WO2022097695A1 - 冷蔵庫 - Google Patents
冷蔵庫 Download PDFInfo
- Publication number
- WO2022097695A1 WO2022097695A1 PCT/JP2021/040652 JP2021040652W WO2022097695A1 WO 2022097695 A1 WO2022097695 A1 WO 2022097695A1 JP 2021040652 W JP2021040652 W JP 2021040652W WO 2022097695 A1 WO2022097695 A1 WO 2022097695A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air
- cooler
- chamber
- air passage
- storage chamber
- Prior art date
Links
- 239000003570 air Substances 0.000 claims abstract description 550
- 238000005192 partition Methods 0.000 claims abstract description 95
- 238000007710 freezing Methods 0.000 claims abstract description 87
- 230000008014 freezing Effects 0.000 claims abstract description 87
- 238000001816 cooling Methods 0.000 claims abstract description 49
- 239000012080 ambient air Substances 0.000 claims abstract description 4
- 239000003507 refrigerant Substances 0.000 claims description 27
- 238000009434 installation Methods 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 65
- 235000013311 vegetables Nutrition 0.000 description 60
- 238000012986 modification Methods 0.000 description 15
- 230000004048 modification Effects 0.000 description 15
- 239000000463 material Substances 0.000 description 12
- 230000005494 condensation Effects 0.000 description 9
- 238000009833 condensation Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 230000006870 function Effects 0.000 description 7
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000010257 thawing Methods 0.000 description 3
- 238000009423 ventilation Methods 0.000 description 3
- 238000007791 dehumidification Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000012779 reinforcing material Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D11/00—Self-contained movable devices, e.g. domestic refrigerators
- F25D11/02—Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D17/00—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
- F25D17/04—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
- F25D17/06—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
Definitions
- This disclosure relates to refrigerators.
- the refrigerator has a storage room such as a freezing room and a refrigerating room, and the storage room and the cooler room in which the cooler is installed are connected by an air passage.
- a fin tube type cooler in which fins are arranged in a refrigerant pipe to increase the cooling capacity is generally used. The air cooled by the cooler is blown into the storage chamber through the air passage by the blower, and the air in the storage chamber is sucked back to the cooler chamber through another air passage.
- the air around the cooler is cooled by the cooler.
- the humidity rises as the temperature of the air decreases, and the moisture in the air adheres to the surface of the cooler as frost. This removes the moisture in the air and dehumidifies the air. In this way, cooling and dehumidification are performed simultaneously in the cooler.
- the fin tube type cooler has a refrigerant pipe through which the refrigerant flows, and the refrigerant pipe exchanges heat with the surrounding air. Fins are attached to the refrigerant pipe to increase the heat transfer area, and the cooling capacity is enhanced.
- the refrigerant pipe has a zigzag shape, and has a linear portion and a curved portion bent into a U shape. In the linear part, thin-walled tubes are used to increase the cooling capacity, and the fins are arranged at a certain installation density. On the other hand, a thick pipe is used for the curved portion, and the curved portion maintains the strength of the entire refrigerant pipe.
- the side plate supports the end of the curved part near the straight part. There are no fins in the curved part of the refrigerant pipe located outside the side plate, and the cooling capacity is low.
- the air in the refrigerator contains the outside air and water vapor from food. Therefore, if the air passes through the outside of the side plate and passes through the cooler without being sufficiently cooled and dehumidified, the air flowing into the cooler chamber from the freezer at a lower temperature cools the air around the blower and becomes below the dew point. Then, dew condensation occurs around the blower, and the dewed water freezes at the operating portion of the blower. As a result, the blower may not operate normally.
- an air shield plate is attached to the upper part of the gap outside the side plate, and the air returned from the refrigerating chamber flows through the gap outside the side plate. Is suppressed.
- the purpose of this disclosure is to provide a refrigerator in which freezing to the blower is suppressed.
- a cooler for cooling a cooler room for accommodating the cooler, a blower arranged in the cooler room, a cooler room, and at least one of the first storage room or the second storage room before and after.
- a partition wall a first air passage that sends air from the cooler chamber to the first storage chamber, a second air passage that sends air from the cooler chamber to the second storage chamber, and a first storage. It is provided with a third air passage for returning air from the chamber to the cooler chamber and a fourth air passage for returning air from the second storage chamber to the cooler chamber.
- a circulation path is formed from the first storage chamber, the second storage chamber, the first air passage, the second air passage, the third air passage, the fourth air passage, and the cooler.
- the blower is arranged in the circulation path on the downstream side of the air from the cooler, and the air cooled by the cooler is sent to the first storage chamber through the first air passage and the second air passage. It is sent to the second storage chamber, respectively, and air is sucked from the first storage chamber and the second storage chamber through the third air passage and the fourth air passage, and the fourth air passage is a cooler.
- the first region of the air is supplied with air sucked from the second storage chamber, and the third air passage has at least a part of the air passage formed in the partition wall and extends in the vertical direction, and is the first of the coolers.
- the air sucked from the first storage chamber is supplied to the second region having a lower cooling capacity than the first region.
- the air returning from the first storage chamber in the freezing temperature zone to the cooler chamber is sufficiently low in both temperature and humidity, and is supplied to the second region where the cooling capacity of the cooler is low, and the cooling and dehumidification by the cooler is relatively slight.
- both the temperature and humidity are sufficiently low.
- the temperature and humidity of the air returning from the second storage chamber to the cooler chamber are both higher than those of the air returning from the first storage chamber to the cooler chamber.
- the air returning from the second storage chamber to the cooler chamber is alienated from the air flowing from the first storage chamber to the cooler chamber and flowing through the second region, and the flow to the second region is suppressed and replaced.
- FIG. 1 is a cross-sectional view taken along the line II-II.
- a perspective view of the partition wall of the refrigerator according to the first embodiment as viewed from the front side of the refrigerator.
- a perspective view of the partition wall of the refrigerator according to the second embodiment as viewed from the front side of the refrigerator.
- a perspective view of the partition wall of the refrigerator according to the second embodiment as viewed from the back side of the refrigerator.
- FIG. 2 is a view of the cooler room and the return air passage of the refrigerator according to the first modification in the second embodiment as viewed from the back side of the refrigerator.
- Front view of the refrigerator according to the third embodiment A perspective view of the partition wall of the refrigerator according to the third embodiment as viewed from the front side of the refrigerator.
- FIG. 22 is a cross-sectional view taken along the line III-III.
- the refrigerator according to the embodiment of the present disclosure will be described with reference to the drawings.
- the same components are designated by the same reference numerals.
- the left-right direction is the X-axis direction
- the up-down direction is the Z-axis direction
- the direction orthogonal to the X-axis and the Z-axis is the Y-axis direction.
- this coordinate system will be used as appropriate for description.
- the side far from the center of the refrigerator or the cooler is referred to as the outside.
- the refrigerator 100 includes a refrigerating chamber 1 as shown in FIGS. 1 and 2.
- the refrigerator 100 is provided with an ice making room 2 on the left and a switching room 3 on the right side by side under the refrigerating room 1.
- the refrigerator 100 includes a freezing room 4 under the ice making room 2 and the switching room 3, and a vegetable storage room 5 under the freezing room 4.
- the refrigerating room 1 is one of the storage rooms 15 having a space for storing food and other storage.
- the temperature in the refrigerating chamber 1 is maintained in the temperature range of + 3 ° C to + 10 ° C.
- this temperature zone is referred to as a refrigerating temperature zone.
- the ice making chamber 2 has a function of storing ice made and is one of the storage chambers 15.
- the ice making chamber 2 is maintained in a temperature range of, for example, ⁇ 17 ° C. or lower.
- this temperature zone is referred to as a freezing temperature zone.
- the switching chamber 3 can switch the temperature in the room to a plurality of temperatures.
- the initial temperature is in the freezing temperature zone and can be switched to a plurality of temperatures, but the temperature is lower than the temperature of the refrigerating chamber 1 and the temperature of the vegetable storage chamber 5. In this embodiment, it is described as being set in the freezing temperature zone. Further, the freezing chamber 4 is one of the storage chambers 15 because the temperature inside the freezing chamber 4 is controlled in the freezing temperature zone.
- the vegetable storage chamber 5 is a space for storing vegetables and is one of the storage chambers 15. The vegetable storage chamber 5 is kept in a refrigerated temperature range of, for example, + 3 ° C to + 10 ° C.
- the storage rooms such as the refrigerating room 1 and the ice making room 2 are not distinguished, they are simply described as the storage room 15.
- the storage room in the freezing temperature zone is referred to as a freezing storage room or the first storage room
- the storage room in the refrigerating temperature zone which is the second temperature zone having a higher temperature than the freezing temperature zone, is referred to as the refrigerating storage room or the second storage room.
- the opening through which air blows out from the air passage is called an outlet, and the opening of the air passage when air returns through the air passage is called a return port.
- the refrigerator 100 has a box-shaped heat insulating box 101 as a whole.
- the heat insulating box 101 includes a plurality of storage chambers 15.
- the heat insulating box 101 and the doors 11, 31, 41, 51 and the like arranged in front of each storage chamber 15 prevent the heat of the outside air from entering the storage chamber 15.
- the heat insulating box 101 partitions a cooler room 7, a machine room 8, a cooler room 7, an ice making room 2, a switching room 3, a freezing room 4, and a vegetable storage room 5 in order to cool the inside of the refrigerator. It is provided with a wall 6, an outlet air passage 101A for sending cold air from the cooler chamber 7 to the refrigerating chamber 1, and a return air passage (not shown).
- a blower 71 In the cooler room 7, a blower 71, a cooler 72, and a defrost heater 73 are arranged from above. Further, a compressor 81 is arranged in the machine room 8. The blower 71 blows the cold air generated by the cooler 72 to each storage chamber 15 through the air passage, and sucks the air in each storage chamber 15 through the return air passage.
- the refrigerating cycle that keeps the cooler 72 at a low temperature is composed of four elements: a compressor 81, a condenser and an expansion valve (not shown), and a cooler 72. These elements are connected in a ring shape by pipes, and the refrigerant circulates through the pipes.
- the cooler 72 removes heat from the surrounding air and vaporizes the low-temperature, low-pressure liquid refrigerant sent via the expansion valve. This cools the air around the cooler 72.
- the cooler 72 is a fin tube type cooler and is arranged below the blower 71.
- the cooler 72 has a zigzag-shaped refrigerant pipe 72B in which a linear pipe 72BA and a U-shaped pipe 72BB are connected.
- a plurality of linear pipes 72BA of the refrigerant pipe 72B are vertically installed horizontally.
- a pair of left and right side plates 72AL and 72AR are vertically provided at the position of the boundary between the linear pipe 72BA and the U-shaped pipe 72BB.
- the cooler 72 is supported by the side plates 72AL and 72AR, and the shape of the cooler 72 is maintained.
- the left side of the side plate 72AL located on the left side and the right side of the side plate 72AR located on the right side are referred to as the outside of the side plate 72A, and are between the left and right side plates 72A. Is expressed as the inside of the side plate 72A.
- a thin pipe is adopted in the linear portion of the refrigerant pipe 72B, that is, a linear portion of the refrigerant pipe 72B in order to improve the cooling capacity, and fins 72C for increasing the heat transfer area are arranged at an installation density. It is installed and the cooling capacity is improved.
- This region provided with the fins 72C is an example of a first region having a relatively high cooling capacity in the cooler 72.
- a thick pipe is adopted for the U-shaped pipe 72BB of the refrigerant pipe 72B, that is, the curved portion of the refrigerant pipe 72B located outside the side plate 72A, in order to improve the strength of the cooler 72.
- the 72C is not provided or is provided at a lower installation density than the linear portion.
- the cooling capacity of the cooler 72 is the cooling capacity of the cooler 72 inside the side plate 72A provided with the fins 72C. Low compared to.
- the outer region of the side plate 72A is an example of a second region of the cooler 72 that has a relatively low cooling capacity.
- the cooler 72 cools the ambient air, removes the moisture in the air as frost, and dehumidifies it. When this frost is thick and adheres to the cooler 72, the cooling capacity is lowered. Therefore, as shown in FIG. 2, the defrosting heater 73 is arranged below the cooler 72.
- the defrosting heater 73 has a glass tube heater or a carbon heater. The defrost heater 73 heats the cooler 72 to evaporate the frost adhering to the surface.
- the outlet air passage 101A is provided on the back surface of the heat insulating box body 101, and blows cold air blown from the cooler chamber 7 through the outlet 61A formed in the partition wall 6 from the outlet 1A to the refrigerating chamber 1. ..
- a return air passage (not shown) is provided on the back surface of the heat insulating box body 101, and the air in the refrigerating chamber 1 is returned to the cooler chamber 7 through the return air passage formed in the partition wall 6.
- the partition wall 6 partitions the refrigerator chamber 7, the refrigerator compartment 1, the ice making chamber 2, the switching chamber 3, the freezer compartment 4, and the vegetable storage chamber 5, and connects the cooler chamber 7 and each storage chamber 15. It is equipped with a ventilation path and multiple return channels to circulate cold air.
- the configuration of the air passage provided in the partition wall 6 will be described with reference to FIGS. 3 and 4.
- the partition wall 6 is connected to the outlet air passage 101A shown in FIG. 2 by an outlet 61A, and is provided with an air passage for blowing cold air to the refrigerating chamber 1.
- the return port 61B shown in FIG. 3 is connected to the return air passage from the refrigerating chamber 1, and the return port 6C is provided with the return air passage 61D shown in FIG. 4 which opens into the cooler chamber 7.
- Cold air is blown to the refrigerating chamber 1 through the blow air passage 101A, returned to the cooler chamber 7, and returned to the cold air through the air passage 61D, and the cold air is circulated between the refrigerating chamber 1 and the cooler chamber 7.
- the blowout air passage 101A is an example of the second air passage
- the return air passage from the refrigerating chamber 1 is an example of the fourth air passage.
- An example is formed.
- the partition wall 6 is provided with an outlet air passage connecting the outlet 62A opening to the ice making chamber 2, which is one of the first storage chambers in the freezing temperature zone, and the cooler chamber 7. Further, the partition wall 6 is provided with a return air passage connecting the return port 62B opening to the ice making chamber 2 and the return port 62C opening to the cooler chamber 7. The air in the ice making chamber 2 passes through the return ports 62B and 62C and returns to the cooler chamber 7. As a result, cold air is circulated between the ice making chamber 2 and the cooler chamber 7.
- the outlet air passage connecting the outlet 62A opening to the ice making chamber 2 and the cooler chamber 7 is an example of the first air passage, and the return opening 62B as a second opening opening to the ice making chamber 2
- the return air passage connecting the return port 62C as the first opening that opens to the cooler chamber 7 is an example of the third air passage.
- Air is blown into the switching chamber 3 by the blower 71 from the outlet 63A shown in FIG. Then, the air in the switching chamber 3 passes through the return port 63B and the return port 63C shown in FIG. 4, and returns to the cooler room 7.
- Air is blown into the freezing chamber 4 from the outlet 64A shown in FIG. Then, the air in the freezing chamber 4 passes through the return port 64B and the return port 64C shown in FIG. 4 and returns to the cooler chamber 7.
- outlets 64A are formed side by side in the Z-axis direction on the partition wall 6.
- the number of outlets 64A is as many as the number of cases provided in the freezing chamber 4.
- the width and the direction in which air is blown out from each outlet 64A are set according to the size and position of the corresponding case.
- Air is blown into the vegetable storage chamber 5 from the outlet 65A provided on the partition wall 6.
- the blown air passes through the return port 65B shown in FIGS. 3 and 4 and returns to the inside of the partition wall 6.
- the air returning from the vegetable storage chamber 5 merges with the air returning from the refrigerating chamber 1 in the return air passage 61D in the partition wall 6, passes through the return port 61C shown in FIG. 4, and is a cooler. Return to room 7.
- These return ports 62C, 63C, and 64C are provided below the blower 71 and at the lower end of the cooler 72.
- a return air passage 61D is formed on the left side when viewed from the back surface of the refrigerator 100 in the partition wall 6, and the air 61F from the refrigerating chamber 1 returns.
- the air returned from the vegetable storage chamber 5 merges with the air 61F returned from the refrigerating chamber 1 in the return air passage 61D. Then, the air at the refrigerating temperature returned from the refrigerating chamber 1 and the vegetable storage chamber 5 flows into the cooler chamber 7 from the return port 61C.
- the air return port 61C from the refrigerator chamber 1 is provided on the left side and below the cooler 72 and upstream of the air flow with respect to the cooler 72.
- the air flowing in from the return port 61C flows through the air passage turned by the wall 74 of the cooler chamber 7 diagonally formed at the bottom of the cooler chamber 7.
- the return port 61C formed in the partition wall 6 shown in FIG. 4 is located at a position lower than the lower end of the cooler 72, that is, the lower end of the fin 72C provided at the bottom of the cooler 72. ..
- the return air 61F passing through the return air passage 61D extending downward is blown downward from the return port 61C.
- the return air 61F that has flowed into the cooler chamber 7 in this way is turned by the inclined surface 74A that is inclined diagonally downward toward the center of the cooler chamber 7, and wraps around below the cooler 72. Then, the return air 61F flows into the cooler 72 from the lower end and flows upward.
- the return air 61F from the refrigerating chamber 1 and the vegetable storage chamber 5 can pass between the fins 72C provided at the bottom, and heat is exchanged over the entire length of the cooler 72 in the Z-axis direction. Can be done.
- the air returned from the ice making chamber 2 flows into the cooler chamber 7 from the return port 62C.
- the return port 62C either covers the area between the side plate 72AR on the right side of the refrigerator 100 and the wall 74 of the cooler chamber 7, or faces the area and air to the cooler 72. It is installed upstream of the flow of.
- the return port 62C formed in the partition wall 6 is formed on a surface facing the ⁇ Y axis direction, that is, a surface facing the back side of the refrigerator 100.
- the return port 62C is formed so that the lower end thereof is higher than the lower end of the cooler 72, that is, the lower end of the fin 72C provided at the bottom of the cooler 72.
- the return port 62C can be overlapped with the side plate 72AR in the Z-axis direction, and the return air 62F blown out from the return port 62C can easily flow into the outside of the side plate 72AR. can do.
- the return air 61F from the refrigerating chamber 1 and the vegetable storage chamber 5 can be prevented from flowing into the outside of the side plate 72AR. That is, the return air 62F flowing outside the side plate 72AR can exert the effect of the air curtain as described later.
- the air returned from the switching chamber 3 flows into the cooler chamber 7 from the return port 63C.
- the return port 63C includes or faces the area between the side plate 72AL on the left side of the refrigerator 100 and the wall of the return air passage 61D, and is opposed to the area of air to the cooler 72. It is installed upstream of the flow.
- the return port 63C as the first opening formed in the partition wall 6 is formed on a surface facing the ⁇ Y axis direction, that is, a surface facing the back side of the refrigerator 100. ..
- the return port 63C is formed so that the lower end thereof is higher than the lower end of the cooler 72, that is, the lower end of the fin 72C provided at the bottom of the cooler 72.
- the return port 63C can be overlapped with the side plate 72AL in the Z-axis direction, and the return air 63F blown out from the return port 63C can easily flow into the outside of the side plate 72AL. can do.
- the return air 61F from the refrigerating chamber 1 and the vegetable storage chamber 5 can be prevented from flowing into the outside of the side plate 72AL. That is, the return air 63F flowing outside the side plate 72AL can exert the effect of the air curtain as described later.
- the return port 64C is provided between the return ports 63C and 62C at a position upstream of the air flow with respect to the cooler 72.
- the return port 64C formed in the partition wall 6 is formed on a surface facing the ⁇ Y axis direction, that is, a surface facing the back side of the refrigerator 100.
- the return port 64C is formed so that the lower end thereof is higher than the lower end of the cooler 72, that is, the lower end of the fin 72C provided at the bottom of the cooler 72.
- the entire return port 64C can be made to face the cooler 72. Therefore, the return air 64F from the return port 64C can be directly flowed into the cooler 72 and flow upward. Can be done. Therefore, it is possible to suppress the return air 64F from flowing below the fin 72C. As a result, it is possible to suppress the interference between the return air 61F flowing below the cooler 72 and the return air 64F, and it is possible to suppress the occurrence of pressure loss.
- the cooler 72 cools the air in the cooler chamber 7, and the cool air generated by the blower 71 is blown to each storage chamber 15 through each air passage.
- the blower 71 sucks the air in each storage chamber 15 through the return air passage and supplies it to the cooler 72. By repeating this operation, cold air is distributed to each storage chamber 15, and the temperature in the storage chamber 15 is maintained at an appropriate temperature.
- the air return ports 61C, 62C, 63C, and 64C provided in the partition wall 6 are all located at or near the lower end of the cooler 72 and are upstream of the air flow.
- the air flowing into the cooler chamber 7 rises in the cooler chamber 7, passes through the cooler 72, and reaches the blower 71.
- the air return port 62C from the ice making chamber 2 includes or faces the region between the side plate 72AR on the right side when viewed from the back of the refrigerator 100 and the wall 74 of the cooler chamber 7. There is. Further, the air return port 63C from the switching chamber 3 includes or faces the area between the side plate 72AL on the left side when viewed from the back surface of the refrigerator 100 and the wall of the return air passage 61D. ing. Therefore, a part of the air 62F returning from the ice making chamber 2 and the air 63F returning from the switching chamber 3 passes outside the side plate 72AR or 72AL.
- the air flowing outside the side plate 72AR or 72AL is the air returned from the ice making chamber 2 and the switching chamber 3, and is lower in temperature and lower in humidity than the air returned from the refrigerating chamber 1 and the vegetable storage chamber 5.
- the cooling capacity is low because there is no fin 72C, but when the air reaches the blower 71, the temperature of the air is still low and low humidity, and the air does not freeze around the blower 71.
- the return port 64C is provided near the center of the lower end of the cooler 72, the air 64F returned from the freezing chamber 4 flows into the region where the fin 72C is provided and flows toward the blower 71.
- the air 61F from the refrigerating chamber 1 and the vegetable storage chamber 5 exits from the return port 61C and is redirected by the inclined surface 74A forming a part of the wall 74 of the cooler chamber 7 to the air return port 63C. It flows toward the blower 71 through the region of the gap 60 with 64C.
- the air pressure of the air 61F is set lower than that of the air 62F, 63F, and 64F. Therefore, the gap 60 corresponds to a region of a trough of atmospheric pressure, and this region is a region inside the side plate 72A, and fins 72C are arranged, which is an example of a first region having a relatively high cooling capacity.
- the air 61F returned from the refrigerating chamber 1 or the vegetable storage chamber 5 is cooled and dehumidified before reaching the blower 71 by passing between the fins 72C, and becomes low-temperature and low-humidity air.
- the jet pressure between the air 62F and the air 63F is set higher than the jet pressure of the air 61F, the air 63F and the air 62F act like an air curtain to eliminate the air 61F. To work. Therefore, the invasion of the air 61F into the region where the air 63F or 62F flows is suppressed. That is, the air 63F flows on the left side of the side plate 72AL, the 62F flows on the right side of the side plate 72AR, and the air 61F is suppressed from flowing.
- the jet pressures of the air 61F, the air 62F, the air 63F, and the air 64F are the size and the number of rotations of the blower 71, the length, shape, size, and position of the first to fourth air passages, and the air outlet 63A. Etc. and the size, shape, position, etc. of the return port 63C and the like, and can be appropriately adjusted by design. For example, by reducing the return port 62C through which air flows into the cooler chamber 7, the flow velocity can be increased and the pressure can be increased.
- the air 61F returned from the refrigerating room 1 or the vegetable storage room 5 joins the air in the freezing temperature range returned from the ice making room 2, the switching room 3, and the freezing room 4 around the blower 71, but is relatively cooled. Since it is cooled and dehumidified in the first region having high capacity, dew condensation and freezing around the blower 71 can be suppressed even if it is cooled by the low temperature air 64F returned from the freezer chamber 4 or the like.
- FIG. 6 is a view of the cooler chamber 7 as viewed from the rear side, as in FIG. 2.
- the air return port 64C from the freezer chamber 4 is provided near the center of the cooler 72 in the left-right direction of the X-axis and near the lower end of the cooler 72. Air having a high humidity at the refrigerating temperature from the refrigerating chamber 1 and the vegetable storage chamber 5 flows into the cooler chamber 7 from the return port 61C as in the embodiment.
- the return port 61C is provided outside and below the cooler 72, as in the embodiment.
- the air in the freezing temperature zone from the ice making chamber 2, the switching chamber 3, and the freezing chamber 4 passes through the return port 64C and returns to the cooler chamber 7 at the center of the cooler 72 in the left-right direction on the X-axis.
- a part thereof is a region outside the side plate 72A, that is, It flows through a region without fins 72C. Then, a part of the air 61F having a refrigerating temperature passes through the cooler 72 without being cooled by the fins 72C. Then, the air 61F having a refrigerating temperature is mixed with the air 64F having a freezing temperature returned from the freezing chamber and cooled around the blower 71, the humidity rises to be below the dew point, and dew condensation occurs on the surface of the blower 71. Further, the dewed water freezes on the moving part of the blower 71 and the like, causing a problem in the blower 71.
- high-temperature and high-humidity air flows in the region where the cooling capacity of the cooler 72 is low, causing freezing in the blower 71 and causing a problem.
- low-temperature and low-humidity air is flowed in a region where the cooling capacity of the cooler 72 is relatively low
- high-temperature and high-humidity air is flowed in a region where the cooling capacity of the cooler 72 is relatively high.
- the return air passage 61D from the refrigerating chamber 1 and the wall 74 having the inclined surface 74A at the lower left of the drawing of the cooler chamber 7 are the first to return air from the second storage chamber to the cooler chamber 7. This is an example of the air passage of 4.
- the ratio of the region outside the side plate 72A when viewed from the back surface of the refrigerator is 50% or more in the air return port 62C from the ice making chamber 2.
- the ratio of the region outside the side plate 72A when viewed from the back surface of the refrigerator is 50% or more in the air return port 63C from the switching chamber 3.
- the return ports 62C and 63C are formed at positions where the lower ends thereof are higher than the lower ends of the cooler 72 so that the return air 62F and 63F can easily flow to the outside of the side plate 72A.
- the cooler 72 functions like an air curtain due to the high jet pressure of the air 62F and the air 63F. It is the space below.
- the return port 62C and the return port 63C are opposed to the cooler 72 at the height where the side plate 72A is present, and the air 62F and the air 63F are opposed to the cooler 72 from the front. Is flowing in.
- the refrigerating temperature air 61F can be suppressed from flowing to the outside of the side plate 72A, and the function of allowing the refrigerating temperature air 61F to flow in from between the fins 72C can be strengthened.
- the return port 63C and the return port 62C are provided so as to include or face the outer region of the side plate 72A, respectively, and the return port 64C is located between the return port 63C and the return port 62C. It is provided in.
- the gap 60 forming a part of the flow path of the air 61F flowing in from the return port 61C is provided between the return port 63C and the return port 64C on the side close to the return port 61C.
- the path through which the air 61F returning at the refrigerating temperature flows can be shortened, the pressure loss can be reduced, and the air 61F can be provided. It is easy to lead to the gap 60.
- the gap 60 provided between the return port 63C and the air return port 64C from the freezer chamber 4 has a length in the X-axis direction thereof, and a length in the X-axis direction between the side plates 72A installed on the left and right sides. It is set to 10% or more and 30% or less. As a result, the air 61F returning from the refrigerating storage chamber can be passed through the cooler 72 while suppressing the pressure loss of the air returning from the refrigerating storage chamber.
- the length in the X-axis direction to be secured in the gap 60 is secured by the length of only one gap 60, rather than by the total length of the gaps 60 provided at a plurality of locations. Is desirable.
- the gap 60 is between the return port 62C and the return port 64C, and between the return port 63C and the return port 64C. It will be installed in a place. In this case, as compared with the case where only one gap 60 is provided, even if the total length of the gap 60 is set to the same length, the air 61F is less likely to flow into the gap 60, and the pressure loss becomes large. Will end up.
- the gap 60 is provided between the return port 63C and the return port 64C as described above.
- the gap 60 is provided between the return port 63C and the return port 64C as described above.
- the length of the portion where this opening is not formed in the X-axis direction is so small that the air 61F cannot flow, and is much smaller than the length of the gap 60 in the X-axis direction.
- the size of the return port 62C from the ice making chamber 2 and the size of the return port 63C from the switching chamber 3 affect the prevention of dew condensation and freezing on the blower 71. If the opening area is made too large, it becomes difficult to keep the air pressure high, and it becomes difficult to push away the air 61F returned from the refrigerating chamber 1. If it is made too small, air cannot flow to the entire outside of the side plate 72A, and the air 61F returned from the refrigerating chamber 1 cannot be prevented from flowing to the outside of the side plate 72A. The optimum size depends on the size and capacity of the refrigerator 100.
- the return port 64C from the freezing room 4 will be described. As shown in FIGS. 4 and 5, the size of the return port 64C from the freezing chamber 4 is larger than the size of the return port 62C from the ice making chamber 2 and the size of the return port 63C from the switching chamber 3. Is desirable.
- the return port 64C shown in FIG. 5 forms an opening having a larger area by increasing the length in the X-axis direction as compared with the return port 62C and the return port 63. By increasing the return port 64C, the flow velocity of the return air 64F from the freezing chamber 4 passing between the fins 72C can be reduced.
- the air pressure of the return air 64F passing through the cooler 72 can be made smaller than the air pressure of the return air 62F and the air pressure of the return air 63F passing through the outside of the side plate 72A.
- the return air 61F from the refrigerating chamber 1 tends to pass through a place where the air pressure is small. Therefore, it is possible to prevent the return air 61F from flowing to the outside of the side plate 72A through which the return air 62F and the return air 63F, which have relatively high air pressures, flow.
- the return air 61F from the refrigerating chamber 1 is pushed away by the air curtain effect of the return air 64F passing through the region of the return port 64C and passing through the cooler 72, the return air 62F and the return air 63F are faster. Can be prevented from flowing to the outside of the side plate 72A through which the air flows.
- the length in the X-axis direction is lengthened in order to increase the opening area of the return port 64C
- the length in the Z-axis direction is lengthened, that is, the height is increased to increase the length of the return port 64C.
- the opening area of may be made larger.
- FIG. 1 An example of applying the embodiment of the present disclosure to a general household refrigerator will be described.
- the refrigerator 100 shown in FIG. 1 there are five storage chambers.
- the width thereof is about 600 mm to 700 mm, and the variation in the width is within ⁇ 10%. This is because it is designed according to the width of the refrigerator storage in ordinary households.
- the width of the cooler 72 is designed to be about 300 mm to 500 mm according to the width of the refrigerator 100.
- the optimum size of the air return port 62C from the ice making chamber 2 for such a household refrigerator 100 is 30 mm or more and 60 mm or less in width and 20 mm or more and 50 mm or less in height.
- the flow velocity of the air 62F returning from the ice making chamber 2 can be kept above a certain level while suppressing the pressure loss at the air return port 62C from the ice making chamber 2, and the ventilation resistance in the outer region of the side plate 72A is increased. be able to.
- the size of the air return port 63C from the switching chamber 3 is, for example, a width of 30 mm or more and 60 mm or less and a height of 20 mm or more and 50 mm or less in the air return port 63C from the switching chamber 3. While suppressing the pressure loss, the flow velocity of the air 63F returning from the switching chamber 3 can be kept above a certain level, and the ventilation resistance in the outer region of the side plate 72A can be increased.
- the area, width, and height of the air return port 62C from the ice making chamber 2 and the air return port 63C from the switching chamber 3 do not have to be the same.
- the shapes of the return ports 62C and 63C will be described. It is desirable that the shapes of the air return port 62C from the ice making chamber 2 and the air return port 63C from the switching chamber 3 are rectangular. The rectangular shape allows the air 62F returning from the ice making chamber 2 to flow into the outside of the side plate 72A with uniform wind pressure, wind speed, flow direction, etc., over the entire area outside the side plate 72A. The air 62F returning from the ice making chamber 2 can flow. This is because the vertical width of the return port is constant regardless of the distance from the side plate 72A. Similarly, it is desirable that the air return port 63C from the switching chamber 3 be rectangular. These can prevent the air 61F returning from the refrigerating chamber 1 and the vegetable storage chamber 5 from passing outside the side plate 72A.
- the return air passage formed in the partition wall 6 connecting the return port 62B shown in FIG. 3 and the return port 62C shown in FIG. 4 is formed in the vertical direction.
- the return port 62B shown in FIG. 3 is formed on the partition wall 6 at a position higher than the return port 62C shown in FIG.
- the air 62F returned from the ice making chamber 2 is rectified by passing through the air passage in the vertical direction between the return port 62B and the return port 62C, and the left-right component of the flow velocity becomes small.
- a part of the air 62F that has flowed into the cooler 72 from the return port 62C smoothly flows upward in the region on the right side of the side plate 72AR, as shown in FIG.
- the return air passage formed in the partition wall 6 connecting the return port 63B shown in FIG. 3 and the return port 63C shown in FIG. 4 is formed in the vertical direction.
- the return port 63B shown in FIG. 3 is formed on the partition wall 6 at a position higher than the return port 63C shown in FIG.
- the air 63F returned from the switching chamber 3 is rectified by passing through the air passage in the vertical direction between the return port 63B and the return port 63C, and the component in the left-right direction of the flow velocity becomes small.
- a part of the air 63F that has flowed into the cooler 72 from the return port 63C smoothly flows upward in the outer region of the side plate 72AL, as shown in FIG.
- the refrigerator 100 has the ice making chamber 2 on the left side when viewed from the front and the switching chamber 3 on the right side when viewed from the front is described with reference to FIGS. 1 to 5, the arrangement of the ice making chamber 2 and the switching chamber 3 is described. Even in the case of replacement, the same effect can be obtained by replacing the arrangement of the air return port 62C from the ice making chamber 2 and the air return port 63C from the switching chamber 3.
- the air outlet 6A provided on the partition wall 6 is provided with a damper for adjusting the flow rate of the circulating air. By adjusting the flow rate with these dampers, the refrigerating chamber 1, the ice making chamber 2, and the switching chamber 3 can be maintained at the set temperatures, respectively.
- the return air passage of the air from the refrigerating chamber 1 may communicate with the vegetable storage chamber 5.
- the air blown out to the refrigerating room 1 passes through the vegetable storage room 5 and the air return port 65B from the vegetable storage room 5, passes through the return port 61C of the air 61F from the refrigerating room 1, and goes to the cooler room 7. return.
- Air can be circulated by providing an air passage, an outlet, or a return port only by the heat insulating box 101 of the refrigerator 100 without using the partition wall 6.
- the positions of the fins 72C provided in the adjacent refrigerant pipes 72B are positioned in the X-axis direction by half the pitch forming the fins 72C with each other. They are arranged in a staggered manner. Unlike this, the fin 72C may be configured not to be displaced in the X-axis direction so that the pressure loss of the air passing through the cooler 72 is reduced and the air in the cooler chamber 7 can easily flow. In this way, since the air can flow easily, the burden on the blower 71 is reduced, and the power consumption can be reduced.
- the cooling capacity is low because the air easily flows and the air does not stay in the vicinity of the cooler 72, but the air 61F returned from the refrigerator chamber 1 and the vegetable storage chamber 5 to the cooler chamber 7 is provided with fins 72C in the refrigerant pipe 72B. Since it passes through the first region having a high cooling capacity, it is not necessary to keep the air in the vicinity of the cooler 72 for a long time, and this configuration can be adopted. Further, in order to promote the upward heat transfer of the refrigerant pipe 72B, a configuration in which the fins 72C are joined to a plurality of pipes in the vertical direction can be adopted.
- the return air having a high temperature range for example, the return air in the refrigerating temperature range, flows into a region having a high cooling capacity of the cooler 72, that is, a region provided with a fin 72C of the fin tube type cooler. .. As a result, all the air that has passed through the cooler 72 becomes cold, and dew condensation and freezing are suppressed.
- the return port 61C described as being formed at a position lower than the lower end of the cooler 72 may be formed at the same height as the lower end of the cooler 72. As a result, the return air 61F that has passed through the return port 61C can flow into the cooler 72 without making a detour below the cooler 72. As a result, the occurrence of pressure loss can be suppressed.
- the return port 62C may be formed so that the lower end of the return port 62C, which is described as being higher than the lower end of the cooler 72, is at the same height as the lower end of the cooler 72. By being positioned at the same height in this way, the return air 62F from the return port 62C can pass between the bottom fins 72C. As a result, the return air 62F can be heat-exchanged over the entire length of the cooler 72 in the Z-axis direction while suppressing the return air 61F from flowing to the outside of the side plate 72AR.
- the return port 63C may be formed so that the lower end of the return port 63C is at the same height as the lower end of the cooler 72.
- the return air 63F that has passed through the return port 63C can be heat-exchanged over the entire length of the cooler 72 in the Z-axis direction while suppressing the return air 61F from flowing to the outside of the side plate 72AL.
- the height of the lower end of the return port 63C may be the same as the height of the lower end of the return port 62C.
- the height of the lower end of the return port 64C may be the same as the height of the lower end of the cooler 72.
- the return air 64F from the return port 64C can pass between the bottom fins 72C, and heat can be exchanged over the entire length of the cooler 72 in the Z-axis direction.
- each return port is an opening provided in the partition wall 6.
- the mode of each return port is not limited to the above, and may be added with various functions.
- a modified example 7 having a different structure of the return port formed on the partition wall 6 will be described with reference to FIGS. 7 to 10.
- the return port 62B opening to the ice making chamber 2 has a rectangular opening 66A as a second opening, and the opening 66A extends vertically and a plurality of laterally.
- the arranged lattice material 66B is provided.
- the vertical direction is the vertical direction
- the horizontal direction is the horizontal direction.
- the air passing through the return port 62B is rectified by the grid material 66B, and the components in the left-right direction of the air after passing through the grid material 66B are rectified. It can be made smaller.
- the grid members provided in the return port 62B may be provided in the return port 62B with a plurality of lattice members extending in the horizontal direction and arranged in the vertical direction at different directions by 90 °.
- the return port 62B is above and outside the return port 62C opening to the cooler chamber 7.
- the return port 62B and the return port 62C are connected by a return air passage 62D formed in the partition wall 6.
- the return air passage 62D partially has a vertical air passage 62DA extending in the vertical direction.
- the air passing through the return air passage 62D is rectified by the upper and lower air passages 62DA thus formed, and the left-right component of the flow velocity becomes smaller.
- the return air passage 62D has a vertical air passage 62DA formed in a part thereof, the entire air passage 62D may be formed in the vertical direction.
- the return port 63B opening to the switching chamber 3 has a rectangular opening 67A as a second opening, and the opening 67A extends in the vertical direction and a plurality of in the horizontal direction.
- the arranged lattice material 67B is provided. In this way, by providing the grid material 67B in the return port 63B, the foodstuffs stored in the switching chamber 3, small items for storing the foodstuffs, etc. enter from the return port 63B and block the return air passage 63D. Can be prevented.
- the air passing through the return port 63B is rectified by the grid material 67B, and the components in the left-right direction of the air after passing through the grid material 67B are rectified. It can be made smaller.
- the grid members provided in the return port 63B may be provided in the return port 63B with a plurality of lattice members extending in the horizontal direction and arranged in the vertical direction at different directions by 90 °.
- the return port 63B is above and outside the return port 63C opening to the cooler chamber 7.
- the return port 63B and the return port 63C are connected by a return air passage 63D formed in the partition wall 6.
- the return air passage 63D partially has a vertical air passage 63DA extending in the vertical direction.
- the air passing through the return air passage 63D is rectified by the vertical air passage 63DA formed in this way, and the left-right component of the flow velocity becomes small.
- the return air passage 63D has a vertical air passage 63DA formed in a part thereof, the entire air passage 63D may be formed in the vertical direction.
- the return port 64B opening to the freezing chamber 4 has a rectangular opening 12 as a second opening.
- the return port 64B is provided with a reinforcing material 13 extending in the vertical direction and arranged in a plurality of horizontal directions in the opening 12, and a plurality of guides 14 extending in the left-right direction and provided at intervals in the vertical direction in a grid pattern.
- the guides 14 as guide members for guiding the air passing through the return port 64B are plate-shaped members, respectively, and as shown in FIG. 10, the portion in the direction in which the cooler chamber 7 is provided, that is, the ⁇ Y direction is + Y. It is arranged at an angle so as to be above the portion in the direction. If sufficient rigidity can be ensured for the plurality of guides 14 provided in the return port 64B, the reinforcing material 13 may be omitted.
- the return port 64C opening to the cooler chamber 7 has a rectangular opening 16 as shown in FIG.
- the return air passage 17 connecting the return port 64B and the return port 64C has a larger width in the Z-axis direction toward the rear, that is, in the ⁇ Y-axis direction. In other words, the return air passage 17 becomes higher as it goes from the freezing chamber 4 to the cooler chamber 7.
- the return air from the freezing chamber 4 is guided diagonally upward by the guide 14 as shown by the arrow 19 in FIG. Then, the return air guided by the guide 14 flows diagonally upward through the return air passage 17 and passes through the return port 64C.
- the return air that has passed through the return port 64C can flow into the cooler 72 and smoothly flow upward as shown in FIG. ..
- the pressure loss when flowing into the cooler 72 can be reduced, and the cooling performance of the refrigerator can be improved.
- the opening 12 of the return port 64B is partitioned upward by an upper overhanging portion 20 protruding forward from the front surface 6B of the partition wall 6, that is, in the + Y-axis direction.
- the front of the front surface 6B is the direction in which the freezing chamber 4 is provided.
- the opening 12 of the return port 64B is partitioned downward by a lower overhanging portion 21 projecting forward from the front surface 6B.
- the upper overhanging portion 20 is inclined downward toward the front.
- the lower overhanging portion 21 is inclined upward toward the front.
- the leading edge 21a of the lower overhanging portion 21 is located in front of the leading edge 14a of the guide 14 and the leading edge 20a of the upper overhanging portion 20. That is, the overhanging amount of the lower overhanging portion 21 is larger than the overhanging amount of the upper overhanging portion 20.
- the defrosted water generated by defrosting becomes water droplets and flows down from the front surface 6B of the partition wall 6 via the upper overhanging portion 20 and the guide 14, and the leading edge 21a protrudes forward onto the upper surface of the lower overhanging portion 21.
- the upper surface of the lower overhanging portion 21 has a downward slope toward the rear, that is, from the freezing chamber 4 toward the cooler chamber 7. Therefore, the water droplets that have reached the upper surface of the lower overhanging portion 21 flow down toward the cooler chamber 7. Therefore, it is possible to prevent the floor surface of the freezing chamber 4 from getting wet due to water droplets of defrosted water.
- the air in the ice making chamber 2 is returned to the cooler chamber 7 through the partition wall 6.
- a configuration may be adopted in which the air in the ice making chamber 2 is passed through another storage chamber, for example, the freezing chamber 4 before being returned to the cooler chamber 7.
- the configuration of the partition wall 6 can be simplified, and the air returning from the refrigerating chamber 1 in the partition wall 6 is not cooled. It has the feature.
- the air return port 62C from the ice making chamber 2 opened to the outside of the side plate 72A in the first embodiment shown in FIG. 5 is a part of the air return port 64C from the freezer chamber 4 as shown in FIG. By substituting with, the same effect as that of the first embodiment is obtained.
- FIG. 11 is a perspective view of the partition wall 6 of the refrigerator 100A according to the second embodiment as viewed from the front side of the refrigerator 100A.
- an air outlet 61A to the refrigerating chamber 1 and an air return port 61B from the refrigerating chamber 1 are formed on the upper surface of the partition wall 6.
- an air outlet 62A to the ice making chamber 2 an air outlet 63A to the switching chamber 3, an air return port 63B from the switching chamber 3, and air to the freezing chamber 4
- the outlet 64A and the air return port 64B from the freezing chamber 4 are formed.
- the outlet 61A has a damper (not shown) that adjusts the flow rate of the air circulating in the refrigerating chamber 1
- the outlet 62A has a damper (not shown) that adjusts the flow rate of the air circulating in the ice making chamber 2.
- FIG. 12 is a perspective view of the partition wall 6 of the refrigerator 100A according to the second embodiment as viewed from the back side of the refrigerator 100A.
- the back surface of the partition wall 6 is provided with an air return port 63C from the switching chamber 3 and an air return port 64C from the freezing chamber 4.
- the air return ports 64C from the freezing chamber 4 are provided at two locations. The air supplied to the switching chamber 3 and the freezing chamber 4 flows into the cooler chamber 7 from these return ports.
- the air return port 61C from the refrigerating chamber 1 is provided in the lower left corner when viewed from the back surface of the partition wall 6, and the air supplied to the refrigerating chamber 1 and the vegetable storage chamber 5 flows into the cooler chamber 7. ..
- FIG. 13 is a view of the cooler chamber 7 and the partition wall 6 of the refrigerator 100A according to the second embodiment as viewed from the back side of the refrigerator 100A.
- the difference from the first embodiment is that the air flowing to the outside of the side plate 72AR located on the right side of FIG. 13 is the air derived from the freezing chamber 4.
- One of the air return ports 64C from the freezing chamber 4 faces the region outside the side plate 72AR, and a part of the air in the freezing temperature zone flows outside the side plate 72AR.
- the air 61F returning from the refrigerating chamber 1 and the vegetable storage chamber 5 passes through the first region where the fins 72C have a high arrangement density and a high cooling capacity, and is sufficiently cooled and dehumidified. As a result, all the air that has passed through the cooler 72 becomes low temperature and low humidity, and dew condensation and freezing on the blower 71 are suppressed.
- the return ports 64B and the return ports 64C provided at the two locations have different sizes from each other, but the sizes may be the same. Further, the same configuration as the guide 14 shown in FIG. 10 may be provided in each return port 64C.
- the partition wall 6 according to the first modification is provided with two return ports 64B opened in the freezing chamber 4 side by side in the X-axis direction.
- the two return ports 64B have rectangular openings having the same size, extend in the X-axis direction, and have a plurality of guides 22 arranged in the Z-axis direction which is the vertical direction.
- each of the guides 22 is a plate-shaped member, and the portion in the direction in which the cooler chamber 7 is provided, that is, the portion in the ⁇ Y direction is larger than the portion in the + Y direction. It is arranged at an angle so that it faces upward.
- the return air that has entered the return port 64B from the freezing chamber 4 is guided diagonally upward by the guide 22. Then, the return air guided by the guide 22 can be passed as it is to the return port 64C shown in FIG. 15 opened in the cooler chamber 7. As a result, the return air that has passed through the return port 64C can flow into the cooler 72 and smoothly flow upward as shown in FIG. As a result, the pressure loss when flowing into the cooler 72 can be reduced, and the cooling performance can be improved.
- the return port 64B is returned as compared with the case where there is only one return port 64B and the case where the return port 64B has a different size.
- the length of the mouth 64B in the X-axis direction can be shortened.
- the length of the guide 22 provided in the return port 64B in the X-axis direction can be shortened, so that the rigidity of the guide 22 can be increased. Therefore, the guide 22 can be made difficult to bend, and it is possible to prevent foreign matter from entering through the gap of the guide 22 and preventing the finger from entering the gap of the guide 22.
- the width of the return port 64C in the Z-axis direction is larger than the width of the return port 63C for returning air from the switching chamber 3 in the Z-axis direction. It may be made larger to make the opening area of the return port 64C larger.
- the refrigerating room 1, the ice making room 2, the switching room 3, the freezing room 4, and the vegetable storage room 5 are arranged from the top.
- a refrigerator 100B having a configuration in which the positions of the freezing chamber 4 and the vegetable storage chamber 5 are interchanged up and down will be described with reference to FIGS. 17 to 20. While vegetables are frequently used for cooking, this composition tends to be preferred in households where frozen ingredients are used relatively infrequently. An embodiment of the present disclosure is adopted for such a configuration.
- the refrigerator 100B includes a refrigerating chamber 1, an ice making chamber 2, and a switching chamber 3 at the same positions as in the first embodiment.
- the vegetable storage chamber 5 is provided below the ice making chamber 2 and the switching chamber 3, and the freezing chamber 4 is provided below the vegetable storage chamber 5.
- FIG. 18 is a perspective view of the partition wall 6 of the refrigerator 100B according to the third embodiment as viewed from the front side of the refrigerator 100B.
- the partition wall 6 has an air outlet 61A to the refrigerating chamber 1, an air return port 61B, an air outlet 62A to the ice making chamber 2, an air return port 62B, and air to the switching chamber 3.
- Each is formed. Since the vegetable storage chamber 5 is located above the freezer compartment 4, the air outlet 65A and the air return port 65B to the vegetable storage chamber 5 are the air outlet 64A and the air return to the freezer compartment 4.
- the outlet 65A to the vegetable storage chamber 5 is smaller than the air outlet 64A to the freezing chamber 4.
- dampers for adjusting the flow rate of air are provided at each of the air outlets to the refrigerating room 1, the ice making room 2, the switching room 3, and the vegetable storage room 5.
- dampers for adjusting the flow rate of air are provided at each of the air outlets to the refrigerating room 1, the ice making room 2, the switching room 3, and the vegetable storage room 5.
- FIG. 19 is a perspective view of the partition wall 6 as viewed from the back side of the refrigerator 100B.
- the air return port 61C from the refrigerating room 1, the air return port 62C from the ice making room 2, the air return port 63C from the switching room 3, and the air return port from the freezing room 4 64C is provided.
- the air returning from the vegetable storage chamber 5 flows into the partition wall 6 from the return port 65B, is sent to the return air passage 61D, joins the air returning from the refrigerating chamber 1, and flows into the cooler chamber 7 from the return port 61C. ..
- FIG. 20 is a view of the cooler chamber 7 and the partition wall 6 of the refrigerator 100B according to the third embodiment as viewed from the back side of the refrigerator 100B.
- the partition wall 6 has a return port for air from each storage chamber as in FIG. 5 shown in the first embodiment.
- the air returning from each storage chamber is in the same position as that of the first embodiment.
- Inflow As described with reference to FIGS. 18 and 19, the positions of the air outlets 64A and 65A from the partition wall 6 and the air return ports 64B and 65B to the partition wall 6 are changed, but inside the partition wall 6.
- the same inflow position is realized by changing the air passage of. Similar to the first embodiment, all the air passing through the cooler 72 becomes low temperature, and dew condensation and freezing on the blower 71 are suppressed.
- the air outlet 65A and the air return port 65B to the vegetable storage chamber 5 are both directed forward, that is, in the Y-axis direction, as shown in FIG. 18, but they are the same. It is optional whether or not to turn in the direction.
- a recess 23 is provided at the end of the partition wall 6 in the X-axis direction, and the recess 23 is formed with an air return port 65B directed in the X-axis direction, that is, outward. May be good.
- the outlet 65A directed in the Y-axis direction and the air return port 65B directed in the X-axis direction can be directed in different directions.
- the air blown out from the outlet 65A can be distributed to the entire vegetable storage chamber 5 and then flowed into the return port 65B.
- the air outlet 65A to the vegetable storage chamber 5 is formed close to the end of the partition wall 6 on the ⁇ X axis direction side, and the return port 65B is formed on the + X axis of the partition wall 6. It is formed close to the end on the direction side.
- the outlet 65A and the return port 65B are formed at the left and right ends of the partition wall 6 in this way, the air blown out from the outlet 65A is distributed to the entire vegetable storage chamber 5 and then to the return port 65B. It can be inflowed.
- the outlet 65A and the return port 65B formed on the partition wall 6 are formed in the upper part of the vegetable storage chamber 5. This makes it possible to efficiently cool the relatively warm air above the vegetable storage chamber 5.
- outlet 65A and the return port 65B are formed are not limited to the case where they are different by 90 degrees as described above.
- the outlet 65A and the return port 65B may be arranged so as to be 180 degrees different from each other so as to face the outside of the partition wall 6.
- the cooling capacity of the cooler 72 can be used more effectively by flowing the air 63F in the freezing temperature zone to the region where the cooling capacity of the cooler 72 is high, that is, inside the side plate 72A.
- FIG. 22 is a perspective view of the partition wall 6 as viewed from the back side of the refrigerator 100C.
- the air outlet 61A to the refrigerating chamber 1 On the partition wall 6, the air outlet 61A to the refrigerating chamber 1, the air outlet 65A to the vegetable storage chamber 5, the air return port 65B from the vegetable storage chamber 5, the refrigerating chamber 1 and the vegetable storage chamber 5
- An air return port 61C, an air return port 62C from the ice making chamber 2, an air return port 63C from the switching chamber 3, and an air return port 64C from the freezing chamber 4 are provided.
- FIG. 23 is a cross-sectional view taken along the line III-III shown in FIG. 22.
- a flap 62H is provided at the air return port 62C from the ice making chamber 2
- a flap 63H is provided at the air return port 63C from the switching chamber 3.
- the flap 63H has a stepping motor 97 as shown in FIG.
- dampers (not shown) are provided in the air outlet 61A to the refrigerating chamber 1, the air outlet 62A to the ice making chamber 2, and the air outlet 63A to the switching chamber 3 shown in FIG. ing.
- a thermistor 96 is provided in the refrigerating chamber 1 and the vegetable storage chamber 5 to measure the temperature.
- the machine room 8 shown in FIG. 2 has a control unit 9 shown in FIG. 24 for controlling the angles of the flaps 63H and 62H and the damper 99.
- the control unit 9 includes a processor 91, a RAM 92, a ROM 93, and an input / output interface (hereinafter, I / O) 95.
- the processor 91 uses the RAM 92 as a work memory to execute a control program stored in the ROM (Read Only Memory) 93.
- the RAM (RandomAccessMemory) 92 functions as a work area of the processor 91 and stores a program being executed and various data.
- the ROM (Read Only Memory) 93 stores a control program between the flaps 62H and 63H and the damper 99, fixed data used for the control, and the like.
- the fixed data has a first threshold temperature T1.
- Temperature information is stored in the RAM 92 through the I / O 95 from the thermistor 96, which is a temperature information acquisition unit provided in the refrigerator compartment 1 and the vegetable storage chamber 5.
- the processor 91 compares the threshold temperature stored in advance in the ROM 93 with the temperature information stored in the RAM 92 of the refrigerating chamber 1 and the vegetable storage chamber 5.
- a damper control signal is sent to the damper 99, the damper 99 is rotated, and the damper 99 is closed.
- a flap control signal is sent to the stepping motor 97 of the flap 63H and the stepping motor 98 of the flap 62H, so that the flap 63H is directed diagonally to the right and the flap 62H is directed diagonally to the left.
- the air passing through the return port 63C and returning to the cooler chamber 7 flows in the diagonally right direction, and the air passing through the return port 62C and returning to the cooler room 7 flows in the diagonally left direction.
- the air 62F and 63F in the freezing temperature zone flow through the region of the cooler 72 having a high cooling capacity and are cooled with high efficiency.
- the damper 99 is opened by the control signal from the processor 91, and the cooled air is sent to the second storage chamber kept at the refrigerating temperature. It is sent by the blower 71.
- the stepping motors 97 and 98 are rotated by the control signal from the processor 91, and the flaps 62H and 63H are inclined outward respectively.
- the air flowing in from the return port 62C or the return port 63C flows to the right side of the right side plate 72AR or to the left side of the left side plate 72AL. Similar to the first embodiment, the air 61F returning from the refrigerating chamber 1 and the vegetable storage chamber 5 flows through the region of the cooler 72 having a high cooling capacity, and dew condensation and freezing on the blower 71 are suppressed.
- the return air passage 61D for the air from the refrigerating chamber 1 is provided at the left end of the partition wall 6 when viewed from the back of the refrigerator.
- return air passages 61D for air from the refrigerating chamber 1 are provided on both the left and right sides of the partition wall 6.
- FIG. 26 is a view of the refrigerator chamber 7 and the partition wall 6 of the refrigerator 100D as viewed from the back side of the refrigerator 100D.
- Return air passages 61D from the refrigerating chamber 1 are formed on both the left and right sides of the partition wall 6.
- An example is shown when the inflow amount of air in the return air passage 61D located on the left side of the drawing is larger than the inflow amount of air in the return air passage 61D located on the right side.
- the present disclosure is a refrigerator that circulates air, and cools the air that circulates in the cooler. It can be applied when the cooler has a region with a relatively high cooling capacity and a region with a relatively low cooling capacity. Air at a freezing temperature is flowed to a part having a relatively low cooling capacity of the cooler, and air having a relatively high temperature and high humidity is flowed to a part having a high cooling capacity.
- the technique of the present disclosure can be applied not only to the fin tube type but also to a refrigerator using a Pelche element as a cooler. For example, the end of the Pelche element has a relatively low cooling capacity.
- the freezing temperature range is not limited to the above-mentioned temperature of -17 ° C or lower.
- the refrigerating temperature zone is not limited to the above-mentioned temperature of + 3 ° C. to + 10 ° C., and refers to a temperature zone higher than the freezing temperature zone in the refrigerator 100.
- the present invention is not limited to this, and is applied to a refrigerator in which air having a freezing temperature and air having a higher temperature circulate. can.
- Refrigerator room 1A outlet, 2 ice making room, 3 switching room, 4 freezer room, 5 vegetable storage room, 6 partition wall, 6A outlet, 6B front, 6C return port, 7 cooler room, 8 machine room, 9 Control unit, 11 doors, 12 openings, 13 reinforcements, 14 guides, 14a front edges, 15 storage chambers, 16 openings, 17 return air passages, 20 upper overhangs, 20a front edges, 21 lower overhangs, 21a front Edge, 22 guide, 25 guide, 31 door, 41 door, 51 door, 60 gap, 60A gap, 60B gap, 61A outlet, 61B return port, 61C return port, 61D return air passage, 61F air, 62A outlet, 62B return port, 62C return port, 62D return air passage, 62F air, 62H flap, 62DA vertical air passage, 63A outlet, 63B return port, 63C return port, 63D return air passage, 63F air, 63H flap, 63DA vertical wind.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
Abstract
冷凍温度帯の第1の貯蔵室と、冷凍温度帯よりも高い第2の温度帯の第2の貯蔵室と、位置に応じて冷却能力に差があり、周囲空気を冷却する冷却器(72)と、冷却器を収納する冷却器室(7)と、冷却器室内に配置された送風機(71)と、冷却器室(7)と、第1の貯蔵室もしくは第2の貯蔵室のうち少なくとも一室とを前後に仕切る仕切壁(6)と、冷却器室(7)から第1の貯蔵室に空気を送る第1の風路と、冷却器室(7)から第2の貯蔵室に空気を送る第2の風路と、第1の貯蔵室から冷却器室へ空気を戻す第3の風路と、第2の貯蔵室から冷却器室へ空気を戻す第4の風路(61D)とを具備し、第3の風路は、で少なくとも一部に仕切壁(6)に形成された上下方向に延びる風路を有し、冷却器の第1の領域よりも冷却能力の低い第2の領域に第1の貯蔵室から吸引した空気を供給する。
Description
本開示は、冷蔵庫に関する。
冷蔵庫は冷凍室および冷蔵室等の貯蔵室を有し、貯蔵室と冷却器が設置された冷却器室とが風路で結ばれている。冷蔵庫では、一般的に冷媒管に冷却能力を上げるためのフィンが配列されたフィンチューブ型の冷却器が用いられている。冷却器により冷却された空気は送風機によって風路を通して貯蔵室内に吹き出され、貯蔵室内の空気は別の風路を通じて冷却器室へ吸い戻される。
冷却器周辺の空気は冷却器で冷却される。このとき、空気の温度の低下に伴い湿度が上昇し、空気中の水分は冷却器表面に霜となって付着する。これにより空気中の水分が除去され、空気は除湿される。このように冷却器においては冷却と除湿とが同時に行われる。
フィンチューブ型の冷却器は冷媒が流れる冷媒管を有し、冷媒管は周辺空気と熱交換する。冷媒管には伝熱面積を増やすためのフィンが取り付けられており、冷却能力が高められている。冷媒管はつづら折り状の形状を有し、直線状部とU字形状に曲げられた曲部が存在する。直線状部においては、冷却能力を上げるために薄肉の管が使われ、フィンがある設置密度で配列されている。一方、曲部には厚肉の管が使われ、曲部が冷媒管全体の強度を保つ。直線状部に近い曲部の端をサイドプレートが支持する。サイドプレートよりも外側に位置する冷媒管の曲部にはフィンが無く冷却能力が低い。
冷蔵室内の空気は、外気および食品から出た水蒸気を含む。このため、サイドプレートの外側を通り十分に冷却及び除湿されないまま冷却器を通過すると、より低温の冷凍庫から冷却器室に流入した空気により送風機周辺で冷やされて露点以下になる。そして、送風機周辺で結露が生じ、更に、結露した水が送風機の動作部で氷結する。結果、送風機が正常に動作しなくなる恐れがある。特許文献1に開示の冷蔵庫では、上記の恐れの解決のため、サイドプレートよりも外側の隙間の上部に空気遮蔽板を取り付け、サイドプレートよりも外側の隙間に冷蔵室から戻った空気が流れることを抑えている。
しかしながら、遮蔽板と冷却器室の壁との間には依然として隙間があり、冷蔵室からの戻り空気は依然としてサイドプレートよりも外側を流れうる。このため、送風機への氷結の防止に対して改善の余地があった。
本開示は、送風機への氷結が抑えられた冷蔵庫を提供することを目的とする。
本開示の冷蔵庫は、冷凍温度帯の第1の貯蔵室と、冷凍温度帯よりも高い第2の温度帯の第2の貯蔵室と、位置に応じて冷却能力に差があり、周囲空気を冷却する冷却器と、冷却器を収納する冷却器室と、冷却器室内に配置された送風機と、冷却器室と、第1の貯蔵室もしくは第2の貯蔵室のうち少なくとも一室とを前後に仕切る仕切壁と、冷却器室から第1の貯蔵室に空気を送る第1の風路と、冷却器室から第2の貯蔵室に空気を送る第2の風路と、第1の貯蔵室から冷却器室へ空気を戻す第3の風路と、第2の貯蔵室から冷却器室へ空気を戻す第4の風路と、を具備する。第1の貯蔵室と、第2の貯蔵室と、第1の風路と、第2の風路と、第3の風路と、第4の風路と、冷却器から循環路を形成し、送風機は、循環路において、冷却器よりも空気の下流側に配置されており、冷却器で冷却された空気を第1の風路と第2の風路を介して第1の貯蔵室と第2の貯蔵室にそれぞれ送出し、第3の風路と第4の風路を介して第1の貯蔵室と第2の貯蔵室から空気を吸引し、第4の風路は、冷却器の第1の領域に第2の貯蔵室から吸引した空気を供給し、第3の風路は、少なくとも一部に仕切壁に形成された上下方向に延びる風路を有し、冷却器の第1の領域よりも冷却能力の低い第2の領域に第1の貯蔵室から吸引した空気を供給する。
冷凍温度帯の第1の貯蔵室から冷却器室に戻る空気は温度湿度ともに十分低く、冷却器の冷却能力の低い第2の領域に供給されて冷却器による冷却と除湿が比較的軽微であっても、送風機に達した時に温度湿度ともに十分低い。一方、第2の貯蔵室から冷却器室に戻る空気の温度および湿度はともに第1の貯蔵室から冷却器室に戻る空気に比べて高い。しかしながら、第2の貯蔵室から冷却器室に戻る空気は、第一の貯蔵室から冷却器室に戻り第2の領域を流れる空気に疎外されて第2の領域への流れが抑制され、代わって冷却器の冷却能力の高い第1の領域を流れ、送風機に達するまでに第1の領域で十分に冷却除湿される。送風機には低温低湿の空気が流れ、送風機での氷結が抑えられる。
送風機への氷結が抑えられた冷蔵庫を提供することができる。
送風機への氷結が抑えられた冷蔵庫を提供することができる。
以下、本開示の実施の形態にかかる冷蔵庫について図面を参照しながら説明する。なお、各図において、同一構成要素には同一符号を付す。図に示す直交座標系XYZにおいて、冷蔵庫の扉を正面側とした場合の左右方向をX軸方向、上下方向をZ軸方向、X軸とZ軸とに直交する方向をY軸方向とする。以下、適宜、この座標系を利用して説明する。また、X軸方向において、冷蔵庫あるいは冷却器の中心から見て遠い側を外側と称する。
(実施の形態1)
以下、実施の形態1に係る冷蔵庫100を図1から図6を参照して説明する。冷蔵庫100は、図1及び図2に示すように、冷蔵室1を備えている。冷蔵庫100は冷蔵室1の下に、左に製氷室2、右に切替室3、を並んで具備する。冷蔵庫100は、製氷室2及び切替室3の下に冷凍室4を、冷凍室4の下に野菜貯蔵室5を、それぞれ備える。
以下、実施の形態1に係る冷蔵庫100を図1から図6を参照して説明する。冷蔵庫100は、図1及び図2に示すように、冷蔵室1を備えている。冷蔵庫100は冷蔵室1の下に、左に製氷室2、右に切替室3、を並んで具備する。冷蔵庫100は、製氷室2及び切替室3の下に冷凍室4を、冷凍室4の下に野菜貯蔵室5を、それぞれ備える。
冷蔵室1は、食品等の貯蔵物を収納するための空間を有する貯蔵室15の一つである。冷蔵室1内の温度は、+3℃~+10℃の温度帯に保たれている。以下、この温度帯を冷蔵温度帯と称する。製氷室2は、製氷された氷を貯める機能を有し、貯蔵室15の一つである。製氷室2は、例えば-17℃以下の温度帯に保たれている。以下、この温度帯を冷凍温度帯と称する。切替室3は、室内の温度を複数の温度に切り替えられる。初期の温度は冷凍温度帯であり、複数の温度に切り替えられるが、その温度は、冷蔵室1の温度および野菜貯蔵室5の温度より低い。本実施の形態では、冷凍温度帯に設定されているものとして記載する。また、冷凍室4は室内の温度が冷凍温度帯に制御されており、貯蔵室15の一つである。野菜貯蔵室5は、野菜を収納するための空間であり、貯蔵室15の一つである。野菜貯蔵室5は、例えば+3℃~+10℃の冷蔵温度帯に保たれている。
以下、冷蔵室1、製氷室2等の貯蔵室を区別しない場合は、単に貯蔵室15と記載する。また、冷凍温度帯の貯蔵室を冷凍貯蔵室あるいは第1の貯蔵室と称し、冷凍温度帯よりも温度の高い第2の温度帯である冷蔵温度帯の貯蔵室を冷蔵貯蔵室あるいは第2の貯蔵室と称することがある。風路から空気が吹き出す開口部を吹き出し口、風路を通して空気が戻る時の風路の開口部を戻り口と称する。
図2に示すように、冷蔵庫100は、全体として箱形状の断熱箱体101を有する。断熱箱体101は、複数の貯蔵室15を備える。断熱箱体101と各貯蔵室15の前面に配置された扉11、31、41、51等とにより、外気の熱が貯蔵室15に侵入するのを防いでいる。
断熱箱体101は、庫内を冷却するために、冷却器室7と、機械室8と、冷却器室7と製氷室2、切替室3、冷凍室4、野菜貯蔵室5とを仕切る仕切壁6と、冷却器室7から冷蔵室1に冷風を送る吹き出し風路101Aと図示せぬ戻り風路とを備える。
冷却器室7には、上から、送風機71、冷却器72、霜取りヒータ73が配置されている。また、機械室8には、圧縮機81が配置されている。送風機71は、冷却器72で生成された冷気を送風路を介して各貯蔵室15に送風し、また、各貯蔵室15の空気を戻り風路を介して吸引する。
冷却器72を低温に保つ冷凍サイクルは、圧縮機81と、図示されていない凝縮器と膨張弁と、冷却器72との4つの要素で構成される。これらの要素は配管によって環状に接続され、配管を介して各要素を冷媒が循環する。冷却器72は、膨張弁を経由して送られてきた低温・低圧の液体冷媒を、周辺の空気から熱を奪って気化する。これにより冷却器72の周囲の空気が冷却される。
図5に示すように、冷却器72は、フィンチューブ型の冷却器であり、送風機71の下方に配置されている。冷却器72は、直線状の管72BAとU字管72BBとが結合されたつづら折り状の冷媒管72Bを有する。冷媒管72Bの複数本の直線状の管72BAが上下に水平に設置されている。左右一対のサイドプレート72ALと72ARとが、図5の左下の拡大図に示すように、直線状の管72BAとU字管72BBとの境の位置に、鉛直に設けられている。冷却器72はサイドプレート72AL、72ARで支持され、冷却器72の形状が保持されている。
以下、冷蔵庫100を背面側から見て、左側に位置するサイドプレート72ALの左側と、右側に位置するサイドプレート72ARの右側とを、サイドプレート72Aの外側と表現し、左右のサイドプレート72Aの間をサイドプレート72Aの内側と表現する。
冷媒管72Bの直線状の管72BA、即ち冷媒管72Bの直線状部には冷却能力を向上させるために薄肉の管が採用され、伝熱面積を増やすためのフィン72Cがある設置密度で配列されて取り付けられており、冷却能力が向上させられている。フィン72Cの設けられたこの領域は、冷却器72において冷却能力の相対的に高い第1の領域の一例である。冷媒管72BのU字管72BB、即ち、サイドプレート72Aの外側に位置する冷媒管72Bの曲部には、冷却器72の強度の向上を企図して厚肉の管が採用されており、フィン72Cは設けられていないか、あるいは、直線状部より低い設置密度で設けられている。フィン72Cの設置密度の低い冷媒管72Bの曲部、即ち、サイドプレート72Aの外側では、冷却器72の冷却能力は、フィン72Cの設けられているサイドプレート72Aの内側の冷却器72の冷却能力に比べて低い。このサイドプレート72Aの外側の領域は、冷却器72において冷却能力の相対的に低い第2の領域の一例である。
冷却器72は、周囲空気を冷却するとともに、空気中の水分を霜にして取り除き、除湿もしている。この霜が厚く冷却器72に付くと、冷却能力が低下する。このため、図2に示すように霜取りヒータ73が冷却器72の下方に配置されている。霜取りヒータ73は、ガラス管ヒータあるいはカーボンヒータを有している。霜取りヒータ73は、冷却器72を加温して表面に付着した霜を蒸発させる。
吹き出し風路101Aは、断熱箱体101の背面部に設けられ、仕切壁6に形成された吹き出し口61Aを介して冷却器室7から送風されてくる冷気を吹き出し口1Aから冷蔵室1に吹き出す。
また、図示せぬ戻り風路は、断熱箱体101の背面部に設けられ、仕切壁6に形成された戻り風路を介して、冷蔵室1内の空気を冷却器室7に戻す。
仕切壁6は、冷却器室7と冷蔵室1、製氷室2、切替室3、冷凍室4、野菜貯蔵室5との間を仕切ると共に冷却器室7と各貯蔵室15とを繋ぐ複数の送風路と複数の戻り風路を備え、冷気を循環させる。
仕切壁6が備える風路の構成を図3および図4を参照して説明する。
仕切壁6が備える風路の構成を図3および図4を参照して説明する。
仕切壁6は、図2に示す吹き出し風路101Aに吹き出し口61Aで接続され、冷蔵室1に冷気を送風する送風路を備える。冷蔵室1からの戻り風路に図3に示す戻り口61Bで接続され、戻り口6Cが冷却器室7に開口する図4に示す戻り風路61Dを備える。冷蔵室1へ吹き出し風路101Aを通して冷気が送風され、冷却器室7へ戻り風路61Dを通して冷気が戻り、冷蔵室1と冷却器室7との間で冷気が循環される。
吹き出し風路101Aは第2の風路の一例であり、冷蔵室1からの戻り風路は第4の風路の一例である。
吹き出し風路101Aは第2の風路の一例であり、冷蔵室1からの戻り風路は第4の風路の一例である。
第1の貯蔵室と、第2の貯蔵室と、第1の風路と、第2の風路と、第3の風路と、第4の風路と、冷却器室7とによって循環路の一例が形成されている。
仕切壁6は、冷凍温度帯の第1の貯蔵室の一つである製氷室2に開口する吹き出し口62Aと冷却器室7とを接続する吹き出し風路を備える。また、仕切壁6は、製氷室2に開口する戻り口62Bと冷却器室7に開口する戻り口62Cとを繋ぐ戻り風路を備える。製氷室2の空気は戻り口62Bと62Cを通り、冷却器室7に戻る。これにより、製氷室2と冷却器室7との間で冷気が循環される。製氷室2に開口する吹き出し口62Aと冷却器室7とを接続する吹き出し風路は、第1の風路の一例であり、製氷室2に開口する第2の開口部としての戻り口62Bと冷却器室7に開口する第1の開口部としての戻り口62Cを繋ぐ戻り風路は、第3の風路の一例である。
切替室3には、図3に示す吹き出し口63Aから送風機71によって空気が吹き出す。そして、切替室3の空気は、戻り口63B、及び図4に示す戻り口63Cを通り、冷却器室7に戻る。
冷凍室4には、図3に示す吹き出し口64Aから空気が吹き出す。そして、冷凍室4の空気は、戻り口64B、図4に示す戻り口64Cを通り、冷却器室7に戻る。
仕切壁6には、図3に示すように、2つの吹き出し口64AがZ軸方向に並んで形成されている。吹き出し口64Aは、冷凍室4に設けられたケースの数だけ形成される。それぞれの吹き出し口64Aは、対応するケースの大きさや位置に合わせて、幅や空気を吹き出す方向が設定されている。
野菜貯蔵室5には、仕切壁6に設けられた吹き出し口65Aから空気が吹き出される。吹き出された空気は、図3および図4に示される戻り口65Bを通り、仕切壁6内に戻る。そして、この野菜貯蔵室5から戻ってくる空気は、冷蔵室1から戻ってくる空気と仕切壁6内の戻り風路61D内にて合流し、図4に示す戻り口61Cを通り、冷却器室7に戻る。これら戻り口62C、63C、64Cは、送風機71より下側に、且つ、冷却器72の下端に設けられている。
次に、各戻り風路の戻り口の位置と冷却器72との配置関係について説明する。
図5に示すように仕切壁6内の冷蔵庫100の背面から見て左側に戻り風路61Dが形成されており、冷蔵室1からの空気61Fが戻ってくる。一方、野菜貯蔵室5から戻ってきた空気は、冷蔵室1から戻ってきた空気61Fと戻り風路61Dにおいて合流する。そして、冷蔵室1および野菜貯蔵室5から戻ってきた冷蔵温度の空気は戻り口61Cから冷却器室7へ流入する。冷蔵室1からの空気の戻り口61Cは、冷却器72よりも左側かつ下方で、冷却器72に対して空気の流れの上流に設けられる。戻り口61Cから流入した空気は冷却器室7の底に斜めに形成された冷却器室7の壁74により向きをかえられた風路を流れる。
図5に示すように仕切壁6内の冷蔵庫100の背面から見て左側に戻り風路61Dが形成されており、冷蔵室1からの空気61Fが戻ってくる。一方、野菜貯蔵室5から戻ってきた空気は、冷蔵室1から戻ってきた空気61Fと戻り風路61Dにおいて合流する。そして、冷蔵室1および野菜貯蔵室5から戻ってきた冷蔵温度の空気は戻り口61Cから冷却器室7へ流入する。冷蔵室1からの空気の戻り口61Cは、冷却器72よりも左側かつ下方で、冷却器72に対して空気の流れの上流に設けられる。戻り口61Cから流入した空気は冷却器室7の底に斜めに形成された冷却器室7の壁74により向きをかえられた風路を流れる。
図4に示す仕切壁6に形成された戻り口61Cは、図5に示すように、冷却器72の下端、すなわち冷却器72の一番下に設けられたフィン72Cの下端より低い位置にある。下方へと延びる戻り風路61Dを通過する戻り空気61Fは、戻り口61Cから下方へと吹き出される。このようにして冷却器室7に流入した戻り空気61Fは、冷却器室7の中央に向けて斜め下方に傾斜した傾斜面74Aにより向きを変えられ、冷却器72の下方に回り込む。そして、戻り空気61Fは、冷却器72に下端から流入し、上方へと流れる。これにより、冷蔵室1及び野菜貯蔵室5からの戻り空気61Fを、一番下に設けられたフィン72Cの間を通過させることができ、Z軸方向における冷却器72の全長にわたって熱交換することができる。
一方、製氷室2から戻ってきた空気は、戻り口62Cから冷却器室7に流入する。戻り口62Cは、冷蔵庫100の背面から見て右側のサイドプレート72ARと冷却器室7の壁74との間の領域を包含するか、あるいは、当該領域に対向し、冷却器72に対して空気の流れの上流に設けられている。
仕切壁6に形成された戻り口62Cは、図4に示すように、-Y軸方向を向いた面、すなわち冷蔵庫100の背面側を向いた面に形成されている。戻り口62Cは、図5に示すように、その下端が冷却器72の下端、すなわち冷却器72の一番下に設けられたフィン72Cの下端より高い位置となるように形成されている。このような構成とすることで、Z軸方向において、戻り口62Cをサイドプレート72ARにオーバーラップさせることができ、戻り口62Cから吹き出された戻り空気62Fを、サイドプレート72ARの外側に流入させやすくすることができる。これにより、冷蔵室1及び野菜貯蔵室5からの戻り空気61Fが、サイドプレート72ARの外側に流入するのを阻害することができる。すなわち、サイドプレート72ARの外側を流れる戻り空気62Fに、後述するようなエアカーテンの効果を発揮させることができる。
切替室3から戻ってきた空気は、戻り口63Cから冷却器室7に流入する。戻り口63Cは、冷蔵庫100の背面から見て左側のサイドプレート72ALと戻り風路61Dの壁との間の領域を包含するか、あるいは、当該領域に対向し、冷却器72に対して空気の流れの上流に設けられている。
仕切壁6に形成された第1の開口部としての戻り口63Cは、図4に示すように、-Y軸方向を向いた面、すなわち冷蔵庫100の背面側を向いた面に形成されている。戻り口63Cは、図5に示すように、その下端が冷却器72の下端、すなわち冷却器72の一番下に設けられたフィン72Cの下端より高い位置となるように形成されている。このような構成とすることで、Z軸方向において、戻り口63Cをサイドプレート72ALにオーバーラップさせることができ、戻り口63Cから吹き出された戻り空気63Fを、サイドプレート72ALの外側に流入させやすくすることができる。これにより、冷蔵室1及び野菜貯蔵室5からの戻り空気61Fが、サイドプレート72ALの外側に流入するのを阻害することができる。すなわち、サイドプレート72ALの外側を流れる戻り空気63Fに、後述するようなエアカーテンの効果を発揮させることができる。
冷凍室4から戻ってきた空気64Fは、戻り口64Cから冷却器室7に流入する。戻り口64Cは、戻り口63Cと62Cとの間で、冷却器72に対して空気の流れの上流の位置に設けられている。
仕切壁6に形成された戻り口64Cは、図4に示すように、-Y軸方向を向いた面、すなわち冷蔵庫100の背面側を向いた面に形成されている。戻り口64Cは、図5に示すように、その下端が冷却器72の下端、すなわち冷却器72の一番下に設けられたフィン72Cの下端より高い位置となるように形成されている。このような構成とすることで、戻り口64C全体を冷却器72に正対させることができるため、戻り口64Cからの戻り空気64Fを、直接冷却器72に流入させて上方へと流れさせることができる。そのため、戻り空気64Fがフィン72Cの下方へと流れるのを抑制することができる。これにより、冷却器72の下方を流れる戻り空気61Fと戻り空気64Fとの干渉を抑制することができ、圧力損失が生じることを抑制することができる。
次に、上記構成を有する冷蔵庫100の動作を説明する。
冷却器72は冷却器室7内の空気を冷却し、送風機71が生成された冷気を各送風路を介して各貯蔵室15に送風する。一方で、送風機71は、各貯蔵室15内の空気を戻り風路を介して吸引して、冷却器72に供給する。この動作を繰り返すことにより、各貯蔵室15に冷気が分配され、貯蔵室15内の温度が適温に維持される。
冷却器72は冷却器室7内の空気を冷却し、送風機71が生成された冷気を各送風路を介して各貯蔵室15に送風する。一方で、送風機71は、各貯蔵室15内の空気を戻り風路を介して吸引して、冷却器72に供給する。この動作を繰り返すことにより、各貯蔵室15に冷気が分配され、貯蔵室15内の温度が適温に維持される。
次に、本実施の形態において特徴的な、冷却器室7に吸い込まれた空気がどのように冷却器室7の中を流れ、どのように冷却および除湿が行われ、送風機71に到達するかについて説明する。
図5に示すように、仕切壁6に設けられた空気の戻り口61C、62C、63C、64Cは何れも冷却器72の下端あるいはその近傍に位置し、空気の流れの上流にある。冷却器室7に流入した空気は冷却器室7内を上昇し、冷却器72を通過し、送風機71に達する。
製氷室2からの空気の戻り口62Cは、冷蔵庫100の背面から見て右側のサイドプレート72ARと冷却器室7の壁74との間の領域を包含するか、あるいは、当該領域に対向している。また、切替室3からの空気の戻り口63Cは、冷蔵庫100の背面から見て左側のサイドプレート72ALと戻り風路61Dの壁との間の領域を包含するか、あるいは、当該領域に対向している。このため、製氷室2から戻る空気62Fおよび切替室3から戻る空気63Fは、その一部がサイドプレート72ARあるいは72ALの外側を通る。
サイドプレート72ARあるいは72ALの外側を流れている空気は製氷室2および切替室3から戻った空気であり、冷蔵室1および野菜貯蔵室5から戻った空気より低温且つ低湿である。サイドプレート72ARあるいは72ALの外側の領域ではフィン72Cが無いため冷却能力が低いが、送風機71に到達した時に、当該空気の温度は依然として低温且つ低湿であり、送風機71周辺で氷結しない。
また、冷凍室4から戻った空気64Fは、戻り口64Cが冷却器72の下端中央付近に設けられていることから、フィン72Cの設けられた領域に流入し、送風機71に向けて流れる。
冷蔵室1と野菜貯蔵室5からの空気61Fは、戻り口61Cから出て、冷却器室7の壁74の一部を形成する傾斜面74Aで向きを変更されて、空気の戻り口63Cと64Cとの間隙60の領域を通って、送風機71に向けて流れる。空気61Fの気圧は、空気62F、63F、64Fよりも低く設定されている。従って、間隙60は、気圧の谷の領域にあたり、この領域はサイドプレート72Aより内側の領域であり、フィン72Cが配列されており、相対的に冷却能力の高い第1領域の一例である。冷蔵室1あるいは野菜貯蔵室5から戻った空気61Fは、フィン72Cの間を通過することで、送風機71に到達する前に冷却および除湿され、低温で低湿の空気になる。
本実施の形態では、空気62Fと空気63Fとの噴流圧力が、空気61Fの噴流圧力よりも高く設定されているため、空気63Fと空気62Fとはエアカーテンのように働き、空気61Fを排除する働きをする。このため、空気61Fの空気63Fあるいは62Fが流れる領域への侵入が抑制される。即ちサイドプレート72ALの左側には空気63Fが流れ、サイドプレート72ARの右側には62Fが流れ、空気61Fが流れるのを抑制する。なお、空気61Fと空気62Fと空気63Fと空気64Fの噴流圧力は、送風機71の大きさと回転数と、第1から第4の風路の長さと形と大きさと位置と、空気の吹き出し口63A等および戻り口63C等の大きさと形と位置等とに依存し、設計により適宜調整されうる。例えば、空気が冷却器室7に流入する戻り口62Cを小さくすることにより流速が上がり圧力を上げることが出来る。
そして、冷蔵室1あるいは野菜貯蔵室5から戻った空気61Fは、送風機71周辺で、製氷室2、切替室3、冷凍室4から戻った冷凍温度帯の空気と合流するが、相対的に冷却能力の高い第1領域において冷却および除湿されているため、冷凍室4等から戻った低温の空気64Fなどにより冷却されても、送風機71周辺での結露および氷結は抑えられる。
ここまで本開示の実施の形態について空気の流れと温度湿度との関係について説明した。次に、図6を用いて比較例について空気の流れと温度湿度とに焦点をあてて説明する。図6は、図2と同様に、冷却器室7を背面側から見た図である。比較例では、冷凍室4からの空気の戻り口64Cは、冷却器72のX軸左右方向の中心付近で冷却器72の下端近傍に設けられている。冷蔵室1および野菜貯蔵室5からの冷蔵温度で湿度の高い空気は実施の形態と同様に、戻り口61Cから冷却器室7に流入する。戻り口61Cは、実施の形態と同様に、冷却器72よりも外側且つ下方に設けられている。一方、製氷室2、切替室3、冷凍室4からの冷凍温度帯の空気は、戻り口64Cを通り、冷却器72のX軸左右方向の中央にて、冷却器室7に戻る。
冷蔵室1および野菜貯蔵室5から空気の戻り口61Cを通って流入した冷蔵温度帯の空気61Fは、冷却器室7へ流入した後、その一部がサイドプレート72Aより外側の領域、即ち、フィン72Cがない領域を流れる。そして、フィン72Cによる冷却はされないまま、冷蔵温度の空気61Fの一部は冷却器72を通過する。そして、冷蔵温度の空気61Fは、冷凍室から戻った冷凍温度の空気64Fと送風機71周辺で混合して冷やされ、湿度が上昇して露点以下になり、送風機71の表面で結露する。さらに、結露した水が送風機71の可動部等に氷結し、送風機71に不具合が生じる。
以上説明したように、比較例では、冷却器72の冷却能力の低い領域に高温高湿の空気が流れて送風機71に氷結が生じ不具合が生じる。これに対して、本実施の形態では、冷却器72の冷却能力の相対的に低い領域に低温低湿な空気を流し、冷却器72の冷却能力の相対的に高い領域に高温高湿な空気を流すことにより、送風機71に氷結の生じることを抑え、送風機71に不具合の生じることが抑えられる。
なお、図5において、冷蔵室1からの戻り風路61Dと、冷却器室7の図面左下の傾斜面74Aを有する壁74とは、第2の貯蔵室から冷却器室7へ空気を戻す第4の風路の一例である。
ここまで、空気の流れと冷却との関係について説明した。次に、戻り口62C、63C、64Cの位置、大きさ、形、向き、冷媒管72Bに設けられたフィン72Cの構成について最適条件を含めて説明する。
戻り口62C、63Cのサイドプレート72Aとの相互位置について説明する。
製氷室2からの空気の戻り口62Cのうち、冷蔵庫背面から見て、サイドプレート72Aの外側にある領域の割合を50%以上とすることが好ましい。同様に、切替室3からの空気の戻り口63Cのうち、冷蔵庫背面から見て、サイドプレート72Aの外側にある領域の割合を、50%以上とすることが好ましい。
製氷室2からの空気の戻り口62Cのうち、冷蔵庫背面から見て、サイドプレート72Aの外側にある領域の割合を50%以上とすることが好ましい。同様に、切替室3からの空気の戻り口63Cのうち、冷蔵庫背面から見て、サイドプレート72Aの外側にある領域の割合を、50%以上とすることが好ましい。
このように、サイドプレート72Aの外側にある領域の割合を50%以上とすることで、冷却器72の相対的に冷却能力の低い領域に、低温低湿の空気を流入させやすくすることができる。これにより、冷蔵温度の空気61Fが、サイドプレート72Aの外側に流れるのを抑制する働きを強くすることができる。さらに、上述のように、戻り口62C、63Cを、その下端が冷却器72の下端よりも高くなる位置に形成して、戻り空気62F、63Fをサイドプレート72Aの外側に流れやすくしている。このような戻り口62C、63CのX軸方向及びZ軸方向における位置に関する特徴を備えることで、冷蔵温度の空気61Fが、サイドプレート72Aの外側に流れるのを抑制することができる。
また、空気62F及び空気63Fをサイドプレート72Aよりも下から冷却器室7に流入させた場合、空気62F及び空気63Fの噴流圧力が高いことでエアカーテンのように機能するのは、冷却器72よりも下の空間である。この場合、冷蔵温度の空気61Fがサイドプレート72Aの外側に流入を妨げる働きが弱くなるだけでなく、空気61Fが冷却器72の下を経由してフィン72Cの間に流入するのを妨げてしまう。これに対して、上記の形態では、戻り口62C及び戻り口63Cを、サイドプレート72Aが存在する高さで冷却器72に対向させており、冷却器72に対して前方から空気62F、空気63Fを流入させている。これにより、冷蔵温度の空気61Fがサイドプレート72Aの外側に流れるのを抑制でき、フィン72Cの間から冷蔵温度の空気61Fを流入させる働きを強くすることができる。
次に、戻り口62C、63C、64Cの配置について説明する。
戻り口63Cと戻り口62Cとは、それぞれ、サイドプレート72Aの外側の領域を包含するか、あるいは当該領域に対向するように設けられ、戻り口64Cは、戻り口63Cと戻り口62Cとの間に設けられる。戻り口61Cから流入する空気61Fの流路の一部を形成する間隙60は、戻り口61Cに近い側の、戻り口63Cと戻り口64Cとの間に設けられる。
戻り口63Cと戻り口62Cとは、それぞれ、サイドプレート72Aの外側の領域を包含するか、あるいは当該領域に対向するように設けられ、戻り口64Cは、戻り口63Cと戻り口62Cとの間に設けられる。戻り口61Cから流入する空気61Fの流路の一部を形成する間隙60は、戻り口61Cに近い側の、戻り口63Cと戻り口64Cとの間に設けられる。
間隙60を戻り口62Cと戻り口64Cとの間に設ける場合に比べて、冷蔵温度で戻ってくる空気61Fが流れる経路を短くすることができ圧力損失を小さくすることができるとともに、空気61Fを間隙60に導きやすい。
戻り口63Cと冷凍室4からの空気の戻り口64Cの間に設けられる間隙60は、そのX軸方向の長さを、左右に設置されているサイドプレート72Aの間のX軸方向の長さの10%以上30%以下に設定されている。これにより、冷蔵貯蔵室から戻る空気の圧力損失を抑えつつ冷蔵貯蔵室から戻る空気61Fを冷却器72に通過させることが出来る。
このように間隙60において確保すべきX軸方向の長さは、複数箇所に設けられた間隙60の長さの合計によって確保するよりも、一つだけ設けた間隙60の長さによって確保するのが望ましい。例えば、戻り口64Cを、戻り口62Cと戻り口63Cとの間の真ん中に設けた場合、間隙60は戻り口62Cと戻り口64Cとの間、戻り口63Cと戻り口64Cとの間の二箇所に設けられることになる。この場合、間隙60を一つだけ設けた場合と比較して、間隙60の長さの合計を同じに長さに設定したとしても、空気61Fが間隙60に流れにくくなり、圧力損失が大きくなってしまう。そこで、間隙60を一つだけ形成して、圧力損失の発生を小さくするのが望ましい。ここで、間隙60とは、上述のように、戻り口63Cと戻り口64Cとの間に設けられたものである。一方、図4に示すように、戻り口64Cと戻り口62Cとの間にはわずかに開口が形成されていない部分がある。しかしながら、この開口が形成されていない部分のX軸方向の長さは、空気61Fが流れることができないほど小さく、間隙60のX軸方向の長さよりもはるかに小さい。
次に戻り口62C、63Cの大きさについて説明する。
製氷室2からの戻り口62Cの大きさ、および切替室3からの戻り口63Cの大きさは、送風機71への結露および氷結の防止に影響する。開口面積を大きくしすぎると、空気圧を高く保つことが難しくなり冷蔵室1から戻った空気61Fを押しのけることが難しくなる。小さくしすぎると、サイドプレート72Aの外側全体に空気を流すことが出来なくなり、冷蔵室1から戻った空気61Fがサイドプレート72Aの外側を流れることを防止できない。また、最適な大きさは、冷蔵庫100のサイズ、容量に依存する。
製氷室2からの戻り口62Cの大きさ、および切替室3からの戻り口63Cの大きさは、送風機71への結露および氷結の防止に影響する。開口面積を大きくしすぎると、空気圧を高く保つことが難しくなり冷蔵室1から戻った空気61Fを押しのけることが難しくなる。小さくしすぎると、サイドプレート72Aの外側全体に空気を流すことが出来なくなり、冷蔵室1から戻った空気61Fがサイドプレート72Aの外側を流れることを防止できない。また、最適な大きさは、冷蔵庫100のサイズ、容量に依存する。
次に冷凍室4からの戻り口64Cについて説明する。冷凍室4からの戻り口64Cの大きさは、図4及び図5に示すように、製氷室2からの戻り口62Cの大きさ、および切替室3からの戻り口63Cの大きさよりも大きいことが望ましい。図5に示す戻り口64Cは、戻り口62C及び戻り口63と比べて、X軸方向の長さを長くすることでより面積が大きい開口を形成している。戻り口64Cを大きくすることで、冷凍室4からの戻り空気64Fがフィン72Cの間を通る流速を小さくすることができる。これにより、冷却器72を通る戻り空気64Fの空気圧を、サイドプレート72Aの外側を通る戻り空気62Fの空気圧及び戻り空気63Fの空気圧よりも小さくすることができる。なお、冷蔵室1からの戻り空気61Fは、空気圧が小さいところを通ろうとする。そのため、相対的に空気圧の高い戻り空気62Fおよび戻り空気63Fが流れるサイドプレート72Aの外側に、戻り空気61Fが流れてしまうことを抑制することができる。また、冷蔵室1からの戻り空気61Fが、戻り口64Cの領域を通り、冷却器72を通る戻り空気64Fのエアカーテン効果により押しのけられたとしても、より速い速度で戻り空気62Fおよび戻り空気63Fが流れるサイドプレート72Aの外側に流れてしまうことを抑制することができる。なお、戻り口64Cの開口面積を大きくするために、X軸方向の長さを長くする場合について説明したが、Z軸方向の長さを長くして、すなわち高さを高くして戻り口64Cの開口面積をより大きくしてもよい。
一般的な家庭用冷蔵庫に本開示の実施の形態を適用した例について説明する。図1に示す冷蔵庫100において、貯蔵室は5つある。冷蔵庫100の総容量が400から550Lの場合、その横幅は600mmから700mm程度であり、横幅のばらつきは±10%以内である。一般家庭での冷蔵庫置き場の幅に合わせて設計されているためである。この冷蔵庫100の横幅に合わせて、冷却器72の横幅は300mmから500mm程度に設計される。
このような家庭用の冷蔵庫100に対しての最適な製氷室2からの空気の戻り口62Cの大きさは、幅を30mm以上60mm以下、高さを20mm以上50mm以下である。これにより、製氷室2からの空気の戻り口62Cにおける圧力損失を抑えつつ、製氷室2から戻る空気62Fの流速を一定以上に保つことができ、サイドプレート72Aの外側の領域の通風抵抗を上げることができる。
同様に、切替室3からの空気の戻り口63Cの大きさは、例えば、幅が30mm以上60mm以下、高さが20mm以上50mm以下とすることで、切替室3からの空気の戻り口63Cにおける圧力損失を抑えつつ、切替室3から戻る空気63Fの流速を一定以上に保つことができ、サイドプレート72Aの外側の領域の通風抵抗を上げることができる。製氷室2からの空気の戻り口62Cと切替室3からの空気の戻り口63Cとの面積及び幅と高さとの比率は同じである必要はない。
次に戻り口62Cと63Cとの形状について説明する。
製氷室2からの空気の戻り口62Cおよび切替室3からの空気の戻り口63Cの形状は矩形であることが望ましい。矩形とすることで製氷室2から戻る空気62Fを、サイドプレート72Aの外側に、風圧および風速および流れ方向などを均一にして流入させることができ、サイドプレート72Aの外側の領域の全域に渡って製氷室2から戻る空気62Fを流すことができる。サイドプレート72Aからの距離に関係なく、戻り口の上下の幅が一定だからである。同様に切替室3からの空気の戻り口63Cを矩形とすることが望ましい。これらによって冷蔵室1および野菜貯蔵室5から戻る空気61Fがサイドプレート72Aの外側を通過することを防ぐことができる。
製氷室2からの空気の戻り口62Cおよび切替室3からの空気の戻り口63Cの形状は矩形であることが望ましい。矩形とすることで製氷室2から戻る空気62Fを、サイドプレート72Aの外側に、風圧および風速および流れ方向などを均一にして流入させることができ、サイドプレート72Aの外側の領域の全域に渡って製氷室2から戻る空気62Fを流すことができる。サイドプレート72Aからの距離に関係なく、戻り口の上下の幅が一定だからである。同様に切替室3からの空気の戻り口63Cを矩形とすることが望ましい。これらによって冷蔵室1および野菜貯蔵室5から戻る空気61Fがサイドプレート72Aの外側を通過することを防ぐことができる。
図3に示す戻り口62Bと図4に示す戻り口62Cとを繋ぐ仕切壁6に形成された戻り風路は、上下方向に形成されている。図3に示す戻り口62Bは、図4に示す戻り口62Cよりも高い位置で仕切壁6に形成されている。これによって製氷室2から戻った空気62Fは戻り口62Bから戻り口62Cの間で、上下方向の風路を通ることで整流され、流速の左右方向の成分は小さくなる。これにより、戻り口62Cから冷却器72に流入した空気62Fの一部は、図5に示すように、サイドプレート72ARの右側の領域を上方へとスムーズに流れていく。
同様に、図3に示す戻り口63Bと図4に示す戻り口63Cとを繋ぐ仕切壁6に形成された戻り風路は、上下方向に形成されている。図3に示す戻り口63Bは、図4に示す戻り口63Cよりも高い位置で仕切壁6に形成されている。これによって切替室3から戻った空気63Fは戻り口63Bから戻り口63Cの間で、上下方向の風路を通ることで整流され、流速の左右方向の成分が小さくなる。これにより、戻り口63Cから冷却器72に流入した空気63Fの一部は、図5に示すように、サイドプレート72ALの外側の領域を上方へスムーズに流れていく。
(変形例1)
実施の形態1では、仕切壁6の背面から見て左側に冷蔵室1からの戻り口61Cが具備されている場合について図1~図5を用いて説明したが、仕切壁6の背面から見て右側に冷蔵室1からの空気の戻り口61Cが形成されている場合についても、製氷室2、切替室3、冷凍室4の各室からの空気の戻り口62C、63C、64Cの位置、相互間の距離、各戻り口の高さと幅、等を調整することで同様の効果が得られる。また、冷蔵庫100が正面から見て左側に製氷室2、正面から見て右側に切替室3を有する構成について図1~図5を用いて説明したが、製氷室2と切替室3の配置を入れ替えた場合についても、製氷室2からの空気の戻り口62Cと切替室3からの空気の戻り口63Cとの配置を入れ替えることで同様の効果が得られる。
実施の形態1では、仕切壁6の背面から見て左側に冷蔵室1からの戻り口61Cが具備されている場合について図1~図5を用いて説明したが、仕切壁6の背面から見て右側に冷蔵室1からの空気の戻り口61Cが形成されている場合についても、製氷室2、切替室3、冷凍室4の各室からの空気の戻り口62C、63C、64Cの位置、相互間の距離、各戻り口の高さと幅、等を調整することで同様の効果が得られる。また、冷蔵庫100が正面から見て左側に製氷室2、正面から見て右側に切替室3を有する構成について図1~図5を用いて説明したが、製氷室2と切替室3の配置を入れ替えた場合についても、製氷室2からの空気の戻り口62Cと切替室3からの空気の戻り口63Cとの配置を入れ替えることで同様の効果が得られる。
(変形例2)
仕切壁6に設けられる空気の吹き出し口6Aは、循環する空気の流量を調整するダンパをそれぞれに設けることが好ましい。これらのダンパで流量を調整することによって、冷蔵室1、製氷室2、切替室3をそれぞれ設定された温度に保つことができる。
仕切壁6に設けられる空気の吹き出し口6Aは、循環する空気の流量を調整するダンパをそれぞれに設けることが好ましい。これらのダンパで流量を調整することによって、冷蔵室1、製氷室2、切替室3をそれぞれ設定された温度に保つことができる。
(変形例3)
冷蔵室1からの空気の戻り風路が野菜貯蔵室5へ連通する構成としても良い。この場合、冷蔵室1へ吹き出した空気は、野菜貯蔵室5、野菜貯蔵室5からの空気の戻り口65Bを経由し、冷蔵室1からの空気61Fの戻り口61Cを通り冷却器室7へ戻る。
冷蔵室1からの空気の戻り風路が野菜貯蔵室5へ連通する構成としても良い。この場合、冷蔵室1へ吹き出した空気は、野菜貯蔵室5、野菜貯蔵室5からの空気の戻り口65Bを経由し、冷蔵室1からの空気61Fの戻り口61Cを通り冷却器室7へ戻る。
また、仕切壁6および吹き出し風路101Aの何れかを経由しない空気の循環も可能である。仕切壁6を用いず、冷蔵庫100の有する断熱箱体101のみで風路あるいは吹き出し口あるいは戻り口を設けて、空気を循環させることが出来る。
(変形例4)
図5では、フィン72Cの境界層前縁効果によって熱伝達率を大きくするために、隣り合う冷媒管72Bに設けられたフィン72Cの位置を互いにフィン72Cを形成するピッチの半分だけX軸方向にずらして配置している。これとは異なり、フィン72CをX軸方向にずらさない構成として、冷却器72を通過する空気の圧力損失を小さくし、冷却器室7中の空気を流れやすくする構成としてもよい。このように、空気を流れやすくすることができるので送風機71への負担が小さくなり、消費電力を下げることが出来る。空気が流れやすくなり空気が冷却器72近辺に留まらないため冷却能力が低くなるが、冷蔵室1および野菜貯蔵室5から冷却器室7に戻った空気61Fが冷媒管72Bにフィン72Cの備わった冷却能力の高い第1の領域を通るため、冷却器72近辺に空気を長く留まらせる必要はなく、本構成を採用することが出来る。また、冷媒管72Bの上方向への伝熱を促進するためには、フィン72Cが上下方向に複数のパイプに接合された構成を採ることができる。
図5では、フィン72Cの境界層前縁効果によって熱伝達率を大きくするために、隣り合う冷媒管72Bに設けられたフィン72Cの位置を互いにフィン72Cを形成するピッチの半分だけX軸方向にずらして配置している。これとは異なり、フィン72CをX軸方向にずらさない構成として、冷却器72を通過する空気の圧力損失を小さくし、冷却器室7中の空気を流れやすくする構成としてもよい。このように、空気を流れやすくすることができるので送風機71への負担が小さくなり、消費電力を下げることが出来る。空気が流れやすくなり空気が冷却器72近辺に留まらないため冷却能力が低くなるが、冷蔵室1および野菜貯蔵室5から冷却器室7に戻った空気61Fが冷媒管72Bにフィン72Cの備わった冷却能力の高い第1の領域を通るため、冷却器72近辺に空気を長く留まらせる必要はなく、本構成を採用することが出来る。また、冷媒管72Bの上方向への伝熱を促進するためには、フィン72Cが上下方向に複数のパイプに接合された構成を採ることができる。
(変形例5)
ここまで冷凍温度の空気をサイドプレート72Aの外に流す例について説明してきた。これに限られる訳ではなく、冷凍温度の空気あるいは冷蔵庫100内で温度域の低い空気の冷却器室7に戻る位置を、冷却器72の冷却能力の低い領域に合わせることが好ましい。温度域の低い戻り空気、例えば冷凍温度帯の戻り空気を冷却器72の冷却能力の相対的に低い領域、即ち第2の領域、例えばフィンチューブ型冷却器のフィン72Cの無い領域に流す。一方で、温度域の高い戻り空気、例えば冷蔵温度帯の戻り空気を冷却器72の冷却能力の高い領域、即ち第1の領域、例えばフィンチューブ型冷却器のフィン72Cの設けられた領域に流す。これにより、冷却器72を通過した空気は全て低温となり、結露および氷結が抑えられる。
ここまで冷凍温度の空気をサイドプレート72Aの外に流す例について説明してきた。これに限られる訳ではなく、冷凍温度の空気あるいは冷蔵庫100内で温度域の低い空気の冷却器室7に戻る位置を、冷却器72の冷却能力の低い領域に合わせることが好ましい。温度域の低い戻り空気、例えば冷凍温度帯の戻り空気を冷却器72の冷却能力の相対的に低い領域、即ち第2の領域、例えばフィンチューブ型冷却器のフィン72Cの無い領域に流す。一方で、温度域の高い戻り空気、例えば冷蔵温度帯の戻り空気を冷却器72の冷却能力の高い領域、即ち第1の領域、例えばフィンチューブ型冷却器のフィン72Cの設けられた領域に流す。これにより、冷却器72を通過した空気は全て低温となり、結露および氷結が抑えられる。
(変形例6)
図4及び図5を参照しながら、戻り口61C、戻り口62C、戻り口63C及び戻り口64Cの高さ方向における位置について説明したが、これらの戻り口を形成する位置については適宜変更することが可能である。
図4及び図5を参照しながら、戻り口61C、戻り口62C、戻り口63C及び戻り口64Cの高さ方向における位置について説明したが、これらの戻り口を形成する位置については適宜変更することが可能である。
冷却器72の下端よりも低い位置に形成されると説明した戻り口61Cを、冷却器72の下端と同じ高さ位置に形成してもよい。これにより、戻り口61Cを通過した戻り空気61Fを、冷却器72の下方で遠回りさせることなく冷却器72に流入させることができる。これにより、圧力損失の発生を抑制することができる。
また、冷却器72の下端よりも高い位置にあると説明した戻り口62Cの下端を、冷却器72の下端と同じ高さ位置になるよう戻り口62Cを形成してもよい。このように同じ高さ位置することで、戻り口62Cからの戻り空気62Fを一番下のフィン72Cの間を通過させることができる。これより、戻り空気61Fがサイドプレート72ARの外側に流れるのを抑制しつつ、戻り空気62FをZ軸方向における冷却器72の全長にわたって熱交換することができる。同様に、戻り口63Cの下端を、冷却器72の下端と同じ高さ位置になるように戻り口63Cを形成してもよい。これにより、戻り空気61Fがサイドプレート72ALの外側に流れるのを抑制しつつ、戻り口63Cを通過した戻り空気63FをZ軸方向における冷却器72の全長にわたって熱交換することができる。
また、戻り口63Cの下端の高さと、戻り口62Cの下端の高さとを同じとしてもよい。これにより、サイドプレート72ALの外側とサイドプレート72ARの外側とに戻り空気61Fが流れるのを抑制する、というエアカーテンの効果に偏りが生じるのを防ぐことができる。
また、戻り口64Cの下端の高さを、冷却器72の下端の高さと同じとしてもよい。これにより、戻り口64Cからの戻り空気64Fを一番下のフィン72Cの間を通過させることができ、Z軸方向における冷却器72の全長にわたって熱交換することができる。
(変形例7)
上記実施の形態において、各戻り口は、仕切壁6に設けられた開口であると説明した。しかしながら、各戻り口の態様は、上記のものに限定されるものではなく、種々の機能を付加させたものであってもよい。次に、仕切壁6に形成された戻り口の構成を異ならせた変形例7について、図7から図10を参照しながら説明する。
上記実施の形態において、各戻り口は、仕切壁6に設けられた開口であると説明した。しかしながら、各戻り口の態様は、上記のものに限定されるものではなく、種々の機能を付加させたものであってもよい。次に、仕切壁6に形成された戻り口の構成を異ならせた変形例7について、図7から図10を参照しながら説明する。
製氷室2に開口する戻り口62Bは、図7及び図8に示すように、第2の開口部としての矩形状の開口66Aを有し、この開口66Aには縦方向に延び横方向に複数配列された格子材66Bが設けられている。ここで、縦方向とは上下方向のことであり、横方向とは水平方向のことである。このように、戻り口62Bに格子材66Bを設けることで、製氷室2に貯蔵されていた食材、あるいは食材保管用の小物等が戻り口62Bから進入して戻り風路62Dを塞いでしまうことを防ぐことができる。また、戻り口62Bに設けた格子材66Bが延びる方向を縦方向とすることで、戻り口62Bを通る空気を格子材66Bで整流して、格子材66B通過後の空気の左右方向の成分を小さくすることができる。なお、戻り口62Bに設ける格子材が延びる方向を90°異ならせて、横方向に延び縦方向に複数配列された格子材を戻り口62Bに設けてもよい。
戻り口62Bは、図8に示すように、冷却器室7に開口する戻り口62Cよりも上方であり、かつ外側に設けられている。戻り口62Bと戻り口62Cとは、仕切壁6内に形成された戻り風路62Dにより接続されている。戻り風路62Dは、上下方向に延びる上下風路62DAを一部に有している。このように形成された上下風路62DAにより、戻り風路62Dを通る空気が整流され、流速の左右方向の成分は小さくなる。なお、戻り風路62Dは、上下方向に形成された上下風路62DAを一部に有していると説明したが、全体が上下方向に形成された風路であってもよい。
切替室3に開口する戻り口63Bは、図7及び図8に示すように、第2の開口部としての矩形状の開口67Aを有し、この開口67Aには縦方向に延び横方向に複数配列された格子材67Bが設けられている。このように、戻り口63Bに格子材67Bを設けることで、切替室3に貯蔵されていた食材、あるいは食材保管用の小物等が戻り口63Bから進入して戻り風路63Dを塞いでしまうことを防ぐことができる。また、戻り口63Bに設けた格子材67Bが延びる方向を縦方向とすることで、戻り口63Bを通る空気を格子材67Bで整流して、格子材67B通過後の空気の左右方向の成分を小さくすることができる。なお、戻り口63Bに設ける格子材が延びる方向を90°異ならせて、横方向に延び縦方向に複数配列された格子材を戻り口63Bに設けてもよい。
戻り口63Bは、図8に示すように、冷却器室7に開口する戻り口63Cよりも上方であり、かつ外側に設けられている。戻り口63Bと戻り口63Cとは、仕切壁6内に形成された戻り風路63Dにより接続されている。戻り風路63Dは、上下方向に延びる上下風路63DAを一部に有している。このように形成された上下風路63DAにより、戻り風路63Dを通る空気が整流され、流速の左右方向の成分は小さくなる。なお、戻り風路63Dは、上下方向に形成された上下風路63DAを一部に有していると説明したが、全体が上下方向に形成された風路であってもよい。
冷凍室4に開口する戻り口64Bは、図7及び図8に示すように、第2の開口部としての矩形状の開口12を有している。戻り口64Bは、この開口12に縦方向に延び横方向に複数配列された補強材13と、左右方向に延び上下方向に間隔をあけて設けられた複数のガイド14とが格子状に設けられている。戻り口64Bを通る空気を案内するガイド部材としてのガイド14は、それぞれ板状部材であり、図10に示すように、冷却器室7が設けられている方向、すなわち-Y方向の部分が+Y方向の部分よりも上方となるように傾斜して配置されている。なお、戻り口64Bに設けた複数のガイド14に十分な剛性が確保できるのであれば、補強材13を省略してもよい。
また、冷却器室7に開口する戻り口64Cは、図9に示すように、矩形状の開口16を有している。戻り口64Bと戻り口64Cとを接続する戻り風路17は、図10に示すように、後方すなわち-Y軸方向に向かうにつれてZ軸方向の幅が大きい。換言すれば、戻り風路17は、冷凍室4から冷却器室7へと向かうに進むにつれて高くなる。
冷凍室4からの戻り空気は、図10中の矢印19で示すように、ガイド14により斜め上方へと案内される。そして、ガイド14により案内された戻り空気は、そのまま戻り風路17を斜め上方に向かって流れ、戻り口64Cを通過する。このように、戻り空気を斜め上方に向けて案内したことにより、戻り口64Cを通過した戻り空気を、図5に示すように冷却器72に流入させてスムーズに上方へと流れさせることができる。これにより、冷却器72に流入する際の圧力損失を低減させることができ、冷蔵庫の冷却性能を向上させることができる。
なお、戻り口64Bの開口12は、図10に示すように、仕切壁6の前面6Bから前方すなわち+Y軸方向に張り出した上部張出部20により上方が区画されている。ここで、前面6Bの前方とは、冷凍室4が設けられた方向である。また、戻り口64Bの開口12は、前面6Bから前方に張り出した下部張出部21により下方が区画されている。上部張出部20は、前方に向けて下方に傾斜している。一方、下部張出部21は、前方に向けて上方に傾斜している。また、下部張出部21の前縁21aは、ガイド14の前縁14a及び上部張出部20の前縁20aよりも前方に位置している。すなわち、下部張出部21の張出量は、上部張出部20の張出量よりも大きい。
霜取りによって生じた除霜水は水滴となって、仕切壁6の前面6Bから上部張出部20及びガイド14を経由して流れ落ち、前縁21aが前方に突き出た下部張出部21の上面に到達する。下部張出部21の上面は、後方に向けて、すなわち冷凍室4から冷却器室7に向けて下り勾配を有している。そのため、下部張出部21の上面に到達した水滴は、冷却器室7に向かって流れ落ちていく。そのため、冷凍室4の床面が、除霜水の水滴により濡れてしまうのを防止することができる。
(実施の形態2)
実施の形態1では、製氷室2の空気を、仕切壁6を通して冷却器室7に戻していた。しかしながら、製氷室2の空気を、冷却器室7に戻す前に、他の貯蔵室、例えば冷凍室4を経由させる構成を採用してもよい。このような構成を採用することで、製氷室2の戻り口を形成する必要がなく、仕切壁6の構成を単純化できる、仕切壁6の中で冷蔵室1から戻る空気を冷やすことがないという特長を有する。
実施の形態1では、製氷室2の空気を、仕切壁6を通して冷却器室7に戻していた。しかしながら、製氷室2の空気を、冷却器室7に戻す前に、他の貯蔵室、例えば冷凍室4を経由させる構成を採用してもよい。このような構成を採用することで、製氷室2の戻り口を形成する必要がなく、仕切壁6の構成を単純化できる、仕切壁6の中で冷蔵室1から戻る空気を冷やすことがないという特長を有する。
本構成と動作とを図11~図13を用いて説明する。図5に示した実施の形態1にてサイドプレート72Aの外側に開口した製氷室2からの空気の戻り口62Cを、図12に示すように冷凍室4からの空気の戻り口64Cの一部に代えることで、実施の形態1と同等の効果を得る。
図11は実施の形態2に係る冷蔵庫100Aの仕切壁6を冷蔵庫100Aの正面側から見た斜視図である。図11に示すように、仕切壁6の上面には、冷蔵室1への空気の吹き出し口61A、冷蔵室1からの空気の戻り口61Bが形成されている。また、仕切壁6の前面には、製氷室2への空気の吹き出し口62A、切替室3への空気の吹き出し口63A、切替室3からの空気の戻り口63B、冷凍室4への空気の吹き出し口64A、冷凍室4からの空気の戻り口64Bが形成されている。また、吹き出し口61Aは冷蔵室1を循環する空気の流量を調整する図示されていないダンパが、吹き出し口62Aには製氷室2を循環する空気の流量を調整する図示されないダンパが、吹き出し口63Aには切替室3を循環する空気の流量を調整する図示されないダンパが、それぞれ設けられている。これらのダンパで流量を調整することによって、冷蔵室1、製氷室2、切替室3をそれぞれ設定された温度に保つことができる。
図12は実施の形態2に係る冷蔵庫100Aの仕切壁6を冷蔵庫100Aの背面側から見た斜視図である。図12に示すように、仕切壁6の背面には切替室3からの空気の戻り口63C、冷凍室4からの空気の戻り口64Cが設けられている。冷凍室4からの空気の戻り口64Cは2箇所に設けられている。切替室3、冷凍室4へ供給された空気はこれらの戻り口から冷却器室7へ流入する。また、冷蔵室1からの空気の戻り口61Cが仕切壁6の背面から見て左下隅に設けられており、冷蔵室1および野菜貯蔵室5へ供給された空気が冷却器室7へ流入する。
図13は実施の形態2に係る冷蔵庫100Aの冷却器室7と仕切壁6とを冷蔵庫100Aの背面側から見た図である。第一の実施の形態との違いは、図13の右側に位置するサイドプレート72ARの外側に流される空気が、冷凍室4由来の空気である点である。冷凍室4からの空気の戻り口64Cの一つが、サイドプレート72ARの外側の領域に対向し、サイドプレート72ARより外側には冷凍温度帯の空気の一部が流れる。冷蔵室1および野菜貯蔵室5から戻る空気61Fは、フィン72Cの配列密度が高く冷却能力の高い第1の領域を通過して、十分に冷却および除湿される。これらにより、冷却器72を通過した空気は全て低温かつ低湿となり、送風機71への結露および氷結が抑えられる。
(変形例1)
上記実施の形態2において、2箇所に設けられた冷凍室4からの戻り口64B及び戻り口64Cは、互いに異なる大きさであったが、それぞれの大きさを同程度としてもよい。また、図10に示したガイド14と同様の構成を、それぞれの戻り口64Cに設けてもよい。
上記実施の形態2において、2箇所に設けられた冷凍室4からの戻り口64B及び戻り口64Cは、互いに異なる大きさであったが、それぞれの大きさを同程度としてもよい。また、図10に示したガイド14と同様の構成を、それぞれの戻り口64Cに設けてもよい。
変形例1に係る仕切壁6には、図14に示すように、冷凍室4に開口した2つの戻り口64BがX軸方向に並んで設けられている。2つの戻り口64Bは、同程度の大きさを有する矩形状の開口を有しており、X軸方向に延び、上下方向であるZ軸方向に複数配列されたガイド22を有している。ガイド22は、図10を参照しながら説明したガイド14と同様に、それぞれが板状部材であり、冷却器室7が設けられている方向、すなわち-Y方向の部分が+Y方向の部分よりも上方となるように傾斜して配置されている。これにより、冷凍室4から戻り口64Bに進入した戻り空気は、ガイド22により斜め上方へと案内される。そして、ガイド22により案内された戻り空気を、そのまま冷却器室7に開口した図15に示す戻り口64Cに通過させることができる。これにより、戻り口64Cを通過した戻り空気を、図16に示すように冷却器72に流入させてスムーズに上方へと流れさせることができる。これにより、冷却器72に流入する際の圧力損失を低減させることができ、冷却性能を向上させることができる。
また、冷凍室の戻り口64Bを複数設け、それぞれの戻り口64Bの大きさを同程度とすることで、戻り口64Bが一つの場合及び戻り口64Bが異なる大きさの場合に比べて、戻り口64BのX軸方向の長さを短くできる。これに伴い、戻り口64Bに設けられたガイド22のX軸方向の長さを短くできることから、ガイド22の剛性を高めることができる。そのため、ガイド22をたわみにくくすることができ、異物が広がったガイド22の隙間から入りこんだり、指がガイド22の隙間に入ってしまったりするのを防ぐことができる。
また、戻り口64Cには、製氷室2及び冷凍室4で冷やされた空気が通過することから、切替室3で冷やされた空気のみが通過する戻り口63Cよりも多くの空気が通過する。そのため、戻り口64Cにおける圧力損失が生じやすい。このような圧力損失を抑制するために、図16に示すように、戻り口64CのZ軸方向における幅を、切替室3からの空気を戻すための戻り口63CのZ軸方向における幅よりも大きくして、戻り口64Cの開口面積をより大きくしてもよい。
(実施の形態3)
実施の形態1および実施の形態2では、上から冷蔵室1、製氷室2、切替室3、冷凍室4、野菜貯蔵室5と配置されている。冷凍室4と野菜貯蔵室5との位置が上下入れ替わった構成を有する冷蔵庫100Bについて図17~図20を用いて説明する。野菜は頻繁に料理に利用する一方、冷凍された食材の利用頻度が相対的に低い家庭では、この構成が好まれる傾向にある。このような構成に対して本開示の実施の形態を採用する。
実施の形態1および実施の形態2では、上から冷蔵室1、製氷室2、切替室3、冷凍室4、野菜貯蔵室5と配置されている。冷凍室4と野菜貯蔵室5との位置が上下入れ替わった構成を有する冷蔵庫100Bについて図17~図20を用いて説明する。野菜は頻繁に料理に利用する一方、冷凍された食材の利用頻度が相対的に低い家庭では、この構成が好まれる傾向にある。このような構成に対して本開示の実施の形態を採用する。
図17に示すように、冷蔵庫100Bは冷蔵室1、製氷室2、切替室3を実施の形態1と同様の位置に具備する。実施の形態1とは異なり、製氷室2及び切替室3の下方に、野菜貯蔵室5を備え、野菜貯蔵室5の下方に、冷凍室4を備えている。
図18は実施の形態3に係る冷蔵庫100Bの仕切壁6を冷蔵庫100Bの正面側から見た斜視図である。仕切壁6には、冷蔵室1への空気の吹き出し口61Aと、空気の戻り口61Bと、製氷室2への空気の吹き出し口62Aと、空気の戻り口62Bと、切替室3への空気の吹き出し口63Aと、空気の戻り口63Bと、野菜貯蔵室5への空気の吹き出し口65Aと、空気の戻り口65Bと、冷凍室4への空気の吹き出し口64Aと、戻り口64Bとがそれぞれ形成されている。野菜貯蔵室5が冷凍室4よりも上に位置するため、野菜貯蔵室5への空気の吹き出し口65Aと空気の戻り口65Bとは、冷凍室4への空気の吹き出し口64Aと空気の戻り口64Bとに比べて上部に設けられている。野菜貯蔵室5は冷蔵温度帯に保たれるため、冷凍室4よりも供給する空気の量が少なくて良い。そのため、野菜貯蔵室5への吹き出し口65Aは、冷凍室4への空気の吹き出し口64Aよりも小さい。
また、冷蔵室1、製氷室2、切替室3、野菜貯蔵室5へのそれぞれの空気吹き出し口には、空気の流量を調整する図示されていないダンパがそれぞれ設けられている。ダンパで流量を調整することによって、冷蔵室1、製氷室2、切替室3、野菜貯蔵室5をそれぞれ設定された温度に保つことができる。
図19は仕切壁6を冷蔵庫100Bの背面側から見た斜視図である。仕切壁6の背面には、冷蔵室1からの空気の戻り口61C、製氷室2からの空気の戻り口62C、切替室3からの空気の戻り口63C、冷凍室4からの空気の戻り口64Cが設けられている。野菜貯蔵室5から戻る空気は、戻り口65Bから仕切壁6内に流入し、戻り風路61Dに送られ、冷蔵室1から戻る空気と合流し、戻り口61Cから冷却器室7に流入する。
図20は実施の形態3に係る冷蔵庫100Bの冷却器室7と仕切壁6とを冷蔵庫100Bの背面側から見た図である。仕切壁6は実施の形態1で示した図5と同様に各貯蔵室からの空気の戻り口を有する。実施の形態1に係る冷蔵庫100Bに比して、冷凍室4と野菜貯蔵室5との上下関係が逆であるにも関わらず、各貯蔵室から戻る空気は実施の形態1と同一の位置に流入する。図18および図19を参照して説明したように、仕切壁6からの空気の吹き出し口64A、65A、及び仕切壁6への空気の戻り口64B、65Bの位置を変えるが、仕切壁6内の風路を変更することで同一の流入位置を実現する。実施の形態1と同様、冷却器72を通過した空気は全て低温となり、送風機71への結露および氷結が抑えられる。
(変形例1)
上記実施の形態3では、野菜貯蔵室5への空気の吹き出し口65Aと空気の戻り口65Bとは、図18に示すように、ともに前方、すなわちY軸方向に向けられているが、同一の方向に向けるか否かは任意である。例えば、図21に示すように、仕切壁6のX軸方向における端部に凹み部23を設け、この凹み部23にX軸方向、すなわち外側に向けられた空気の戻り口65Bを形成してもよい。このようにして、Y軸方向に向けられた吹き出し口65AとX軸方向に向けられた空気の戻り口65Bとを異なる方向に向けさせることができる。これにより、吹き出し口65Aから吹き出された空気を、野菜貯蔵室5の全体に行き渡らせた後に戻り口65Bに流入させることができる。
上記実施の形態3では、野菜貯蔵室5への空気の吹き出し口65Aと空気の戻り口65Bとは、図18に示すように、ともに前方、すなわちY軸方向に向けられているが、同一の方向に向けるか否かは任意である。例えば、図21に示すように、仕切壁6のX軸方向における端部に凹み部23を設け、この凹み部23にX軸方向、すなわち外側に向けられた空気の戻り口65Bを形成してもよい。このようにして、Y軸方向に向けられた吹き出し口65AとX軸方向に向けられた空気の戻り口65Bとを異なる方向に向けさせることができる。これにより、吹き出し口65Aから吹き出された空気を、野菜貯蔵室5の全体に行き渡らせた後に戻り口65Bに流入させることができる。
また、図21に示すように、野菜貯蔵室5への空気の吹き出し口65Aを仕切壁6の-X軸方向側の端部に寄せて形成するとともに、戻り口65Bを仕切壁6の+X軸方向側の端部に寄せて形成している。このように、吹き出し口65A及び戻り口65Bを仕切壁6の左右両端に離して形成することで、吹き出し口65Aから吹き出された空気を、野菜貯蔵室5全体に行き渡らせてから戻り口65Bに流入させることができる。なお、仕切壁6に形成した吹き出し口65A及び戻り口65Bは、野菜貯蔵室5の上部に形成されていることが望ましい。これにより、野菜貯蔵室5上方の相対的に暖かい空気を効率的に冷却することができる。
なお、吹き出し口65A及び戻り口65Bの形成された方向は、上記のように90度異ならせる場合に限定されない。例えば、互いに仕切壁6の外側を向くように180度異ならせるように、吹き出し口65A及び戻り口65Bを配置してもよい。
(実施の形態4)
実施の形態1から3では、冷蔵室1および野菜貯蔵室5に空気を流す場合について説明した。これら冷蔵温度帯の貯蔵室15の温度と湿度とが十分に低い場合には、それ以上冷却する必要はなく、冷却器室7から空気を冷蔵温度帯の貯蔵室に流す必要がない。このような状況に対応する本開示の実施の形態4について図22~26を用いて説明する。
実施の形態1から3では、冷蔵室1および野菜貯蔵室5に空気を流す場合について説明した。これら冷蔵温度帯の貯蔵室15の温度と湿度とが十分に低い場合には、それ以上冷却する必要はなく、冷却器室7から空気を冷蔵温度帯の貯蔵室に流す必要がない。このような状況に対応する本開示の実施の形態4について図22~26を用いて説明する。
冷蔵室1および野菜貯蔵室5に空気を流さないので、冷蔵室1および野菜貯蔵室5から冷却器室7に戻る空気はない。このため、高温高湿の空気がサイドプレート72Aの外側を流れて、送風機71で結露することはなく、冷却器室7に戻ってくる冷凍温度帯の空気63Fを、サイドプレート72Aの外側の冷却能力の低い領域に流す必要がない。この場合、冷凍温度帯の空気63Fを冷却器72の冷却能力の高い領域、即ちサイドプレート72Aの内側に流すことで、冷却器72の冷却能力をより有効に使うことができる。
図22は仕切壁6を冷蔵庫100Cの背面側から見た斜視図である。仕切壁6には、冷蔵室1への空気の吹き出し口61A、野菜貯蔵室5への空気の吹き出し口65A、野菜貯蔵室5からの空気の戻り口65B、冷蔵室1および野菜貯蔵室5の空気の戻り口61C、製氷室2からの空気の戻り口62C、切替室3からの空気の戻り口63C、冷凍室4からの空気の戻り口64Cが設けられている。
図23は図22に示すIII-IIIの面での矢視断面図である。図22及び図23に示すように、製氷室2からの空気の戻り口62Cにはフラップ62Hが設けられており、切替室3からの空気の戻り口63Cにはフラップ63Hが設けられている。フラップ63Hは図24に示すようにステッピングモータ97を有する。
一方、図22に示す冷蔵室1への空気の吹き出し口61A、製氷室2への空気の吹き出し口62A、切替室3への空気の吹き出し口63Aには、図示されていないダンパがそれぞれ設けられている。冷蔵室1と野菜貯蔵室5とには、サーミスタ96が設けられ温度が測定される。
図2に示す機械室8は、フラップ63H、62Hおよびダンパ99の角度を制御する図24に示す制御部9を有する。制御部9は、プロセッサ91、RAM92、ROM93、入出力インタフェース(以下、I/O)95を備える。プロセッサ91は、RAM92をワークメモリとして用いて、ROM(Read Only Memory)93に記憶されている制御プログラムを実行する。RAM(Random Access Memory)92は、プロセッサ91のワークエリアとして機能し、実行中のプログラム、各種データを記憶する。ROM(Read Only Memory)93は、フラップ62H、63Hとダンパ99との制御プログラム、その制御に使用する固定データ等を記憶する。固定データとしては、第1のしきい値温度T1を有する。
冷蔵室1と野菜貯蔵室5に設けられた温度情報取得部であるサーミスタ96から、温度情報がI/O95を通してRAM92に記憶される。プロセッサ91は、ROM93に予め保管されたしきい値温度と冷蔵室1および野菜貯蔵室5のRAM92に収められた温度情報とを比較する。
冷蔵室1および野菜貯蔵室5の温度がしきい値温度より低い場合には、ダンパ制御信号をダンパ99に送り、ダンパ99を回転させてダンパ99を閉じる。同時に、フラップ制御信号をフラップ63Hの有するステッピングモータ97およびフラップ62Hの有するステッピングモータ98に送り、フラップ63Hを右斜め方向に向け、フラップ62Hを左斜め方向に向ける。これにより、図25に示すように、戻り口63Cを通り冷却器室7に戻る空気は右斜め方向に流れ込み、戻り口62Cを通り冷却器室7に戻る空気は左斜め方向に流れこむ。そして、冷凍温度帯の空気62Fおよび63Fは冷却器72の冷却能力の高い領域を流れ、高い効率で冷却される。
冷蔵室1および野菜貯蔵室5の温度がしきい値温度より高い場合には、プロセッサ91からの制御信号によりダンパ99が開き、冷蔵温度に保たれる第2の貯蔵室に冷却された空気が送風機71により送られる。同時に、プロセッサ91からの制御信号によりステッピングモータ97と98とが回転し、フラップ62Hと63Hとはそれぞれ外側に斜めに傾く。戻り口62Cあるいは戻り口63Cから流入する空気は、右側のサイドプレート72ARの右側あるいは左側のサイドプレート72ALの左側に流れる。実施の形態1と同様に、冷蔵室1および野菜貯蔵室5から戻る空気61Fは冷却器72の冷却能力の高い領域を流れ、送風機71への結露および氷結が抑えられる。
(実施の形態5)
実施の形態1から4では、冷蔵室1からの空気の戻り風路61Dは冷蔵庫背面から見て仕切壁6左端に設けられている。冷蔵室1の容量が大きい場合には、冷蔵室1からの空気の戻り風路61Dが仕切壁6の左右両方に設けられる。この場合における本開示の構成と動作とを図26を用いて説明する。
実施の形態1から4では、冷蔵室1からの空気の戻り風路61Dは冷蔵庫背面から見て仕切壁6左端に設けられている。冷蔵室1の容量が大きい場合には、冷蔵室1からの空気の戻り風路61Dが仕切壁6の左右両方に設けられる。この場合における本開示の構成と動作とを図26を用いて説明する。
図26は冷蔵庫100Dの冷却器室7と仕切壁6とを冷蔵庫100Dの背面側から見た図である。仕切壁6の左右両方に冷蔵室1からの戻り風路61Dが形成されている。図面に向かって左側に位置する戻り風路61Dの空気の流入量が、右側に位置する戻り風路61Dでの空気の流入量より多い時の例を示す。左右の戻り風路61Dのうち、空気の流入量が多い方に近い側の間隙60Aを広く取り、空気の流入量が少ない方に近い側の間隙60Bを狭くする、あるいは、なくすことが好ましい。冷蔵温度帯にて戻る空気61Fが流れる経路を短くすることができ、圧力損失を小さくできるからである。圧力損失が小さいので送風圧力を上げる必要はなく、送風機71への投入電力を小さく抑えられる。結果、送風機71への結露あるいは氷結を抑えるとともに、冷蔵庫100Dの消費電力を抑えることが出来る。
本開示は、空気を循環させる冷蔵庫であって、冷却器で循環する空気を冷却する。冷却器に冷却能力の比較的高い領域と比較的低い領域とが存在する場合に適用できる。冷却器の冷却能力の比較的低い部位には冷凍温度の空気を流し、冷却能力の高い部位には、相対的に高温で高湿の空気を流す。例えば、フィンチューブ型に限らず、ペルチェ素子を冷却器として用いた冷蔵庫にも本開示の技術を適用することが出来る。例えばペルチェ素子の端部は冷却能力が相対的に低い。
冷凍温度帯は上記した-17℃以下の温度に限定されるものではない。冷蔵温度帯は上記した+3℃~+10℃の温度に限定される訳ではなく、冷蔵庫100にあって、冷凍温度帯よりも高い温度帯を指す。
本開示では冷蔵温度と冷凍温度とを貯蔵室の温度として設定されている例を開示したが、これに限られる訳ではなく、冷凍温度の空気とそれより高温の空気とが循環する冷蔵庫に適用できる。
本開示は、本開示の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この開示を説明するためのものであり、本開示の範囲を限定するものではない。すなわち、本開示の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の開示の意義の範囲内で施される様々な変形が、この開示の範囲内とみなされる。
本出願は、2020年11月5日に出願された、日本国特許出願2020-185464号に基づく。本明細書中に日本国特許出願2020-185464号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。
1 冷蔵室、1A 吹き出し口、2 製氷室、3 切替室、4 冷凍室、5 野菜貯蔵室、6 仕切壁、6A 吹き出し口、6B 前面、6C 戻り口、7 冷却器室、8 機械室、9 制御部、11 扉、12 開口、13 補強材、14 ガイド、14a 前縁、15 貯蔵室、16 開口、17 戻り風路、20 上部張出部、20a 前縁、21 下部張出部、21a 前縁、22 ガイド、25 ガイド、31 扉、41 扉、51 扉、60 間隙、60A 間隙、60B 間隙、61A 吹き出し口、61B 戻り口、61C 戻り口、61D 戻り風路、61F 空気、62A 吹き出し口、62B 戻り口、62C 戻り口、62D 戻り風路、62F 空気、62H フラップ、62DA 上下風路、63A 吹き出し口、63B 戻り口、63C 戻り口、63D 戻り風路、63F 空気、63H フラップ、63DA 上下風路、64A 吹き出し口、64B 戻り口、64C 戻り口、64F 空気、65A 吹き出し口、65B 戻り口、66A 開口、66B 格子材、67A 開口、67B 格子材、71 送風機、72 冷却器、72A,72AL,72AR サイドプレート、72B 冷媒管、72BA 管、72BB U字管、72C フィン、73 霜取りヒータ、74 冷却器室の壁、74A 傾斜面、81 圧縮機、91 プロセッサ、92 RAM、93 ROM、96 サーミスタ、97,98 ステッピングモータ、99 ダンパ、100,100A,100B,100C,100D 冷蔵庫、101 断熱箱体、102 貯蔵室用断熱扉
Claims (17)
- 冷凍温度帯の第1の貯蔵室と、前記冷凍温度帯よりも高い第2の温度帯の第2の貯蔵室と、
位置に応じて冷却能力に差があり、周囲空気を冷却する冷却器と、
前記冷却器を収納する冷却器室と、
前記冷却器室内に配置された送風機と、
前記冷却器室と、前記第1の貯蔵室もしくは前記第2の貯蔵室のうち少なくとも一室とを前後に仕切る仕切壁と、
前記冷却器室から前記第1の貯蔵室に空気を送る第1の風路と、前記冷却器室から前記第2の貯蔵室に空気を送る第2の風路と、前記第1の貯蔵室から前記冷却器室へ空気を戻す第3の風路と、前記第2の貯蔵室から前記冷却器室へ空気を戻す第4の風路と、
を具備し、
前記第1の貯蔵室と、前記第2の貯蔵室と、前記第1の風路と、前記第2の風路と、前記第3の風路と、前記第4の風路と、前記冷却器から循環路を形成し、
前記送風機は、前記循環路において、前記冷却器よりも空気の下流側に配置されており、前記冷却器で冷却された空気を前記第1の風路と前記第2の風路を介して前記第1の貯蔵室と前記第2の貯蔵室にそれぞれ送出し、前記第3の風路と前記第4の風路を介して前記第1の貯蔵室と前記第2の貯蔵室から空気を吸引し、
前記第4の風路は、前記冷却器の第1の領域に前記第2の貯蔵室から吸引した空気を供給し、
前記第3の風路は、少なくとも一部に前記仕切壁に形成された上下方向に延びる風路を有し、前記冷却器の前記第1の領域よりも冷却能力の低い第2の領域に前記第1の貯蔵室から吸引した空気を供給する、
冷蔵庫。 - 前記冷却器はフィンの配列された冷媒管を有するフィンチューブ型の前記冷却器であって、前記第2の領域は、前記冷媒管に設けられた前記フィンの設置密度が前記第1の領域よりも低い、
請求項1に記載の冷蔵庫。 - 前記冷却器が互いに水平に配置された複数の直線状の管と複数のU字管とがつづら折り状に交互に連結された前記冷媒管を有し、前記冷媒管に垂直に配置され前記冷媒管に沿って配列された複数の前記フィンが前記直線状の管に設けられ、前記直線状の管と前記U字管との境で前記直線状の管に垂直に配置されて前記U字管を包持する穴を有する二つのサイドプレートにより前記冷却器が支えられており、
前記第3の風路の前記冷却器室への第1の開口部が、前記サイドプレートと前記冷却器室の壁との間の領域に対向している、
請求項2に記載の冷蔵庫。 - 前記第3の風路が二つ以上あり、
前記第3の風路の前記第1の開口部が、前記サイドプレートの一方と前記冷却器室の壁との間の領域と、前記サイドプレートの他方と前記冷却器室の壁との間の領域と、の双方に対向している、
請求項3に記載の冷蔵庫。 - 前記第3の風路の前記第1の開口部は、高さ方向において前記サイドプレートと重なる位置に形成されている、
請求項3または4に記載の冷蔵庫。 - 前記仕切壁に形成された二つ以上ある前記第3の風路の前記第1の開口部は、水平方向に間をあけて形成されている。
請求項4または5に記載の冷蔵庫。 - 前記第1の領域は、前記二つのサイドプレートに挟まれた内側の領域であり、
前記第2の領域は、前記二つのサイドプレートの外側の領域であり、
前記仕切壁に形成された前記第3の風路の前記第1の開口部が、少なくとも前記第2の領域の一部に前方から対向していることで、前記第3の風路を通過した空気を前記第2の領域に供給し、
前記第2の貯蔵室からの空気は、前記第4の風路によって前記冷却器に下方から供給され、前記第2の領域に供給された空気により該第2の領域への進入が阻害され前記第1の領域へと供給される、
請求項3に記載の冷蔵庫。 - 前記第3の風路の前記第1の開口部は、前記冷却器の下端部に対向している、
請求項7に記載の冷蔵庫。 - 前記第3の風路によって供給される空気の噴流圧力は、前記第4の風路によって供給される空気の噴流圧力よりも高い、
請求項1から8の何れか1項に記載の冷蔵庫。 - 前記第3の風路の前記第1の貯蔵室への第2の開口部には、上下方向に延び水平方向に複数配列された格子材が設けられている、
請求項1から9の何れか1項に記載の冷蔵庫。 - 前記第3の風路の前記第1の貯蔵室への第2の開口部には、前記第2の開口部を通る空気を案内するガイド部材が設けられており、
前記ガイド部材は、水平方向に延び上下方向に間隔をあけて複数設けられている、
請求項1から9の何れか1項に記載の冷蔵庫。 - 前記ガイド部材は、前記冷却器室が設けられている方向に向かうにつれて上方となるように傾斜して配置されている、
請求項11に記載の冷蔵庫。 - 前記仕切壁が、少なくとも前記冷却器室と前記第1の貯蔵室とを前後に仕切る場合、
前記仕切壁には、前記第1の貯蔵室に向けて下方に傾斜した上部張出部と、前記第1の貯蔵室に向けて上方に傾斜した下部張出部が設けられており、
前記第3の風路の前記第1の貯蔵室への第2の開口部は、上方が前記上部張出部により区画され、下方が前記下部張出部により区画されており、
前記下部張出部の前記仕切壁からの張出量は、前記上部張出部の前記仕切壁からの張出量よりも大きい、
請求項1から9の何れか1項に記載の冷蔵庫。 - 前記仕切壁に形成された前記第3の風路は、前記第1の貯蔵室から前記冷却器室が設けられている方向に向かうにつれて高さが高くなる、
請求項1から13の何れか1項に記載の冷蔵庫。 - 前記第2の貯蔵室の温度を示す温度情報を取得する温度情報取得部と、
前記第3の風路に設けられたフラップと、
前記第2の風路に設けられたダンパと、
前記温度情報取得部により取得された温度情報に基づいて、前記フラップと前記ダンパとを制御する制御部と、を備える、
請求項1から14の何れか1項に記載の冷蔵庫。 - 前記ダンパを開いている時に前記フラップを傾けて空気の流れる方向を変え、前記第3の風路から前記冷却器室に流入する空気を前記冷却器の相対的に冷却能力の低い領域に流す、
請求項15に記載の冷蔵庫。 - 前記ダンパを閉じている時に前記フラップを傾けて空気の流れる方向を変え、前記第3の風路から前記冷却器室に流入する空気を前記冷却器の相対的に冷却能力の高い領域に流す、
請求項15に記載の冷蔵庫。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180067649.3A CN116249868A (zh) | 2020-11-05 | 2021-11-04 | 冰箱 |
JP2022560813A JP7361945B2 (ja) | 2020-11-05 | 2021-11-04 | 冷蔵庫 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020185464 | 2020-11-05 | ||
JP2020-185464 | 2020-11-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022097695A1 true WO2022097695A1 (ja) | 2022-05-12 |
Family
ID=81457941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/040652 WO2022097695A1 (ja) | 2020-11-05 | 2021-11-04 | 冷蔵庫 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7361945B2 (ja) |
CN (1) | CN116249868A (ja) |
WO (1) | WO2022097695A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09159311A (ja) * | 1995-12-08 | 1997-06-20 | Toshiba Corp | 冷蔵庫用熱交換器 |
JPH11337248A (ja) * | 1998-05-25 | 1999-12-10 | Hitachi Ltd | 冷蔵庫 |
JP2003279222A (ja) * | 2002-03-20 | 2003-10-02 | Mitsubishi Electric Corp | 冷蔵庫 |
JP2003322451A (ja) * | 2002-04-25 | 2003-11-14 | Matsushita Refrig Co Ltd | 冷蔵庫 |
JP2005036988A (ja) * | 2003-07-15 | 2005-02-10 | Mitsubishi Electric Corp | 冷凍冷蔵庫 |
US20110011118A1 (en) * | 2009-07-15 | 2011-01-20 | Yeon-Woo Cho | Refrigerator |
JP2015064153A (ja) * | 2013-09-26 | 2015-04-09 | シャープ株式会社 | 冷蔵庫 |
WO2018025353A1 (ja) * | 2016-08-03 | 2018-02-08 | 三菱電機株式会社 | 冷蔵庫 |
-
2021
- 2021-11-04 WO PCT/JP2021/040652 patent/WO2022097695A1/ja active Application Filing
- 2021-11-04 JP JP2022560813A patent/JP7361945B2/ja active Active
- 2021-11-04 CN CN202180067649.3A patent/CN116249868A/zh active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09159311A (ja) * | 1995-12-08 | 1997-06-20 | Toshiba Corp | 冷蔵庫用熱交換器 |
JPH11337248A (ja) * | 1998-05-25 | 1999-12-10 | Hitachi Ltd | 冷蔵庫 |
JP2003279222A (ja) * | 2002-03-20 | 2003-10-02 | Mitsubishi Electric Corp | 冷蔵庫 |
JP2003322451A (ja) * | 2002-04-25 | 2003-11-14 | Matsushita Refrig Co Ltd | 冷蔵庫 |
JP2005036988A (ja) * | 2003-07-15 | 2005-02-10 | Mitsubishi Electric Corp | 冷凍冷蔵庫 |
US20110011118A1 (en) * | 2009-07-15 | 2011-01-20 | Yeon-Woo Cho | Refrigerator |
JP2015064153A (ja) * | 2013-09-26 | 2015-04-09 | シャープ株式会社 | 冷蔵庫 |
WO2018025353A1 (ja) * | 2016-08-03 | 2018-02-08 | 三菱電機株式会社 | 冷蔵庫 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022097695A1 (ja) | 2022-05-12 |
CN116249868A (zh) | 2023-06-09 |
JP7361945B2 (ja) | 2023-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101649624B1 (ko) | 냉장고 | |
JP5903552B2 (ja) | 冷蔵庫 | |
EP3637020B1 (en) | Heat conduction unit and refrigerator including the same | |
KR101396956B1 (ko) | 냉장고 | |
KR20120022600A (ko) | 냉장고 | |
TWI716636B (zh) | 冰箱 | |
KR102483212B1 (ko) | 냉장고 | |
WO2015029409A1 (ja) | 冷蔵庫 | |
JP5363247B2 (ja) | 冷蔵庫 | |
WO2022097695A1 (ja) | 冷蔵庫 | |
JP4248491B2 (ja) | 冷蔵庫 | |
JP2009036451A (ja) | 冷蔵庫 | |
JPH04103984A (ja) | 冷蔵庫 | |
JP2014167361A (ja) | 冷蔵庫 | |
JP6940424B2 (ja) | 冷蔵庫 | |
CN113028707A (zh) | 冰箱 | |
JP3447559B2 (ja) | 冷却貯蔵庫 | |
KR20030094024A (ko) | 냉장고 | |
WO2019175965A1 (ja) | 冷蔵庫 | |
TWI822453B (zh) | 冰箱 | |
CN220338770U (zh) | 冷柜 | |
JP2001280794A (ja) | 冷蔵庫 | |
TWI762869B (zh) | 冰箱 | |
KR0136062Y1 (ko) | 냉장고 | |
KR100597292B1 (ko) | 냉장고 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21889247 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022560813 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21889247 Country of ref document: EP Kind code of ref document: A1 |