WO2022097656A1 - 多層構造体およびその製造方法、ならびにそれを用いた保護シート及び電子デバイス - Google Patents

多層構造体およびその製造方法、ならびにそれを用いた保護シート及び電子デバイス Download PDF

Info

Publication number
WO2022097656A1
WO2022097656A1 PCT/JP2021/040462 JP2021040462W WO2022097656A1 WO 2022097656 A1 WO2022097656 A1 WO 2022097656A1 JP 2021040462 W JP2021040462 W JP 2021040462W WO 2022097656 A1 WO2022097656 A1 WO 2022097656A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
multilayer structure
layers
less
electronic device
Prior art date
Application number
PCT/JP2021/040462
Other languages
English (en)
French (fr)
Inventor
修平 久詰
竜也 尾下
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2022560795A priority Critical patent/JPWO2022097656A1/ja
Priority to KR1020237018852A priority patent/KR20230098854A/ko
Priority to US18/035,298 priority patent/US20230407454A1/en
Priority to CN202180074556.3A priority patent/CN116406329A/zh
Priority to DE112021004939.9T priority patent/DE112021004939T5/de
Publication of WO2022097656A1 publication Critical patent/WO2022097656A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/244All polymers belonging to those covered by group B32B27/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/737Dimensions, e.g. volume or area
    • B32B2307/7375Linear, e.g. length, distance or width
    • B32B2307/7376Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2405/00Adhesive articles, e.g. adhesive tapes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a multilayer structure and a method for manufacturing the same, and a protective sheet and an electronic device using the same.
  • Electronic devices such as solar cells and electronic devices equipped with display devices require a translucent protective member that protects the surface.
  • flexible solar cells and flexible displays have come to be used in recent years. Since a thick glass plate cannot be used in a flexible electronic device, a protective sheet that replaces the thick glass plate is required.
  • Patent Document 1 includes a base material (X) such as PET and a layer (Y) containing a reaction product of a compound containing aluminum and phosphoric acid, and the reaction generation thereof. It is described that a multilayer structure having an average particle size of an object of 5 to 70 nm can be used as a protective sheet that has excellent gas barrier properties and water vapor barrier properties and can maintain its performance even after a dump heat test.
  • the water vapor barrier property required for the protective sheet of an electronic device is very high, and the water vapor barrier property may not be sufficient in the above-mentioned conventional multilayer structure.
  • the adhesiveness between the encapsulant of the electronic device and the protective sheet is important, and in the electronic device obtained by laminating the exposed surface of the protective sheet with the encapsulant, high peel strength is obtained. May be required.
  • multiple films with water vapor barrier property are laminated, and in order to meet the required performance at a high level of peel strength with the encapsulant, it is sealed on the exposed surface of the protective sheet.
  • a means of laminating a film that enhances the peel strength from the stop material can be considered, but as a result, the thickness of the protective sheet may increase and the flexibility may be impaired.
  • the thickness of the protective sheet may increase and the flexibility may be impaired.
  • thinning of members such as sealing materials used in electronic devices is being considered, but in order to realize high quality and flexible electronic devices, the thickness is thin.
  • the present invention has been made based on the above circumstances, and an object thereof is a multilayer structure having excellent flexibility at a high level in terms of water vapor barrier property and peel strength from a sealing material, and a multilayer structure thereof. It is to provide a manufacturing method, and a protective sheet and an electronic device using the manufacturing method.
  • the above object is [1] a laminate having at least two layers (Y) arranged on both surfaces of the substrate (X) and the substrate (X), and both surfaces of the laminate.
  • the total thickness of all the layers is 15 ⁇ m or more and 120 ⁇ m or less, and the at least two layers (Y) may be the same or different from each other, and the adhesive layers (I) provided on both sides of the laminated body. ) May be the same or different, and the layers (Z) provided on both sides of the laminate may be the same or different, respectively, and measured in accordance with ISO15106-5.
  • the ratio (TS Z / TS) of the heat shrinkage rate TS Z of the layer (Z) to the heat shrinkage rate TS of the laminate is 2.
  • a coating liquid (S) containing a metal oxide (A) containing an aluminum atom, an inorganic phosphorus compound (BI), and a solvent is applied to both surfaces of the base material (X) to remove the solvent.
  • the present invention it is possible to provide a multilayer structure having excellent water vapor barrier property and peel strength from a sealing material at a high level and also having excellent flexibility, a method for producing the same, and a protective sheet and an electronic device using the same. ..
  • FIG. 1 is a partial cross-sectional view of an electronic device according to an embodiment of the present invention.
  • carrier property mainly means both oxygen barrier property and water vapor barrier property (low moisture permeability)
  • gas barrier property mainly means oxygen barrier property.
  • peeling strength means the peeling strength before and after the wet heat treatment described in the examples.
  • the layers provided in the present specification may be the same or different.
  • the "thickness” of each layer or the like means the average (average thickness) of the measured values at any five points.
  • the multilayer structure of the present invention includes a laminate having at least two layers (Y) arranged on both sides of a base material (X) and the base material (X), and an adhesive layer (I) on both sides of the laminate.
  • Y a laminate having at least two layers (Y) arranged on both sides of a base material (X) and the base material (X), and an adhesive layer (I) on both sides of the laminate.
  • the layer (Z) containing a thermoplastic resin as a main component is laminated, and the at least two layers (Y) are a metal oxide (A) containing an aluminum atom and an inorganic phosphorus compound (BI).
  • the thickness of the base material (X) is 5 ⁇ m or more and 100 ⁇ m or less
  • the thickness of the layer (Z) per layer is 5 ⁇ m or more and 100 ⁇ m or less.
  • the total thickness is 15 ⁇ m or more and 120 ⁇ m or less, and the water permeability (water vapor permeability) measured in accordance with ISO15106-5: 2015 is 1.0 ⁇ 10 ⁇ 2 g / m 2 ⁇ day or less.
  • the multilayer structure of the present invention is provided with at least two layers (Y) arranged on both sides of the base material (X), so that the barrier property tends to be remarkably excellent, and the moisture permeability is 1.0 ⁇ 10 ⁇ . It tends to be easy to adjust to 2 g / m 2 ⁇ day or less.
  • the multilayer structure of the present invention is provided with a layer (Z) laminated via an adhesive layer (I) on both sides of the laminate constituting the multilayer structure, so that the peel strength from the sealing material is remarkable. It tends to be excellent. Further, the multilayer structure of the present invention tends to be excellent in flexibility when the total thickness of all layers is 15 ⁇ m or more and 120 ⁇ m or less. Normally, when the thickness of the layer (Z) is reduced, the heat shrinkage of the layer (Z) is likely to occur, and as a result, the heat shrinkage rate of the multilayer structure is increased and the peel strength from the sealing material is increased.
  • the heat shrinkage rate of the laminated body constituting the multilayer structure of the present invention can usually be a small value due to the presence of the layer (Y) which is difficult to heat shrink, and therefore the laminated body can be reduced in thickness.
  • the heat shrinkage of the multilayer structure in which the layer (Z) is laminated on the body via the adhesive layer (I) is suppressed. Therefore, even if the thickness of the layer (Z) is reduced, the peel strength from the sealing material can be maintained. Further, when the heat shrinkage rate of the layer (Z) is within a certain range, the peel strength is improved by the anchor effect, so that the layer (Z) preferably has a heat shrinkage rate to some extent.
  • the heat shrinkage rate of the layer (Z) is too large, the heat shrinkage rate of the multilayer structure becomes large, and the decrease in the peel strength due to the heat shrinkage of the multilayer structure becomes dominant rather than the improvement of the peel strength due to the anchor effect. It becomes a tendency.
  • the thickness of the layer (Z) is 5 ⁇ m or more, the heat shrinkage rate is within an appropriate range, and the effect of improving the peel strength due to the anchor effect is sufficiently exhibited.
  • the total thickness of all layers is 120 ⁇ m or less, it is possible to provide an excellent multilayer structure having a high level of water vapor barrier property and peel strength with a sealing material. ..
  • the base material (X) is not particularly limited, and various base materials can be used.
  • the material of the base material (X) is not particularly limited, and examples thereof include resins such as thermoplastic resins and thermosetting resins; fiber aggregates such as fabrics and papers; and metal oxides. Among them, it is preferable to contain a thermoplastic resin or a fiber aggregate, and it is more preferable to contain a thermoplastic resin.
  • the form of the base material (X) is not particularly limited, but is preferably a layer such as a film or a sheet.
  • the base material (X) preferably contains a thermoplastic resin film, paper, or a thermoplastic resin film in which an inorganic vapor-deposited layer (X') is laminated, and more preferably a thermoplastic resin. It is more preferably a film.
  • thermoplastic resin used for the base material (X) examples include polyolefin resins such as polyethylene and polypropylene; polyethylene terephthalate (PET), polyethylene-2,6-naphthalate, polybutylene terephthalate, and copolymers thereof.
  • Polyester resin Polyamide resin such as nylon-6, nylon-66, nylon-12; Hydroxyl-containing polymer such as polyvinyl alcohol, ethylene-vinyl alcohol copolymer; Polystyrene; Poly (meth) acrylic acid ester; Polyacrylonitrile; Examples thereof include polyvinyl acetate; polycarbonate; polyarylate; regenerated cellulose; polyimide; polyetherimide; polysulphon; polyethersulphon; polyether ether ketone; ionomer resin and the like.
  • the thermoplastic resin used for the base material (X) at least one selected from the group consisting of polyethylene, polypropylene, polyethylene terephthalate, nylon-6, and nylon-66 is preferable, and polyethylene terephthalate is more preferable.
  • the base material (X) may be a stretched film or a non-stretched film.
  • a stretched film, particularly a biaxially stretched film, is preferable because the obtained multilayer structure is excellent in processability (printing, laminating, etc.).
  • the biaxially stretched film may be a biaxially stretched film produced by any one of a simultaneous biaxial stretching method, a sequential biaxial stretching method, and a tubular stretching method.
  • Examples of the paper used for the base material (X) include kraft paper, woodfree paper, imitation paper, glassin paper, parchment paper, synthetic paper, white paperboard, Manila ball, milk carton base paper, cup base paper, ivory paper and the like. Be done.
  • the thermoplastic resin film on which the inorganic thin-film deposition layer (X') used as the base material (X) is laminated is usually a film having a barrier property against oxygen and water vapor, and is preferably a film having transparency.
  • the thermoplastic resin film used for the thermoplastic resin film in which the inorganic vapor deposition layer (X') is laminated the thermoplastic resin film exemplified as the above-mentioned base material (X) can be used.
  • the inorganic thin-film layer (X') can be formed by depositing an inorganic substance.
  • Inorganic substances include metals (eg, aluminum), metal oxides (eg, silicon oxide, aluminum oxide), metal nitrides (eg, silicon nitride), metal nitrides (eg, silicon nitride), or metal carbides.
  • Objects for example, silicon nitride and the like can be mentioned.
  • an inorganic thin-film deposition layer (X') formed of aluminum oxide, silicon oxide, magnesium oxide, or silicon nitride is preferable from the viewpoint of excellent transparency.
  • the method for forming the inorganic vapor deposition layer (X') is not particularly limited, and is a physical vapor phase such as a vacuum vapor deposition method (for example, resistance heating vapor deposition, electron beam vapor deposition, molecular beam epitaxy method, etc.), a sputtering method, an ion plating method, or the like. Growth method; thermochemical vapor deposition method (eg, catalytic chemical vapor deposition method), photochemical vapor deposition method, plasma chemical vapor deposition method (eg, capacitively coupled plasma, induced coupled plasma, surface wave plasma, electron cyclotron resonance). , Dual magnetron, atomic layer deposition method, etc.), chemical vapor deposition method such as organic metal vapor deposition method, etc.
  • a vacuum vapor deposition method for example, resistance heating vapor deposition, electron beam vapor deposition, molecular beam epitaxy method, etc.
  • a sputtering method an ion plating method, or the like.
  • the thickness of the inorganic thin-film layer (X') varies depending on the type of the component constituting the inorganic vapor-film layer, but is preferably 0.002 to 0.5 ⁇ m, more preferably 0.005 to 0.2 ⁇ m, and 0.01 to 0. .1 ⁇ m is more preferred. Within this range, a thickness may be selected that improves the barrier properties and mechanical properties of the multilayer structure. When the thickness of the inorganic thin-film vapor deposition layer (X') is 0.002 ⁇ m or more, the barrier property of the inorganic thin-film vapor deposition layer (X') to oxygen and water vapor tends to be good. Further, when the thickness of the inorganic thin-film deposition layer (X') is 0.5 ⁇ m or less, the barrier property of the inorganic thin-film deposition layer (X') after bending tends to be maintained.
  • the thickness of the base material (X) is 5 ⁇ m or more and 100 ⁇ m or less, preferably 7 ⁇ m or more and 80 ⁇ m or less, and more preferably 10 ⁇ m or more and 60 ⁇ m or less. If the thickness of the layer (X) is less than 5 ⁇ m, the mechanical strength, processability and peel strength tend to deteriorate. Further, when the thickness of the layer (X) exceeds 100 ⁇ m, the flexibility of the obtained multilayer structure tends to deteriorate.
  • the base material (X) one type of base material may be used alone, or a combination of two or more types of base materials may be used. When a plurality of layers of the base material (X) are provided, each base material (X) may be the same or different. When a plurality of base materials (X) are provided, the thickness of the base material (X) represents the thickness of the base material (X) per layer. From the viewpoint of flexibility of the multilayer structure and the like, it may be preferable that the substrate (X) has only one layer.
  • the layer (Y) contains a reaction product (D) of the metal oxide (A) and the inorganic phosphorus compound (BI).
  • the layer (Y) functions as a barrier layer, the multilayer structure of the present invention is provided with at least two layers (Y) arranged on both sides of the substrate (X). , The water vapor barrier property tends to be remarkably excellent.
  • the number of layers (Y) in the multilayer structure of the present invention is not particularly limited as long as it is two or more, but from the viewpoint of improving the flexibility of the multilayer structure of the present invention, five or less layers are preferable. 4 layers or less is more preferable, 3 layers or less is further preferable, and 2 layers may be particularly preferable. On the other hand, in applications where higher barrier properties are required, it may be preferable to increase the number of layers (Y).
  • the two or more layers (Y) may be the same or different.
  • the metal atom (M) constituting the metal oxide (A) is usually at least one metal atom selected from the metal atoms belonging to groups 2 to 14 of the periodic table, but includes at least an aluminum atom.
  • the metal atom (M) is preferably an aluminum atom alone, but may contain an aluminum atom and other metal atoms.
  • As the metal oxide (A), two or more kinds of metal oxides (A) may be mixed and used.
  • Examples of metal atoms other than aluminum atoms include metals of Group 2 of the Periodic Table such as magnesium and calcium; metals of Group 12 of the Periodic Table such as zinc; metals of Group 13 of the Periodic Table; metals of Group 13 of the Periodic Table such as silicon.
  • the metal atom (M) that can be used in combination with aluminum is preferably at least one selected from the group consisting of titanium and zirconium from the viewpoint of excellent handleability and gas barrier property of the obtained multilayer structure.
  • the ratio of aluminum atoms to the metal atoms (M) is preferably 50 mol% or more, more preferably 70 mol% or more, further preferably 90 mol% or more, and even if it is 95 mol% or more, substantially only aluminum atoms. It may consist of.
  • the metal oxide (A) include metal oxides produced by methods such as a liquid phase synthesis method, a gas phase synthesis method, and a solid pulverization method.
  • the metal oxide (A) is a hydrolyzed condensate of a compound (E) containing a metal atom (M) to which a hydrolyzable characteristic group is bonded (hereinafter, may be abbreviated as "compound (E)").
  • compound (E) a hydrolyzed condensate of a compound (E) containing a metal atom (M) to which a hydrolyzable characteristic group is bonded
  • the characteristic group include a halogen atom, NO 3 , an alkoxy group having 1 to 9 carbon atoms which may have a substituent, and an aryloxy group having 6 to 9 carbon atoms which may have a substituent.
  • An acyloxy group having 2 to 9 carbon atoms which may have a substituent an alkenyloxy group having 3 to 9 carbon atoms which may have a substituent, and 5 carbon atoms which may have a substituent.
  • Examples thereof include a ⁇ -diketonato group of up to 15 or a diacylmethyl group having an acyl group having 1 to 9 carbon atoms which may have a substituent.
  • the hydrolyzed condensate of compound (E) can be substantially regarded as the metal oxide (A). Therefore, in the present specification, the hydrolyzed condensate of compound (E) may be referred to as “metal oxide (A)”.
  • metal oxide (A) can be read as “hydrolyzed condensate of compound (E)", and “hydrolyzed condensate of compound (E)” is “metal oxidation”. It can also be read as “thing (A)”.
  • the compound (E) preferably contains a compound (Ea) containing an aluminum atom, which will be described later, because the reaction with the inorganic phosphorus compound (BI) can be easily controlled and the obtained multilayer structure has excellent gas barrier properties.
  • Examples of the compound (Ea) include aluminum chloride, aluminum nitrate, aluminum acetate, tris (2,4-pentandionato) aluminum, trimethoxyaluminum, triethoxyaluminum, tri-n-propoxyaluminum, and triisopropoxyaluminum. Examples thereof include tri-n-butoxyaluminum, tri-sec-butoxyaluminum, and tri-tert-butoxyaluminum, and among them, triisopropoxyaluminum and tri-sec-butoxyaluminum are preferable. As the compound (E), two or more kinds of compounds (Ea) may be used in combination.
  • the compound (E) may contain a compound (Eb) containing a metal atom (M) other than aluminum, and examples of the compound (Eb) include tetrakis (2,4-pentandionato) titanium and tetra. Titanium compounds such as methoxytitanium, tetraethoxytitanium, tetraisopropoxytitanium, tetra-n-butoxytitanium, tetrakis (2-ethylhexoxy) titanium; tetrakis (2,4-pentandionato) zirconium, tetra-n-propoxyzurethane, Examples thereof include a zirconium compound such as tetra-n-butoxyzaldehyde. These may be used alone or in combination of two or more compounds (Eb).
  • the ratio of the compound (Ea) to the compound (E) is not particularly limited, and for example, 80 mol% or more is preferable, 90 mol% or more is more preferable, 95 mol% or more is further preferable, and 100 mol% may be used. ..
  • compound (E) When compound (E) is hydrolyzed, at least a part of the hydrolyzable characteristic group of compound (E) is converted into a hydroxyl group. Further, the hydrolyzate is condensed to form a compound in which a metal atom (M) is bonded via an oxygen atom (O). When this condensation is repeated, a compound that can be regarded as a metal oxide is formed. A hydroxyl group is usually present on the surface of the metal oxide (A) thus formed.
  • a compound having a ratio of [the number of moles of an oxygen atom (O) bonded only to a metal atom (M)] / [the number of moles of a metal atom (M)] of 0.8 or more is a metal. It shall be included in the oxide (A).
  • the oxygen atom (O) bonded only to the metal atom (M) is an oxygen atom (O) in the structure represented by MOM, and is a structure represented by MOH.
  • the ratio of the metal oxide (A) is preferably 0.9 or more, more preferably 1.0 or more, still more preferably 1.1 or more.
  • the upper limit of this ratio is not particularly limited, but is usually expressed as n / 2, assuming that the valence of the metal atom (M) is n.
  • the compound (E) In order for the hydrolysis condensation to occur, it is important that the compound (E) has a hydrolyzable characteristic group. If these groups are not bonded, the hydrolysis / condensation reaction does not occur or becomes extremely slow, which makes it difficult to prepare the desired metal oxide (A).
  • the hydrolyzed condensate of compound (E) may be produced from a specific raw material by, for example, a method adopted by a known sol-gel method.
  • the raw materials include compound (E), a partial hydrolyzate of compound (E), a complete hydrolyzate of compound (E), a compound formed by partially hydrolyzing and condensing compound (E), and compound (E).
  • the metal oxide (A) to be mixed with the inorganic phosphorus compound (BI) -containing material composition containing the inorganic phosphorus compound (BI) or the inorganic phosphorus compound (BI)), which will be described later, substantially contains a phosphorus atom. It is preferable not to contain it.
  • the inorganic phosphorus compound (BI) has a site capable of reacting with the metal oxide (A), and typically has a plurality of such sites, preferably 2 to 20.
  • a moiety includes a moiety capable of condensation reaction with a functional group (for example, a hydroxyl group) existing on the surface of the metal oxide (A), for example, a halogen atom directly bonded to a phosphorus atom or a site directly bonded to a phosphorus atom. Oxygen atoms and the like can be mentioned.
  • a functional group (for example, a hydroxyl group) existing on the surface of the metal oxide (A) is usually bonded to a metal atom (M) constituting the metal oxide (A).
  • Examples of the inorganic phosphorus compound (BI) include phosphoric acid, diphosphoric acid, triphosphoric acid, and polyphosphoric acid, phosphoric acid, phosphonic acid, phosphonic acid, phosphinic acid, and phosphine in which four or more molecules of phosphoric acid are condensed.
  • Phosphoric oxo acids such as acids, salts thereof (eg, sodium phosphate), and derivatives thereof (eg, halides (eg, phosphoryl chloride), dehydrated products (eg, diphosphorus pentoxide)) and the like. Therefore, one type may be used alone or two or more types may be used in combination.
  • phosphoric acid is used alone, or phosphoric acid and other inorganic phosphorus compounds (BI) are used in combination. It is preferable to do so.
  • phosphoric acid and other inorganic phosphorus compound (BI) are used in combination, it is preferable that 50 mol% or more of the inorganic phosphorus compound (BI) is phosphoric acid.
  • reaction product (D) is obtained by reacting the metal oxide (A) with the inorganic phosphorus compound (BI).
  • the reaction product (D) also includes a compound produced by the reaction of the metal oxide (A), the inorganic phosphorus compound (BI) and another compound.
  • the maximum absorption wavenumber in the region of 800 to 1400 cm -1 is preferably in the range of 1080 to 1130 cm -1 .
  • a phosphorus atom (P) derived from BI) forms a bond represented by MOP via an oxygen atom (O).
  • a characteristic absorption band derived from the bond is generated in the infrared absorption spectrum of the reaction product (D).
  • the obtained multilayer structure exhibits excellent gas barrier properties.
  • the characteristic absorption band is the strongest absorption in the region of 800 to 1400 cm -1 where absorption derived from the bond between various atoms and oxygen atoms is generally observed
  • the obtained multilayer structure is further enhanced. It exhibits excellent gas barrier properties. That is, the multilayer structure of the present invention conforms to ISO15106-5 because the maximum absorption wavenumber in the region of 800 to 1400 cm -1 is in the range of 1080 to 1130 cm -1 in the infrared absorption spectrum of the layer (Y).
  • the moisture permeability measured in the above method tends to be easily adjusted to 1.0 ⁇ 10 ⁇ 2 g / m 2 ⁇ day or less.
  • the half width of the maximum absorption band in the region of 800 to 1400 cm -1 is preferably 200 cm -1 or less, preferably 150 cm -1 or less, from the viewpoint of the gas barrier property of the obtained multilayer structure. More preferably, 100 cm -1 or less is further preferable, and 50 cm -1 or less is particularly preferable.
  • the infrared absorption spectrum of the layer (Y) can be measured by an attenuation total reflection method using a Fourier transform infrared spectrophotometer (Spectrum One manufactured by PerkinElmer Co., Ltd.) with a measurement region of 800 to 1400 cm -1 .
  • a Fourier transform infrared spectrophotometer Spectrum One manufactured by PerkinElmer Co., Ltd.
  • it is a method of reflection measurement such as reflection absorption method, external reflection method, attenuation total reflection method, scraping the layer (Y) from the multilayer structure, and transmission measurement such as Nujol method and tablet method.
  • the measurement is not limited to these.
  • the layer (Y) may partially contain a metal oxide (A) and / or an inorganic phosphorus compound (BI) that are not involved in the reaction.
  • the molar ratio of the metal atom (M) constituting the metal oxide (A) to the phosphorus atom derived from the inorganic phosphorus compound (BI) is [the metal atom constituting the metal oxide (A).
  • (M)]: [Rin atom derived from inorganic phosphorus compound (BI)] preferably in the range of 1.0: 1.0 to 3.6: 1.0, preferably 1.1: 1.0 to More preferably, it is in the range of 3.0: 1.0. Excellent gas barrier performance can be obtained within this range.
  • the molar ratio in the layer (Y) can be adjusted by the mixing ratio of the metal oxide (A) and the inorganic phosphorus compound (BI) in the coating liquid (S) described later for forming the layer (Y).
  • the molar ratio in the layer (Y) is usually the same as the ratio in the coating liquid (S) described later.
  • the layer (Y) may contain at least one selected from the group consisting of the organic phosphorus compound (BO) and the polymer (F).
  • the layer (Y) contains at least one selected from the group consisting of the organic phosphorus compound (BO) and the polymer (F)
  • good gas barrier properties can be maintained even after bending the multilayer structure of the present invention. It may be a tendency.
  • the property of maintaining gas barrier properties even after bending may be referred to as "bending resistance”.
  • Organic phosphorus compound (BO) is preferably a polymer (BOa) having a plurality of phosphorus atoms or an organic phosphorus compound (BOb).
  • Examples of the functional group containing a phosphorus atom contained in the polymer (BOa) include a phosphate group, a phosphite group, a phosphonic acid group, a phosphonic acid group, a phosphinic acid group, a phosphinic acid group, and derived from these.
  • Examples thereof include functional groups (eg, salts, (partial) ester compounds, halides (eg, chlorides), dehydrated products), and among them, a phosphate group and a phosphonic acid group are preferable, and a phosphonic acid group is more preferable.
  • Examples of the polymer (BOa) include 6-[(2-phosphonoacetyl) oxy] hexyl acrylate, 2-phosphonooxyethyl methacrylate, phosphonomethyl methacrylate, 11-phosphonoundesyl methacrylate, and 1 methacrylic acid.
  • the polymer (BOa) may be a homopolymer of a monomer having a functional group containing at least one phosphorus atom, or may be a copolymer of two or more kinds of monomers.
  • polymers (BOa) two or more kinds of polymers composed of a single monomer may be used in combination. Among them, a polymer of phosphono (meth) acrylic acid esters and a polymer of vinyl phosphonic acids are preferable, a polymer of vinyl phosphonic acids is more preferable, and polyvinyl phosphonic acid is further preferable.
  • the polymer (BOa) can also be obtained by hydrolyzing a vinyl phosphonic acid derivative such as a vinyl phosphonic acid halide or a vinyl phosphonic acid ester alone or after copolymerizing it.
  • the polymer (BOa) may be a copolymer of a monomer having a functional group containing at least one phosphorus atom and another vinyl monomer.
  • Other vinyl monomers that can be copolymerized with a monomer having a functional group containing a phosphorus atom include, for example, (meth) acrylic acid, (meth) acrylic acid esters, acrylonitrile, methacrylonitrile, styrene, and nuclear substitution.
  • Examples include styrenes, alkylvinyl ethers, alkylvinyl esters, perfluoroalkylvinyl ethers, perfluoroalkylvinyl esters, maleic acid, maleic anhydride, fumaric acid, itaconic acid, maleimide, phenylmaleimide, etc., among others (meth). ) Acrylic acid esters, acrylonitrile, styrene, maleimide, and phenylmaleimide are preferred.
  • the ratio of the structural unit derived from the monomer having a functional group containing a phosphorus atom to the total structural unit of the polymer (BOa) is 10 mol% or more. Is preferable, 40 mol% or more is more preferable, 70 mol% or more is further preferable, 90 mol% or more is particularly preferable, and 100 mol% may be used.
  • the molecular weight of the polymer (BOa) is not particularly limited, but the number average molecular weight is preferably in the range of 1000 to 100,000. When the number average molecular weight is in this range, the effect of improving the bending resistance of the multilayer structure of the present invention and the viscosity stability of the coating liquid (S) when the coating liquid (S) described later is used are high. It is compatible at the level.
  • the layer (Y) of the multilayer structure contains a polymer (BOa)
  • the ratio of the mass W BI of the inorganic phosphorus compound (BI) to the mass W BOa of the polymer (BOa) in the layer (Y) W BOa / W It is preferable that the BI satisfies the relationship of 0.01 / 99.99 ⁇ W BOa / W BI ⁇ 6.00 / 94.00, and from the viewpoint of excellent barrier performance, 0.10 / 99.90 ⁇ W BOa / W.
  • Those satisfying the relationship of BI ⁇ 4.50 / 95.50 are more preferable, and those satisfying the relationship of 0.20 / 99.80 ⁇ W BOa / W BI ⁇ 4.00 / 96.00 are further preferable.
  • those satisfying the relationship of 50 / 99.50 ⁇ W BOa / W BI ⁇ 3.50 / 96.50 are particularly preferable. That is, W BOa is preferably used in a small amount of 0.01 or more and less than 6.00, whereas W BI is preferably used in a large amount of more than 94.00 and 99.99 or less.
  • the inorganic phosphorus compound (BI) and / or the organic phosphorus compound (BOa) is reacting in the layer (Y), the inorganic phosphorus compound (BI) and / or the organic phosphorus constituting the reaction product (D) are reacted.
  • the portion of compound (BOa) is considered as an inorganic phosphorus compound (BI) and / or an organic phosphorus compound (BOa).
  • the mass of the inorganic phosphorus compound (BI) and / or the organophosphorus compound (BOa) used for forming the reaction product (D) (the inorganic phosphorus compound (BI) and / or the organophosphorus compound (BOa) before the reaction).
  • Organic phosphorus compound (BOb) In an organic phosphorus compound (BOb), a phosphorus atom to which at least one hydroxyl group is bonded is bonded to a polar group via an alkylene chain or a polyoxyalkylene chain having 3 to 20 carbon atoms.
  • Organophosphorus compounds (BObs) have lower surface free energy than metal oxides (A), inorganic phosphorus compounds (BI), and their reaction products (D), and in the process of forming the precursor of layer (Y). Segregate on the surface side. As a result, the bending resistance of the multilayer structure of the present invention and the adhesiveness between the layer (Y) and the layer directly laminated may be improved.
  • organic phosphorus compound (BOb) examples include, for example, 3-hydroxypropylphosphonic acid, 4-hydroxybutylphosphonic acid, 5-hydroxypentylphosphonic acid, 6-hydroxyhexylphosphonic acid, 7-hydroxyhepsylphosphonic acid, 8 -Hydroxyoctylphosphonic acid, 9-hydroxynonylphosphonic acid, 10-hydroxydecylphosphonic acid, 11-hydroxyundecylphosphonic acid, 12-hydroxydodecylphosphonic acid, 13-hydroxydotridecylphosphonic acid, 14-hydroxytetradecylphosphonic acid.
  • 3-hydroxypropylphosphonic acid 4-hydroxybutylphosphonic acid
  • 5-hydroxypentylphosphonic acid 6-hydroxyhexylphosphonic acid
  • 7-hydroxyhepsylphosphonic acid 7-hydroxyhepsylphosphonic acid
  • 8 -Hydroxyoctylphosphonic acid 9-hydroxynonylphosphonic acid
  • 10-hydroxydecylphosphonic acid 11-hydroxyunde
  • the layer (Y) of the multilayer structure contains an organic phosphorus compound (BOb)
  • the number of moles of the organic phosphorus compound (BOb) in the layer (Y) is MBOb and the number of moles of the inorganic phosphorus compound ( BI ) is MBI.
  • the ratio M BOb / M BI satisfies the relationship of 1.0 ⁇ 10 -4 ⁇ M BOb / M BI ⁇ 2.0 ⁇ 10 ⁇ 2 , and 3.5 ⁇ 10 -4 ⁇ M BOb / M BI ⁇ .
  • Those satisfying the relationship of 1.0 ⁇ 10 ⁇ 2 are more preferable, and those satisfying the relationship of 5.0 ⁇ 10 -4 ⁇ M BOb / M BI ⁇ 6.0 ⁇ 10 -3 are further preferable.
  • the layer (Y) contains an organic phosphorus compound (BOb)
  • the side of the layer (Y) of the multilayer structure measured by the X-ray photoelectron spectroscopy (XPS method) that is not in contact with the substrate (X).
  • the C / Al ratio at the surface to 5 nm is preferably in the range of 0.1 to 15.0, more preferably in the range of 0.3 to 10.0, and in the range of 0.5 to 5.0. It is particularly preferable to have.
  • the adhesiveness between the layer (Y) and the adjacent layer may be improved.
  • the total thickness of the layers (Y) is preferably 0.05 to 4.0 ⁇ m, more preferably 0.1 to 2.0 ⁇ m.
  • the thickness per layer (Y) is preferably 0.05 ⁇ m or more from the viewpoint of gas barrier properties, and 1. It is preferably 0 ⁇ m or less.
  • the thickness of the layer (Y) per layer can be controlled by the concentration of the coating liquid (S) used for forming the layer (Y), which will be described later, or the coating method thereof.
  • the thickness of the layer (Y) can be measured by observing the cross section of the multilayer structure with a scanning electron microscope or a transmission electron microscope.
  • the layer (Y) may contain a polymer (F) having at least one functional group selected from the group consisting of a carbonyl group, a hydroxyl group, a carboxy group, a carboxylic acid anhydride group, and a salt of the carboxyl group.
  • the polymer (F) is preferably a polymer having at least one functional group selected from the group consisting of a hydroxyl group and a carboxyl group.
  • polymer (F) examples include polyethylene glycol; polyvinyl alcohol, modified polyvinyl alcohol containing 1 to 50 mol% of ⁇ -olefin units having 4 or less carbon atoms, and polyvinyl alcohol-based polymers such as polyvinyl acetal (polyvinyl butyral, etc.); Polysaccharides such as cellulose and starch; (meth) acrylic acid-based polymers such as polyhydroxyethyl (meth) acrylate, poly (meth) acrylic acid, and ethylene-acrylic acid copolymers; ethylene-maleic anhydride copolymers.
  • Examples thereof include a hydrolyzate, a hydrolyzate of a styrene-maleic anhydride copolymer, and a maleic acid-based polymer such as a hydrolyzate of an isobutylene-maleic anhydride copolymer.
  • a hydrolyzate a hydrolyzate of a styrene-maleic anhydride copolymer
  • a maleic acid-based polymer such as a hydrolyzate of an isobutylene-maleic anhydride copolymer.
  • polyethylene glycol or polyvinyl alcohol-based polymer is preferable.
  • the polymer (F) may be a homopolymer of a monomer having a polymerizable group, a copolymer of two or more kinds of monomers, a carbonyl group, a hydroxyl group, and a carboxyl. It may be a polymer of a monomer having at least one functional group selected from the group consisting of a group, a carboxylic acid anhydride group, and a salt of a carboxyl group and a monomer having no such group. As the polymer (F), two or more kinds of polymers (F) may be mixed and used.
  • the molecular weight of the polymer (F) is not particularly limited, but the weight average molecular weight of the polymer (F) is preferably 5000 or more, preferably 8000 or more, in order to obtain a multilayer structure having better gas barrier properties and mechanical strength. More preferably, 10,000 or more is further preferable.
  • the upper limit of the weight average molecular weight of the polymer (F) is not particularly limited, and is, for example, 1500,000.
  • the content of the polymer (F) in the layer (Y) is preferably less than 50% by mass, more preferably 20% by mass or less, based on the mass of the layer (Y). Preferably, it is preferably 10% by mass or less, more preferably 5% by mass or less, 2% by mass or less, or 0% by mass.
  • the polymer (F) may or may not react with the components in the layer (Y).
  • the layer (Y) may further contain other components.
  • Other components that may be contained in the layer (Y) include, for example, carbonates, hydrochlorides, nitrates, hydrogen carbonates, sulfates, hydrogensulfates, inorganic acid metal salts such as borates, oxalates, acetic acid.
  • Organic acid metal salts such as salts, tartrates and stearate, metal complexes such as cyclopentadienyl metal complex (eg, titanosen), cyanometal complex (eg, Prussian blue), layered clay compounds, cross-linking agents, polymers. Examples thereof include polymer compounds other than (BOa) and the polymer (F), plasticizers, antioxidants, ultraviolet absorbers, flame retardants and the like.
  • the content of the other component in the layer (Y) in the multilayer structure is preferably 20% by mass or less, more preferably 10% by mass or less, further preferably 5% by mass or less, and even if it is 3% by mass or less. It may be 1% by mass or less, or 0% by mass (does not contain other components).
  • the laminate constituting the multilayer structure of the present invention comprises a layer (W) containing at least one selected from the group consisting of an organic phosphorus compound (BO) and a polymer (F), and a base material (X) of the layer (Y). ) May be directly laminated on the opposite surface.
  • the layer (W) the bending resistance may be improved or the adhesiveness with the adhesive layer (I) described later may be improved.
  • the laminated body constituting the multilayer structure of the present invention may include an adhesive layer (AC) between the base material (X) and the layer (Y). By providing the adhesive layer (AC), the adhesiveness between the base material (X) and the layer (Y) may be enhanced.
  • the layer (W) is directly laminated with the layer (Y).
  • Preferred embodiments of the organic phosphorus compound (BO) and the polymer (F) that can be contained in the layer (W) are as described above.
  • the layer (W) may further contain other components.
  • Other components include, for example, carbonates, hydrochlorides, nitrates, hydrogencarbonates, sulfates, hydrogensulfates, inorganic acid metal salts such as borates, oxalates, acetates, tartrates, stearate.
  • Organic acid metal salts such as, cyclopentadienyl metal complexes (eg, titanosen), metal complexes such as cyano metal complexes (eg, Prussian blue), layered clay compounds, cross-linking agents, polymers (BOa) and polymers (F). ), Polymer compounds, plasticizers, antioxidants, ultraviolet absorbers, flame retardants and the like can be mentioned.
  • the content of the other components in the layer (W) is preferably 20% by mass or less, more preferably 10% by mass or less, further preferably 5% by mass or less, and even if it is 2% by mass or less, it is 1% by mass or less. It may be 0% by mass (does not contain other components).
  • the thickness thereof is preferably 0.005 ⁇ m or more from the viewpoint of improving the bending resistance of the multilayer structure of the present invention.
  • the upper limit of the thickness of the layer (W) is not particularly limited, but since the effect of improving the bending resistance reaches saturation at 1.0 ⁇ m or more, it is economical to set the upper limit of the thickness of the layer (W) to 1.0 ⁇ m. Is preferable.
  • the adhesive constituting the adhesive layer (AC) is not particularly limited as long as it has adhesiveness between the base material (X) and the layer (Y), and examples thereof include polyurethane-based adhesives and polyester-based adhesives. Be done. By adding a small amount of an additive such as a known silane coupling agent to these adhesives, the adhesiveness may be further enhanced.
  • the silane coupling agent include a silane coupling agent having a reactive group such as an isocyanate group, an epoxy group, an amino group, a ureido group and a mercapto group.
  • polyurethane-based adhesive known ones can be used, but it is preferable to use a two-component polyurethane-based adhesive in which the polyisocyanate component and the polyol component are mixed and reacted.
  • a two-component polyurethane adhesive a commercially available product can be used, and examples thereof include Takelac (registered trademark) and Takenate (registered trademark) manufactured by Mitsui Chemicals, Inc.
  • polyester adhesives can be used, and commercially available products include, for example, Elitel® KT-0507, KT-8701, KT-8803, KT-9204, KA-5034, KA. -3556, KA-1449, KA-5071S, KZA-1449S, (above, manufactured by Unitika Ltd.), Byronal (registered trademark) MD-1200, byronal MD-1480 (above, manufactured by Toyobo Co., Ltd.), pesresin A124GP, Examples thereof include pesresin A684G (manufactured by Takamatsu Oil & Fat Co., Ltd.).
  • the adhesiveness may be further enhanced.
  • the mass ratio (vinyl alcohol-based resin / polyester-based resin) should be 1/99 or more and 50/50 or less while maintaining good adhesiveness. It is preferable from the viewpoint of showing high peel strength.
  • the polyester resin is preferably a polyester resin having a carboxyl group from the viewpoint of affinity with the vinyl alcohol resin.
  • the polyester resin is preferably an aqueous dispersion. Since the polyester-based resin is an aqueous dispersion, the affinity with the polyvinyl alcohol-based resin tends to be better.
  • the thickness of the adhesive layer (AC) is preferably 0.001 to 10.0 ⁇ m, more preferably 0.01 to 5.0 ⁇ m.
  • the laminate constituting the multilayer structure of the present invention includes at least two layers (Y) arranged on both sides of the substrate (X) and the substrate (X). As long as the layer (Y) is arranged on both sides of the base material (X), the layer (Y) may be directly laminated with the base material (X) or may be laminated via another layer. From the viewpoint of satisfactorily exhibiting the peel strength of the multilayer structure from the encapsulant, the layer (Y) is directly laminated on both sides of the base material (X), or the layer (Y) is an adhesive layer (AC). ), It is preferable that they are laminated on both sides of the base material (X).
  • the layer (W) may be directly laminated on the exposed surface side of the layer (Y).
  • the layer (W) is provided on the exposed surface side of the layer (Y)
  • the bending resistance of the multilayer structure of the present invention may be enhanced, or the adhesiveness with the adhesive layer (I) described later may be enhanced.
  • each specific example has a structure in which a plurality of combinations are combined, for example, a structure in which the structure of (1) is laminated via an adhesive layer (I) (layer (Y) // base material. It may be (X) // layer (Y) / adhesive layer (I) / layer (Y) // base material (X) // layer (Y)), or each layer may be provided with a plurality of layers. good.
  • “/” means that they are directly laminated
  • "//” means that they are directly laminated or laminated via an adhesive layer (AC). ..
  • the laminated body tends to have a small heat shrinkage rate TS in the MD direction when heated at 160 ° C. for 30 minutes.
  • the reason for this is not clear, but it is estimated that there are the following two reasons. (1) To provide a layer (Y) having a lower heat shrinkage rate than that of a thermoplastic resin or the like. (2) As described in the manufacturing method described later, heat shrinkage occurs due to heat treatment at a high temperature during the manufacture of the laminate, so that the heat shrinkage of the resulting laminate becomes small.
  • the heat shrinkage TS when the laminate is heated at 160 ° C. in the MD direction for 30 minutes is preferably 1.0% or less, more preferably 0.70% or less, further preferably 0.50% or less, and 0.40. % Or less is particularly preferable.
  • the peel strength of the multilayer structure of the present invention tends to be increased.
  • the heat shrinkage rate TS tends to increase.
  • the heat shrinkage rate TS may be 0.05% or more.
  • the multilayer structure of the present invention includes a layer (Z) containing a thermoplastic resin as a main component, which is laminated on both sides of the laminated body via an adhesive layer (I), and the layer (Z) provided on both sides is provided. They may be the same or different.
  • "mainly composed” means that the proportion of the thermoplastic resin in the layer (Z) exceeds 50% by mass.
  • the thermoplastic resin constituting the layer (Z) is not particularly limited, but it is preferable to use a thermoplastic resin having a high peel strength from the encapsulant for the layer (Z).
  • the thermoplastic resin having high peeling strength from the encapsulant is not particularly limited because it differs depending on the type of encapsulant, but for example, a polyolefin resin such as polyethylene, polypropylene, or a cyclic olefin copolymer; polyethylene terephthalate (PET).
  • thermoplastic resin used for the layer (Z) at least one selected from the group consisting of polyethylene, polypropylene, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, nylon-6, and nylon-66 is selected from the viewpoint of transparency.
  • polyethylene terephthalate is more preferable from the viewpoint of exhibiting good peel strength when an ethylene-vinyl acetate copolymer (EVA) is used as a sealing material.
  • EVA ethylene-vinyl acetate copolymer
  • the proportion of the thermoplastic resin occupying the layer (Z) is more than 50% by mass, preferably 70% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, and the layer (Z) is substantially.
  • the layer (Z) may be composed of only the thermoplastic resin, and may be composed of only the thermoplastic resin.
  • the layer (Z) is preferably in the shape of a film.
  • the layer (Z) may be a stretched film or a non-stretched film.
  • a stretched film, particularly a biaxially stretched film, is preferable because the obtained multilayer structure is excellent in processability (printing, laminating, etc.).
  • the biaxially stretched film may be a biaxially stretched film produced by any one of a simultaneous biaxial stretching method, a sequential biaxial stretching method, and a tubular stretching method.
  • the thickness of the layer (Z) per layer is 5 ⁇ m or more, preferably 7 ⁇ m or more, and more preferably 10 ⁇ m or more.
  • the thickness of the layer (Z) per layer is 100 ⁇ m or less, preferably 80 ⁇ m or less, more preferably 60 ⁇ m or less, further preferably 40 ⁇ m or less, and sometimes 30 ⁇ m or less. If the thickness of the layer (Z) per layer is less than 5 ⁇ m, the mechanical strength, processability and peel strength of the obtained multilayer structure tend to deteriorate. On the other hand, if the thickness of the layer (Z) per layer exceeds 100 ⁇ m, the flexibility of the obtained multilayer structure tends to deteriorate.
  • the heat shrinkage rate TS z in the MD direction when heated at 160 ° C. for 30 minutes is preferably 0.50% or more, more preferably 0.80% or more, still more preferably 0.90% or more. ..
  • the heat shrinkage rate TS z may be 4.0% or less, 3.0% or less, 2.0% or less, or 1.4% or less.
  • the heat shrinkage rate TS z tends to increase.
  • the heat shrinkage TS of the laminate forming the multilayer structure of the present invention is low, the peel strength of the multilayer structure of the present invention after wet heat treatment tends to be maintained even if the heat shrinkage TS z is high. It becomes.
  • the multilayer structure of the present invention includes an adhesive layer (I) between the laminated body and the layer (Z), and the adhesive layers (I) provided on both sides of the laminated body are different even if they are the same. May be.
  • the multilayer structure of the present invention is sealed because the adhesive layer (I) can be provided between the laminated body and the layer (Z) to enhance the adhesiveness between the laminated body and the layer (Z). There is a tendency that the peeling strength from the stop material can be sufficiently exhibited.
  • the adhesive layer (I) may be transparent such as curing by heating, curing by light, etc., and has strong adhesive strength. For example, curing of isocyanate, curing of heating, curing of light, etc. may be used.
  • the adhesive constituting the adhesive layer (I) is not particularly limited as long as it has the adhesiveness between the laminate and the layer (Z), but is a urethane adhesive, an ester adhesive, and an acrylic adhesive. Etc. can be used. Of these, urethane-based adhesives are preferable, and two-component reaction-type polyurethane-based adhesives in which a polyisocyanate component and a polyol component are mixed and reacted are more preferable.
  • the thickness of the adhesive layer (I) per layer is preferably 0.5 ⁇ m to 20 ⁇ m, more preferably 0.5 ⁇ m to 15 ⁇ m, still more preferably 1 ⁇ m to 10 ⁇ m.
  • the thickness of the adhesive layer (I) per layer is 0.5 ⁇ m or more, the adhesiveness tends to be improved, and when the thickness is 20 ⁇ m or less, the flexibility of the obtained multilayer structure tends to be improved.
  • the easy-adhesive layer (EA) is preferably laminated on at least one exposed surface side of the layer (Z) from the viewpoint of increasing the peel strength from the encapsulant, and both layers. It is more preferable to provide an easy-adhesion layer (EA) on the exposed surface side of (Z).
  • the "easy-adhesive layer” means a layer that enhances the peel strength from the sealing material.
  • the "exposed surface” of the layer (Z) is a surface on the two surfaces of the layer (Z) opposite to the surface on which the laminate is located, and when the easy-adhesive layer is not provided. It is an exposed surface.
  • the delamination strength tends to be maintained even under high temperature and high humidity.
  • the multilayer structure of the present invention for a solar cell protective sheet, it is possible to provide a solar cell module having a small output decrease even when exposed to a high temperature and high humidity environment for a long time.
  • the easy-adhesion layer (EA) is not particularly limited, and may include, for example, an acrylic resin, a polyolefin resin, a polyester resin, a polyurethane resin, a polyamide resin, and a polyvinyl alcohol resin. Among them, it is preferable to contain at least one selected from the group consisting of an acrylic resin, a polyolefin resin, a polyester resin and a polyurethane resin, and it is more preferable to contain an acrylic resin.
  • One aspect of the method of providing the easy-adhesion layer (EA) is adhesion containing a crosslinkable main agent resin, a crosslinker, etc. and a solvent (an organic medium is used as a main solvent or an aqueous medium is used as a main solvent).
  • a method of producing the adhesive by providing the agent on the layer (Z) and drying it can be mentioned, and known adhesives can be used as such adhesives, and commercially available products include, for example, Dynaleo (registered trademark) (registered trademark).
  • Examples thereof include Toyochem Co., Ltd.), Arrow Base (registered trademark) SD-1200, SB-1200, SE-1200 (all manufactured by Unitika Co., Ltd.), Pesresin A124GP, Pesresin A684G (manufactured by Takamatsu Oil & Fat Co., Ltd.) and the like.
  • the number average molecular weight of the acrylic resin is preferably 17,000 to 250,000.
  • the peel strength from the encapsulant and the moisture heat resistance tend to be good.
  • the easy-adhesion layer (EA) of the present invention may contain inorganic particles and organic particles. By including these particles, the adhesive durability may be improved.
  • the inorganic particles include metal silicates or carbonates. Specific examples thereof include silicates and carbonates of metals such as magnesium, aluminum, calcium, barium, zinc, iron, lithium and titanium.
  • the organic particles those having a melting point or a softening point of 150 ° C. or higher can be preferably used. If the melting point or softening point of the organic particles is lower than 150 ° C., the particles may soften in the vacuum laminating step and interfere with the adhesion to the encapsulant.
  • organic particles include polymer particles such as polymethylmethacrylate resin, polystyrene resin, nylon (registered trademark) resin, melamine resin, guanamine resin, phenol resin, urea resin, silicon resin, methacrylate resin, and acrylate resin.
  • polymer particles such as polymethylmethacrylate resin, polystyrene resin, nylon (registered trademark) resin, melamine resin, guanamine resin, phenol resin, urea resin, silicon resin, methacrylate resin, and acrylate resin.
  • cellulose powder, nitrocellulose powder, wood powder, used paper powder, rice husk powder, starch and the like can be mentioned.
  • Inorganic particles and organic particles may be used alone or in combination of two or more.
  • the easy-adhesion layer (EA) may contain an additive (antioxidant, ultraviolet stabilizer, metal inactivating agent, etc.) that enhances weather resistance as long as the effect of the present invention is not impaired.
  • the thickness of the easy-adhesion layer (EA) per layer is preferably 0.01 to 10 ⁇ m, more preferably 0.05 to 8 ⁇ m, and even more preferably 0.05 to 5 ⁇ m.
  • the thickness of the easy-adhesion layer (EA) per layer is within the above range, the peel strength from the sealing material and the flexibility of the obtained multilayer structure tend to be good.
  • the easy-adhesive layers (EA) may be the same or different.
  • the multilayer structure of the present invention may include an inorganic thin-film deposition layer in an arrangement other than the base material (X).
  • the preferred embodiment of the inorganic thin-film deposition layer is the same as the preferred embodiment of the inorganic vapor-filming layer (X') described above.
  • the thickness of the multilayer structure of the present invention (total thickness of all layers) is 15 ⁇ m or more, preferably 17 ⁇ m or more, further preferably 20 ⁇ m or more, and particularly preferably 30 ⁇ m or more.
  • the thickness of the multilayer structure of the present invention is 120 ⁇ m or less, preferably 110 ⁇ m or less, further preferably 100 ⁇ m or less, and particularly preferably 90 ⁇ m or less.
  • the thickness is 15 ⁇ m or more, the mechanical strength tends to be good and the processability at the time of manufacturing the multilayer structure tends to be good. Further, when the thickness is 120 ⁇ m or less, the flexibility of the multilayer structure tends to be good.
  • the ratio of the heat shrinkage rate TS Z of the layer (Z) to the heat shrinkage rate TS of the laminated body (TS Z / TS) is 2 or more. It is preferably 2.5 or more, more preferably 3.0 or more, and even more preferably 3.5 or more, 4.0 or more, or 4.5 or more.
  • the ratio (TS Z / TS) is 2 or more, the dimensional stability of the multilayer structure and the peel strength with the sealing material tend to be good.
  • the ratio (TS z / TS) may be 20 or less or 10 or less.
  • the moisture permeability of the multilayer structure of the present invention measured at 40 ° C. and 90% RH is 1.0 ⁇ 10 ⁇ 2 g / m 2 ⁇ day or less, and 8.0 ⁇ 10 -3 g / m 2 ⁇ day or less. Is preferable, and 5.0 ⁇ 10 -3 g / m 2 ⁇ day or less is more preferable.
  • Moisture permeability can be measured by TECHNOLOX DELTAPERM in accordance with ISO15106-5: 2015. The moisture permeability is 5.0 ⁇ 10 -4 regardless of whether the moisture permeability is 1.0 ⁇ 10 -5 g / m 2 ⁇ day or more or 1.0 ⁇ 10 -4 g / m 2 ⁇ day or more.
  • It may be g / m 2 ⁇ day or more.
  • a means for reducing the moisture permeability to 1.0 ⁇ 10 -2 g / m 2 ⁇ day or less for example, at least two layers (Y) are provided, and the infrared absorption spectrum of the layer (Y) is 800 to 1400 cm. Examples include setting the maximum absorbed wavenumber in the region of -1 to be in the range of 1080 to 1130 cm -1 , and providing a layer having low moisture permeability.
  • the peel strength before the wet heat treatment measured in the peel strength test described in the examples of the multilayer structure of the present invention is preferably 1000 gf / 15 mm or more, more preferably 2000 gf / 15 mm or more, still more preferably 3000 gf / 15 mm or more.
  • the peel strength after the wet heat treatment is preferably 300 gf / 15 mm or more, more preferably 1500 gf / 15 mm or more, further preferably 2000 gf / 15 mm or more, and particularly preferably 2500 gf / 15 mm or more.
  • the peel strength before the wet heat treatment may be 6000 gf / 15 mm or less. Further, the peel strength after the wet heat treatment may be 5000 gf / 15 mm or less.
  • the multilayer structure of the present invention has a laminated body including at least two layers (Y) arranged on both sides of the base material (X), and the adhesive layers (I) are interposed on both sides of the laminated body.
  • the layer (Z) is not particularly limited as long as the total thickness of all the layers is 15 ⁇ m or more and 120 ⁇ m or less, and other layers may be provided, and the base material (X) and the layer ( Y) It may consist of only the adhesive layer (I) and the layer (Z), or it may consist of only the base material (X), the layer (Y), the layer (W), the adhesive layer (I) and the layer (Z). good.
  • a coating liquid (S) containing a metal oxide (A), an inorganic phosphorus compound (BI) and a solvent is applied to both surfaces of a base material (X).
  • Examples thereof include a manufacturing method including a step (III) of laminating the laminate obtained through II) with the layer (Z) via the adhesive layer (I).
  • the step (IV) of laminating the easy-adhesive layer (EA) on the surface of the layer (Z) may be included.
  • the coating liquid (S) used in the step (I) contains the organic phosphorus compound (BO) or the polymer (F).
  • a coating liquid (T) containing an organic phosphorus compound (BO) or a polymer (F) is prepared, and the surface of the precursor layer of the layer (Y) obtained in the step (I) or the step (II).
  • the step (IV) of coating the surface of the layer (Y) obtained in the above step may be included.
  • the adhesive layer (AC) is provided between the base material (X) and the layer (Y)
  • the step of providing the adhesive layer (AC) on the base material (X) is included before the step (I). You may.
  • Step (I) In the step (I), a coating liquid (S) containing a metal oxide (A), an inorganic phosphorus compound (BI) and a solvent is applied onto the base material (X), and then the solvent is removed to form a layer (Y). Form a precursor layer of.
  • the coating liquid (S) is obtained by mixing a metal oxide (A), an inorganic phosphorus compound (BI) and a solvent.
  • examples thereof include a method of adding an inorganic phosphorus compound (BI) and mixing the mixture.
  • the temperature at the time of mixing is preferably 50 ° C. or lower, more preferably 30 ° C. or lower, still more preferably 20 ° C. or lower.
  • the coating liquid (S) may contain other compounds (for example, an organic phosphorus compound (BO) or a polymer (F)), and if necessary, acetic acid, hydrochloric acid, nitrate, trifluoroacetic acid, and trichloroacetic acid. It may contain at least one acid compound (Q) selected from the group consisting of acetic acid.
  • the dispersion liquid of the metal oxide (A) is prepared by mixing, for example, the compound (E), water, and, if necessary, an acid catalyst or an organic solvent, according to a method adopted in a known solgel method. It can be prepared by condensing or hydrolyzing E).
  • a dispersion liquid of the metal oxide (A) is obtained by condensing or hydrolyzing the compound (E)
  • a specific treatment is applied to the obtained dispersion liquid, if necessary. (Glue, etc. in the presence of) may be performed.
  • the solvent used for preparing the dispersion liquid of the metal oxide (A) is not particularly limited, but alcohols such as methanol, ethanol and isopropanol; water; or a mixed solvent thereof is preferable.
  • the solvent used in the solution containing the inorganic phosphorus compound (BI) may be appropriately selected depending on the type of the inorganic phosphorus compound (BI), but water is preferably contained.
  • the solvent may contain an organic solvent (for example, alcohols such as methanol) as long as it does not interfere with the dissolution of the inorganic phosphorus compound (BI).
  • the solid content concentration of the coating liquid (S) is preferably 1 to 20% by mass, more preferably 2 to 15% by mass, and 3 to 10% by mass from the viewpoint of storage stability of the coating liquid and coatability to the substrate. Is even more preferable.
  • the solid content concentration can be calculated, for example, by dividing the mass of the solid content remaining after distilling off the solvent of the coating liquid (S) by the mass of the coating liquid (S) subjected to the treatment.
  • the viscosity of the coating liquid (S) measured by a Brookfield type viscometer is preferably 3000 mPa ⁇ s or less at the temperature at the time of coating. It is more preferably 2500 mPa ⁇ s or less, and further preferably 2000 mPa ⁇ s or less.
  • the viscosity of the coating liquid (S) is preferably 50 mPa ⁇ s or more, more preferably 100 mPa ⁇ s or more, and even more preferably 200 mPa ⁇ s or more.
  • the molar ratio of aluminum atom to phosphorus atom can be calculated by performing fluorescent X-ray analysis of the dry matter of the coating liquid (S).
  • the coating method of the coating liquid (S) is not particularly limited, and a known method can be adopted.
  • Examples of the coating method include casting method, dipping method, roll coating method, gravure coating method, screen printing method, reverse coating method, spray coating method, kiss coating method, die coating method, metering bar coating method, and chamber doctor combined coating. Examples include the method, the curtain coat method, and the bar coat method.
  • the method for removing the solvent (drying treatment) after coating the coating liquid (S) is not particularly limited, and a known drying method can be applied.
  • Examples of the drying method include a hot air drying method, a hot roll contact method, an infrared heating method, a microwave heating method, and the like.
  • the drying temperature is preferably lower than the flow start temperature of the base material (X).
  • the drying temperature of the coating liquid (S) after coating may be, for example, about 60 to 180 ° C., more preferably 60 ° C. or higher and lower than 140 ° C., further preferably 70 ° C. or higher and lower than 130 ° C., and further preferably 80 ° C. or higher. Less than 120 ° C. is particularly preferable.
  • the drying time is not particularly limited, but is preferably 1 second or more and less than 1 hour, more preferably 5 seconds or more and less than 15 minutes, and further preferably 5 seconds or more and less than 300 seconds. In particular, when the drying temperature is 100 ° C.
  • the drying time is preferably 1 second or more and less than 4 minutes, more preferably 5 seconds or more and less than 4 minutes, and further preferably 5 seconds or more and less than 3 minutes. preferable.
  • the drying temperature is lower than 100 ° C. (for example, 60 to 99 ° C.)
  • the drying time is preferably 3 minutes or more and less than 1 hour, more preferably 6 minutes or more and less than 30 minutes, and further preferably 8 minutes or more and less than 25 minutes.
  • the coating liquid (S) is applied to one surface of the base material (X), and then the solvent is removed to form a first layer (first layer).
  • the precursor layer of layer 1 (Y)) is formed, and then the coating liquid (S) is applied to the other surface of the substrate (X), and then the solvent is removed to form a second layer (second layer).
  • Layer (Y) precursor layer) can be formed.
  • the composition of the coating liquid (S) applied to each surface may be the same or different.
  • the precursor layers of the two layers (Y) may be formed at the same time by applying the coating liquid (S) to both surfaces of the base material (X) at once and removing the solvent.
  • Step (II) In the step (II), the precursor layer of the layer (Y) formed in the step (II) is heat-treated to form the layer (Y).
  • the reaction produced by the reaction product (D) proceeds.
  • the heat treatment temperature is preferably 140 ° C. or higher, more preferably 170 ° C. or higher, further preferably 180 ° C. or higher, and particularly preferably 190 ° C. or higher. If the heat treatment temperature is low, it takes a long time to obtain a sufficient reaction rate, which causes a decrease in productivity.
  • the temperature of the heat treatment varies depending on the type of the base material (X) and the like, but for example, when a thermoplastic resin film made of a polyamide resin is used as the base material (X), the temperature of the heat treatment is preferably 270 ° C. or lower. When a thermoplastic resin film made of a polyester resin is used as the base material (X), the heat treatment temperature is preferably 240 ° C. or lower.
  • the heat treatment may be performed in an air atmosphere, a nitrogen atmosphere, an argon atmosphere, or the like.
  • the heat treatment time is preferably 1 second to 1 hour, more preferably 1 second to 15 minutes, still more preferably 5 to 300 seconds.
  • the step (II) preferably includes a first heat treatment step (II-1) and a second heat treatment step (II-2).
  • the temperature of the second stage heat treatment (hereinafter, second heat treatment) is preferably higher than the temperature of the first stage heat treatment (hereinafter, first heat treatment), and the temperature of the first heat treatment. It is more preferably 15 ° C. or higher, further preferably 20 ° C. or higher, and particularly preferably 30 ° C. or higher.
  • the heat treatment temperature in step (II) (in the case of heat treatment of two or more steps, the first heat treatment temperature) is higher than the drying temperature in step (I) in that a multilayer structure having good characteristics can be obtained. It is preferably 30 ° C. or higher, more preferably 50 ° C. or higher, further preferably 55 ° C. or higher, and particularly preferably 60 ° C. or higher.
  • the temperature of the first heat treatment is preferably 140 ° C. or higher and lower than 200 ° C.
  • the temperature of the second heat treatment is 180 ° C. or higher and 270 ° C. or lower.
  • the temperature of the second heat treatment is preferably higher than the temperature of the first heat treatment, more preferably 15 ° C. or higher, still more preferably 25 ° C. or higher.
  • the heat treatment time is preferably 0.1 seconds to 10 minutes, more preferably 0.5 seconds to 15 minutes, still more preferably 1 second to 3 minutes.
  • the heat treatment time is preferably 1 second to 15 minutes, more preferably 5 seconds to 10 minutes, still more preferably 10 seconds to 5 minutes.
  • Step (III) In the step (III), the laminate obtained through the step (II) is laminated with the layer (Z) via the adhesive layer (I).
  • a method of laminating the laminated body with the layer (Z) via the adhesive layer (I) can be performed by a known method. For example, it can be laminated by applying a two-component adhesive on the layer (Z) or the laminate to remove the solvent to form the adhesive layer (I), and then laminating by a known method.
  • a two-component adhesive is applied onto the layer (Z) to remove the solvent, and the layers are laminated by a known method.
  • a two-component adhesive is applied onto the other layer (Z) to remove the solvent, and the layer can be laminated by laminating on the other surface of the laminate by a known method.
  • the composition of the adhesive applied to each surface may be the same or different.
  • the two adhesive layers (I) may be laminated at the same time, or the two layers (Z) may be laminated at the same time.
  • Step (IV) When the multilayer structure of the present invention has an easy-adhesion layer (EA), the step (IV) is performed before or after the step (III). In the step (IV), the coating liquid (T) is applied onto the layer (Z), and then the solvent is removed to form an easy-adhesion layer (EA).
  • the coating liquid (T) a commercially available member (for example, an adhesive or the like) may be used as it is, or may be mixed with a solvent.
  • the adhesive exemplified for the above-mentioned easy-adhesive layer (EA) can be preferably used.
  • the solvent used for the coating liquid (T) is not particularly limited, and may be appropriately selected depending on the main component thereof.
  • an organic solvent such as ethyl acetate, butyl acetate, toluene, methyl ethyl ketone, methanol or ethanol can be used.
  • the main component is water-soluble or water-dispersible, water, a water / alcohol mixed solvent, or the like can be used. These solvents may be used alone or in combination of two or more.
  • the solid content concentration in the coating liquid (T) is preferably 0.01 to 60% by mass, more preferably 0.1 to 50% by mass, and 0.2 to 40 from the viewpoint of storage stability and coatability of the solution. % By mass is more preferred.
  • the solid content concentration can be determined by the same method as described for the coating liquid (S).
  • the method of applying the coating liquid (T) is not particularly limited, and a known method can be adopted.
  • the same method as the drying treatment conditions after the coating liquid (S) coating in the step (I) can be applied. ..
  • Step (IV) may be performed before or after step (III).
  • the step (IV) is performed before the step (III)
  • the easy-adhesive layer (EA) of the layer (Z) is not laminated after the easy-adhesive layer (EA) is laminated on the layer (Z) in advance.
  • Step (III) is performed so that the surface is in contact with the adhesive layer (I).
  • the step (IV) is performed after the step (III)
  • the step (IV) is performed so that the easy-adhesive layer (EA) is laminated on the exposed surface of the layer (Z).
  • the coating liquid (U) is a precursor layer of the layer (Y) obtained in the step (I), a precursor of the layer (Y) obtained in the step (II), or a precursor of the layer (Y) after the step (II-1). It may have a step (V) of coating on the layer and undergoing a drying treatment.
  • the step (V) is carried out after the step (II-1), it is preferable to carry out the step (II-2) after the drying treatment of the step (V).
  • the solvent used for the coating liquid (U) may be appropriately selected depending on the type of the organic phosphorus compound (BO), the polymer (F) and / or other components, and alcohols such as methanol, ethanol and isopropanol; Water; or a mixed solvent thereof is preferable.
  • the solid content concentration in the coating liquid (U) is preferably 0.01 to 60% by mass, more preferably 0.1 to 50% by mass, and 0.2 to 40 from the viewpoint of storage stability and coatability of the solution. % By mass is more preferred.
  • the solid content concentration can be determined by the same method as described for the coating liquid (S).
  • the method of applying the coating liquid (U) is not particularly limited, and a known method can be adopted.
  • the same method as the drying treatment conditions after the coating liquid (S) coating in the step (I) can be applied. ..
  • the electronic device using the multilayer structure of the present invention includes an electronic device main body and a protective sheet that protects the surface of the electronic device main body.
  • the protective sheet for the electronic device of the present invention includes the multilayer structure of the present invention.
  • the protective sheet for the electronic device of the present invention may be composed of only the multilayer structure of the present invention, or may be composed of the multilayer structure of the present invention and other members.
  • the electronic device of the present invention may be a photoelectric conversion device, an information display device, or a lighting device.
  • photoelectric converters include various solar cells and other photoelectric converters.
  • information display devices include liquid crystal displays, organic EL displays, plasma displays, electronic paper, and other information display devices.
  • luminaires include LED luminaires, OLED illuminators, and other luminaires.
  • the electronic device of the present invention can be particularly preferably used as a flexible electronic device.
  • the flexible electronic device means an electronic device having flexibility, and means an electronic device that can maintain its function even when bent. Whether or not the electronic device is flexible can be determined by, for example, whether or not delamination or breakage occurs when the sheet-shaped electronic device is rolled into a roll shape with an inner diameter of 7 cm as described in the examples. ..
  • the protective sheet containing the multi-layer structure has excellent gas barrier properties and water vapor barrier properties. In addition, the protective sheet has high transparency. Therefore, by using a protective sheet containing a multilayer structure, an electronic device with little deterioration and high light transmission can be obtained even in a harsh environment.
  • the multilayer structure can also be used as a film called a substrate film such as a substrate film for LCD, a substrate film for organic EL, and a substrate film for electronic paper.
  • the multilayer structure may serve as both a substrate and a protective sheet.
  • the electronic device to be protected by the protective sheet is not limited to the above-mentioned example, and may be, for example, an IC tag, an optical communication device, a fuel cell, or the like.
  • the protective sheet may include a surface protective layer arranged on one surface of the multilayer structure.
  • a surface protective layer a layer made of a resin that is not easily scratched is preferable.
  • the surface protective layer of a device that may be used outdoors such as a solar cell is preferably made of a resin having high weather resistance (for example, light resistance).
  • a surface protective layer having high translucency is preferable.
  • the material of the surface protective layer (surface protective film) include acrylic resin, polycarbonate, polyethylene terephthalate, polyethylene naphthalate, ethylene-tetrafluoroethylene copolymer (ETFE), polytetrafluoroethylene, and 4-fluoroethylene-.
  • Perchloroalkoxy copolymer 4-ethylene-6-fluorinated propylene copolymer, 2-ethylene-4-ethylene fluoride copolymer, poly-3-ethylene chloride, polyvinylidene fluoride, polyvinyl fluoride And so on. Above all, it is preferable to provide an ethylene-tetrafluoroethylene copolymer from the viewpoint of weather resistance and translucency.
  • various additives for example, ultraviolet absorbers
  • a preferred example of a surface protective layer having high weather resistance is an acrylic resin layer to which an ultraviolet absorber is added.
  • the ultraviolet absorber include, but are not limited to, benzotriazole-based, benzophenone-based, salicylate-based, cyanoacrylate-based, nickel-based, and triazine-based ultraviolet absorbers.
  • other stabilizers, light stabilizers, antioxidants and the like may be used in combination.
  • the configuration of the protective sheet is not particularly limited, but for example, the following configuration may be preferably used.
  • the main body of the electronic device is sealed with a sealing material.
  • the encapsulant can function as a protective member for the electronic device.
  • the encapsulant is not particularly limited, and those generally used as encapsulants for electronic devices may be used.
  • the sealing material include, but are not limited to, ethylene-vinyl acetate copolymer (EVA), polyolefin elastomer, polyvinyl butyral, ionomer and the like, and EVA is preferably used from the viewpoint of cost.
  • the protective sheet for the electronic device of the present invention is directly bonded to the encapsulant, so that the thickness of the obtained electronic device can be reduced and the flexibility can be improved, and the process for manufacturing the electronic device can be simplified. It is preferable from.
  • the protective sheet When the protective sheet is bonded to the sealing material that seals the electronic device body, the protective sheet preferably contains a bonding resin layer having high adhesiveness to the sealing material. That is, it is preferable that the multilayer structure of the present invention and the sealing material are directly laminated.
  • the encapsulant is made of an ethylene-vinyl acetate copolymer, it is preferable that an easy-adhesive layer (EA) is provided on the exposed surface of the multilayer structure of the present invention.
  • EA easy-adhesive layer
  • Each layer constituting the protective sheet may be adhered using a known adhesive or the above-mentioned adhesive layer.
  • FIG. 1 A partial cross-sectional view of an example of the electronic device of the present invention is shown in FIG.
  • the electronic device 40 of FIG. 1 includes an electronic device main body 41, a sealing material 42 for sealing the electronic device main body 41, and a protective sheet (including a multilayer structure) for protecting the surface of the electronic device main body 41. 43 and.
  • the encapsulant 42 covers the entire surface of the electronic device body 41.
  • the protective sheet 43 is arranged on one surface of the electronic device main body 41 via the sealing material 42.
  • the protective sheet may also be arranged on the surface opposite to the surface on which the protective sheet 43 is arranged. In that case, the protective sheet arranged on the opposite surface may be the same as or different from the protective sheet 43.
  • the protective sheet 43 may be arranged so as to protect the surface of the electronic device 41, and even if it is arranged on the electronic device main body 41 via another member such as a sealing material 42, the surface of the electronic device main body 41 may be arranged. It may be placed directly in.
  • the electronic device main body 41 is not particularly limited, and examples thereof include a photoelectric conversion device such as a solar cell; an information display device such as an organic EL display, a liquid crystal display, and an electronic paper; and a lighting device such as an organic EL light emitting element.
  • the encapsulant 42 is an arbitrary member that is appropriately added depending on the type and application of the electronic device main body 41. Examples of the sealing material 42 include ethylene-vinyl acetate copolymer and polyvinyl butyral.
  • a preferable example of the electronic device main body 41 is a solar cell.
  • the solar cell include a silicon-based solar cell, a compound semiconductor solar cell, an organic solar cell, a perovskite type solar cell, and the like.
  • the silicon-based solar cell include a single crystal silicon solar cell, a polycrystalline silicon solar cell, an amorphous silicon solar cell, and the like.
  • the compound semiconductor solar cell include a III-V group compound semiconductor solar cell, an II-VI group compound semiconductor solar cell, a multi-dimensional compound semiconductor solar cell such as CIS and CIGS, and the like.
  • the organic solar cell include an organic thin-film solar cell and a dye-sensitized solar cell.
  • the solar cell may be an integrated solar cell in which a plurality of unit cells are connected in series, or may not be an integrated solar cell.
  • the electronic device main body 41 can be manufactured by a so-called roll-to-roll method.
  • a flexible substrate for example, a stainless steel substrate, a resin substrate, etc.
  • the electronic device body 41 is wound up by a take-up roll.
  • the protective sheet 43 may also be prepared in the form of a long sheet having flexibility, more specifically, in the form of a wound body of the long sheet.
  • the protective sheet 43 sent out from the sending roll is laminated on the electronic device main body 41 before being taken up by the take-up roll, and is taken up together with the electronic device main body 41.
  • the electronic device main body 41 wound on the winding roll may be sent out from the roll again and laminated with the protective sheet 43.
  • the electronic device itself has flexibility.
  • the protective sheet 43 includes the multilayer structure of the present invention.
  • the protective sheet 43 may be composed of only a multilayer structure.
  • the protective sheet 43 may include a multilayer structure and other members laminated on the multilayer structure (for example, another layer (J)).
  • the protective sheet 43 is a layered laminate suitable for protecting the surface of the electronic device, and the thickness and material thereof are not particularly limited as long as the protective sheet 43 includes the multilayer structure.
  • the configuration of the electronic device of the present invention is not particularly limited, but the following aspects may be preferable from the viewpoint of stable use as a flexible electronic device.
  • Protective sheet / encapsulant / electronic device body / encapsulant / protective sheet (2) Protective sheet / adhesive layer / encapsulant / electronic device body / encapsulant / adhesive layer / protective sheet EVA is preferably used. Further, as the adhesive layer, the same one as that of the adhesive layer (I) may be used.
  • -PET12 Biaxially stretched polyethylene retephthalate film; manufactured by Toray Industries, Inc., "Lumirror (trademark) P60” (trade name), thickness 12 ⁇ m PET25: Biaxially stretched polyethylene retephthalate film; manufactured by Toray Industries, Inc., “Lumirror (trademark) S105” (trade name), thickness 25 ⁇ m PET50: Biaxially stretched polyethylene retephthalate film; manufactured by Toray Industries, Inc., “Lumirror (trademark) T60” (trade name), thickness 50 ⁇ m -PET75: Biaxially stretched polyethylene lethalate film; manufactured by Toray Industries, Inc., “Lumirror (trademark) T60” (trade name), thickness 75 ⁇ m -PET2: Biaxially stretched polyethylene lethalate film; manufactured by Toray Industries, Inc., "Lumirror (trademark) # 2-F51” (trade name), thickness 2 ⁇ m Dynale
  • the shrinkage rate of each mass is calculated from the change in the length of each mass before and after the multilayer structure is placed in the dryer, and the shrinkage rate in the MD direction is calculated by averaging these to calculate the shrinkage rate of the multilayer structure.
  • the heat shrinkage rate in the MD direction was TS
  • the heat shrinkage rate in the MD direction of the layer (Z) constituting the multilayer structure was TS Z
  • the ratio of the heat shrinkage rate in the MD direction (TS Z / TS) was calculated.
  • the T-type peel strength was measured (adhesive strength per 10 mm width) according to JIS K 6854-3: 1999. The peel strength was measured 5 times under the following conditions, and the average value was obtained. It should be noted that the interface to be peeled off by this measurement method is the interface having the weakest peel strength in this measurement sample, and all the samples except Comparative Example 6 are peeled off at the interface between the EVA layer and the multilayer structure. confirmed. Regarding Comparative Example 6, it was confirmed that the base material (X) and the layer (Y) were peeled off at the interface.
  • the liquid was concentrated so that the solid content concentration was 10% by mass in terms of aluminum oxide, and a solution was obtained.
  • a solution was obtained.
  • 54.29 parts by mass of distilled water and 18.80 parts by mass of methanol were added, and the mixture was stirred so as to be uniform to obtain a dispersion liquid.
  • 4.41 parts by mass of an 85% by mass phosphoric acid aqueous solution was added dropwise while stirring the dispersion while maintaining the liquid temperature at 15 ° C.
  • 18.80 parts by mass of a methanol solution was added dropwise, and stirring was continued at 15 ° C. until the viscosity became 1,500 mPa ⁇ s to obtain the desired coating liquid (S-1).
  • PET25 was used as the base material (X), and a coating liquid (S-1) was applied onto one surface of the base material using a bar coater so that the thickness after drying was 0.4 ⁇ m.
  • the coated film was dried at 120 ° C. for 3 minutes and then heat-treated at 180 ° C. for 1 minute to form a precursor layer of layer (Y) on the substrate.
  • the coating liquid (S-1) was applied onto the other surface of the base material using a bar coater so that the thickness after drying was 0.4 ⁇ m.
  • the coated film was dried at 120 ° C. for 3 minutes and then heat-treated at 180 ° C. for 1 minute to form a precursor layer of layer (Y) on the substrate.
  • the film on which the precursor layer of the obtained layer (Y) was formed was heat-treated at 210 ° C. for 1 minute to obtain layer (Y) (0.4 ⁇ m) / PET25 (25 ⁇ m) / layer (Y) (0.4 ⁇ m). (1) was obtained.
  • the infrared absorption spectrum was measured according to the method described in the above evaluation method (1), and the maximum absorption of the layers (Y) on both sides in the region of 800 to 1400 cm -1 .
  • the wave number (Imax) was evaluated.
  • the heat shrinkage rate TS in the MD direction was measured according to the method described in the above evaluation method (2). The results are shown in Table 1.
  • PET12 was prepared as the layer (Z).
  • An adhesive layer (I) was formed on the surface of each of the two PET12s.
  • the laminated body (1) is laminated on the adhesive layer (I), allowed to stand at 40 ° C. for 5 days for aging, and then PET12 / adhesive layer (I) / laminated body (1) / adhesive layer (I) / PET12.
  • a multi-layer structure (1-1) having the above structure was obtained.
  • the adhesive layer (I) is a two-component adhesive (“Takelac” (registered trademark) manufactured by Mitsui Chemicals, Inc., “A-520” (brand) using a bar coater so that the thickness after drying is 3 ⁇ m.
  • the coating liquid (T-1) was applied onto the multilayer structure (1-1) using a bar coater so that the thickness after drying would be 0.3 ⁇ m.
  • the coated film was dried at 140 ° C. for 1 minute to laminate an easy-adhesive layer (EA).
  • the coating liquid (T-1) was also applied to the other surface of the multilayer structure (1-1) using a bar coater so as to have a thickness of 0.3 ⁇ m.
  • a multilayer structure (1-2) having a structure of an easy-adhesive layer (EA) / multilayer structure (1-1) / easy-adhesive layer (EA). ) was obtained.
  • the thickness, moisture permeability, roll formability, and peel strength from the EVA layer before and after the wet heat treatment were evaluated according to the methods described in the evaluation methods (3) to (6). The results are shown in Table 2.
  • Laminates and multilayer structures were prepared and evaluated by the same method as in Example 1 except that the types and layer configurations of the base material (X) and the layer (Z) were changed according to Tables 1 and 2. The results are shown in Tables 1 and 2.
  • Example 10 A laminated body and a multilayer structure were prepared and evaluated by the same method as in Example 1 except that PET12 left to stand in a dryer at 160 ° C. for 3 minutes was used as the layer (Z). The results are shown in Tables 1 and 2.
  • Example 11 PET12 (layer (Z1)) / adhesive layer (I) / laminated body (1) / adhesive layer (I) / PET25 (layer (Z2)) using PET12 and PET25 as the layer (Z).
  • the laminated body and the multi-layer structure were prepared and evaluated by the same method as in Example 1 except that the multi-layer structure (10-1) having the layer structure of No. 1 was prepared. The results are shown in Tables 1 and 2. It was
  • Example 12 ETFE25 / EVA100 / multilayer by vacuum laminating the multilayer structure (1-2), EVA100, ETFE25, and CIGS-based solar cell produced in Example 1 under the conditions described in the above evaluation method (5).
  • the obtained solar cell was rolled into a roll with an inner diameter of 7 cm, fixed with a string, and stored under 23 ° C. 50% RH conditions and 85 ° C. 85% RH conditions for one month.
  • the battery maintained a good appearance without delamination. Further, when the photoelectric conversion efficiency of the obtained solar cell before and after storage at 85 ° C. and 85% RH for 300 hours was measured, the reduction rate was less than 10%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)

Abstract

基材(X)及び前記基材(X)の両面に配置された少なくとも2層の層(Y)を備える積層体、並びに前記積層体の両面に接着層(I)を介して積層された、熱可塑性樹脂を主成分とする層(Z)を備え、層(Y)は、アルミニウム原子を含む金属酸化物(A)と無機リン化合物(BI)との反応生成物(D)を含み、基材(X)の厚みが5μm以上100μm以下であり、層(Z)の1層当たりの厚みが5μm以上100μm以下であり、全層の厚みの合計が15μm以上120μm以下であり、層(Y)はそれぞれ同一であっても異なっていてもよく、接着層(I)はそれぞれ同一であっても異なっていてもよく、層(Z)はそれぞれ同一であっても異なっていてもよく、ISO15106-5に準拠して測定した透湿度が1.0×10-2g/m・day以下である多層構造体。

Description

多層構造体およびその製造方法、ならびにそれを用いた保護シート及び電子デバイス
 本発明は、多層構造体およびその製造方法、ならびにそれを用いた保護シート及び電子デバイスに関する。
 太陽電池や表示装置を備える電子機器などの電子デバイスは、表面を保護する透光性の保護部材を必要とする。これらの電子デバイスの中でも、近年、フレキシブルな太陽電池や、フレキシブルなディスプレイが用いられるようになっている。フレキシブルな電子デバイスでは、厚いガラス板を用いることができないため、厚いガラス板に変わる保護シートが必要である。
 ガラス板に代わる保護シートとしては、バリア性、特に水蒸気バリア性に優れる保護シートを用いる必要がある。そのような保護シートとして、例えば、特許文献1には、PET等の基材(X)と、アルミニウムを含む化合物とリン酸との反応生成物を含む層(Y)とを備え、前記反応生成物の平均粒子径が5~70nmである多層構造体が、ガスバリア性及び水蒸気バリア性に優れ、ダンプヒート試験後においてもその性能を維持できる保護シートとして使用できることが記載されている。
国際公開第2016/103720号
 近年、電子デバイスの保護シートに求められる水蒸気バリア性は非常に高く、上記従来の多層構造体では水蒸気バリア性が十分ではない場合がある。また、フレキシブルな電子デバイスにおいては、電子デバイスの封止材と保護シートとの接着性が重要であり、保護シートの表出面が封止材と積層されて得られる電子デバイスにおいては、高い剥離強度が求められる場合がある。水蒸気バリア性の高い要求性能を満たすために、水蒸気バリア性を有するフィルムを複数積層させたり、封止材との剥離強度の高いレベルでの要求性能を満たすために、保護シートの表出面に封止材との剥離強度を高めるフィルムを積層させる手段が考えられるが、その結果、保護シートの厚みが厚くなり、柔軟性が損なわれてしまう場合がある。電子デバイスの厚みを薄くするために、電子デバイスに用いられる封止材等の部材の薄膜化等も検討されているが、品質が高いフレキシブルな電子デバイスの実現のためには、厚みが薄く、かつ、高い水蒸気バリア性を有し、封止材との接着性に優れる部材が強く求められている。
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、水蒸気バリア性及び封止材との剥離強度に高いレベルで優れるとともに、柔軟性に優れた多層構造体およびその製造方法、ならびにそれを用いた保護シート及び電子デバイスを提供することである。
 本発明によれば、上記目的は
[1]基材(X)及び前記基材(X)の両面に配置された少なくとも2層の層(Y)を備える積層体、並びに前記積層体の両面に接着層(I)を介して積層された、熱可塑性樹脂を主成分とする層(Z)を備え、前記少なくとも2層の層(Y)は、アルミニウム原子を含む金属酸化物(A)と無機リン化合物(BI)との反応生成物(D)を含み、前記基材(X)の厚みが5μm以上100μm以下であり、前記層(Z)の1層当たりの厚みが5μm以上100μm以下であり、全層の厚みの合計が15μm以上120μm以下であり、前記少なくとも2層の層(Y)は、それぞれ同一であっても異なっていてもよく、前記積層体の両面に備えられる接着層(I)は、それぞれ同一であっても異なっていてもよく、前記積層体の両面に備えられる層(Z)は、それぞれ同一であっても異なっていてもよく、ISO15106-5に準拠して測定した透湿度が1.0×10-2g/m・day以下である多層構造体;
[2]160℃で30分間加熱した際の前記積層体のMD方向の熱収縮率TSが1.0%以下である、[1]の多層構造体;
[3]160℃で30分間加熱した際のMD方向の熱収縮率において、前記積層体の熱収縮率TSに対する前記層(Z)の熱収縮率TSの比(TS/TS)が2以上である、[1]または[2]の多層構造体;
[4]前記層(Z)の少なくとも一方の表出面側に積層された易接着層(EA)をさらに備える、[1]~[3]いずれかの多層構造体;
[5]前記易接着層(EA)がアクリル系樹脂を含む、[4]の多層構造体;
[6]前記層(Z)がポリステル系樹脂を含む、[1]~[5]のいずれかの多層構造体;
[7]基材(X)の両面に、アルミニウム原子を含む金属酸化物(A)と、無機リン化合物(BI)と、溶媒とを含むコーティング液(S)を塗工し、前記溶媒を除去することで層(Y)の前駆体層を形成する工程(I)、前記層(Y)の前駆体層を熱処理して層(Y)を形成する工程(II)、および前記層(Y)を形成する工程(II)を経て得られた積層体に、接着層(I)を介して層(Z)を積層させる工程(III)を含む、[1]~[6]のいずれかの多層構造体の製造方法;
[8][1]~[6]のいずれかの多層構造体を含む電子デバイスの保護シート;
[9]光電変換装置、情報表示装置、または照明装置の表面を保護する保護シートである、[8]の保護シート;
[10][8]または[9]の保護シートを有する電子デバイス;
[11]フレキシブルな電子デバイスである、[10]の電子デバイス;
 を提供することで達成される。
 本発明によれば、水蒸気バリア性及び封止材との剥離強度に高いレベルで優れるとともに、柔軟性に優れた多層構造体およびその製造方法、ならびにそれを用いた保護シート及び電子デバイスを提供できる。
図1は、本発明の一実施形態に係る電子デバイスの一部断面図である。
 本明細書において、「バリア性」とは主に酸素バリア性及び水蒸気バリア性(透湿度が低い)の両方を意味し、「ガスバリア性」とは主に酸素バリア性を意味する。本明細書において「剥離強度」とは、実施例に記載される湿熱処理前後の剥離強度のことを意味する。本明細書において複数層備えられる層は、それぞれ同一であっても異なっていてもよい。本明細書において、各層等の「厚み」とは、任意の5ヶ所での測定値の平均(平均厚み)をいう。
 本発明の多層構造体は、基材(X)及び前記基材(X)の両面に配置された少なくとも2層の層(Y)を備える積層体、並びに前記積層体の両面に接着層(I)を介して積層された、熱可塑性樹脂を主成分とする層(Z)を備え、前記少なくとも2層の層(Y)は、アルミニウム原子を含む金属酸化物(A)と無機リン化合物(BI)との反応生成物(D)を含み、前記基材(X)の厚みが5μm以上100μm以下であり、前記層(Z)の1層当たりの厚みが5μm以上100μm以下であり、全層の厚みの合計が15μm以上120μm以下でありISO15106-5:2015に準拠して測定した透湿度(水蒸気透過度)が1.0×10-2g/m・day以下である。本発明の多層構造体は、基材(X)の両面に配置された少なくとも2層の層(Y)を備えることで、バリア性が顕著に優れる傾向となり、透湿度を1.0×10-2g/m・day以下に調整しやすくなる傾向となる。また、本発明の多層構造体は、多層構造体を構成する積層体の両面に接着層(I)を介して積層された層(Z)を備えることで、封止材との剥離強度が顕著に優れる傾向となる。さらに、本発明の多層構造体は、全層の厚みの合計が15μm以上120μm以下であることで、柔軟性に優れる傾向となる。なお、通常、層(Z)の厚みを薄くした場合は、層(Z)の熱収縮が生じ易くなり、これに起因して多層構造体の熱収縮率が大きくなり封止材との剥離強度が低下することが懸念される。しかし、本発明の多層構造体を構成する積層体の熱収縮率は、熱収縮し難い層(Y)の存在により通常小さい値となり得るため、層(Z)の厚みを薄くしても当該積層体に接着層(I)を介して層(Z)が積層されてなる多層構造体の熱収縮が抑制される。そのため、層(Z)の厚みを薄くしても封止材との剥離強度を維持することができる。また、層(Z)の熱収縮率が一定範囲であるとアンカー効果により剥離強度が向上するため、層(Z)はある程度大きい熱収縮率を有していることが好ましい。一方、層(Z)の熱収縮率が大きすぎると多層構造体の熱収縮率が大きくなり、アンカー効果による剥離強度の向上よりも多層構造体の熱収縮による剥離強度の低下が支配的となる傾向となる。層(Z)の厚みが5μm以上であれば、熱収縮率が適度な範囲に収まることなどにより、アンカー効果による剥離強度の向上効果が十分に奏される。以上のような理由により、本発明では全層厚みの合計を120μm以下としても、水蒸気バリア性及び封止材との剥離強度が高いレベルで優れる多層構造体を提供することができると推測される。
[基材(X)]
 基材(X)は、特に制限されず、様々な基材を使用できる。基材(X)の材質としては、特に制限されないが、例えば、熱可塑性樹脂、熱硬化性樹脂等の樹脂;布帛、紙類等の繊維集合体;金属酸化物等が挙げられる。中でも、熱可塑性樹脂または繊維集合体を含むことが好ましく、熱可塑性樹脂を含むことがより好ましい。基材(X)の形態は、特に制限されないが、フィルムまたはシート等の層状であることが好ましい。基材(X)としては、熱可塑性樹脂フィルム、紙、または無機蒸着層(X’)を積層した熱可塑性樹脂フィルムを含むことが好ましく、熱可塑性樹脂フィルムを含むものがより好ましく、熱可塑性樹脂フィルムであることがさらに好ましい。
 基材(X)に用いられる熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂;ポリエチレンテレフタレート(PET)、ポリエチレン-2,6-ナフタレート、ポリブチレンテレフタレートあるいはこれらの共重合体等のポリエステル系樹脂;ナイロン-6、ナイロン-66、ナイロン-12等のポリアミド系樹脂;ポリビニルアルコール、エチレン-ビニルアルコール共重合体等の水酸基含有ポリマー;ポリスチレン;ポリ(メタ)アクリル酸エステル;ポリアクリロニトリル;ポリ酢酸ビニル;ポリカーボネート;ポリアリレート;再生セルロース;ポリイミド;ポリエーテルイミド;ポリスルフォン;ポリエーテルスルフォン;ポリエーテルエーテルケトン;アイオノマー樹脂等が挙げられる。基材(X)に用いられる熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ナイロン-6、およびナイロン-66からなる群より選ばれる少なくとも1種が好ましく、ポリエチレンテレフタレートがより好ましい。
 前記熱可塑性樹脂フィルムを基材(X)として用いる場合、基材(X)は延伸フィルムであってもよいし無延伸フィルムであってもよい。得られる多層構造体の加工適性(印刷やラミネート等)が優れることから、延伸フィルム、特に二軸延伸フィルムが好ましい。二軸延伸フィルムは、同時二軸延伸法、逐次二軸延伸法、およびチューブラ延伸法のいずれかの方法で製造された二軸延伸フィルムであってもよい。
 基材(X)に用いられる紙としては、例えば、クラフト紙、上質紙、模造紙、グラシン紙、パーチメント紙、合成紙、白板紙、マニラボール、ミルクカートン原紙、カップ原紙、アイボリー紙等が挙げられる。
 基材(X)として用いられる無機蒸着層(X’)を積層した熱可塑性樹脂フィルムとしては、通常、酸素や水蒸気に対するバリア性を有するフィルムであり、透明性を有するフィルムであることが好ましい。無機蒸着層(X’)を積層した熱可塑性樹脂フィルムに用いられる熱可塑性樹脂フィルムとしては、上述した基材(X)として例示された熱可塑性樹脂フィルムを用いることができる。無機蒸着層(X’)は無機物を蒸着することで形成できる。無機物としては、金属(例えば、アルミニウム)、金属酸化物(例えば、酸化ケイ素、酸化アルミニウム)、金属窒化物(例えば、窒化ケイ素)、金属窒化酸化物(例えば、酸窒化ケイ素)、または金属炭化窒化物(例えば、炭窒化ケイ素)等が挙げられる。中でも、酸化アルミニウム、酸化ケイ素、酸化マグネシウム、または窒化ケイ素で形成される無機蒸着層(X’)が、透明性に優れる観点から好ましい。
 無機蒸着層(X’)の形成方法は、特に限定されず、真空蒸着法(例えば、抵抗加熱蒸着、電子ビーム蒸着、分子線エピタキシー法等)、スパッタリング法やイオンプレーティング法等の物理気相成長法;熱化学気相成長法(例えば、触媒化学気相成長法)、光化学気相成長法、プラズマ化学気相成長法(例えば、容量結合プラズマ、誘導結合プラズマ、表面波プラズマ、電子サイクロトロン共鳴、デュアルマグネトロン、原子層堆積法等)、有機金属気相成長法等の化学気相成長法が挙げられる。
 無機蒸着層(X’)の厚みは、無機蒸着層を構成する成分の種類によって異なるが、0.002~0.5μmが好ましく、0.005~0.2μmがより好ましく、0.01~0.1μmがさらに好ましい。この範囲で、多層構造体のバリア性や機械的物性が良好になる厚みを選択すればよい。無機蒸着層(X’)の厚みが0.002μm以上であると、酸素や水蒸気に対する無機蒸着層(X’)のバリア性が良好になる傾向となる。また、無機蒸着層(X’)の厚みが0.5μm以下であると、無機蒸着層(X’)の屈曲後のバリア性が維持される傾向となる。
 基材(X)の厚みは、5μm以上100μm以下であり、7μm以上80μm以下が好ましく、10μm以上60μm以下がさらに好ましい。層(X)の厚みが5μm未満であると機械的強度および加工性および剥離強度が悪化する傾向がある。また、層(X)の厚みが100μmを超えると、得られる多層構造体の柔軟性が悪化する傾向がある。
 基材(X)としては、1種の基材を単独で用いてもよく、2種以上の基材を組み合わせたものを用いてもよい。基材(X)を複数層有する場合は、それぞれの基材(X)は同一であっても異なっていてもよい。基材(X)を複数有する場合、上記の基材(X)の厚みは、基材(X)の1層当たりの厚みを表す。多層構造体の柔軟性等の観点から、基材(X)は1層のみであることが好ましい場合がある。
[層(Y)]
 層(Y)は、金属酸化物(A)と無機リン化合物(BI)との反応生成物(D)を含む。本発明の多層構造体において、層(Y)はバリア層として機能するため、本発明の多層構造体が基材(X)の両面に配置された少なくとも2層の層(Y)を備えることで、水蒸気バリア性に顕著に優れる傾向となる。本発明の多層構造体における層(Y)の層数は、2層以上であれば特に限定されないが、本発明の多層構造体の柔軟性を良好にする観点からは、5層以下が好ましく、4層以下がより好ましく、3層以下がさらに好ましく、2層が特に好ましい場合がある。一方、より高いバリア性が求められる用途においては、層(Y)の層数を増やすことが好ましい場合がある。前記2層以上の層(Y)は、それぞれ同一であっても異なっていてもよい。
[アルミニウム原子を含む金属酸化物(A)]
 金属酸化物(A)を構成する金属原子(M)は、通常、周期表の2~14族に属する金属原子から選ばれる少なくとも1種の金属原子であるが、少なくともアルミニウム原子を含む。金属原子(M)は、アルミニウム原子単独であることが好ましいが、アルミニウム原子とそれ以外の金属原子とを含んでもよい。なお、金属酸化物(A)として、2種以上の金属酸化物(A)を混合して用いてもよい。アルミニウム原子以外の金属原子としては、例えば、マグネシウム、カルシウムなどの周期表第2族の金属;亜鉛などの周期表第12族の金属;周期表第13属の金属;ケイ素などの周期表第14族の金属;チタン、ジルコニウムなどの遷移金属などを挙げることができる。なお、ケイ素は半金属に分類される場合があるが、本明細書ではケイ素を金属に含めるものとする。アルミニウムと併用され得る金属原子(M)としては、取扱性や得られる多層構造体のガスバリア性が優れる観点から、チタン及びジルコニウムからなる群より選ばれる少なくとも1種であることが好ましい。
 金属原子(M)に占めるアルミニウム原子の割合は50モル%以上が好ましく、70モル%以上がより好ましく、90モル%以上がさらに好ましく、95モル%以上であっても、実質的にアルミニウム原子のみからなってもよい。金属酸化物(A)の例には、液相合成法、気相合成法、固体粉砕法等の方法によって製造された金属酸化物が含まれる。
 金属酸化物(A)は、加水分解可能な特性基が結合した金属原子(M)を含有する化合物(E)(以下「化合物(E)」と略記する場合がある)の加水分解縮合物であってもよい。該特性基としては、例えば、ハロゲン原子、NO、置換基を有していてもよい炭素数1~9のアルコキシ基、置換基を有していてもよい炭素数6~9のアリールオキシ基、置換基を有していてもよい炭素数2~9のアシロキシ基、置換基を有していてもよい炭素数3~9のアルケニルオキシ基、置換基を有していてもよい炭素数5~15のβ-ジケトナト基、または置換基を有していてもよい炭素数1~9のアシル基を有するジアシルメチル基等が挙げられる。化合物(E)の加水分解縮合物は、実質的に金属酸化物(A)とみなすことが可能である。そのため、本明細書では、化合物(E)の加水分解縮合物を「金属酸化物(A)」という場合がある。すなわち、本明細書において、「金属酸化物(A)」は「化合物(E)の加水分解縮合物」と読み替えることができ、また、「化合物(E)の加水分解縮合物」を「金属酸化物(A)」と読み替えることもできる。
[加水分解可能な特性基が結合した金属原子(M)を含有する化合物(E)]
 無機リン化合物(BI)との反応の制御が容易になり、得られる多層構造体のガスバリア性が優れることから、化合物(E)は後述するアルミニウム原子を含む化合物(Ea)を含むことが好ましい。
 化合物(Ea)としては、例えば、塩化アルミニウム、硝酸アルミニウム、酢酸アルミニウム、トリス(2,4-ペンタンジオナト)アルミニウム、トリメトキシアルミニウム、トリエトキシアルミニウム、トリ-n-プロポキシアルミニウム、トリイソプロポキシアルミニウム、トリ-n-ブトキシアルミニウム、トリ-sec-ブトキシアルミニウム、トリ-tert-ブトキシアルミニウム等が挙げられ、中でも、トリイソプロポキシアルミニウムおよびトリ-sec-ブトキシアルミニウムが好ましい。化合物(E)として、2種以上の化合物(Ea)を併用してもよい。
 また、化合物(E)はアルミニウム以外の金属原子(M)を含む化合物(Eb)を含んでいてもよく、化合物(Eb)としては、例えば、テトラキス(2,4-ペンタンジオナト)チタン、テトラメトキシチタン、テトラエトキシチタン、テトライソプロポキシチタン、テトラ-n-ブトキシチタン、テトラキス(2-エチルヘキソキシ)チタン等のチタン化合物;テトラキス(2,4-ペンタンジオナト)ジルコニウム、テトラ-n-プロポキシジルコニウム、テトラ-n-ブトキシジルコニウム等のジルコニウム化合物等が挙げられる。これらは、1種単独で使用しても、2種以上の化合物(Eb)を併用してもよい。
 化合物(E)に占める化合物(Ea)の割合は特に限定されず、例えば80モル%以上が好ましく、90モル%以上がより好ましく、95モル%以上がさらに好ましく、100モル%であってもよい。
 化合物(E)が加水分解されることで、化合物(E)が有する加水分解可能な特性基の少なくとも一部が水酸基に変換される。さらに、その加水分解物が縮合することで、金属原子(M)が酸素原子(O)を介して結合された化合物が形成される。この縮合が繰り返されると、実質的に金属酸化物とみなしうる化合物が形成される。なお、このようにして形成された金属酸化物(A)の表面には、通常、水酸基が存在する。
 本明細書においては、[金属原子(M)のみに結合している酸素原子(O)のモル数]/[金属原子(M)のモル数]の比が0.8以上である化合物を金属酸化物(A)に含めるものとする。ここで、金属原子(M)のみに結合している酸素原子(O)は、M-O-Mで表される構造における酸素原子(O)であり、M-O-Hで表される構造における酸素原子(O)のように金属原子(M)と水素原子(H)に結合している酸素原子は除外される。金属酸化物(A)における前記比は、0.9以上が好ましく、1.0以上がより好ましく、1.1以上がさらに好ましい。この比の上限は特に限定されないが、金属原子(M)の原子価をnとすると、通常、n/2で表される。
 前記加水分解縮合が起こるためには、化合物(E)が加水分解可能な特性基を有していることが重要である。それらの基が結合していない場合、加水分解縮合反応が起こらないもしくは極めて緩慢となるため、目的とする金属酸化物(A)の調製が困難になる。
 化合物(E)の加水分解縮合物は、例えば、公知のゾルゲル法で採用される手法によって特定の原料から製造してもよい。該原料には、化合物(E)、化合物(E)の部分加水分解物、化合物(E)の完全加水分解物、化合物(E)が部分的に加水分解縮合してなる化合物、および化合物(E)の完全加水分解物の一部が縮合してなる化合物からなる群より選ばれる少なくとも1種を使用できる。
 なお、後述の無機リン化合物(BI)含有物(無機リン化合物(BI)または無機リン化合物(BI)を含む組成物)との混合に供される金属酸化物(A)は、リン原子を実質的に含有しないことが好ましい。
[無機リン化合物(BI)]
 無機リン化合物(BI)は、金属酸化物(A)と反応可能な部位を有し、典型的には、かかる部位を複数有し、好適には2~20個有する。かかる部位には、金属酸化物(A)の表面に存在する官能基(例えば、水酸基)と縮合反応可能な部位が含まれ、例えば、リン原子に直接結合したハロゲン原子、リン原子に直接結合した酸素原子等が挙げられる。金属酸化物(A)の表面に存在する官能基(例えば、水酸基)は、通常、金属酸化物(A)を構成する金属原子(M)に結合している。
 無機リン化合物(BI)としては、例えば、リン酸、二リン酸、三リン酸、4分子以上のリン酸が縮合したポリリン酸、亜リン酸、ホスホン酸、亜ホスホン酸、ホスフィン酸、亜ホスフィン酸等のリンのオキソ酸、およびこれらの塩(例えば、リン酸ナトリウム)、ならびにこれらの誘導体(例えば、ハロゲン化物(例えば、塩化ホスホリル)、脱水物(例えば、五酸化二リン))等が挙げられ、1種単独で用いても2種以上を併用してもよい。中でも、後述するコーティング液(S)の安定性および得られる多層構造体のガスバリア性が向上する観点から、リン酸を単独で使用するか、リン酸とそれ以外の無機リン化合物(BI)を併用することが好ましい。リン酸とそれ以外の無機リン化合物(BI)とを併用する場合、無機リン化合物(BI)の50モル%以上がリン酸であることが好ましい。
[反応生成物(D)]
 反応生成物(D)は、金属酸化物(A)と無機リン化合物(BI)との反応で得られる。金属酸化物(A)と無機リン化合物(BI)とさらに他の化合物とが反応することで生成する化合物も反応生成物(D)に含まれる。
 層(Y)の赤外吸収スペクトルにおいて、800~1400cm-1の領域における最大吸収波数は1080~1130cm-1の範囲にあることが好ましい。例えば、金属酸化物(A)と無機リン化合物(BI)とが反応して反応生成物(D)となる過程において、金属酸化物(A)に由来する金属原子(M)と無機リン化合物(BI)に由来するリン原子(P)とが酸素原子(O)を介してM-O-Pで表される結合を形成する。その結果、反応生成物(D)の赤外吸収スペクトルにおいて該結合由来の特性吸収帯が生じる。M-O-Pの結合に基づく特性吸収帯が1080~1130cm-1の領域に見られる場合には、得られた多層構造体が優れたガスバリア性を発現する。特に、該特性吸収帯が、一般に各種の原子と酸素原子との結合に由来する吸収が見られる800~1400cm-1の領域において最も強い吸収である場合には、得られた多層構造体がさらに優れたガスバリア性を発現する。すなわち、本発明の多層構造体は層(Y)の赤外吸収スペクトルにおいて、800~1400cm-1の領域における最大吸収波数が1080~1130cm-1の範囲にあることで、ISO15106-5に準拠して測定した透湿度が1.0×10-2g/m・day以下に調整しやすくなる傾向となる。
 これに対し、化合物(E)または金属塩等の金属化合物と無機リン化合物(BI)とを予め混合した後に加水分解縮合させた場合には、金属化合物に由来する金属原子と無機リン化合物(BI)に由来するリン原子とがほぼ均一に混ざり合い反応した複合体が得られる。その場合、赤外吸収スペクトルにおいて、800~1400cm-1の領域における最大吸収波数が1080~1130cm-1の範囲から外れるようになる。
 層(Y)の赤外吸収スペクトルにおいて、800~1400cm-1の領域における最大吸収帯の半値幅は、得られる多層構造体のガスバリア性の観点から200cm-1以下が好ましく、150cm-1以下がより好ましく、100cm-1以下がさらに好ましく、50cm-1以下が特に好ましい。
 層(Y)の赤外吸収スペクトルは、フーリエ変換赤外分光光度計(パーキンエルマー株式会社製Spectrum One)を用い、800~1400cm-1を測定領域として、減衰全反射法で測定できる。ただし、前記方法で測定できない場合には、反射吸収法、外部反射法、減衰全反射法等の反射測定、多層構造体から層(Y)をかきとり、ヌジョール法、錠剤法等の透過測定という方法で測定してもよいが、これらに限定されるものではない。
 また、層(Y)は、反応に関与していない金属酸化物(A)および/または無機リン化合物(BI)を部分的に含んでいてもよい。
 層(Y)において、金属酸化物(A)を構成する金属原子(M)と無機リン化合物(BI)に由来するリン原子とのモル比は、[金属酸化物(A)を構成する金属原子(M)]:[無機リン化合物(BI)に由来するリン原子]=1.0:1.0~3.6:1.0の範囲にあることが好ましく、1.1:1.0~3.0:1.0の範囲にあることがより好ましい。この範囲内では優れたガスバリア性能が得られる。層(Y)における該モル比は、層(Y)を形成するための後述するコーティング液(S)における金属酸化物(A)と無機リン化合物(BI)との混合比率によって調整できる。層(Y)における該モル比は、通常、後述するコーティング液(S)における比と同じである。
 層(Y)は、有機リン化合物(BO)及び重合体(F)からなる群より選ばれる少なくとも1種を含んでいてもよい。層(Y)が、有機リン化合物(BO)及び重合体(F)からなる群より選ばれる少なくとも1種を含むことで、本発明の多層構造体を屈曲した後でも良好なガスバリア性を維持できる傾向となる場合がある。以下、屈曲後もガスバリア性を維持できる性質を「耐屈曲性」と表現する場合がある。
[有機リン化合物(BO)]
 有機リン化合物(BO)は、複数のリン原子を有する重合体(BOa)または有機リン化合物(BOb)であることが好ましい。
[複数のリン原子を有する重合体(BOa)]
 重合体(BOa)が有するリン原子を含む官能基としては、例えば、リン酸基、亜リン酸基、ホスホン酸基、亜ホスホン酸基、ホスフィン酸基、亜ホスフィン酸基、およびこれらから誘導される官能基(例えば、塩、(部分)エステル化合物、ハロゲン化物(例えば、塩化物)、脱水物)等が挙げられ、中でもリン酸基およびホスホン酸基が好ましく、ホスホン酸基がより好ましい。
 重合体(BOa)としては、例えば、アクリル酸6-[(2-ホスホノアセチル)オキシ]ヘキシル、メタクリル酸2-ホスホノオキシエチル、メタクリル酸ホスホノメチル、メタクリル酸11-ホスホノウンデシル、メタクリル酸1,1-ジホスホノエチル等のホスホノ(メタ)アクリル酸エステル類の重合体;ビニルホスホン酸、2-プロペン-1-ホスホン酸、4-ビニルベンジルホスホン酸、4-ビニルフェニルホスホン酸等のビニルホスホン酸類の重合体;ビニルホスフィン酸、4-ビニルベンジルホスフィン酸等のビニルホスフィン酸類の重合体;リン酸化デンプン等が挙げられる。重合体(BOa)は、少なくとも1種のリン原子を含む官能基を有する単量体の単独重合体であってもよいし、2種以上の単量体の共重合体であってもよい。また、重合体(BOa)として、単一の単量体からなる重合体を2種以上併用してもよい。中でも、ホスホノ(メタ)アクリル酸エステル類の重合体およびビニルホスホン酸類の重合体が好ましく、ビニルホスホン酸類の重合体がより好ましく、ポリビニルホスホン酸がさらに好ましい。また、重合体(BOa)は、ビニルホスホン酸ハロゲン化物またはビニルホスホン酸エステル等のビニルホスホン酸誘導体を単独または共重合した後、加水分解することでも得ることができる。
 また、重合体(BOa)は、少なくとも1種のリン原子を含む官能基を有する単量体と他のビニル単量体との共重合体であってもよい。リン原子を含む官能基を有する単量体と共重合できる他のビニル単量体としては、例えば、(メタ)アクリル酸、(メタ)アクリル酸エステル類、アクリロニトリル、メタクリロニトリル、スチレン、核置換スチレン類、アルキルビニルエーテル類、アルキルビニルエステル類、パーフルオロアルキルビニルエーテル類、パーフルオロアルキルビニルエステル類、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、マレイミド、フェニルマレイミド等が挙げられ、中でも(メタ)アクリル酸エステル類、アクリロニトリル、スチレン、マレイミド、およびフェニルマレイミドが好ましい。
 優れた耐屈曲性を有する多層構造体を得るために、リン原子を含む官能基を有する単量体に由来する構成単位が重合体(BOa)の全構成単位に占める割合は、10モル%以上が好ましく、40モル%以上がより好ましく、70モル%以上がさらに好ましく、90モル%以上が特に好ましく、100モル%であってもよい。
 重合体(BOa)の分子量に特に制限はないが、数平均分子量が1000~100000の範囲にあることが好ましい。数平均分子量がこの範囲にあると、本発明の多層構造体の耐屈曲性の改善効果と、後述するコーティング液(S)を使用する場合にコーティング液(S)の粘度安定性とを、高いレベルで両立できる。
 多層構造体の層(Y)において、重合体(BOa)を含む場合、層(Y)における無機リン化合物(BI)の質量WBIと重合体(BOa)の質量WBOaの比WBOa/WBIが0.01/99.99≦WBOa/WBI<6.00/94.00の関係を満たすものが好ましく、バリア性能に優れる点から、0.10/99.90≦WBOa/WBI<4.50/95.50の関係を満たすものがより好ましく、0.20/99.80≦WBOa/WBI<4.00/96.00の関係を満たすものがさらに好ましく、0.50/99.50≦WBOa/WBI<3.50/96.50の関係を満たすものが特に好ましい。すなわち、WBOaは0.01以上6.00未満の微量であるのに対して、WBIは94.00より多く99.99以下という多量に用いるのが好ましい。なお、層(Y)において無機リン化合物(BI)および/または有機リン化合物(BOa)が反応している場合でも、反応生成物(D)を構成する無機リン化合物(BI)および/または有機リン化合物(BOa)の部分を無機リン化合物(BI)および/または有機リン化合物(BOa)とみなす。この場合、反応生成物(D)の形成に用いられた無機リン化合物(BI)および/または有機リン化合物(BOa)の質量(反応前の無機リン化合物(BI)および/または有機リン化合物(BOa)の質量)を、層(Y)中の無機リン化合物(BI)および/または有機リン化合物(BOa)の質量に含める。
[有機リン化合物(BOb)]
 有機リン化合物(BOb)は、炭素数3以上20以下のアルキレン鎖またはポリオキシアルキレン鎖を介して、少なくとも1つの水酸基が結合したリン原子と、極性基とが結合されている。有機リン化合物(BOb)は金属酸化物(A)、無機リン化合物(BI)、およびそれらの反応生成物(D)と比較して表面自由エネルギーが低く、層(Y)の前駆体形成過程において表面側に偏析する。その結果、本発明の多層構造体の耐屈曲性や、層(Y)と直接積層される層との接着性が向上する場合がある。
 有機リン化合物(BOb)の具体例としては、例えば3-ヒドロキシプロピルホスホン酸、4-ヒドロキシブチルホスホン酸、5-ヒドロキシペンチルホスホン酸、6-ヒドロキシヘキシルホスホン酸、7-ヒドロキシヘプシルホスホン酸、8-ヒドロキシオクチルホスホン酸、9-ヒドロキシノニルホスホン酸、10-ヒドロキシデシルホスホン酸、11-ヒドロキシウンデシルホスホン酸、12-ヒドロキシドデシルホスホン酸、13-ヒドロキシドトリデシルホスホン酸、14-ヒドロキシテトラデシルホスホン酸、15-ヒドロキシペンタデシルホスホン酸、16-ヒドロキシヘキサデシルホスホン酸、17-ヒドロキシヘプタデシルホスホン酸、18-ヒドロキシオクタデシルホスホン酸、19-ヒドロキシノナデシルホスホン酸、20-ヒドロキシイコシルホスホン酸、3-ヒドロキシプロピルジハイドロジェンホスフェート、4-ヒドロキシブチルジハイドロジェンホスフェート、5-ヒドロキシペンチルジハイドロジェンホスフェート、6-ヒドロキシヘキシルジハイドロジェンホスフェート、7-ヒドロキシヘプシルジハイドロジェンホスフェート、8-ヒドロキシオクチルジハイドロジェンホスフェート、9-ヒドロキシノニルジハイドロジェンホスフェート、10-ヒドロキシデシルジハイドロジェンホスフェート、11-ヒドロキシウンデシルジハイドロジェンホスフェート、12-ヒドロキシドデシルジハイドロジェンホスフェート、13-ヒドロキシドトリデシルジハイドロジェンホスフェート、14-ヒドロキシテトラデシルジハイドロジェンホスフェート、15-ヒドロキシペンタデシルジハイドロジェンホスフェート、16-ヒドロキシヘキサデシルジハイドロジェンホスフェート、17-ヒドロキシヘプタデシルジハイドロジェンホスフェート、18-ヒドロキシオクタデシルジハイドロジェンホスフェート、19-ヒドロキシノナデシルジハイドロジェンホスフェート、20-ヒドロキシイコシルジハイドロジェンホスフェート、3-カルボキシプロピルホスホン酸、4-カルボキシブチルホスホン酸、5-カルボキシペンチルホスホン酸、6-カルボキシヘキシルホスホン酸、7-カルボキシヘプシルホスホン酸、8-カルボキシオクチルホスホン酸、9-カルボキシノニルホスホン酸、10-カルボキシデシルホスホン酸、11-カルボキシウンデシルホスホン酸、12-カルボキシドデシルホスホン酸、13-カルボキシドトリデシルホスホン酸、14-カルボキシテトラデシルホスホン酸、15-カルボキシペンタデシルホスホン酸、16-カルボキシヘキサデシルホスホン酸、17-カルボキシヘプタデシルホスホン酸、18-カルボキシオクタデシルホスホン酸、19-カルボキシノナデシルホスホン酸、20-カルボキシイコシルホスホン酸等が挙げられる。これらは、1種を単独で使用しても、2種以上を併用してもよい。
 多層構造体の層(Y)において、有機リン化合物(BOb)を含む場合、層(Y)における有機リン化合物(BOb)のモル数MBObと無機リン化合物(BI)のモル数MBIとの比MBOb/MBIが1.0×10-4≦MBOb/MBI≦2.0×10-2の関係を満たすものが好ましく、3.5×10-4≦MBOb/MBI≦1.0×10-2の関係を満たすものがより好ましく、5.0×10-4≦MBOb/MBI≦6.0×10-3の関係を満たすものがさらに好ましい。
 層(Y)が有機リン化合物(BOb)を含む場合、X線光電子分光分析法(XPS法)により測定される多層構造体の層(Y)の、基材(X)と接していない側の表面~5nmにおけるC/Al比は0.1~15.0の範囲にあることが好ましく、0.3~10.0の範囲にあることがより好ましく、0.5~5.0の範囲にあることが特に好ましい。層(Y)表面のC/Al比が上記範囲にあることで、層(Y)と隣接する層との接着性が向上する場合がある。
 層(Y)の厚みの合計は、0.05~4.0μmが好ましく、0.1~2.0μmがより好ましい。層(Y)を薄くすることで、印刷、ラミネート等の加工時における多層構造体の寸法変化を低く抑えることができる。また、多層構造体の柔軟性が増すため、その力学的特性を基材自体の力学的特性に近づけることもできる。本発明の多層構造体が2層以上の層(Y)を有するため、ガスバリア性の観点から、層(Y)1層当たりの厚みは0.05μm以上が好ましく、耐屈曲性の観点から1.0μm以下が好ましい。層(Y)の1層当たりの厚みは、層(Y)の形成に用いられる後述するコーティング液(S)の濃度またはその塗工方法によって制御できる。層(Y)の厚みは、多層構造体の断面を走査型電子顕微鏡または透過型電子顕微鏡で観察することで測定できる。
[重合体(F)]
 層(Y)は、カルボニル基、水酸基、カルボキシ基、カルボン酸無水物基、およびカルボキシル基の塩からなる群より選ばれる少なくとも一種の官能基を有する重合体(F)を含んでいてもよい。重合体(F)は、水酸基およびカルボキシル基からなる群より選ばれる少なくとも1種の官能基を有する重合体であることが好ましい。層(Y)が重合体(F)を含むと、耐屈曲性が良好になる場合がある。
 重合体(F)としては、ポリエチレングリコール;ポリビニルアルコール、炭素数4以下のα-オレフィン単位を1~50モル%含有する変性ポリビニルアルコール、ポリビニルアセタール(ポリビニルブチラールなど)などのポリビニルアルコール系重合体;セルロース、デンプンなどの多糖類;ポリヒドロキシエチル(メタ)アクリレート、ポリ(メタ)アクリル酸、エチレン-アクリル酸共重合体などの(メタ)アクリル酸系重合体;エチレン-無水マレイン酸共重合体の加水分解物、スチレン-無水マレイン酸共重合体の加水分解物、イソブチレン-無水マレイン酸交互共重合体の加水分解物などのマレイン酸系重合体などが挙げられる。中でも、ポリエチレングリコールまたはポリビニルアルコール系重合体が好ましい。
 重合体(F)は、重合性基を有する単量体の単独重合体であってもよいし、2種以上の単量体の共重合体であってもよいし、カルボニル基、水酸基、カルボキシル基、カルボン酸無水物基、およびカルボキシル基の塩からなる群より選ばれる少なくとも一種の官能基を有する単量体と該基を有しない単量体との共重合体であってもよい。なお、重合体(F)として、2種以上の重合体(F)を混合して用いてもよい。
 重合体(F)の分子量は特に制限されないが、より優れたガスバリア性および機械的強度を有する多層構造体を得るために、重合体(F)の重量平均分子量は5000以上が好ましく、8000以上がより好ましく、10000以上がさらに好ましい。重合体(F)の重量平均分子量の上限は特に限定されず、例えば、1500000である。
 多層構造体の外観を良好に保つ観点から、層(Y)における重合体(F)の含有量は、層(Y)の質量を基準として、50質量%未満が好ましく、20質量%以下がより好ましく、10質量%以下がさらに好ましく、5質量%以下であっても、2質量%以下であっても、0質量%であってもよい。重合体(F)は、層(Y)中の成分と反応していても、反応していなくてもよい。
 層(Y)は、他の成分をさらに含んでいてもよい。層(Y)に含まれ得る他の成分としては、例えば、炭酸塩、塩酸塩、硝酸塩、炭酸水素塩、硫酸塩、硫酸水素塩、ホウ酸塩等の無機酸金属塩、シュウ酸塩、酢酸塩、酒石酸塩、ステアリン酸塩等の有機酸金属塩、シクロペンタジエニル金属錯体(例えば、チタノセン)、シアノ金属錯体(例えば、プルシアンブルー)等の金属錯体、層状粘土化合物、架橋剤、重合体(BOa)及び重合体(F)以外の高分子化合物、可塑剤、酸化防止剤、紫外線吸収剤、難燃剤等が挙げられる。多層構造体中の層(Y)における前記の他の成分の含有率は20質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下がさらに好ましく、3質量%以下であっても、1質量%以下であっても、0質量%(他の成分を含まない)であってもよい。
 本発明の多層構造体を構成する積層体は有機リン化合物(BO)及び重合体(F)からなる群より選ばれる少なくとも1種を含む層(W)を、層(Y)の基材(X)とは反対側の面上に直接積層されていてもよい。層(W)を備えることで、耐屈曲性が向上したり、後述する接着層(I)との密着性が向上する場合がある。また、本発明の多層構造体を構成する積層体は、基材(X)と層(Y)の間に接着層(AC)を備えていてもよい。接着層(AC)を備えることで、基材(X)と層(Y)間の接着性を高めることができる場合がある。
[層(W)]
 上記積層体が層(W)を備える場合、層(W)は層(Y)と直接積層していることが好ましい。層(W)に含まれ得る有機リン化合物(BO)及び重合体(F)の好適な態様は、上述した通りである。
 層(W)は、他の成分をさらに含んでいてもよい。他の成分としては、例えば、炭酸塩、塩酸塩、硝酸塩、炭酸水素塩、硫酸塩、硫酸水素塩、ホウ酸塩等の無機酸金属塩、シュウ酸塩、酢酸塩、酒石酸塩、ステアリン酸塩等の有機酸金属塩、シクロペンタジエニル金属錯体(例えば、チタノセン)、シアノ金属錯体(例えば、プルシアンブルー)等の金属錯体、層状粘土化合物、架橋剤、重合体(BOa)及び重合体(F)以外の高分子化合物、可塑剤、酸化防止剤、紫外線吸収剤、難燃剤等が挙げられる。層(W)における前記他の成分の含有率は20質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下がさらに好ましく、2質量%以下であっても、1質量%以下であっても、0質量%(他の成分を含まない)であってもよい。
 上記積層体が層(W)を備える場合、その厚さは、本発明の多層構造体の耐屈曲性がより良好になる観点から、0.005μm以上であることが好ましい。層(W)の厚さの上限は特に限定されないが、1.0μm以上では耐屈曲性の改善効果は飽和に達するため、層(W)の厚さの上限を1.0μmとすることが経済的に好ましい。
[接着層AC]
 接着層(AC)を構成する接着剤としては、基材(X)と層(Y)との接着性を有していれば特に限定されないが、ポリウレタン系接着剤、ポリエステル系接着剤等が挙げられる。これらの接着剤に、公知のシランカップリング剤等の少量の添加剤を加えることによって、さらに接着性を高めることができる場合がある。シランカップリング剤としては、例えば、イソシアネート基、エポキシ基、アミノ基、ウレイド基、メルカプト基等の反応性基を有するシランカップリング剤が挙げられる。
 ポリウレタン系接着剤としては、公知のものを使用することができるが、ポリイソシアネート成分とポリオール成分とを混合し反応させる2液型ポリウレタン系接着剤を用いることが好ましい。2液型ポリウレタン系接着剤としては、市販品を用いることができ、例えば、三井化学株式会社製のタケラック(登録商標)、タケネート(登録商標)等が挙げられる。
 ポリエステル系接着剤としては、公知のものを使用することができ、市販品としては、例えば、エリーテル(登録商標)KT-0507、KT-8701、KT-8803、KT-9204、KA-5034、KA-3556、KA-1449、KA-5071S、KZA-1449S、(以上、ユニチカ株式会社製)、バイロナール(登録商標)MD-1200、バイロナールMD-1480(以上、東洋紡績株式会社製)、ペスレジンA124GP、ペスレジンA684G(高松油脂株式会社製)等が挙げられる。ポリエステル系接着剤に対し、ビニルアルコール系樹脂、特にポリビニルアルコールを添加することで、より接着性を高められる場合がある。ビニルアルコール系樹脂とポリエステル系樹脂を同時に用いる場合、その質量比(ビニルアルコール系樹脂/ポリエステル系樹脂)は1/99以上50/50以下であることが、良好な接着性を維持しつつ、より高い剥離強度を示す観点から好ましい。ポリエステル系樹脂は、ビニルアルコール系樹脂との親和性の観点からカルボキシル基を有するポリエステル系樹脂であることが好ましい。また、接着剤として使用する際は、ポリエステル系樹脂が水性分散体であることが好ましい。ポリエステル系樹脂が水性分散体であることで、ポリビニルアルコール系樹脂との親和性が、より良好になる傾向となる。接着層(AC)の厚みは0.001~10.0μmが好ましく、0.01~5.0μmがより好ましい。
[積層体]
 本発明の多層構造体を構成する積層体は、基材(X)及び基材(X)の両面に配置された少なくとも2層の層(Y)を備える。層(Y)は、基材(X)の両面に配置されていれば、基材(X)と直接積層されていても、他の層を介して積層されていてもよいが、本発明の多層構造体の封止材との剥離強度を良好に発揮する観点からは、層(Y)が基材(X)の両面に直接積層されているか、または、層(Y)が接着層(AC)を介して基材(X)の両面に積層されていることが好ましい。また、上記積層体は、層(Y)の表出面側に、層(W)を直接積層してもよい。層(Y)の表出面側に層(W)を備えると、本発明の多層構造体の耐屈曲性を高めたり、後述する接着層(I)との接着性を高められる場合がある。
 上記積層体の具体例を以下に示すが、各具体例は複数組み合わされた構成、例えば、(1)の構成を接着層(I)を介して積層した構成(層(Y)//基材(X)//層(Y)/接着層(I)/層(Y)//基材(X)//層(Y))であってもよいし、各層は複数層設けられていてもよい。ここで、「/」とは、直接積層していることを意味し、「//」とは、直接積層しているか、または、接着層(AC)を介して積層されていることを意味する。
(1)層(Y)//基材(X)//層(Y)
(2)層(W)/層(Y)//基材(X)//層(Y)/層(W)
(3)層(Y)//基材(X)//層(Y)//基材(X)//層(Y)
 上記積層体は、160℃で30分間加熱した際のMD方向の熱収縮率TSが小さくなる傾向となる。この理由は定かではないが、下記2つの理由があると推定している。(1)熱可塑性樹脂等と比べると低い熱収縮率を有する層(Y)を備えるため。(2)後述の製造方法で説明する通り、上記積層体の製造に際する高温での熱処理により熱収縮が起こるため、これにより得られる積層体の熱収縮率が小さくなるため。上記積層体のMD方向の160℃で30分加熱した際の熱収縮率TSは1.0%以下が好ましく、0.70%以下がより好ましく、0.50%以下がさらに好ましく、0.40%以下が特に好ましい。熱収縮率TSが1.0%以下であると、本発明の多層構造体の剥離強度、特に湿熱処理後の剥離強度を高めることができる傾向となる。また、基材(X)が薄いと、熱収縮率TSが大きくなる傾向にある。熱収縮率TSは、0.05%以上であってもよい。
[層(Z)]
 本発明の多層構造体は、前記積層体の両面に接着層(I)を介して積層された、熱可塑性樹脂を主成分とする層(Z)を備え、両面に備えられる層(Z)はそれぞれ同一であっても異なっていてもよい。ここで、「主成分とする」とは、層(Z)に占める熱可塑性樹脂の割合が50質量%を超えることを意味する。本発明の多層構造体は、層(Z)を備えることで、封止材との剥離強度を高めることができ、さらに、層(Z)の厚みを5μm以上100μm以下とすることで、本発明の多層構造体の柔軟性を高めることができる。層(Z)を構成する熱可塑性樹脂は特に限定されないが、層(Z)は封止材との剥離強度が高い熱可塑性樹脂を用いることが好ましい。封止材との剥離強度が高い熱可塑性樹脂としては、封止材の種類によって異なるため、特に限定されないが、例えば、ポリエチレン、ポリプロピレン、環状オレフィン共重合体等のポリオレフィン系樹脂;ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、ポリブチレンテレフタレートあるいはこれらの共重合体等のポリエステル系樹脂;ナイロン-6、ナイロン-66、ナイロン-12等のポリアミド系樹脂;ポリビニルアルコール、エチレン-ビニルアルコール共重合体等の水酸基含有ポリマー;ポリスチレン;ポリ(メタ)アクリル酸エステル;ポリアクリロニトリル;ポリ酢酸ビニル;ポリカーボネート;ポリアリレート;再生セルロース;ポリイミド;ポリエーテルイミド;ポリスルフォン;ポリエーテルスルフォン;ポリエーテルエーテルケトン;アイオノマー樹脂等が挙げられる。層(Z)に用いられる熱可塑性樹脂としては、透明性の観点から、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ナイロン-6、およびナイロン-66からなる群より選ばれる少なくとも1種が好ましく、封止材としてエチレン-酢酸ビニル共重合体(EVA)を用いた場合に良好な剥離強度を発揮できる観点からはポリエチレンテレフタレートがより好ましい。
 熱可塑性樹脂が層(Z)を占める割合は50質量%超であり、70質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましく、層(Z)は実質的に熱可塑性樹脂のみから構成されていてもよく、層(Z)は熱可塑性樹脂のみから構成されていてもよい。
 層(Z)は、フィルム形状であることが好ましい。層(Z)は延伸フィルムであってもよいし無延伸フィルムであってもよい。得られる多層構造体の加工適性(印刷やラミネート等)が優れることから、延伸フィルム、特に二軸延伸フィルムが好ましい。二軸延伸フィルムは、同時二軸延伸法、逐次二軸延伸法、およびチューブラ延伸法のいずれかの方法で製造された二軸延伸フィルムであってもよい。
 層(Z)の1層当たりの厚みは5μm以上であり、7μm以上が好ましく、10μm以上がより好ましい。また、層(Z)の1層当たりの厚みは100μm以下であり、80μm以下が好ましく、60μm以下がより好ましく、40μm以下がさらに好ましく、30μm以下が好ましい場合もある。層(Z)の1層当たりの厚みが5μm未満であると、得られる多層構造体の機械的強度、加工性および剥離強度が悪化する傾向がある。一方、層(Z)の1層当たりの厚みが100μmを超えると、得られる多層構造体の柔軟性が悪化する傾向がある。
 層(Z)においては、160℃で30分間加熱した際のMD方向の熱収縮率TSは0.50%以上が好ましく、0.80%以上がより好ましく、0.90%以上がさらに好ましい。TSが0.50%以上であると、封止材との接着性が高まる傾向となる。また、熱収縮率TSは4.0%以下であっても、3.0%以下であっても、2.0%以下であってもよく、1.4%以下であってもよい。なお、層(Z)が薄いと、熱収縮率TSが大きくなる傾向にある。本発明の多層構造体を形成する積層体の熱収縮率TSが低い場合、熱収縮率TSが高い値であっても、本発明の多層構造体の湿熱処理後の剥離強度が維持できる傾向となる。
[接着層(I)]
 本発明の多層構造体は、上記積層体と層(Z)との間に接着層(I)を備える、上記積層体の両面に備えられる接着層(I)は、それぞれ同一であっても異なっていてもよい。本発明の多層構造体は、上記積層体と層(Z)との間に接着層(I)を備えることで、上記積層体と層(Z)との接着性を高めることができるため、封止材との剥離強度を十分に発揮できる傾向となる。接着層(I)は、加熱等の硬化、光等の硬化等透明で、接着力が強いものであればよく、例えば、イソシアネート等の硬化、加熱等の硬化、光等の硬化等を用いて接着する接着剤、または粘着剤等を使用してもよい。接着層(I)を構成する接着剤としては、上記積層体と層(Z)との接着性を有していれば特に限定されないが、ウレタン系接着剤、エステル系接着剤、アクリル系接着剤等を用いることができる。中でも、ウレタン系接着剤が好ましく、ポリイソシアネート成分とポリオール成分とを混合し反応させる2液反応型ポリウレタン系接着剤がより好ましい。
 接着層(I)の1層当たりの厚みは0.5μm~20μmが好ましく、0.5μm~15μmがより好ましく、1μm~10μmがさらに好ましい。接着層(I)の1層当たりの厚みが0.5μm以上であると接着性が向上する傾向があり、20μm以下であると得られる多層構造体の柔軟性が向上する傾向となる。
[易接着層(EA)]
 本発明の多層構造体は、封止材との剥離強度を高める観点から、層(Z)の少なくとも一方の表出面側に易接着層(EA)が積層されていることが好ましく、両方の層(Z)の表出面側に易接着層(EA)を備えていることがより好ましい。ここで、「易接着層」とは、封止材との剥離強度を高める層を意味する。層(Z)の「表出面」とは、層(Z)が有する2つの面において、積層体が位置する側の面とは反対側の面であり、易接着層が設けられていない場合に露出する面である。易接着層(EA)が積層されていることで、高温高湿下でも層間剥離強度を維持できる傾向となる。例えば、本発明の多層構造体を太陽電池保護シートに用いることによって、高温高湿度環境に長時間曝されても出力低下の小さい太陽電池モジュールを提供できる。
 易接着層(EA)としては、特に限定されず、例えば、アクリル系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、ポリアミド系樹脂、ポリビニルアルコール系樹脂を含むことができる。中でも、アクリル系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂及びポリウレタン系樹脂からなる群より選ばれる少なくとも1種を含むことが好ましく、アクリル系樹脂を含むことがより好ましい。
 易接着層(EA)を設ける方法の一態様としては、架橋性主剤樹脂、架橋剤等及び溶剤(有機系媒体を主溶剤とするか、または、水性媒体を主溶剤とする)を含有する接着剤を層(Z)上に設け、乾燥することにより作製する方法が挙げられ、かかる接着剤としては、公知のものを使用することができ、市販品としては、例えば、ダイナレオ(登録商標)(トーヨーケム株式会社製)、アローベース(登録商標)SD-1200、SB-1200、SE-1200(以上、ユニチカ株式会社製)、ペスレジンA124GP、ペスレジンA684G(高松油脂株式会社製)等が挙げられる。
 易接着層(EA)がアクリル系樹脂を含む場合、アクリル系樹脂の数平均分子量は17,000~250,000であることが好ましい。数平均分子量が上記範囲にあることで、封止材との剥離強度および耐湿熱性が良好となる傾向がある。
 本発明の易接着層(EA)は、無機粒子や有機粒子を含んでいてもよい。これらの粒子を含むことにより、接着耐久性が向上する場合がある。無機粒子としては、金属のケイ酸塩もしくは炭酸塩があげられる。具体的には、マグネシウム、アルミニウム、カルシウム、バリウム、亜鉛、鉄、リチウム、チタンなどの金属のケイ酸塩や炭酸塩が挙げられる。有機粒子としては、融点もしくは軟化点が150℃以上のものを好ましく用いることができる。有機系粒子の融点もしくは軟化点が150℃よりも低いと、真空ラミネート工程で粒子が軟化し、封止材との接着を妨げる恐れがある。有機系粒子の具体例としては、ポリメチルメタアクリレート樹脂、ポリスチレン樹脂、ナイロン(登録商標)樹脂、メラミン樹脂、グアナミン樹脂、フェノール樹脂、ユリア樹脂、シリコン樹脂、メタクリレート樹脂、アクリレート樹脂などのポリマー粒子、あるいは、セルロースパウダー、ニトロセルロースパウダー、木粉、古紙粉、籾殻粉、澱粉などが挙げられる。無機粒子や有機粒子は、1種類を用いてもよいし、2種類以上を併用して用いてもよい。また、易接着層(EA)は、本発明の効果を阻害しない範囲で耐候性を高める添加剤(酸化防止剤、紫外線安定剤、金属不活性化剤等)を含んでいてもよい。
 易接着層(EA)の1層当たりの厚みは0.01~10μmが好ましく、0.05~8μmがより好ましく、0.05~5μmがさらに好ましい。易接着層(EA)の1層当たりの厚みが上記範囲であることで、封止材との剥離強度および得られる多層構造体の柔軟性が良好となる傾向がある。
 易接着層(EA)を複数層備える場合、易接着層(EA)は、それぞれ同一であっても異なっていてもよい。
 本発明の多層構造体は、基材(X)ではない配置で無機蒸着層を含んでもよい。無機蒸着層の好適な態様は前述した無機蒸着層(X’)の好適な態様と同様である。
 本発明の多層構造体の厚み(全層の厚みの合計)は15μm以上であり、17μm以上が好ましく、20μm以上がさらに好ましく、30μm以上が特に好ましい。また、本発明の多層構造体の厚みは120μm以下であり、110μm以下が好ましく、100μm以下がさらに好ましく、90μm以下が特に好ましい。厚みが15μm以上であると機械的強度が良好になるとともに、多層構造体作製時の加工性が良好になる傾向がある。また、厚みが120μm以下であると多層構造体の柔軟性が良好になる傾向がある。
 160℃で30分間加熱した際のMD方向の熱収縮率において、積層体の熱収縮率TSに対する層(Z)の熱収縮率TSの比(TS/TS)が2以上であることが好ましく、2.5以上であることがより好ましく、3.0以上であることがさらに好ましく、3.5以上、4.0以上又は4.5以上であることがよりさらに好ましい場合もある。前記比(TS/TS)が2以上であることで、多層構造体の寸法安定性と封止材との剥離強度が良好になる傾向がある。この理由は定かではないが、TSが低いことで多層構造体の寸法安定性が良好となり、TSが高いことで収縮時に多層構造体と封止材との界面におけるアンカー効果が向上することにより、剥離強度が向上すると推定している。前記比(TS/TS)は、20以下であっても、10以下であってもよい。
 本発明の多層構造体の40℃90%RHにて測定した透湿度は1.0×10-2g/m・day以下であり、8.0×10-3g/m・day以下が好ましく、5.0×10-3g/m・day以下がより好ましい。透湿度はISO15106-5:2015に準拠して、TECHNOLOX社製DELTAPERMにて測定することができる。上記透湿度は、1.0×10-5g/m・day以上であっても、1.0×10-4g/m・day以上であっても、5.0×10-4g/m・day以上であってもよい。上記透湿度を1.0×10-2g/m・day以下とする手段としては、例えば、層(Y)を少なくとも2層設けること、層(Y)の赤外吸収スペクトルにおいて800~1400cm-1の領域における最大吸収波数を1080~1130cm-1の範囲となるようにすること、透湿度が低い層を設けること等が挙げられる。
 本発明の多層構造体は、後述する通り電子デバイス等の封止材と直接積層していることが好ましい。本発明の多層構造体の実施例に記載される剥離強度試験において測定される湿熱処理前の剥離強度は1000gf/15mm以上が好ましく、2000gf/15mm以上がより好ましく、3000gf/15mm以上がさらに好ましい。また、湿熱処理後の剥離強度は、300gf/15mm以上が好ましく、1500gf/15mm以上がより好ましく、2000gf/15mm以上がさらに好ましく、2500gf/15mm以上が特に好ましい。なお、湿熱処理前の剥離強度は6000gf/15mm以下であってもよい。また、湿熱処理後の剥離強度は5000gf/15mm以下であってもよい。
[多層構造体の構成]
 本発明の多層構造体は、基材(X)の両面に配置された少なくとも2層の層(Y)を備える積層体を有しており、前記積層体の両面に接着層(I)を介して積層された層(Z)を備えており、全層の厚みの合計が15μm以上120μm以下であれば特に限定されず、他の層を備えていてもよく、基材(X)、層(Y)接着層(I)及び層(Z)のみからなってもよく、基材(X)、層(Y)、層(W)、接着層(I)及び層(Z)のみからなってもよい。本発明の多層構造体の構成の具体例を以下に示すが、それぞれの具体例は複数組み合わされた構成であってもよい。ここで、「/」とは、直接積層していることを意味する。なお、積層体の好適な態様は上述の通りである。
(1)層(Z)/接着層(I)/積層体/接着層(I)/層(Z)、
(2)易接着層(EA)/層(Z)/接着層(I)/積層体/接着層(I)/層(Z)/易接着層(EA)
[多層構造体の製造方法]
 本発明の多層構造体について説明した事項は本発明の製造方法に適用できるため、重複する説明を省略する場合がある。また、本発明の製造方法について説明した事項は、本発明の多層構造体に適用できる。
 本発明の多層構造体の製造方法としては、例えば、金属酸化物(A)と無機リン化合物(BI)と溶媒とを含むコーティング液(S)を基材(X)の両面に塗工し、溶媒を除去することで層(Y)の前駆体層を形成する工程(I)と、層(Y)の前駆体層を熱処理して層(Y)を形成する工程(II)と、工程(II)を経て得られた積層体を、接着層(I)を介して層(Z)と積層させる工程(III)とを含む製造方法が挙げられる。また、易接着層(EA)を備える多層構造体を製造する場合、層(Z)の表面上に易接着層(EA)を積層させる工程(IV)を含んでいてもよい。さらに、有機リン化合物(BO)または重合体(F)を含む多層構造体を製造する場合、工程(I)に用いるコーティング液(S)に有機リン化合物(BO)または重合体(F)を含ませてもよく、有機リン化合物(BO)または重合体(F)を含むコーティング液(T)を用意し、工程(I)で得られた層(Y)の前駆体層表面または工程(II)で得られる層(Y)表面に塗工する工程(IV)を含んでいてもよい。なお、基材(X)と層(Y)との間に接着層(AC)を設ける場合、工程(I)の前に基材(X)上に接着層(AC)を設ける工程を含んでいてもよい。
[工程(I)]
 工程(I)では、金属酸化物(A)と無機リン化合物(BI)と溶媒とを含むコーティング液(S)を基材(X)上に塗工した後、溶媒を除去し層(Y)の前駆体層を形成する。コーティング液(S)は、金属酸化物(A)、無機リン化合物(BI)および溶媒を混合することで得られる。
 コーティング液(S)を調整する具体的手段としては、金属酸化物(A)の分散液と、無機リン化合物(BI)を含む溶液とを混合する方法;金属酸化物(A)の分散液に無機リン化合物(BI)を添加し、混合する方法等が挙げられる。これらの混合時の温度は、50℃以下が好ましく、30℃以下がより好ましく、20℃以下がさらに好ましい。コーティング液(S)は、他の化合物(例えば、有機リン化合物(BO)や重合体(F))を含んでいてもよく、必要に応じて、酢酸、塩酸、硝酸、トリフルオロ酢酸、およびトリクロロ酢酸からなる群から選ばれる少なくとも1種の酸化合物(Q)を含んでいてもよい。
 金属酸化物(A)の分散液は、例えば、公知のゾルゲル法で採用されている手法に従い、例えば、化合物(E)、水、および必要に応じて酸触媒や有機溶媒を混合し、化合物(E)を縮合または加水分解縮合することによって調製できる。化合物(E)を縮合または加水分解縮合することによって金属酸化物(A)の分散液を得た場合、必要に応じて、得られた分散液に対して特定の処理(前記酸化合物(Q)の存在下の解膠等)を行ってもよい。金属酸化物(A)の分散液の調製に使用する溶媒は特に限定されないが、メタノール、エタノール、イソプロパノール等のアルコール類;水;またはこれらの混合溶媒が好ましい。
 無機リン化合物(BI)を含む溶液に用いる溶媒としては、無機リン化合物(BI)の種類に応じて適宜選択すればよいが、水を含むことが好ましい。無機リン化合物(BI)の溶解の妨げにならない限り、溶媒は有機溶媒(例えば、メタノール等のアルコール類)を含んでいてもよい。
 コーティング液(S)の固形分濃度は、該コーティング液の保存安定性および基材に対する塗工性の観点から1~20質量%が好ましく、2~15質量%がより好ましく、3~10質量%がさらに好ましい。前記固形分濃度は、例えば、コーティング液(S)の溶媒留去後に残存した固形分の質量を、処理に供したコーティング液(S)の質量で除して算出できる。
 コーティング液(S)は、ブルックフィールド型回転粘度計(SB型粘度計:ローターNo.3、回転速度60rpm)で測定された粘度が、塗工時の温度において3000mPa・s以下であることが好ましく、2500mPa・s以下であることがより好ましく、2000mPa・s以下であることがさらに好ましい。当該粘度が3000mPa・s以下であることによって、コーティング液(S)のレベリング性が向上し、外観により優れる多層構造体を得ることができる。また、コーティング液(S)の粘度としては、50mPa・s以上が好ましく、100mPa・s以上がより好ましく、200mPa・s以上がさらに好ましい。
 コーティング液(S)において、アルミニウム原子とリン原子とのモル比は、アルミニウム原子:リン原子=1.0:1.0~3.6:1.0の範囲にあることが好ましく、1.1:1.0~3.0:1.0の範囲にあることがより好ましく、1.11:1.00~1.50:1.00の範囲にあることが特に好ましい。アルミニウム原子とリン原子とのモル比は、コーティング液(S)の乾固物の蛍光X線分析を行い、算出できる。
 コーティング液(S)の塗工方法は、特に限定されず、公知の方法を採用できる。塗工方法としては、例えば、キャスト法、ディッピング法、ロールコーティング法、グラビアコート法、スクリーン印刷法、リバースコート法、スプレーコート法、キスコート法、ダイコート法、メタリングバーコート法、チャンバードクター併用コート法、カーテンコート法、バーコート法等が挙げられる。
 コーティング液(S)塗工後の溶媒の除去方法(乾燥処理)に特に制限はなく、公知の乾燥方法を適用できる。乾燥方法としては、例えば、熱風乾燥法、熱ロール接触法、赤外線加熱法、マイクロ波加熱法等が挙げられる。
 乾燥温度は、基材(X)の流動開始温度より低いことが好ましい。コーティング液(S)の塗工後の乾燥温度は、例えば、60~180℃程度であってもよく、60℃以上140℃未満がより好ましく、70℃以上130℃未満がさらに好ましく、80℃以上120℃未満が特に好ましい。乾燥時間は、特に限定されないが、1秒以上1時間未満が好ましく、5秒以上15分未満がより好ましく、5秒以上300秒未満がさらに好ましい。特に、乾燥温度が100℃以上の場合(例えば、100~140℃)は、乾燥時間は1秒以上4分未満が好ましく、5秒以上4分未満がより好ましく、5秒以上3分未満がさらに好ましい。乾燥温度が100℃を下回る場合は(例えば、60~99℃)、乾燥時間は3分以上1時間未満が好ましく、6分以上30分未満がより好ましく、8分以上25分未満がさらに好ましい。コーティング液(S)の乾燥処理条件が上記範囲にあると、より良好なガスバリア性を有する多層構造体が得られる傾向となる。上記乾燥を経て溶媒が除去されることで、層(Y)の前駆体層が形成される。
 基材(X)の両面に層(Y)を積層するために、コーティング液(S)を基材(X)の一方の面に塗布した後、溶媒を除去することによって第1の層(第1の層(Y)の前駆体層)を形成し、次いで、コーティング液(S)を基材(X)の他方の面に塗布した後、溶媒を除去することによって第2の層(第2の層(Y)の前駆体層)を形成することができる。それぞれの面に塗布するコーティング液(S)の組成は同一であってもよいし、異なってもよい。基材(X)の両面に一度にコーティング液(S)を塗工し、溶媒を除去することによって、2つの層(Y)の前駆体層を同時に形成してもよい。
[工程(II)]
 工程(II)では、工程(II)で形成された層(Y)の前駆体層を熱処理して層(Y)を形成する。工程(II)では、反応生成物(D)が生成する反応が進行する。該反応を充分に進行させるため、熱処理の温度は140℃以上が好ましく、170℃以上がより好ましく、180℃以上がさらに好ましく、190℃以上が特に好ましい。熱処理温度が低いと、充分な反応率を得るのにかかる時間が長くなり、生産性が低下する原因となる。熱処理の温度は、基材(X)の種類等によって異なるが、例えば、ポリアミド系樹脂からなる熱可塑性樹脂フィルムを基材(X)として用いる場合には、熱処理の温度は270℃以下が好ましい。また、ポリエステル系樹脂からなる熱可塑性樹脂フィルムを基材(X)として用いる場合には、熱処理の温度は240℃以下が好ましい。熱処理は、空気雰囲気下、窒素雰囲気下、アルゴン雰囲気下等で実施してもよい。熱処理時間は、1秒~1時間が好ましく、1秒~15分がより好ましく、5~300秒がさらに好ましい。
 工程(II)は、第1熱処理工程(II-1)と第2熱処理工程(II-2)を含むことが好ましい。熱処理を2段階以上で行う場合、2段階目の熱処理(以下、第2熱処理)の温度は、1段階目の熱処理(以下、第1熱処理)の温度より高いことが好ましく、第1熱処理の温度より15℃以上高いことがより好ましく、20℃以上高いことがさらに好ましく、30℃以上高いことが特に好ましい。
 また、工程(II)の熱処理温度(2段階以上の熱処理の場合は、第1熱処理温度)は、良好な特性を有する多層構造体が得られる点から、工程(I)の乾燥温度より高いことが好ましく、30℃以上高いことが好ましく、50℃以上高いことがより好ましく、55℃以上高いことがさらに好ましく、60℃以上高いことが特に好ましい。
 工程(II)の熱処理を2段階以上で行う場合、第1熱処理の温度が140℃以上200℃未満であることが好ましく、かつ第2熱処理の温度が180℃以上270℃以下であることがより好ましく、第2熱処理の温度は第1熱処理温度よりも高いことが好ましく、15℃以上高いことがより好ましく、25℃以上高いことがさらに好ましい。特に、熱処理温度が200℃以上の場合、熱処理時間は0.1秒~10分が好ましく、0.5秒~15分がより好ましく、1秒~3分がさらに好ましい。熱処理温度が200℃を下回る場合は、熱処理時間は1秒~15分が好ましく、5秒~10分がより好ましく、10秒~5分がさらに好ましい。
[工程(III)]
 工程(III)では、工程(II)を経て得られた積層体を、接着層(I)を介して層(Z)と積層させる。積層体を、接着層(I)を介して層(Z)と積層させる方法は公知の方法で行うことができる。例えば層(Z)または積層体上に2液型接着剤を塗工して溶媒の除去し接着層(I)を形成した後に、公知の方法によりラミネートすることで積層させることができる。
 積層体の両面に接着層(I)を介して層(Z)を積層させるために、例えば層(Z)上に2液型接着剤を塗工して溶媒の除去し、公知の方法によりラミネートした後、もう一つの層(Z)上に2液型接着剤を塗工して溶媒の除去し、公知の方法により積層体の他の面にラミネートすることにより積層させることができる。それぞれの面に塗布する接着剤の組成は同一であってもよいし、異なってもよい。2つの接着層(I)を同時に積層させてもよく、2つの層(Z)を同時に積層させてもよい。
 [工程(IV)]
 本発明の多層構造体が易接着層(EA)を有する場合、工程(III)の前または後に工程(IV)が行われる。工程(IV)では、層(Z)上にコーティング液(T)を塗布した後、溶媒を除去することにより易接着層(EA)を形成する。コーティング液(T)は市販の部材(例えば接着剤等)をそのまま用いてもよいし、溶媒と混合してもよい。
 コーティング液(T)に用いられる部材としては、上述した易接着層(EA)に例示される接着剤を好適に用いることができる。コーティング液(T)に用いられる溶媒は特に限定されず、その主成分により適宜選択すればよい。主成分が有機溶剤への溶解性が高い場合は酢酸エチル、酢酸ブチル、トルエン、メチルエチルケトン、メタノール、エタノール等の有機溶剤が使用可能である。また、主成分が水溶性あるいは水分散性の場合、水、または、水/アルコール混合溶媒等が使用可能である。これらの溶媒は単独で使用してもよいし、2種以上を混合してもよい。
 コーティング液(T)における固形分濃度は、溶液の保存安定性や塗工性の観点から、0.01~60質量%が好ましく、0.1~50質量%がより好ましく、0.2~40質量%がさらに好ましい。固形分濃度は、コーティング液(S)に関して記載した方法と同様の方法によって求めることができる。
 コーティング液(S)の塗工と同様に、コーティング液(T)を塗工する方法は特に限定されず、公知の方法を採用できる。
 工程(IV)におけるコーティング液(T)塗工後の溶媒の除去方法(乾燥処理)の条件は、工程(I)におけるコーティング液(S)塗工後の乾燥処理条件と同様の方法を適用できる。
 工程(IV)は工程(III)の前に行われても、後に行われてもよい。工程(IV)が工程(III)の前に行われる場合は、あらかじめ層(Z)上に易接着層(EA)を積層した後に層(Z)の易接着層(EA)が積層されていない面が接着層(I)と接するように工程(III)を行う。工程(IV)が工程(III)の後に行われる場合は層(Z)の表出面上に易接着層(EA)が積層されるように工程(IV)を行う。
[工程(V)]
 前記製造方法において有機リン化合物(BO)、重合体(F)および/またはその他成分を用いる場合、有機リン化合物(BO)、重合体(F)および/またはその他成分並びに溶媒を混合することによって得たコーティング液(U)を工程(I)で得た層(Y)の前駆体層、工程(II)で得た層(Y)または工程(II-1)後の層(Y)の前駆体層上に塗工し、乾燥処理を経る工程(V)を有してもよい。工程(V)を工程(II-1)の後に行う場合は、工程(V)の乾燥処理後に工程(II-2)を行うことが好ましい。
 コーティング液(U)に用いられる溶媒は、有機リン化合物(BO)、重合体(F)および/またはその他成分の種類に応じて適宜選択すればよいが、メタノール、エタノール、イソプロパノール等のアルコール類;水;またはそれらの混合溶媒であることが好ましい。
 コーティング液(U)における固形分濃度は、溶液の保存安定性や塗工性の観点から、0.01~60質量%が好ましく、0.1~50質量%がより好ましく、0.2~40質量%がさらに好ましい。固形分濃度は、コーティング液(S)に関して記載した方法と同様の方法によって求めることができる。
 コーティング液(S)の塗工と同様に、コーティング液(U)を塗工する方法は特に限定されず、公知の方法を採用できる。
 工程(V)におけるコーティング液(U)塗工後の溶媒の除去方法(乾燥処理)の条件は、工程(I)におけるコーティング液(S)塗工後の乾燥処理条件と同様の方法を適用できる。
[電子デバイス]
 本発明の多層構造体を用いた電子デバイスは、電子デバイス本体と、電子デバイス本体の表面を保護する保護シートとを備える。本発明の電子デバイスの保護シートは、本発明の多層構造体を含む。本発明の電子デバイスの保護シートは、本発明の多層構造体のみによって構成されていてもよいし、本発明の多層構造体と他の部材とによって構成されてもよい。
 本発明の電子デバイスは、光電変換装置、情報表示装置、または照明装置であってもよい。光電変換装置の例には、各種の太陽電池、およびその他の光電変換装置が含まれる。情報表示装置の例には、液晶ディスプレイ、有機ELディスプレイ、プラズマディスプレイ、電子ペーパー、およびその他の情報表示装置が含まれる。照明装置の例には、LED照明、有機EL照明、およびその他の照明装置が含まれる。
 本発明の電子デバイスは、フレキシブルな電子デバイスとして特に好ましく用いることができる。ここで、フレキシブルな電子デバイスとは、柔軟性を有する電子デバイスを意味し、屈曲させても機能を維持できる電子デバイスのことをいう。フレキシブルな電子デバイスであるかどうかは、例えば、実施例記載のように、シート状の電子デバイスを内径7cmのロール状となるように丸めた際に、層間剥離や折れが生じるかどうかで判断できる。
 多層構造体を含む保護シートは、ガスバリア性および水蒸気バリア性に優れる。また、前記保護シートは、高い透明性を有する。そのため、多層構造体を含む保護シートを用いることによって、過酷な環境下でも劣化が少なく光の透過性が高い電子デバイスが得られる。
 多層構造体は、LCD用基板フィルム、有機EL用基板フィルム、電子ペーパー用基板フィルム等基板フィルムと称されるフィルムとしても使用できる。その場合、多層構造体は、基板と保護シートとを兼ねてもよい。また、保護シートの保護対象となる電子デバイスは、前記した例示に限定されず、例えば、ICタグ、光通信用デバイス、燃料電池等であってもよい。
 保護シートは、多層構造体の一方の表面に配置された表面保護層を含んでもよい。表面保護層としては、傷がつきにくい樹脂からなる層が好ましい。また、太陽電池のように室外で利用されることがあるデバイスの表面保護層は、耐候性(例えば、耐光性)が高い樹脂からなることが好ましい。また、光を透過させる必要がある面を保護する場合には、透光性が高い表面保護層が好ましい。表面保護層(表面保護フィルム)の材料としては、例えば、アクリル樹脂、ポリカーボネート、ポリエチレンテレフタレート、ポリエチレンナフタレート、エチレン-テトラフルオロエチレン共重合体(ETFE)、ポリテトラフルオロエチレン、4-フッ化エチレン-パークロロアルコキシ共重合体、4-フッ化エチレン-6-フッ化プロピレン共重合体、2-エチレン-4-フッ化エチレン共重合体、ポリ3-フッ化塩化エチレン、ポリフッ化ビニリデン、ポリフッ化ビニル等が挙げられる。中でも、エチレン-テトラフルオロエチレン共重合体を備えることが、耐候性、透光性の観点から好ましい。
 表面保護層の耐久性を高めるために、表面保護層に各種の添加剤(例えば、紫外線吸収剤)を添加してもよい。耐候性が高い表面保護層の好ましい一例は、紫外線吸収剤が添加されたアクリル樹脂層である。紫外線吸収剤としては、例えば、ベンゾトリアゾール系、ベンゾフェノン系、サリシレート系、シアノアクリレート系、ニッケル系、トリアジン系の紫外線吸収剤が挙げられるが、これらに限定されるものではない。また、他の安定剤、光安定剤、酸化防止剤等を併用してもよい。
 保護シートの構成は特に限定されないが、例えば、下記のような構成が好適に用いられる場合がある。
(1)多層構造体
(2)ETFE層/接着層/多層構造体
 上記接着層としては、EVAが好適に用いられる。
 電子デバイス本体は、封止材によって封止されていることが好ましい。封止材は、電子デバイスの保護部材として機能することができる。封止材に特に限定はなく、電子デバイスの封止材として一般的に用いられているものを用いてもよい。封止材としては、特に限定されないがエチレン-酢酸ビニル共重合体(EVA)、ポリオレフィンエラストマー、ポリビニルブチラール、アイオノマーなどがあげられ、コストの観点からEVAが好適に用いられる。
 本発明の電子デバイスの保護シートは、封止材に直接接合されていることが、得られる電子デバイスの厚みを薄くし柔軟性を向上できる観点、及び電子デバイス製造時の工程の簡略化の観点から好ましい。電子デバイス本体を封止する封止材に保護シートを接合する場合、保護シートは、封止材との接着性が高い接合用樹脂層を含むことが好ましい。すなわち、本発明の多層構造体と封止材とが直接積層されていることが好ましい。特に、封止材がエチレン-酢酸ビニル共重合体からなる場合、本発明の多層構造体の表出面には易接着層(EA)が設けられていることが好ましい。なお、保護シートを構成する各層は、公知の接着剤や上述した接着層を用いて接着してもよい。
 本発明の電子デバイスの一例について、一部断面図を図1に示す。図1の電子デバイス40は、電子デバイス本体41と、電子デバイス本体41を封止するための封止材42と、電子デバイス本体41の表面を保護するための保護シート(多層構造体を含む)43と、を備える。封止材42は、電子デバイス本体41の表面全体を覆う。保護シート43は、電子デバイス本体41の一方の表面上に、封止材42を介して配置されている。保護シート43が配置された表面とは反対側の表面にも、保護シートが配置されてもよい。その場合、その反対側の表面に配置される保護シートは、保護シート43と同じものであってもよいし異なっていてもよい。保護シート43は電子デバイス41の表面を保護できるよう配置されていればよく、封止材42等の他の部材を介して電子デバイス本体41上に配置されていても、電子デバイス本体41の表面に直接配置されていてもよい。
 電子デバイス本体41としては、特に限定されず、例えば、太陽電池等の光電変換装置;有機ELディスプレイ、液晶ディスプレイ、電子ペーパー等の情報表示装置;有機EL発光素子等の照明装置等が挙げられる。封止材42は、電子デバイス本体41の種類および用途等に応じて適宜付加される任意の部材である。封止材42としては、エチレン-酢酸ビニル共重合体、ポリビニルブチラール等が挙げられる。
 電子デバイス本体41の好ましい一例は、太陽電池である。太陽電池としては、例えば、シリコン系太陽電池、化合物半導体太陽電池、有機太陽電池、ペロブスカイト型太陽電池等が挙げられる。シリコン系太陽電池としては、例えば、単結晶シリコン太陽電池、多結晶シリコン太陽電池、非晶質シリコン太陽電池等が挙げられる。化合物半導体太陽電池としては、例えば、III-V族化合物半導体太陽電池、II-VI族化合物半導体太陽電池、CIS、CIGS等の多元系化合物半導体太陽電池等が挙げられる。有機太陽電池としては、例えば、有機薄膜太陽電池や色素増感型太陽電池等が挙げられる。また、太陽電池は、複数のユニットセルが直列接続された集積形の太陽電池であってもよいし、集積形の太陽電池でなくてもよい。
 電子デバイス本体41は、その種類によっては、いわゆるロール・ツー・ロール方式で作製することが可能である。ロール・ツー・ロール方式では、送り出しロールに巻かれたフレキシブルな基板(例えば、ステンレス基板、樹脂基板等)が送り出され、この基板上に素子を形成することによって電子デバイス本体41が作製され、この電子デバイス本体41が巻き取りロールで巻き取られる。この場合、保護シート43も、可撓性を有する長尺のシートの形態、より具体的には長尺のシートの捲回体の形態として準備しておくとよい。一例では、送り出しロールから送り出された保護シート43は、巻き取りロールに巻き取られる前の電子デバイス本体41上に積層され、電子デバイス本体41とともに巻き取られる。他の一例では、巻き取りロールに巻き取った電子デバイス本体41を改めてロールから送り出し、保護シート43と積層してもよい。本発明の好ましい一例では、電子デバイス自体が可撓性を有する。
 保護シート43は、本発明の多層構造体を含む。保護シート43は、多層構造体のみから構成されていてもよい。あるいは、保護シート43は、多層構造体と、多層構造体に積層された他の部材(例えば、他の層(J))とを含んでもよい。保護シート43は、電子デバイスの表面の保護に適した層状の積層体であって前記多層構造体を含んでいる限り、その厚さおよび材料に特に制限はない。
 本発明の電子デバイスの構成は特に限定されないが、フレキシブルな電子デバイスとして安定的に使用できる観点からは、次に示す態様が好ましい場合がある。
(1)保護シート/封止材/電子デバイス本体/封止材/保護シート
(2)保護シート/接着層/封止材/電子デバイス本体/封止材/接着層/保護シート
 上記封止材としては、EVAが好適に用いられる。また、接着層としては、接着層(I)と同様のものを用いてよい。
 次に、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例に何ら限定されず、多くの変形が本発明の技術的思想の範囲内で当分野において通常の知識を有する者により可能である。以下の実施例および比較例における分析および評価は以下のとおり行った。
 <実施例および比較例で使用した材料>
・PET12:二軸延伸ポリエチレンレテフタレートフィルム;東レ株式会社製、「ルミラー(商標)P60」(商品名)、厚み12μm
・PET25:二軸延伸ポリエチレンレテフタレートフィルム;東レ株式会社製、「ルミラー(商標)S105」(商品名)、厚み25μm
・PET50:二軸延伸ポリエチレンレテフタレートフィルム;東レ株式会社製、「ルミラー(商標)T60」(商品名)、厚み50μm
・PET75:二軸延伸ポリエチレンレテフタレートフィルム;東レ株式会社製、「ルミラー(商標)T60」(商品名)、厚み75μm
・PET2:二軸延伸ポリエチレンレテフタレートフィルム;東レ株式会社製、「ルミラー(商標)#2-F51」(商品名)、厚み2μm
・ダイナレオ(登録商標)PRC-002:アクリル系コート剤;トーヨーケム株式会社製、「ダイナレオ(登録商標)PRC-002」(商品名)、固形分濃度20~30%
・EVA500:エチレン-酢酸ビニル共重合体シート(太陽電池用封止シート)、酢酸ビニル単位含有量10.5モル%、エチレン単位含有量89.5モル%、厚み500μm
・EVA100:エチレン-酢酸ビニル共重合体フィルム、酢酸ビニル単位含有量10.5モル%、エチレン単位含有量89.5モル%、厚み100μm
・ETFE25:エチレン-テトラフルオロエチレン共重合体フィルム、厚み25μm
[評価方法]
(1)赤外吸収スペクトルの測定
 実施例及び比較例で得られた積層体の層(Y)について、フーリエ変換赤外分光光度計を用い、減衰全反射法で測定した。測定条件は以下の通りとした。
  装置:パーキンエルマー株式会社製Spectrum One
  測定モード:減衰全反射法
  測定領域:800~1400cm-1
(2)MD方向収縮率
 実施例及び比較例で得られた積層体及び層(Z)を12cm×12cmに切り出し、その中央部に1マスが約1cmとなるように6cm×6cmの格子を書き、MD方向に平行な格子の長さをノギスにて測定した。続いて、この多層構造体を160℃の乾燥機内に30分間静置し、取り出した後に再度MD方向に平行な格子の長さをノギスにて測定した。多層構造体を乾燥機内に静置前後のそれぞれのマスの長さの変化よりそれぞれのマスの収縮率を算出し、これらを平均することにより、MD方向の収縮率を算出し、多層構造体のMD方向の熱収縮率をTS、多層構造体を構成する層(Z)のMD方向の熱収縮率をTSとし、MD方向の熱収縮率の比(TS/TS)を算出した。
(3)厚み
 収束イオンビーム(FIB)を用いて実施例及び比較例で得られた多層構造体を切削し、断面観察用の切片を作製した。作製した切片を試料台座にカーボンテープで固定し、加速電圧30kVで30秒間白金イオンスパッタを行った。電界放出形透過型電子顕微鏡を用いて多層構造体の断面を観察し、各層の厚み及び多層構造体の厚みを算出した。測定条件は以下の通りとした。
  装置:日本電子株式会社製JEM-2100F
  加速電圧:200kV
  倍率:250,000倍
(4)透湿度
 実施例及び比較例で得られた多層構造体を、水蒸気透過量測定装置に取り付け、ISO15106-5:2015に準拠して、差圧法により透湿度(水蒸気透過度)を測定した。測定条件は以下の通りとした。
  装置:TECHNOLOX社製DELTAPERM
  温度:40℃
  水蒸気供給側の湿度:90%RH
(5)剥離強度
 実施例及び比較例で得られた多層構造体2枚およびEVA500用い、下記条件で真空ラミネートし、多層構造体/EVA500/多層構造体の測定サンプルを作成した。
(真空ラミネート条件)
  真空ラミネート装置:日清紡メカトロニクス株式会社製1522N
  真空引き時間:8分間
  温度:160℃
  時間:30分間
  圧力:30kPa
 得られた測定サンプルから、長さ方向(MD方向)13cm、幅方向(TD方向)10mmの試験片を切出し、切出した試験片について、湿熱処理前後の剥離強度の測定を行った。剥離強度は、JIS K 6854-3:1999に準じて、T型剥離強度を測定(幅10mmあたりの接着力)した。剥離強度を下記条件で5回測定し、その平均値を求めた。なお、本測定方法により剥離する界面は、本測定サンプルにおいて剥離強度が一番弱い界面であり、比較例6を除く全てのサンプルにおいてEVA層と多層構造体との界面で剥離していることを確認した。比較例6については、基材(X)と層(Y)との界面で剥離していることを確認した。
(T型剥離試験の条件)
  装置:株式会社島津製作所製オートグラフAGS-H
  剥離速度:250mm/分
  温度:23℃
  湿度:50%RH
(湿熱処理条件)
装置:エスペック株式会社製 恒温恒湿器PR-4J
温度:85℃
湿度:85%RH
時間:300時間
(6)ロール成形性(柔軟性)
 実施例及び比較例で得られた多層構造体を縦(MD方向)29.7cm、横(TD方向)21cmに切り出し、直径が2cmのロール状になるように縦方向に丸めた後、内径38cm、肉厚1.1mm、切幅1.1mmの輪ゴム(株式会社共和製オーバンド#16)をロールの中央に配置した。その後丸めた力を開放し、輪ゴムのみでロール形状が保持される状態とした。続いて、両端の直径を測定した。本測定を5回行い、合計10点の平均値を算出した。この値が4.2cm未満であったものをA、4.2cm以上4.5cm未満まで広がったものをB、4.5cm以上まで広がったものをCとした。
<コーティング液(S-1)の製造例>
 蒸留水230質量部を撹拌しながら70℃に昇温した。その蒸留水に、トリイソプロポキシアルミニウム88質量部を1時間かけて滴下し、液温を徐々に95℃まで上昇させ、発生するイソプロパノールを留出させることによって加水分解縮合を行った。得られた液体に、60質量%の硝酸水溶液4.0質量部を添加し、95℃で3時間撹拌することによって加水分解縮合物の粒子の凝集体を解膠させた。その後、その液体を、固形分濃度が酸化アルミニウム換算で10質量%になるように濃縮し、溶液を得た。こうして得られた溶液22.50質量部に対して、蒸留水54.29質量部およびメタノール18.80質量部を加え、均一になるように撹拌することによって、分散液を得た。続いて、液温を15℃に維持した状態で分散液を撹拌しながら85質量%のリン酸水溶液4.41質量部を滴下して加えた。さらに、メタノール溶液18.80質量部を滴下して加え、粘度が1,500mPa・sになるまで15℃で撹拌を続け、目的のコーティング液(S-1)を得た。該コーティング液(S-1)における、アルミニウム原子とリン原子とのモル比は、アルミニウム原子:リン原子=1.15:1.00であった。
<コーティング液(T-1)の製造例>
 ダイナレオ(登録商標)PRC-002を10質量部と酢酸エチル90質量部と混合し、室温で30分撹拌することで、固形分濃度3.0%のコーティング液(T-1)を得た。
<実施例1>
 基材(X)として、PET25を用い、この基材の一方の面上に、乾燥後の厚みが0.4μmとなるようにバーコーターを用いてコーティング液(S-1)を塗工した。塗工後のフィルムを、120℃で3分間乾燥後、180℃で1分間熱処理して、基材上に層(Y)の前駆体層を形成した。次に、基材の他方の面上に、乾燥後の厚みが0.4μmとなるようにバーコーターを用いてコーティング液(S-1)を塗工した。塗工後のフィルムを、120℃で3分間乾燥後、180℃で1分間熱処理して、基材上に層(Y)の前駆体層を形成した。得られた層(Y)の前駆体層を形成したフィルムを、210℃で1分間の熱処理し、層(Y)(0.4μm)/PET25(25μm)/層(Y)(0.4μm)の積層体(1)を得た。得られた積層体(1)の層(Y)について、上記評価方法(1)に記載の方法に従って赤外吸収スペクトルを測定し両面の層(Y)の800~1400cm-1の領域における最大吸収波数(Imax)を評価した。また、得られた積層体(1)について、上記評価方法(2)に記載の方法に従ってMD方向の熱収縮率TSを測定した。結果を表1に示す。
 層(Z)として、PET12を準備した。2枚のPET12のそれぞれの表面上に接着層(I)を形成した。該接着層(I)上に積層体(1)をラミネートし、40℃で5日間静置してエージングし、PET12/接着層(I)/積層体(1)/接着層(I)/PET12という構造を有する多層構造体(1-1)を得た。前記接着層(I)は、乾燥後の厚みが3μmとなるようにバーコーターを用いて2液型接着剤(三井化学株式会社製の「タケラック」(登録商標)の「A-520」(銘柄)と三井化学株式会社製の「タケネート」(登録商標)の「A-50」(銘柄))を塗工し、乾燥させることで形成した。なお、用いた層(Z)について、上記評価方法(2)に記載の方法に従ってMD方向の熱収縮率TSを測定した。結果を表1に示す。
 多層構造体(1-1)上に乾燥後の厚みが0.3μmとなるようにバーコーターを用いてコーティング液(T-1)を塗工した。塗工後のフィルムを、140℃で1分間乾燥させることで、易接着層(EA)を積層させた。さらに、多層構造体(1-1)の他方の面にも厚みが0.3μmとなるようにバーコーターを用いてコーティング液(T-1)を塗工した。塗工後のフィルムを、140℃で1分間乾燥させることで、易接着層(EA)/多層構造体(1-1)/易接着層(EA)という構造を有する多層構造体(1-2)を得た。
 多層構造体(1-2)について、前記評価方法(3)~(6)に記載の方法に従って、厚み、透湿度、ロール成形性、及び湿熱処理前後のEVA層との剥離強度を評価した。結果を表2に示す。
<実施例2~9および比較例1~6>
 基材(X)、層(Z)の種類および層構成を表1および2に従って変更したこと以外は実施例1と同様の方法によって積層体及び多層構造体を作製し評価した。結果を表1及び表2に示す。 
<実施例10>
 160℃の乾燥機内に3分間静置したPET12を層(Z)として用いたこと以外は実施例1と同様の方法によって積層体及び多層構造体を作製し評価した。結果を表1及び表2に示す。 
<実施例11> 層(Z)としてPET12及びPET25を用いて、PET12(層(Z1))/接着層(I)/積層体(1)/接着層(I)/PET25(層(Z2))の層構成を有する多層構造体(10-1)を作製した以外は、実施例1と同様の方法で積層体及び多層構造体を作製し評価した。結果を表1及び表2に示す。 
<比較例7>
 コーティング液(S-1)を塗工後に120℃で3分間乾燥後、180℃で1分間の熱処理および210℃で1分間の熱処理を行わなかったこと以外は実施例1と同様の方法によって多層構造体を作製し評価した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
<実施例12>
 実施例1で作製した多層構造体(1-2)、EVA100、ETFE25、及びCIGS系太陽電池セルを用いて上記評価方法(5)に記載の条件で真空ラミネートすることにより、ETFE25/EVA100/多層構造体(1-1)/EVA100/CIGS系太陽電池セル/EVA100/多層構造体(1-1)という構成の太陽電池(全層厚み520μm)を作製した。
 得られた太陽電池について、内径が7cmのロール状になるように丸め、紐で固定し、23℃50%RH条件下及び85℃85%RH条件下で、それぞれ1か月間保管したところ、太陽電池は層間剥離の発生なく良好な外観を保持した。また、得られた太陽電池を85℃、85%RHの雰囲気下に300時間保管前後の光電変換効率を測定したところ低下率は10%未満であった。
<比較例8>
 比較例3で作製した多層構造体(易接着層(EA)/PET50/接着層(I)/層(Y)/PET25/層(Y)/接着層(I)/PET50/易接着層(EA))(厚み132.4μm)を用いたこと以外は実施例9と同様の方法で、ETFE25/EVA100/比較例3の多層構造体/EVA100/CIGS系太陽電池セル/EVA100/多層構造体(C3-1)という構成の太陽電池(全層厚み672μm)を作製した。得られた太陽電池について、内径が7cmのロール状になるように丸めたところ、太陽電池を中心に層間剥離や折れによる外観不良が発生した。
40 電子デバイス
41 電子デバイス本体
42 封止材
43 保護シート(多層構造体を含む)

Claims (11)

  1.  基材(X)及び前記基材(X)の両面に配置された少なくとも2層の層(Y)を備える積層体、並びに前記積層体の両面に接着層(I)を介して積層された、熱可塑性樹脂を主成分とする層(Z)を備え、
     前記少なくとも2層の層(Y)は、アルミニウム原子を含む金属酸化物(A)と無機リン化合物(BI)との反応生成物(D)を含み、
     前記基材(X)の厚みが5μm以上100μm以下であり、
     前記層(Z)の1層当たりの厚みが5μm以上100μm以下であり、
     全層の厚みの合計が15μm以上120μm以下であり、
     前記少なくとも2層の層(Y)は、それぞれ同一であっても異なっていてもよく、
     前記積層体の両面に備えられる接着層(I)は、それぞれ同一であっても異なっていてもよく、
     前記積層体の両面に備えられる層(Z)は、それぞれ同一であっても異なっていてもよく、
     ISO15106-5に準拠して測定した透湿度が1.0×10-2g/m・day以下である多層構造体。
  2.  160℃で30分間加熱した際の前記積層体のMD方向の熱収縮率TSが1.0%以下である、請求項1に記載の多層構造体。
  3.  160℃で30分間加熱した際のMD方向の熱収縮率において、前記積層体の熱収縮率TSに対する前記層(Z)の熱収縮率TSの比(TS/TS)が2以上である、請求項1または2に記載の多層構造体。
  4.  前記層(Z)の少なくとも一方の表出面側に積層された易接着層(EA)をさらに備える、請求項1~3いずれか1項に記載の多層構造体。
  5.  前記易接着層(EA)がアクリル系樹脂を含む、請求項4に記載の多層構造体。
  6.  前記層(Z)がポリステル系樹脂を含む、請求項1~5のいずれか1項に記載の多層構造体。
  7.  基材(X)の両面に、アルミニウム原子を含む金属酸化物(A)と、無機リン化合物(BI)と、溶媒とを含むコーティング液(S)を塗工し、前記溶媒を除去することで層(Y)の前駆体層を形成する工程(I)、
     前記層(Y)の前駆体層を熱処理して層(Y)を形成する工程(II)、および
     前記層(Y)を形成する工程(II)を経て得られた積層体に、接着層(I)を介して層(Z)を積層させる工程(III)を含む、請求項1~6のいずれか1項に記載の多層構造体の製造方法。
  8.  請求項1~6のいずれか1項に記載の多層構造体を含む電子デバイスの保護シート。
  9.  光電変換装置、情報表示装置、または照明装置の表面を保護する保護シートである、請求項8に記載の保護シート。
  10.  請求項8または9に記載の保護シートを有する電子デバイス。
  11.  フレキシブルな電子デバイスである、請求項10に記載の電子デバイス。
PCT/JP2021/040462 2020-11-04 2021-11-02 多層構造体およびその製造方法、ならびにそれを用いた保護シート及び電子デバイス WO2022097656A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022560795A JPWO2022097656A1 (ja) 2020-11-04 2021-11-02
KR1020237018852A KR20230098854A (ko) 2020-11-04 2021-11-02 다층 구조체 및 이의 제조방법, 및 이를 사용한 보호 시트 및 전자 디바이스
US18/035,298 US20230407454A1 (en) 2020-11-04 2021-11-02 Multilayer Structure and Method for Producing Same, and Protective Sheet and Electronic Device which Utilize Same
CN202180074556.3A CN116406329A (zh) 2020-11-04 2021-11-02 多层结构体及其制造方法、以及使用其的保护片和电子设备
DE112021004939.9T DE112021004939T5 (de) 2020-11-04 2021-11-02 Mehrschichtstruktur und verfahren zu deren herstellung, und schutzlage sowie elektronische vorrichtung, welche diese nutzen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020184067 2020-11-04
JP2020-184067 2020-11-04

Publications (1)

Publication Number Publication Date
WO2022097656A1 true WO2022097656A1 (ja) 2022-05-12

Family

ID=81457017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040462 WO2022097656A1 (ja) 2020-11-04 2021-11-02 多層構造体およびその製造方法、ならびにそれを用いた保護シート及び電子デバイス

Country Status (7)

Country Link
US (1) US20230407454A1 (ja)
JP (1) JPWO2022097656A1 (ja)
KR (1) KR20230098854A (ja)
CN (1) CN116406329A (ja)
DE (1) DE112021004939T5 (ja)
TW (1) TW202235264A (ja)
WO (1) WO2022097656A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013049266A (ja) * 2011-08-04 2013-03-14 Mitsubishi Plastics Inc ガスバリア性積層体
WO2013187064A1 (ja) * 2012-06-14 2013-12-19 株式会社クラレ 多層構造体およびそれを用いたデバイス、ならびにそれらの製造方法
JP2015082591A (ja) * 2013-10-23 2015-04-27 凸版印刷株式会社 太陽電池モジュール
WO2016013656A1 (ja) * 2014-07-24 2016-01-28 凸版印刷株式会社 積層フィルム及び積層体、並びに、波長変換シート、バックライトユニット及びエレクトロルミネッセンス発光ユニット
WO2016125397A1 (ja) * 2015-02-02 2016-08-11 三菱樹脂株式会社 電子部材用封止フィルム
JP2016150492A (ja) * 2015-02-17 2016-08-22 凸版印刷株式会社 ガスバリアフィルム
JP2017165061A (ja) * 2016-03-18 2017-09-21 株式会社麗光 透明ハイバリアフイルム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103720A1 (ja) 2014-12-24 2016-06-30 株式会社クラレ 電子デバイスおよびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013049266A (ja) * 2011-08-04 2013-03-14 Mitsubishi Plastics Inc ガスバリア性積層体
WO2013187064A1 (ja) * 2012-06-14 2013-12-19 株式会社クラレ 多層構造体およびそれを用いたデバイス、ならびにそれらの製造方法
JP2015082591A (ja) * 2013-10-23 2015-04-27 凸版印刷株式会社 太陽電池モジュール
WO2016013656A1 (ja) * 2014-07-24 2016-01-28 凸版印刷株式会社 積層フィルム及び積層体、並びに、波長変換シート、バックライトユニット及びエレクトロルミネッセンス発光ユニット
WO2016125397A1 (ja) * 2015-02-02 2016-08-11 三菱樹脂株式会社 電子部材用封止フィルム
JP2016150492A (ja) * 2015-02-17 2016-08-22 凸版印刷株式会社 ガスバリアフィルム
JP2017165061A (ja) * 2016-03-18 2017-09-21 株式会社麗光 透明ハイバリアフイルム

Also Published As

Publication number Publication date
TW202235264A (zh) 2022-09-16
CN116406329A (zh) 2023-07-07
DE112021004939T5 (de) 2023-07-13
US20230407454A1 (en) 2023-12-21
JPWO2022097656A1 (ja) 2022-05-12
KR20230098854A (ko) 2023-07-04

Similar Documents

Publication Publication Date Title
JP6478735B2 (ja) 電子デバイスの保護シート
JP6069316B2 (ja) 多層構造体およびそれを用いたデバイス、ならびにそれらの製造方法
US20100229924A1 (en) Backside protection sheet for solar cell module
CN104968495B (zh) 电子装置
JP5531748B2 (ja) 太陽電池裏面保護シートならびに太陽電池モジュール
JP2010188600A (ja) 高密着透明ガスバリア性フィルム、及び高密着ガスバリア性積層体
JP5531749B2 (ja) 太陽電池裏面保護シートならびに太陽電池モジュール
JP6010263B1 (ja) 多層構造体およびそれを用いた包装材
EP3181348B1 (en) Antistatic sheet, and packaging material and electronic device including same
JP2007261020A (ja) ポリアミド系フィルム積層体
JP4184675B2 (ja) 太陽電池モジュ−ル用裏面保護シ−トおよびそれを使用した太陽電池モジュ−ル
WO2022097656A1 (ja) 多層構造体およびその製造方法、ならびにそれを用いた保護シート及び電子デバイス
US20180093460A1 (en) Antistatic sheet, and packaging material and electronic device that include the same
JP5446102B2 (ja) ディスプレイ用耐湿熱性フィルム
JP7461863B2 (ja) ガスバリア性積層体
JP6251122B2 (ja) バリアフィルム、積層バリアフィルム及びそれらの製造方法
WO2014163189A1 (ja) 積層バリアシート
KR102361708B1 (ko) 배리어 필름 및 이를 포함하는 양자점 시트
TW201315609A (zh) 太陽電池用保護材
JP7339870B2 (ja) 多層構造体およびその製造方法、それを用いた包装材および製品、ならびに電子デバイスの保護シート
JP6503105B2 (ja) 積層バリアシート
JP2017140820A (ja) ガスバリア性積層体およびその製造方法
JP2012129427A (ja) 太陽電池裏面保護シートならびに太陽電池モジュール
WO2023058702A1 (ja) 多層構造体及びその製造方法、並びにそれを用いた電子デバイスの保護シート及び電子デバイス
KR20240089271A (ko) 다층 구조체 및 이의 제조방법, 및 이를 사용한 전자 디바이스의 보호 시트 및 전자 디바이스

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21889209

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022560795

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18035298

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237018852

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21889209

Country of ref document: EP

Kind code of ref document: A1