WO2022100044A1 - 一种检测双酚a的电化学方法及装置 - Google Patents

一种检测双酚a的电化学方法及装置 Download PDF

Info

Publication number
WO2022100044A1
WO2022100044A1 PCT/CN2021/093640 CN2021093640W WO2022100044A1 WO 2022100044 A1 WO2022100044 A1 WO 2022100044A1 CN 2021093640 W CN2021093640 W CN 2021093640W WO 2022100044 A1 WO2022100044 A1 WO 2022100044A1
Authority
WO
WIPO (PCT)
Prior art keywords
platinum
palladium
electrode
solution
bisphenol
Prior art date
Application number
PCT/CN2021/093640
Other languages
English (en)
French (fr)
Inventor
朱志强
苗向阳
郁惠珍
Original Assignee
苏州健雄职业技术学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州健雄职业技术学院 filed Critical 苏州健雄职业技术学院
Publication of WO2022100044A1 publication Critical patent/WO2022100044A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Definitions

  • the invention relates to the technical field of electrochemistry, in particular to an electrochemical method and device for detecting bisphenol A.
  • Bisphenol A is an important organic monomer in the production of polycarbonate and epoxy resin, and it is widely used in the production of plastic containers, canned beverage containers, milk bottles, water bottles, tableware, etc. Studies have shown that bisphenol A exhibits hormone-like properties and can cause a variety of diseases in people.
  • the conventional analytical methods for the determination of bisphenol A include high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) and gas chromatography-mass spectrometry (GC-MS). These methods have high sensitivity, but their pretreatment process is relatively complicated, and the instruments used are expensive, require professional operators to operate, and often involve toxic organic solvents. Therefore, a rapid, sensitive, simple and accurate method for the detection of bisphenol A is required.
  • the purpose of the embodiments of the present invention is to propose an electrochemical method for detecting bisphenol A, so as to solve the problem that the content of bisphenol A in articles cannot be flexibly, simply and accurately detected in the prior art.
  • the present invention provides an electrochemical method for detecting bisphenol A, comprising the following steps:
  • the platinum-palladium bimetallic nanoparticles are diluted to 0.1-2.0 mg/mL to obtain a platinum-palladium bimetallic nano-solution; the polished glassy carbon electrode is cleaned and blown dry, and the platinum-palladium bimetallic nano-solution is added dropwise, and air-dried to obtain Platinum palladium modified electrode;
  • the platinum-palladium modified electrode, the counter electrode and the reference electrode are combined to form a three-electrode system, and are immersed in an electrolyte of pH 4.0-9.0 to obtain an electrochemical detection device for detecting bisphenol A;
  • the sample to be detected is processed to obtain a sample solution, and the sample solution is added to an electrochemical detection device for detection.
  • preparing platinum-palladium bimetallic nanoparticles comprises: stirring and mixing potassium iodide, polyvinylpyrrolidone, potassium tetrachloroplatinate and potassium tetrachloropalladate, adding dimethylformamide and stirring and mixing, and heating, through The platinum-palladium bimetallic nanoparticles were obtained by centrifugal separation and purification twice.
  • the amount of potassium iodide is 0.1 g
  • the amount of polyvinylpyrrolidone is 0.25 g
  • the amount of potassium tetrachloroplatinate is 240 ⁇ L and the concentration is 100 mM
  • the amount of potassium tetrachloropalladate is 240 ⁇ L and the concentration is 50- 200mM
  • the amount of dimethylformamide is 4mL and the mass concentration is 30%
  • the heating is microwave heating, and the duration is 30min
  • the storage temperature for storage is 4°C.
  • the polished glassy carbon electrodes were ultrasonically cleaned in ultrapure water and absolute ethanol, respectively, and 5 ⁇ L of platinum-palladium bimetallic nano-solution was added dropwise after drying with nitrogen.
  • the electrolyte is a phosphate buffered solution.
  • the washed sample to be tested is weighed, heated and sonicated after adding ethanol, filtered and the liquid phase is collected and diluted after standing.
  • the amount of the sample to be tested is weighed to be 10.0 g; the duration of adding ethanol to ultrasonic is 30 min.
  • phosphate buffered solution is used for dilution.
  • performing the detection includes: performing the measurement according to differential pulse voltammetry, and setting the scanning range to be 0.3-0.8V to obtain a voltammetric curve of the sample solution.
  • the present invention also provides an electrochemical detection device for detecting bisphenol A, and the electrochemical detection device is prepared by the following method:
  • the platinum-palladium bimetallic nanoparticles are diluted to 0.1-2.0 mg/mL to obtain a platinum-palladium bimetallic nano-solution; the polished glassy carbon electrode is cleaned and blown dry, and the platinum-palladium bimetallic nano-solution is added dropwise, and air-dried to obtain Platinum palladium modified electrode;
  • the platinum-palladium modified electrode, the counter electrode and the reference electrode are combined to form a three-electrode system, which is immersed in an electrolyte of pH 4.0-9.0 to obtain an electrochemical detection device for detecting and detecting bisphenol A.
  • the electrode is modified by preparing platinum and palladium bimetallic nanomaterials to improve the catalytic performance of the electrode to bisphenol A, so as to obtain an electrochemical detection device with high sensitivity; and then the sample to be tested is treated and placed in the electrochemical detection device for testing.
  • the detection makes the detection of bisphenol A simple, low in cost and accurate in detection.
  • Fig. 1 is the electron microscope picture of platinum palladium bimetallic nanomaterial provided according to the embodiment of the present invention.
  • FIG. 3 is a cyclic voltammetry diagram of a bisphenol A solution with a concentration of 50 ⁇ M measured in an electrochemical detection device according to an embodiment of the present invention
  • FIG. 5 is a voltammetric curve diagram of detecting the content of bisphenol A in a food plastic packaging material according to an embodiment of the present invention.
  • one aspect of the present invention proposes an embodiment of an electrochemical method for detecting bisphenol A, and the specific embodiment steps are as follows:
  • platinum-palladium bimetallic nanomaterial modified electrode dilute the platinum-palladium bimetallic nanoparticles to 0.1-2.0 mg/mL to obtain a platinum-palladium bimetallic nano-solution; place the polished glassy carbon electrodes in the Ultrapure water and absolute ethanol were ultrasonically cleaned, dried with nitrogen, and 5 ⁇ L of platinum-palladium bimetallic nano-solution was added dropwise, and the platinum-palladium modified electrode was obtained after drying.
  • Fig. 2 shows a graph showing the change of the peak current of 50 ⁇ M bisphenol A solution with the pH value of the electrolyte
  • the abscissa is the pH value of the phosphate buffer solution
  • the ordinate is the peak current of the 50 ⁇ M bisphenol A solution ( ⁇ A ).
  • the pH value is 6
  • the corresponding peak current value is the largest, that is, the peak current is the most obvious.
  • the sample to be tested is processed into small pieces, 10.0 g is weighed after washing, ethanol is added for sonication for 30 min, heated and sonicated, placed overnight, filtered and collected the liquid phase, diluted with phosphate buffer solution to a certain extent volume to obtain the sample solution.
  • FIG. 3 shows a cyclic voltammetry diagram of a bisphenol A solution with a concentration of 50 ⁇ M measured in an electrochemical detection device, wherein the reference electrode in the electrochemical detection device is Ag/AgCl.
  • the reference electrode in the electrochemical detection device is Ag/AgCl.
  • FIG. 3 shows a cyclic voltammetry diagram of a bisphenol A solution with a concentration of 50 ⁇ M measured in an electrochemical detection device, wherein the reference electrode in the electrochemical detection device is Ag/AgCl.
  • the platinum-palladium bimetallic nanomaterials effectively enhance the electrocatalytic oxidation of bisphenol A on the glassy carbon electrode surface, confirming the platinum-palladium bimetallic modification
  • the electrode can be used for the detection of bisphenol A.
  • Figure 4 shows a standard curve graph of a series of concentrations of bisphenol A solution measured in an electrochemical detection device, wherein the abscissa is the concentration of bisphenol A solution, and the ordinate is the peak current.
  • Detecting the bisphenol A content in the sample add an appropriate amount of the sample solution to the electrochemical detection device, select differential pulse voltammetry for measurement, and set the scanning range to 0.3-0.8V to obtain the voltammetric curve of the sample solution; Then, by comparing the voltammetry curve with the standard curve, the concentration of bisphenol A in the sample solution is obtained, and then the content of bisphenol A in the sample is obtained.
  • FIG. 5 shows a voltammetry diagram of a food plastic packaging material using the method of the embodiment of the present invention to detect the content of bisphenol A, and the food plastic packaging material is a sample.
  • the oxidation peak of bisphenol A is at the potential of 0.6V, and the corresponding ordinate peak current value is read, and then according to the standard curve in Figure 4, a sample of this food plastic packaging material can be obtained The concentration of bisphenol A solution in the solution, and then the content of bisphenol A in the sample is measured.
  • platinum-palladium bimetallic nanomaterial modified electrode the platinum-palladium bimetallic nanoparticles were diluted to 0.1 mg/mL to obtain platinum-palladium bimetallic nano-solution; the polished glassy carbon electrodes were placed in ultrapure water and Ultrasonic cleaning was performed in absolute ethanol, 5 ⁇ L of platinum-palladium bimetallic nano-solution was added dropwise after drying with nitrogen, and a platinum-palladium modified electrode was obtained after drying.
  • the sample to be tested is processed into small pieces, 10.0 g is weighed after washing, ethanol is added for sonication for 30 min, heated and sonicated, placed overnight, filtered and collected the liquid phase, diluted with phosphate buffer solution to a certain extent volume to obtain the sample solution.
  • Detecting the bisphenol A content in the sample add an appropriate amount of the sample solution to the electrochemical detection device, select differential pulse voltammetry for measurement, and set the scanning range to 0.3-0.8V to obtain the voltammetric curve of the sample solution; Then, by comparing the voltammetry curve with the standard curve, the concentration of bisphenol A in the sample solution is obtained, and then the content of bisphenol A in the sample is obtained.
  • platinum and palladium bimetallic nanomaterial modified electrode (2) Preparation of platinum and palladium bimetallic nanomaterial modified electrode: the platinum and palladium bimetallic nanoparticles were diluted to 2.0 mg/mL to obtain a platinum and palladium bimetallic nano solution; the polished glassy carbon electrode was placed in ultrapure water and Ultrasonic cleaning was performed in absolute ethanol, 5 ⁇ L of platinum-palladium bimetallic nano-solution was added dropwise after drying with nitrogen, and a platinum-palladium modified electrode was obtained after drying.
  • the sample to be tested is processed into small pieces, 10.0 g is weighed after washing, ethanol is added for sonication for 30 min, heated and sonicated, placed overnight, filtered and collected the liquid phase, diluted with phosphate buffer solution to a certain extent volume to obtain the sample solution.
  • Detecting the bisphenol A content in the sample add an appropriate amount of the sample solution to the electrochemical detection device, select differential pulse voltammetry for measurement, and set the scanning range to 0.3-0.8V to obtain the voltammetric curve of the sample solution; Then, by comparing the voltammetry curve with the standard curve, the concentration of bisphenol A in the sample solution is obtained, and then the content of bisphenol A in the sample is obtained.
  • platinum-palladium bimetallic nanomaterial modified electrode the platinum-palladium bimetallic nanoparticles were diluted to 0.1 mg/mL to obtain platinum-palladium bimetallic nano-solution; the polished glassy carbon electrodes were placed in ultrapure water and Ultrasonic cleaning was performed in absolute ethanol, 5 ⁇ L of platinum-palladium bimetallic nano-solution was added dropwise after drying with nitrogen, and a platinum-palladium modified electrode was obtained after drying.
  • the sample to be tested is processed into small pieces, 10.0 g is weighed after washing, ethanol is added for sonication for 30 min, heated and sonicated, placed overnight, filtered and collected the liquid phase, diluted with phosphate buffer solution to a certain extent volume to obtain the sample solution.
  • Detecting the bisphenol A content in the sample add an appropriate amount of the sample solution to the electrochemical detection device, select differential pulse voltammetry for measurement, and set the scanning range to 0.3-0.8V to obtain the voltammetric curve of the sample solution; Then, by comparing the voltammetry curve with the standard curve, the concentration of bisphenol A in the sample solution is obtained, and then the content of bisphenol A in the sample is obtained.
  • the electrode is modified by preparing platinum-palladium bimetallic nanomaterials to improve the catalytic performance of the electrode to bisphenol A, so as to obtain an electrochemical detection device with high sensitivity; and then the sample to be tested is treated and placed in the electrochemical detection device for detection.
  • the detection makes the detection of bisphenol A simple, low in cost and accurate in detection.
  • Another aspect of the embodiments of the present invention provides an electrochemical detection device for detecting bisphenol A, and the electrochemical detection device is prepared by the following method:
  • the platinum-palladium bimetallic nanoparticles are diluted to 0.1-2.0 mg/mL to obtain a platinum-palladium bimetallic nano-solution; the polished glassy carbon electrode is cleaned and blown dry, and the platinum-palladium bimetallic nano-solution is added dropwise, and air-dried to obtain Platinum palladium modified electrode;
  • the platinum-palladium modified electrode, the counter electrode and the reference electrode are combined to form a three-electrode system, which is immersed in an electrolyte of pH 4.0-9.0 to obtain an electrochemical detection device for detecting and detecting bisphenol A.
  • the electrochemical detection device for detecting bisphenol A according to the embodiment of the present invention is simple in operation, low in cost, and high in detection accuracy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种检测双酚A的电化学方法及装置,方法包括以下步骤:制备铂钯双金属纳米颗粒,并储存备用;将所述铂钯双金属纳米颗粒稀释至0.1~2.0mg/mL,得到铂钯双金属纳米溶液;将抛光处理后的玻碳电极清洗吹干,并滴加少量所述铂钯双金属纳米溶液,晾干后得到铂钯修饰电极;将所述铂钯修饰电极与对电极和参比电极共同组成三电极系统,并浸入pH4.0~9.0的电解液中,得到检测双酚A的电化学检测装置;将一定量的待检测样品做处理,得到样品溶液,并将适量的所述样品溶液加入所述电化学检测装置中,进行检测。本发明的检测双酚A的电化学方法操作简便、成本低廉且检测准确。

Description

一种检测双酚A的电化学方法及装置 技术领域
本发明涉及电化学技术领域,尤其涉及一种检测双酚A的电化学方法及装置。
背景技术
双酚A是聚碳酸酯和环氧树脂生产中重要的有机单体,其被广泛应用于塑料容器、罐装饮料容器、奶瓶、水瓶、餐具等的生产中。有研究表明,双酚A表现出类似激素的特性,并且会引发人们的多种疾病。
测定双酚A的常规分析方法有高效液相色谱串联质谱(HPLC-MS/MS)以及气相色谱-质谱(GC-MS)。这些方法具有较高的灵敏度,但是其预处理过程相对复杂,且所用仪器昂贵,需要专业的操作人员操作,并往往涉及有毒的有机物溶剂。因此,需要建立一种快速、灵敏、简便、准确地检测双酚A的方法。
发明内容
有鉴于此,本发明实施例的目的在于提出一种检测双酚A的电化学方法,用以解决现有技术中无法灵活、简便、准确地检测物品中双酚A含量的问题。
基于上述目的,本发明提供了一种检测双酚A的电化学方法,包括如下步骤:
制备铂钯双金属纳米颗粒,并储存备用;
将铂钯双金属纳米颗粒稀释至0.1~2.0mg/mL,得到铂钯双金属纳米溶液;将抛光处理后的玻碳电极清洗吹干,并滴加铂钯双金属纳米溶液,晾 干后得到铂钯修饰电极;
将铂钯修饰电极与对电极和参比电极共同组成三电极系统,并浸入pH4.0~9.0的电解液中,得到检测双酚A的电化学检测装置;
处理待检测样品,得到样品溶液,并将样品溶液加入电化学检测装置中,进行检测。
在一些实施例中,制备铂钯双金属纳米颗粒包括:将碘化钾、聚乙烯吡咯烷酮、四氯铂酸钾和四氯钯酸钾搅拌混合,加入二甲基甲酰胺并搅拌混合,并加热,通过两次离心分离纯化得到铂钯双金属纳米颗粒。
在一些实施例中,碘化钾的量为0.1g,聚乙烯吡咯烷酮的量为0.25g,四氯铂酸钾的量为240μL且浓度为100mM,四氯钯酸钾的量为240μL且浓度为50~200mM,二甲基甲酰胺的量为4mL且质量浓度为30%;加热为微波加热,且时长为30min;储存备用的储存温度为4℃。
在一些实施例中,将抛光处理后的玻碳电极分别于超纯水和无水乙醇中超声清洗,经氮气吹干后滴加5μL铂钯双金属纳米溶液。
在一些实施例中,电解液为磷酸盐缓冲溶液。
在一些实施例中,称取洗涤后的待检测样品,加乙醇后加热并超声,静置后过滤并收集液相并稀释。
在一些实施例中,称取的待检测样品的量为10.0g;加乙醇超声的时长为30min。
在一些实施例中,使用磷酸盐缓冲溶液进行稀释。
在一些实施例中,进行检测包括:根据差分脉冲伏安法进行测定,且设置扫描范围为0.3~0.8V,得到样品溶液的伏安曲线。
本发明还提供了一种检测双酚A的电化学检测装置,电化学检测装置通过以下方法制备:
制备铂钯双金属纳米颗粒,并储存备用;
将铂钯双金属纳米颗粒稀释至0.1~2.0mg/mL,得到铂钯双金属纳米溶 液;将抛光处理后的玻碳电极清洗吹干,并滴加铂钯双金属纳米溶液,晾干后得到铂钯修饰电极;
将铂钯修饰电极与对电极和参比电极共同组成三电极系统,并浸入pH4.0~9.0的电解液中,得到用于检测检测双酚A的电化学检测装置。
本发明具有以下有益技术效果:
本发明通过制备铂钯双金属纳米材料来修饰电极,提高电极对双酚A的催化性能,从而获得灵敏度高的电化学检测装置;再通过对待测样品做处理,放入电化学检测装置中做检测,使得检测双酚A操作简便、成本低廉且检测准确。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的实施例。
图1为根据本发明实施例提供的铂钯双金属纳米材料的电镜图;
图2为根据本发明实施例提供的50μM的双酚A溶液的峰值电流随电解液PH值的变化曲线图;
图3为根据本发明实施例提供的浓度为50μM的双酚A溶液在电化学检测装置中测得的循环伏安曲线图;
图4为根据本发明实施例提供的一系列浓度的双酚A溶液在电化学检测装置中测得的标准曲线图;
图5为根据本发明实施例提供的一食品塑料包装材料检测双酚A含量的伏安曲线图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明实施例进一步详细说明。
需要说明的是,本发明实施例中的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备固有的其他步骤或单元。
基于上述目的,本发明一方面提出了一种检测双酚A的电化学方法的实施例,具体实施例步骤如下:
(1)铂钯双金属纳米材料的合成:将0.1g的碘化钾、0.25g的聚乙烯吡咯烷酮、240μL浓度为100mM的四氯铂酸钾和240μL浓度为50~200mM四氯钯酸钾搅拌混合;加入4mL质量浓度为30%二甲基甲酰胺,搅拌混合;微波加热反应30min,通过两次离心分离纯化得到铂钯双金属纳米颗粒,将铂钯双金属纳米颗粒在4℃储存备用。
(2)制备铂钯双金属纳米材料修饰电极:将所述铂钯双金属纳米颗粒稀释至0.1~2.0mg/mL,得到铂钯双金属纳米溶液;将经抛光处理后的玻碳电极分别于超纯水和无水乙醇中超声清洗,氮气吹干后滴加5μL铂钯双金属纳米溶液,晾干后得到铂钯修饰电极。
(3)制作电化学检测装置:配制pH4.0~9.0的磷酸盐缓冲溶液作为电解液,将铂钯修饰电极与对电极、参比电极共同组成三电极系统,浸入上述电解液,得到检测双酚A的电化学检测装置;
图2示出的是50μM的双酚A溶液的峰值电流随电解液PH值的变化曲线图,其横坐标为磷酸盐缓冲溶液pH值,纵坐标为50μM的双酚A溶液的峰值电流(μA)。如图2所示,当pH值为6时对应的峰值电流值最大,即峰值电流最明显。
(4)处理待检测样品:将待检测样品处理成小块,洗涤后称取10.0g,加乙醇超声30min,加热并超声,放置过夜,过滤并收集液相,用磷酸盐缓冲溶液稀释至一定体积,得到样品溶液。
(5)检验电化学检测装置中的双酚A:配制一系列浓度的双酚A溶液, 分别放入电化学检测装置中,根据差分脉冲伏安法,以双酚A溶液浓度为横坐标,以峰电流为纵坐标绘制双酚A溶液的标准曲线。
图3示出的是浓度为50μM的双酚A溶液在电化学检测装置中测得的循环伏安曲线图,其中,电化学检测装置中的参比电极为Ag/AgCl。如图3所示,在电势为0.6V处有一个明显的氧化峰,表明铂钯双金属纳米材料有效地提高了双酚A在玻碳电极表面的电催化氧化,证实了铂钯双金属修饰电极可以用于双酚A的检测。
图4示出的是一系列浓度的双酚A溶液在电化学检测装置中测得的标准曲线图,其中,横坐标为双酚A溶液浓度,纵坐标为峰电流。
(6)检测样品中的双酚A含量:将适量的样品溶液加入电化学检测装置中,选择差分脉冲伏安法进行测定,扫描范围设为0.3~0.8V,得到样品溶液的伏安曲线;再通过将伏安曲线对照标准曲线,获得样品溶液中双酚A的浓度,进而得到样品中双酚A的含量。
图5示出的是一食品塑料包装材料采用本发明实施例的方法检测双酚A含量的伏安曲线图,此食品塑料包装材料为样品。如图5所示,在电势为0.6V处为双酚A的氧化峰,读取对应的纵坐标峰电流的数值,再根据图4的标准曲线图,可得到这一食品塑料包装材料的样品溶液中双酚A溶液的浓度,进而测得样品中双酚A得含量。
实施例1
(1)铂钯双金属纳米材料的合成:将0.1g的碘化钾、0.25g的聚乙烯吡咯烷酮、240μL浓度为100mM的四氯铂酸钾和240μL浓度为50mM四氯钯酸钾搅拌混合;加入4mL质量浓度为30%二甲基甲酰胺,搅拌混合。微波加热反应30min,通过两次离心分离纯化得到铂钯双金属纳米颗粒,将铂钯双金属纳米颗粒在4℃储存备用。
(2)制备铂钯双金属纳米材料修饰电极:将铂钯双金属纳米颗粒稀释至0.1mg/mL,得到铂钯双金属纳米溶液;将经抛光处理后的玻碳电极分别于超纯水和无水乙醇中超声清洗,氮气吹干后滴加5μL铂钯双金属纳米溶 液,晾干后得到铂钯修饰电极。
(3)制作电化学检测装置:配制pH6.0的磷酸盐缓冲溶液作为电解液,将铂钯修饰电极与对电极、参比电极共同组成三电极系统,浸入上述电解液,得到检测双酚A的电化学检测装置;
(4)处理待检测样品:将待检测样品处理成小块,洗涤后称取10.0g,加乙醇超声30min,加热并超声,放置过夜,过滤并收集液相,用磷酸盐缓冲溶液稀释至一定体积,得到样品溶液。
(5)检验电化学检测装置中的双酚A:配制一系列浓度的双酚A溶液,分别放入电化学检测装置中,根据差分脉冲伏安法,以双酚A溶液浓度为横坐标,以峰电流为纵坐标绘制双酚A溶液的标准曲线。
(6)检测样品中的双酚A含量:将适量的样品溶液加入电化学检测装置中,选择差分脉冲伏安法进行测定,扫描范围设为0.3~0.8V,得到样品溶液的伏安曲线;再通过将伏安曲线对照标准曲线,获得样品溶液中双酚A的浓度,进而得到样品中双酚A的含量。
实施例2
(1)铂钯双金属纳米材料的合成:将0.1g的碘化钾、0.25g的聚乙烯吡咯烷酮、240μL浓度为100mM的四氯铂酸钾和240μL浓度为100mM四氯钯酸钾搅拌混合;加入4mL质量浓度为30%二甲基甲酰胺,搅拌混合。微波加热反应30min,通过两次离心分离纯化得到铂钯双金属纳米颗粒,将铂钯双金属纳米颗粒在4℃储存备用。
(2)制备铂钯双金属纳米材料修饰电极:将铂钯双金属纳米颗粒稀释至2.0mg/mL,得到铂钯双金属纳米溶液;将经抛光处理后的玻碳电极分别于超纯水和无水乙醇中超声清洗,氮气吹干后滴加5μL铂钯双金属纳米溶液,晾干后得到铂钯修饰电极。
(3)制作电化学检测装置:配制pH6.0的磷酸盐缓冲溶液作为电解液,将铂钯修饰电极与对电极、参比电极共同组成三电极系统,浸入上述电解液,得到检测双酚A的电化学检测装置;
(4)处理待检测样品:将待检测样品处理成小块,洗涤后称取10.0g,加乙醇超声30min,加热并超声,放置过夜,过滤并收集液相,用磷酸盐缓冲溶液稀释至一定体积,得到样品溶液。
(5)检验电化学检测装置中的双酚A:配制一系列浓度的双酚A溶液,分别放入电化学检测装置中,根据差分脉冲伏安法,以双酚A溶液浓度为横坐标,以峰电流为纵坐标绘制双酚A溶液的标准曲线。
(6)检测样品中的双酚A含量:将适量的样品溶液加入电化学检测装置中,选择差分脉冲伏安法进行测定,扫描范围设为0.3~0.8V,得到样品溶液的伏安曲线;再通过将伏安曲线对照标准曲线,获得样品溶液中双酚A的浓度,进而得到样品中双酚A的含量。
实施例3
(1)铂钯双金属纳米材料的合成:将0.1g的碘化钾、0.25g的聚乙烯吡咯烷酮、240μL浓度为100mM的四氯铂酸钾和240μL浓度为100mM四氯钯酸钾搅拌混合;加入4mL质量浓度为30%二甲基甲酰胺,搅拌混合。微波加热反应30min,通过两次离心分离纯化得到铂钯双金属纳米颗粒,将铂钯双金属纳米颗粒在4℃储存备用。
(2)制备铂钯双金属纳米材料修饰电极:将铂钯双金属纳米颗粒稀释至0.1mg/mL,得到铂钯双金属纳米溶液;将经抛光处理后的玻碳电极分别于超纯水和无水乙醇中超声清洗,氮气吹干后滴加5μL铂钯双金属纳米溶液,晾干后得到铂钯修饰电极。
(3)制作电化学检测装置:配制pH5.0的磷酸盐缓冲溶液作为电解液,将铂钯修饰电极与对电极、参比电极共同组成三电极系统,浸入上述电解液,得到检测双酚A的电化学检测装置;
(4)处理待检测样品:将待检测样品处理成小块,洗涤后称取10.0g,加乙醇超声30min,加热并超声,放置过夜,过滤并收集液相,用磷酸盐缓冲溶液稀释至一定体积,得到样品溶液。
(5)检验电化学检测装置中的双酚A:配制一系列浓度的双酚A溶液, 分别放入电化学检测装置中,根据差分脉冲伏安法,以双酚A溶液浓度为横坐标,以峰电流为纵坐标绘制双酚A溶液的标准曲线。
(6)检测样品中的双酚A含量:将适量的样品溶液加入电化学检测装置中,选择差分脉冲伏安法进行测定,扫描范围设为0.3~0.8V,得到样品溶液的伏安曲线;再通过将伏安曲线对照标准曲线,获得样品溶液中双酚A的浓度,进而得到样品中双酚A的含量。
本发明通过制备铂钯双金属纳米材料来修饰电极,提高电极对双酚A的催化性能,从而获得灵敏度高的电化学检测装置;再通过对待测样品做处理,放入电化学检测装置中做检测,使得检测双酚A操作简便、成本低廉且检测准确。
本发明实施例另一方面提供了一种检测双酚A的电化学检测装置,电化学检测装置通过以下方法制备:
制备铂钯双金属纳米颗粒,并储存备用;
将铂钯双金属纳米颗粒稀释至0.1~2.0mg/mL,得到铂钯双金属纳米溶液;将抛光处理后的玻碳电极清洗吹干,并滴加铂钯双金属纳米溶液,晾干后得到铂钯修饰电极;
将铂钯修饰电极与对电极和参比电极共同组成三电极系统,并浸入pH4.0~9.0的电解液中,得到用于检测检测双酚A的电化学检测装置。
本发明实施例的检测双酚A的电化学检测装置操作简单,且成本较低,检测准确度高。
以上是本发明公开的示例性实施例,但是应当注意,在不背离权利要求限定的本发明实施例公开的范围的前提下,可以进行多种改变和修改。根据这里描述的公开实施例的方法权利要求的功能、步骤和/或动作不需以任何特定顺序执行。此外,尽管本发明实施例公开的元素可以以个体形式描述或要求,但除非明确限制为单数,也可以理解为多个。
应当理解的是,在本文中使用的,除非上下文清楚地支持例外情况,单数形式“一个”旨在也包括复数形式。还应当理解的是,在本文中使用 的“和/或”是指包括一个或者一个以上相关联地列出的项目的任意和所有可能组合。上述本发明实施例公开实施例序号仅仅为了描述,不代表实施例的优劣。
所属领域的普通技术人员应当理解:以上任何实施例的讨论仅为示例性的,并非旨在暗示本发明实施例公开的范围(包括权利要求)被限于这些例子;在本发明实施例的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,并存在如上的本发明实施例的不同方面的许多其它变化,为了简明它们没有在细节中提供。因此,凡在本发明实施例的精神和原则之内,所做的任何省略、修改、等同替换、改进等,均应包含在本发明实施例的保护范围之内。

Claims (10)

  1. 一种检测双酚A的电化学方法,其特征在于,包括以下步骤:
    制备铂钯双金属纳米颗粒,并储存备用;
    将所述铂钯双金属纳米颗粒稀释至0.1~2.0mg/mL,得到铂钯双金属纳米溶液;将抛光处理后的玻碳电极清洗吹干,并滴加所述铂钯双金属纳米溶液,晾干后得到铂钯修饰电极;
    将所述铂钯修饰电极与对电极和参比电极共同组成三电极系统,并浸入pH4.0~9.0的电解液中,得到检测双酚A的电化学检测装置;
    处理待检测样品,得到样品溶液,并将所述样品溶液加入所述电化学检测装置中,进行检测。
  2. 根据权利要求1所述的方法,其特征在于,所述制备铂钯双金属纳米颗粒包括:将碘化钾、聚乙烯吡咯烷酮、四氯铂酸钾和四氯钯酸钾搅拌混合,加入二甲基甲酰胺并搅拌混合并加热,通过两次离心分离纯化得到铂钯双金属纳米颗粒。
  3. 根据权利要求2所述的方法,其特征在于,所述碘化钾的量为0.1g,所述聚乙烯吡咯烷酮的量为0.25g,所述四氯铂酸钾的量为240μL且浓度为100mM,所述四氯钯酸钾的量为240μL且浓度为50~200mM,所述二甲基甲酰胺的量为4mL且质量浓度为30%;所述加热为微波加热,且时长为30min;所述储存备用的储存温度为4℃。
  4. 根据权利要求1所述的方法,其特征在于,将抛光处理后的玻碳电极分别于超纯水和无水乙醇中超声清洗,经氮气吹干后滴加5μL所述铂钯双金属纳米溶液。
  5. 根据权利要求1所述的方法,其特征在于,所述电解液为磷酸盐缓冲溶液。
  6. 根据权利要求1所述的方法,其特征在于,称取洗涤后的待检测样品,加乙醇后加热并超声,静置后过滤并收集液相并稀释。
  7. 根据权利要求6所述的方法,其特征在于,称取的所述待检测样品的量为10.0g;所述加乙醇超声的时长为30min。
  8. 根据权利要求6所述的方法,其特征在于,使用磷酸盐缓冲溶液进行稀释。
  9. 根据权利要求1所述的方法,其特征在于,所述进行检测包括:根据差分脉冲伏安法进行测定,且设置扫描范围为0.3~0.8V,得到所述样品溶液的伏安曲线。
  10. 一种检测双酚A的电化学检测装置,其特征在于,所述电化学检测装置通过以下方法制备:
    制备铂钯双金属纳米颗粒,并储存备用;
    将所述铂钯双金属纳米颗粒稀释至0.1~2.0mg/mL,得到铂钯双金属纳米溶液;将抛光处理后的玻碳电极清洗吹干,并滴加所述铂钯双金属纳米溶液,晾干后得到铂钯修饰电极;
    将所述铂钯修饰电极与对电极和参比电极共同组成三电极系统,并浸入pH4.0~9.0的电解液中,得到用于检测检测双酚A的电化学检测装置。
PCT/CN2021/093640 2020-11-11 2021-05-13 一种检测双酚a的电化学方法及装置 WO2022100044A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011253544.0A CN112485317A (zh) 2020-11-11 2020-11-11 一种检测双酚a的电化学方法及装置
CN202011253544.0 2020-11-11

Publications (1)

Publication Number Publication Date
WO2022100044A1 true WO2022100044A1 (zh) 2022-05-19

Family

ID=74929492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093640 WO2022100044A1 (zh) 2020-11-11 2021-05-13 一种检测双酚a的电化学方法及装置

Country Status (2)

Country Link
CN (1) CN112485317A (zh)
WO (1) WO2022100044A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115078494A (zh) * 2022-07-29 2022-09-20 河北医科大学 检测双酚a的电化学传感器及其制备方法和应用
CN115078491A (zh) * 2022-06-16 2022-09-20 衡阳师范学院 一种Ag2Se-碳纳米纤维复合材料及其制备方法与在检测左氧氟沙星含量中的应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112485317A (zh) * 2020-11-11 2021-03-12 苏州健雄职业技术学院 一种检测双酚a的电化学方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103217468A (zh) * 2013-04-17 2013-07-24 济南大学 一种检测双酚a的电流型电化学传感器的制备方法及应用
CN106346020A (zh) * 2016-11-16 2017-01-25 皖西学院 一种铂钯双金属纳米颗粒的制备方法
CN111077196A (zh) * 2019-12-11 2020-04-28 云南大学 纳米材料复合物的加工方法及在双酚a检测中的应用
CN112485317A (zh) * 2020-11-11 2021-03-12 苏州健雄职业技术学院 一种检测双酚a的电化学方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102901755A (zh) * 2012-09-07 2013-01-30 常州大学 一种高灵敏度葡萄糖电化学传感器及其制备方法
CN109916978A (zh) * 2019-03-05 2019-06-21 大连理工大学 一种用于检测双酚a的电化学传感器、制备方法及其应用
CN110296979B (zh) * 2019-07-16 2021-09-28 常州大学 一种检测双酚a的电化学发光法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103217468A (zh) * 2013-04-17 2013-07-24 济南大学 一种检测双酚a的电流型电化学传感器的制备方法及应用
CN106346020A (zh) * 2016-11-16 2017-01-25 皖西学院 一种铂钯双金属纳米颗粒的制备方法
CN111077196A (zh) * 2019-12-11 2020-04-28 云南大学 纳米材料复合物的加工方法及在双酚a检测中的应用
CN112485317A (zh) * 2020-11-11 2021-03-12 苏州健雄职业技术学院 一种检测双酚a的电化学方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIANG HUAN; ZHAO YUTING; YE HANZHANG; LI CAN-PENG: "Ultrasensitive and ultrawide range electrochemical determination of bisphenol A based on PtPd bimetallic nanoparticles and cationic pillar[5]arene decorated graphene", JOURNAL OF ELECTROANALYTICAL CHEMISTRY, ELSEVIER, AMSTERDAM, NL, vol. 855, 13 September 2019 (2019-09-13), AMSTERDAM, NL, XP085957916, ISSN: 1572-6657, DOI: 10.1016/j.jelechem.2019.113487 *
YE HANZHANG: "Preparation of Organic Macromolecules Functional Nanomaterials and Their Applications in Sensor Platforms", MASTER THESIS, TIANJIN POLYTECHNIC UNIVERSITY, CN, no. 7, 15 July 2019 (2019-07-15), CN , XP055930485, ISSN: 1674-0246 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115078491A (zh) * 2022-06-16 2022-09-20 衡阳师范学院 一种Ag2Se-碳纳米纤维复合材料及其制备方法与在检测左氧氟沙星含量中的应用
CN115078491B (zh) * 2022-06-16 2024-01-30 衡阳师范学院 一种Ag2Se-碳纳米纤维复合材料及其制备方法与在检测左氧氟沙星含量中的应用
CN115078494A (zh) * 2022-07-29 2022-09-20 河北医科大学 检测双酚a的电化学传感器及其制备方法和应用
CN115078494B (zh) * 2022-07-29 2023-08-22 河北医科大学 检测双酚a的电化学传感器及其制备方法和应用

Also Published As

Publication number Publication date
CN112485317A (zh) 2021-03-12

Similar Documents

Publication Publication Date Title
WO2022100044A1 (zh) 一种检测双酚a的电化学方法及装置
WO2022062100A1 (zh) 用于检测卡那霉素的电化学发光适配体传感器及其制备方法
Yi et al. Adsorption stripping voltammetry of phenol at Nafion-modified glassy carbon electrode in the presence of surfactants
Ensafi et al. Non-enzymatic glucose electrochemical sensor based on silver nanoparticle decorated organic functionalized multiwall carbon nanotubes
CN108445057B (zh) 一种用于检测重金属离子的电化学传感器的制备及分析方法
CN104764784B (zh) 基于核酸适配体检测汞离子的生物传感器及其制备方法
Qiu et al. Electrochemical impedance spectroscopy sensor for ascorbic acid based on copper (I) catalyzed click chemistry
Qiu et al. Development of ultra-high sensitive and selective electrochemiluminescent sensor for copper (II) ions: a novel strategy for modification of gold electrode using click chemistry
CN108776163B (zh) 一种检测胆固醇的酶生物传感器及其制备方法与应用
Li et al. A molecularly imprinted sensor based on an electrochemiluminescent membrane for ultratrace doxycycline determination
CN110441528B (zh) 一种基于核壳结构Mo2C@C纳米球的心肌钙蛋白I免疫传感器的构建
Zhao et al. An electrochemical sensor for l-tryptophan using a molecularly imprinted polymer film produced by copolymerization of o-phenylenediamine and hydroquinone
CN110823977B (zh) 一种检测Hg2+的自增强电化学发光适配体传感器的制备方法
Khan et al. Molecular imprinted polymer based impedimetric sensor for trace level determination of digoxin in biological and pharmaceutical samples
Li et al. Enhanced electrochemiluminescence of luminol at the gold nanoparticle/carbon nanotube/electropolymerised molecular imprinting composite membrane interface for selective recognition of triazophos
Yuan et al. Label-free and facile electrochemical biosensing using carbon nanotubes for malondialdehyde detection
CN113092554A (zh) 用于葡萄糖检测的传感电极的制备方法和应用
Li et al. A non-enzymatic electrochemical biosensor based on SiO 2–Au nanoparticles for hemoglobin detection
Zhao et al. Graphite-doped polyimide films for sensitive non-enzymatic amperometric determination of catechol
CN116203092A (zh) 一种用于检测邻苯二甲酸二(2-乙基己基)酯的电化学发传感器的制备方法和检测方法
CN113899805B (zh) 一种检测噻菌灵的电化学传感器及其制备方法和应用
CN112485318A (zh) 一种纳米铂修饰电极检测双酚a的电化学方法及装置
CN114577783A (zh) 一种基于共振能量转移策略的双电位比率电化学发光适配体传感器制备方法及其应用
CN114894868A (zh) 用于检测谷氨酸的复合材料修饰电极的制备方法及应用
CN107389765B (zh) 一种测定色胺的胶体金/粘土修饰电极及测定米醋、白酒或酸奶中色胺含量的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21890577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21890577

Country of ref document: EP

Kind code of ref document: A1