外可见近红外分光光度计Lambda950,60mm*60mm*2mm光面板子,波长为800~1200nm。
表1实施例1~4和对比例的配方
配方 实施例1 实施例2 实施例3 实施例4 对比例1
均聚PP 60 50 60 70  
共聚PP 20 20     70
连续玻纤 20 30 40 30  
短玻纤         30
凹凸棒 0.7 0.5 0.2 0.6 0
PP-g-MAH 0.5 0.5 0.8 1 1
黑色着色剂 0.2 0.5 0.4 0.3  
炭黑色粉         0.5
抗氧剂1010 0.1 0.1 0.2 0.2 0.2
抗氧剂168 0.1 0.2 0.2 0.3 0.2
稳定剂770 0.3 0.2 0.2   0.3
稳定剂944 0.2 0.4 0.2    
UV-531       0.5  
表2实施例1~4和对比例的性能测试结果
Figure PCTCN2021102326-appb-000004
通过实施例的阐述,本发明选择通用塑料聚丙烯为基材,添加无碱玻璃纤维纱,通过LFT-G工艺生产和成核剂的诱导结晶作用,赋予了材料高强度和高耐热等优点;凹凸棒使PP球晶尺寸细化,有利于毫米波的穿透性,降低了材料的介电常数,满足5G对雷达壳体高强度、高耐热以及高透波的要求。另外,PP的球晶尺寸的细化,减少材料对激光束的散射作用,提高了材料的透光率,在有机染料的作用下也不影响材料的透光率,实现了毫米波雷达壳体以激光焊接的方式连接在安装面上,焊接强度高,不易损坏,解决了现有连接方式存在的易松动、密封性差等带来的一系列问题。
本发明包括但不限于以上实施例,根据本发明的阐述,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。另外,本发明的材料不仅仅可以用在毫米波雷达壳体上,还可用于要求低介电常数的各种天线罩领域。

Claims (10)

  1. 一种可激光焊接的毫米波雷达壳体材料,其特征在于,包括以下重量份数的组分:
    Figure PCTCN2021102326-appb-100001
  2. 根据权利要求1所述的一种可激光焊接的毫米波雷达壳体材料,其特征在于,所述聚丙烯是高流动性均聚聚丙烯或共聚聚丙烯中的一种或多种。
  3. 根据权利要求1所述的一种可激光焊接的毫米波雷达壳体材料,其特征在于,所述玻璃纤维是硅烷型浸润剂处理过的无碱玻璃纤维纱的一种或多种。
  4. 根据权利要求1所述的一种可激光焊接的毫米波雷达壳体材料,其特征在于,所述成核剂是纳米级针状凹凸棒,其长径比为30~50,平均直径为5~8微米。
  5. 根据权利要求1所述的一种可激光焊接的毫米波雷达壳体材料,其特征在于,所述相容剂是马来酸酐与聚烯烃的接枝物,马来酸酐接枝率为1.0%~2.5%。
  6. 根据权利要求1所述的一种可激光焊接的毫米波雷达壳体材料,其特征在于,所述的有机黑色着色剂由溶剂红,溶剂蓝,溶剂绿和溶剂黄按照重量比(6~8):(3~5):(1~3):(0.5~1)复配而成。
  7. 根据权利要求6所述的一种可激光焊接的毫米波雷达壳体材料,其特征在于,所述的溶剂红为E2G,溶剂蓝为RR,溶剂绿为5B,溶剂黄为Yellow G。
  8. 根据权利要求1所述的一种可激光焊接的毫米波雷达壳体材料,其特征在于,所述抗氧剂为受阻酚类、亚磷酸酯类和硫代酯类抗氧剂中的一种或多种。
  9. 根据权利要求1所述的一种可激光焊接的毫米波雷达壳体材料,其特征在于,所述光稳定剂为受阻胺类、苯并三唑类和二苯甲酮类光稳定剂中的一种或多种。
  10. 权利要求1~9任一项所述的一种可激光焊接的毫米波雷达壳体材料的制备方法,其特征在于,包括以下步骤:
    将聚丙烯、相容剂、抗氧剂、黑色着色剂、成核剂以及光稳定剂按照重量份数加入到混合机中使之充分混合均匀得到预混物,将预混物加入到双螺杆挤出机内,将得到的树脂熔体挤入与双螺杆挤出机机头连接的浸渍模具中,继而将连续玻璃纤维通过浸渍模具,使连续玻璃纤维被熔体充分浸渍,最后冷却、牵引、切粒,即得到可激光焊接的毫米波雷达壳体材料。
PCT/CN2021/102326 2020-11-10 2021-06-25 一种可激光焊接的毫米波雷达壳体材料及其制备方法 WO2022100102A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/907,829 US20230132076A1 (en) 2020-11-10 2021-06-25 Millimeter-Wave Radar Housing Material Capable of Being Laser Welded, and Preparation Method Therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011246478.4 2020-11-10
CN202011246478.4A CN112358684B (zh) 2020-11-10 2020-11-10 一种可激光焊接的毫米波雷达壳体材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2022100102A1 true WO2022100102A1 (zh) 2022-05-19

Family

ID=74509582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102326 WO2022100102A1 (zh) 2020-11-10 2021-06-25 一种可激光焊接的毫米波雷达壳体材料及其制备方法

Country Status (3)

Country Link
US (1) US20230132076A1 (zh)
CN (1) CN112358684B (zh)
WO (1) WO2022100102A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112358684B (zh) * 2020-11-10 2022-05-20 南京聚隆科技股份有限公司 一种可激光焊接的毫米波雷达壳体材料及其制备方法
CN114083233A (zh) * 2021-11-11 2022-02-25 南京聚隆科技股份有限公司 一种毫米波雷达壳体及其制备工艺
CN115490953B (zh) * 2022-09-06 2023-11-03 烽火通信科技股份有限公司 一种黑色聚烯烃材料及其制备方法
CN115612208B (zh) * 2022-10-21 2024-01-02 金发科技股份有限公司 一种连续玻纤增强聚丙烯组合物及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101473246A (zh) * 2006-06-19 2009-07-01 沙伯基础创新塑料知识产权有限公司 红外透射的热塑性组合物及由其形成的制品
CN103131081A (zh) * 2013-03-01 2013-06-05 南京工业大学 环境友好型改性聚丙烯异型材基站天线外罩及其制备方法
WO2014192470A1 (ja) * 2013-05-30 2014-12-04 ダイセルポリマー株式会社 ミリ波の遮蔽性能を有している成形体用の熱可塑性樹脂組成物
CN110527188A (zh) * 2019-08-23 2019-12-03 励塑新材料科技(嘉兴)有限公司 一种高透波聚丙烯组合物及其制备方法
CN111057310A (zh) * 2019-12-30 2020-04-24 江苏金发科技新材料有限公司 一种用于激光焊接中黑色透光层的长玻纤增强聚丙烯复合物及其应用
CN112358684A (zh) * 2020-11-10 2021-02-12 南京聚隆科技股份有限公司 一种可激光焊接的毫米波雷达壳体材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101473246A (zh) * 2006-06-19 2009-07-01 沙伯基础创新塑料知识产权有限公司 红外透射的热塑性组合物及由其形成的制品
CN103131081A (zh) * 2013-03-01 2013-06-05 南京工业大学 环境友好型改性聚丙烯异型材基站天线外罩及其制备方法
WO2014192470A1 (ja) * 2013-05-30 2014-12-04 ダイセルポリマー株式会社 ミリ波の遮蔽性能を有している成形体用の熱可塑性樹脂組成物
CN110527188A (zh) * 2019-08-23 2019-12-03 励塑新材料科技(嘉兴)有限公司 一种高透波聚丙烯组合物及其制备方法
CN111057310A (zh) * 2019-12-30 2020-04-24 江苏金发科技新材料有限公司 一种用于激光焊接中黑色透光层的长玻纤增强聚丙烯复合物及其应用
CN112358684A (zh) * 2020-11-10 2021-02-12 南京聚隆科技股份有限公司 一种可激光焊接的毫米波雷达壳体材料及其制备方法

Also Published As

Publication number Publication date
CN112358684A (zh) 2021-02-12
US20230132076A1 (en) 2023-04-27
CN112358684B (zh) 2022-05-20

Similar Documents

Publication Publication Date Title
WO2022100102A1 (zh) 一种可激光焊接的毫米波雷达壳体材料及其制备方法
CN109929241A (zh) 一种激光焊接用尼龙材料组合体及其制备方法和应用
CN109233216B (zh) 一种可激光焊接的黑色玻纤增强pbt复合材料及其制备方法
WO2014192470A1 (ja) ミリ波の遮蔽性能を有している成形体用の熱可塑性樹脂組成物
CN1791322A (zh) 一种兼具电磁屏蔽及雷达吸波功能的复合材料及制备方法
CN106317864A (zh) 一种可激光焊接用黑色玻纤增强尼龙6材料及其制备方法
CN109897347B (zh) 一种军工电连接器绝缘体及其制备方法
WO2022052410A1 (zh) 一种抗紫外pbt复合物及其制备方法和应用
CN105860525A (zh) 一种低气味聚苯硫醚复合材料及其制备方法
CN110746763A (zh) 一种聚苯醚树脂基复合材料及其制备方法和应用
CN114539593A (zh) 一种高透波复合材料及其制备方法和应用
KR101742974B1 (ko) 전자파 차폐성과 흡수능을 갖는 고분자 복합체 및 그 제조방법
CN111978712B (zh) 一种电磁防护塑料及其制备方法
KR101742973B1 (ko) 전자파흡수성과 열전도성을 갖는 고분자 복합체 및 그 제조방법
CN116675958A (zh) 一种吸波材料、吸波材料的制备方法及毫米波雷达天线罩
CN108641313B (zh) 一种真空助力器用阀体及其制备方法
CN114752178A (zh) 一种基于耐电子束辐照高分子材料改性的动力电池外壳
CN111234471A (zh) 一种低线性热膨胀系数的pbt复合材料及其制备方法
CN111073110A (zh) 一种用于汽车前端支架的塑料制品
CN109504080A (zh) 一种耐水解的增强尼龙及其制备方法
CN112694736B (zh) 一种具有高焊接强度的聚碳酸酯模塑物及其制备方法
KR102178157B1 (ko) 고분자 매트릭스 및 세라믹 입자를 포함하는 반사경 사출성형용 펠렛으로부터 제조된 반사경 및 이의 제조방법
CN113583393B (zh) 一种环烯烃聚合物-聚苯醚树脂组合物及其制备方法和应用
CN115109341B (zh) 可激光焊接的聚丙烯改性材料及其制备方法和应用
CN113527860B (zh) 一种具有高熔融流动性ppo复合材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21890633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21890633

Country of ref document: EP

Kind code of ref document: A1