WO2022097392A1 - 樹脂成形装置及び樹脂成形品の製造方法 - Google Patents

樹脂成形装置及び樹脂成形品の製造方法 Download PDF

Info

Publication number
WO2022097392A1
WO2022097392A1 PCT/JP2021/035758 JP2021035758W WO2022097392A1 WO 2022097392 A1 WO2022097392 A1 WO 2022097392A1 JP 2021035758 W JP2021035758 W JP 2021035758W WO 2022097392 A1 WO2022097392 A1 WO 2022097392A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
molding
chip
cavity
substrate
Prior art date
Application number
PCT/JP2021/035758
Other languages
English (en)
French (fr)
Inventor
築山誠
森上篤
Original Assignee
Towa株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Towa株式会社 filed Critical Towa株式会社
Priority to CN202180071126.6A priority Critical patent/CN116390844A/zh
Priority to US18/034,268 priority patent/US20230382027A1/en
Priority to KR1020237010025A priority patent/KR20230054717A/ko
Publication of WO2022097392A1 publication Critical patent/WO2022097392A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/02Transfer moulding, i.e. transferring the required volume of moulding material by a plunger from a "shot" cavity into a mould cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14639Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14639Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components
    • B29C45/14655Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components connected to or mounted on a carrier, e.g. lead frame
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/64Mould opening, closing or clamping devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/7653Measuring, controlling or regulating mould clamping forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/80Measuring, controlling or regulating of relative position of mould parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C2045/0094Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor injection moulding of small-sized articles, e.g. microarticles, ultra thin articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C2045/1784Component parts, details or accessories not otherwise provided for; Auxiliary operations not otherwise provided for
    • B29C2045/1787Mould parts driven by pressure of injected material

Definitions

  • This disclosure relates to a resin molding apparatus and a method for manufacturing a resin molded product.
  • the board on which the chip is mounted is generally used as an electronic component by sealing it with resin.
  • a resin molding device for resin-sealing a substrate or the like a resin molding device for transfer molding that manufactures a semiconductor package by resin-sealing a substrate such as a BGA (ball grid array) is known (for example).
  • Patent Document 1 a resin molding device for transfer molding that manufactures a semiconductor package by resin-sealing a substrate such as a BGA (ball grid array) is known (for example).
  • the end surface of the upper die cavity piece provided in substantially the entire internal flow path of the cavity in which the substrate does not exist is flush with the chip connection surface of the substrate.
  • the molten resin is supplied to the cavity after the upper die cavity piece is moved by the urging force of the compression coil spring so as to be.
  • the force from the molten resin acting on the end face of the upper die cavity piece exceeds the urging force of the compression coil spring that urges the upper die cavity piece, so that the upper die cavity piece gradually rises.
  • the lower mold is raised with the upper mold cavity piece fixed, the cavity volume is reduced, and the filling of the molten resin into the cavity is completed.
  • the characteristic configuration of the resin molding apparatus is a molding die having a cavity for holding a molding object in which a chip is arranged on a substrate and supplying a resin material, and a molding mechanism for molding the molding die.
  • a control unit that controls the operation of the molding die and the molding mechanism, the molding die includes a movable block that narrows at least a part of the internal flow path of the cavity in which the chip is not arranged.
  • the control unit includes a drive mechanism for driving the movable block with a fluid, and the control unit is at a point of executing control for changing the drive force of the drive mechanism when molding the object to be molded with resin.
  • the feature of the method for manufacturing a resin molded product according to the present disclosure includes a molding step of filling a cavity with a resin material supplied from a gate to perform resin molding of a molding object in which chips are arranged on a substrate.
  • the movable block is moved by a drive mechanism driven by a fluid to narrow down at least a part of the internal flow path of the cavity in which the chip is not arranged, and the molding is performed while changing the driving force by the drive mechanism.
  • the point is to perform resin molding of the object.
  • Is a schematic diagram showing a resin molding apparatus Is a schematic diagram of the molding module.
  • Is a schematic plan view of the molding die Is a schematic cross-sectional view taken along the line IV-IV of FIG.
  • Is a control flow diagram at the time of resin molding Is a figure explaining the operation of the movable block at the time of resin molding.
  • Is a schematic plan view of the molding die according to the first embodiment Is a schematic plan view of the molding die according to the second embodiment.
  • a molded object such as a substrate on which a semiconductor chip (hereinafter, may be simply referred to as a "chip”) is mounted is resin-sealed and used as an electronic component.
  • This electronic component is used, for example, as a high-frequency module board for a mobile communication terminal, a power control module board, a device control board, and the like.
  • As one of the techniques for resin-sealing a molded object there is a transfer method for manufacturing a semiconductor package by resin-sealing a BGA (ball grid array) substrate or the like.
  • a substrate or the like on which a chip is mounted is housed in a cavity of a molding die, a resin tablet in which a powdery resin is hardened is supplied to a pot of the molding die, heated and melted, and then the molding die is formed.
  • This is a method in which a molten resin in which a resin tablet is melted in a molded state is supplied to a cavity and cured, and the mold is opened to manufacture a resin molded product.
  • the molding mold In the conventional transfer method, if voids (air bubbles) are generated in the resin molded product, it causes molding defects. Therefore, an air vent is provided in the molding mold to prevent voids, depending on the shape of the substrate or chip. It is necessary to design the position such as the optimum one. Even if the optimum air vent is provided, the flow rate of the molten resin is relatively higher in the area of the substrate where the chip, resistor, capacitor, etc. do not exist than in the area where the chip, etc. exists. Due to the difference, the molten resin wraps around from the lateral region to the chip existing region and surrounds the air (including the gas generated from the molten resin), so that voids are likely to occur.
  • a resin molding apparatus D for improving molding accuracy with a simple configuration and a method for manufacturing a resin molded product are provided.
  • a flip-chip substrate having a rectangular shape in a plan view will be described as an example of an object to be molded, and may be described with the direction of gravity as the bottom and the direction opposite to the direction of gravity as the top.
  • FIG. 1 shows a schematic diagram of the resin molding apparatus D.
  • the resin molding apparatus D in the present embodiment includes a molding module 3, a supply module 4, a control unit 6, and a transfer mechanism.
  • the molding module 3 includes a molding mold C for sealing the object to be molded with a powdery resin or a liquid resin.
  • the control unit 6 includes a program stored in hardware such as an HDD and a memory as software for controlling the operation of the resin molding apparatus D, and is operated by a processor including ASIC, FPGA, CPU or other hardware of the computer. Will be executed. That is, the control unit 6 includes a processor that executes the flowchart (program) shown in FIG. It was
  • the molding module 3 molds a resin-sealed substrate Sb (an example of a resin-molded product) by resin-sealing a resin-sealed substrate Sa (an example of an object to be molded).
  • a plurality of (three in this embodiment) molding modules 3 are provided, and each molding module 3 can be independently attached or detached. Details of the molding module 3 will be described later.
  • the supply module 4 includes a board supply mechanism 43, a board alignment mechanism 44, a resin supply mechanism 45, and a board accommodating portion 46, and is a standby position for the loader 41 and the unloader 42 included in the transfer mechanism.
  • the substrate supply mechanism 43 passes the stocked resin-sealed substrate Sa to the substrate alignment mechanism 44.
  • One semiconductor chip or a plurality of semiconductor chips are aligned vertically and / or horizontally on the resin-sealed substrate Sa.
  • the substrate alignment mechanism 44 brings the resin-sealed substrate Sa delivered from the substrate supply mechanism 43 into a state suitable for transport.
  • the resin supply mechanism 45 stocks the resin tablet T, and arranges the resin tablet T in a state suitable for transportation.
  • the transport mechanism includes a loader 41 for transporting the resin-sealed substrate Sa and the resin tablet T on which the semiconductor chip before resin-sealing is mounted, and an unloader 42 for transporting the resin-sealed substrate Sb after resin-sealing.
  • the loader 41 receives a plurality of (4 in this embodiment) pre-resin-sealed substrates Sa from the substrate alignment mechanism 44, and receives a plurality of (6 in this embodiment) resin tablets T from the resin supply mechanism 45. Then, it can move from the supply module 4 to each molding module 3 on the rail, and the resin-sealed substrate Sa and the resin tablet T can be delivered to each molding module 3.
  • the unloader 42 may take out the resin-sealed substrate Sb from the molding module 3, move it on the rail from each molding module 3 to the substrate accommodating portion 46, and accommodate the resin-encapsulated substrate Sb in the substrate accommodating portion 46. can.
  • the semiconductor chip is sealed with a cured resin obtained by solidifying the molten resin.
  • the tie bars 32 are erected at the four corners of the lower fixing plate 31 having a rectangular shape in a plan view, and the upper fixing plate 33 having a rectangular shape in a plan view is located near the upper end of the tie bar 32. It is provided.
  • a movable platen 34 having a rectangular shape in a plan view is provided between the lower fixing plate 31 and the upper fixing plate 33.
  • the movable platen 34 is provided with holes through which the tie bar 32 penetrates at the four corners, and can move up and down along the tie bar 32.
  • a mold clamping mechanism 35 which is a device for moving the movable platen 34 up and down, is provided on the lower fixing plate 31.
  • the mold clamping mechanism 35 is an electric motor Ma composed of a servomotor or the like as a drive source, and a strain gauge, a load cell, or the like for measuring the mold clamping force (hereinafter referred to as “clamping force”) of the molding mold C. It includes a load sensor Wa that is configured.
  • the mold clamping mechanism 35 can clamp the mold C by moving the movable platen 34 upward, and can open the mold C by moving the movable platen 34 downward.
  • the molding die C has a lower die LM and an upper die UM.
  • the lower mold LM and the upper mold UM are composed of molds and the like arranged so as to face each other.
  • the lower mold LM is formed with a substrate set portion on which the resin-sealed substrate Sa is placed with the surface on which the semiconductor chip or the like is mounted facing up. Further, the lower mold LM has a built-in lower heater 36 for heating the resin-sealed substrate Sa and the resin tablet T. Further, a cylindrical pot 21 filled with a resin tablet T (resin that melts by heating) is fixed to the lower mold LM by shrink fitting or the like. A plunger 25 driven by an electric motor Mb such as a servo motor is inserted below the cylindrical space of the pot 21 so as to be movable up and down.
  • an electric motor Mb such as a servo motor
  • the lower LM is a load sensor Wb composed of a strain gauge, a load cell, or the like for measuring a force (hereinafter referred to as "transfer force") for the plunger 25 to push out a molten resin Ta (an example of a resin material).
  • transfer force a force for the plunger 25 to push out a molten resin Ta (an example of a resin material).
  • the upper mold UM is formed with a cavity MC having a rectangular shape in a plan view to which the molten resin Ta is supplied, and an upper heater 37 for heating the cavity MC is built in.
  • the upper die UM includes a cavity block in which the cavity MC is formed and a cal block having a runner 22 for flowing the molten resin Ta from the pot 21 toward the cavity MC, and the cavity block discharges air from the cavity MC.
  • An air vent 26 is provided.
  • the cavity block and the cal block are fixed to the upper mold UM as separate members.
  • the calblock is provided with a gate 23 which is an entrance for the molten resin Ta to flow from the runner 22 into the cavity MC.
  • the cavity block and the cal block may be configured as an integral member.
  • the air vent 26 may be configured as an air vent block separate from the cavity block.
  • FIG. 3 shows a schematic plan view of the cavity MC as viewed from above.
  • FIG. 4 is a schematic cross-sectional view taken along line IV-IV in the direction perpendicular to the paper surface of FIG. 3 (vertical direction).
  • the case where the surface of the chip 13 is exposed and molded is described (see FIG. 4), but the surface of the chip 13 may be resin-sealed.
  • the gate 23 is provided in the central portion of one side S of the cavity MC, and the molten resin Ta flowing from the pot 21 to the runner 22 described above passes through the gate 23 in the cavity MC. Will be supplied.
  • An air vent 26 is provided on the other side E facing the one side S of the cavity MC, and air can be discharged from the cavity MC through the air vent 26.
  • the chip 13 in the resin-sealed substrate Sa in the present embodiment, the chip 13 is electrically connected to a plurality of protruding electrodes 12 arranged in a two-dimensional array on the substrate 11. It is composed of a board (flip chip board).
  • the protruding electrode 12 and the chip 13 are mounted in the central region of the substrate 11 in a plan view, the central region of the substrate 11 is the chip existence region, and the peripheral region surrounding the central region of the substrate 11 is the chip non-chip. It is an existing area.
  • the chip 13 is composed of an IC chip or the like in which a large number of electronic elements and wiring are mounted on a semiconductor.
  • the molten resin Ta supplied from the gate 23 flows from one side S (flow start end) of the cavity MC toward the other side E (flow end).
  • the chip existing region the substrate 11 in which the chip 13 is present is present.
  • the flow velocity of the molten resin Ta is relatively higher than that in the central region of), and due to this velocity difference, the molten resin Ta wraps around from the lateral region to the chip existing region and is generated from air (generated from the molten resin Ta). Since it surrounds (including gas), voids are likely to occur.
  • the chip 13 is present in a narrow region (the region where the protruding electrode 12 exists) between the substrate 11 and the chip 13. Since the flow velocity of the molten resin Ta is relatively smaller than that of the non-side region, the molten resin Ta wraps around from the side region to the narrow region, and voids are likely to occur.
  • a movable block 16 that narrows down at least a part of the internal flow path of the MC), a drive mechanism Ds composed of an air cylinder or the like that drives the movable block 16 by air (an example of a fluid), and the movable block 16 upward. Includes a compression spring Sp that urges the vehicle.
  • the movable block 16 in the present embodiment is provided in the upper die UM so as to be vertically movable, and is provided in a region facing the chip 13 in the pair of side flow paths 15 of the cavity MC.
  • the movable block 16 is melted to flow in the side flow path 15 by narrowing the side flow path 15 (reducing the cross-sectional area of the side flow path 15) for a predetermined time from the start of supply of the molten resin Ta.
  • the flow rate of the resin Ta is reduced.
  • the movable block 16 in the present embodiment is a rectangular parallelepiped, and the width W2 of the movable block 16 is about 90% of the width W1 of the side flow path 15 (that is, the minimum width from the side side of the chip 13 to the wall surface of the cavity MC).
  • the ratio of the width W2 of the movable block 16 to the width W1 of the side flow path 15 takes into consideration the viscosity of the molten resin Ta, the size of the gap between the chip 13 and the substrate 11, the size and number of the protruding electrodes 12, and the like. It may be set appropriately, but it is preferably about 50% or more.
  • the tip 16a (lower end face) of each movable block 16 is positioned at a height where there is a narrow region (gap region between the substrate 11 and the chip 13) between the substrate 11 and the chip 13. By doing so, the side flow path 15 is squeezed. In other words, the tip 16a of the movable block 16 overlaps the narrow region between the substrate 11 and the chip 13 in a side view in a state where the side flow path 15 is narrowed down.
  • the movable block 16 is inserted into the cavity MC by the driving force of the driving mechanism Ds (hereinafter referred to as "cylinder driving force"), and by making the driving force of the driving mechanism Ds zero, the urging force of the compression spring Sp causes the movable block 16.
  • the inner surface adjacent to the cavity MC of the upper die UM and the tip 16a (lower end surface) of the movable block 16 can be removed from the cavity MC so as to be flush with each other.
  • the upper die UM when the sum of the urging force of the compression spring Sp and the force acting on the movable block 16 from the molten resin Ta flowing in the cavity MC exceeds the driving force of the driving mechanism Ds, the upper die UM The inner surface adjacent to the cavity MC and the tip 16a of the movable block 16 move so as to be flush with each other. That is, the movable block 16 can change between a state in which the side flow path 15 of the cavity MC is narrowed down and a state in which the side flow path 15 is fully opened.
  • the flow rate of the resin Ta is reduced.
  • the chip 13 or the protruding electrode 12 that becomes the flow resistance of the molten resin Ta is mounted on the resin-sealed substrate Sa, the molten resin on the outer side of the cavity MC in which the chip 13 does not exist.
  • the flow velocity of Ta can be brought close to the flow velocity of the molten resin Ta on the inner side of the cavity MC in which the chip 13 is present.
  • the method for manufacturing the resin molded product includes a supply step of supplying the resin-sealed substrate Sa and the resin tablet T to the molding die C, a molding step of molding the molding die C, and a gate.
  • the cavity MC is filled with the molten resin Ta supplied from No. 23 to form a resin of the substrate Sa before resin encapsulation.
  • the molding module 3 resin-molds the resin-sealed substrate Sa from the loading of the resin-sealed substrate Sa into the molding module 3 to the carrying-out of the resin-sealed substrate Sb from the molding module 3.
  • the molding step includes a mold clamping step.
  • the control unit 6 controls the operation of the molding mold C and the mold clamping mechanism 35.
  • the control mode of the control unit 6 will be described mainly with reference to FIGS. 5 to 6.
  • the loader 41 is heated in advance in a state where the accommodation space of the resin tablet T is insulated. Further, the heaters 36 and 37 are energized in advance to heat the mold C (see also FIG. 2). Then, a plurality of resin-sealed substrates Sa taken out from the substrate supply mechanism 43 are placed on the loader 41. Further, the resin tablets T arranged by the resin supply mechanism 45 are accommodated in the accommodation space of the resin tablet T of the loader 41. Then, the loader 41 conveys the resin-sealed substrate Sa to the molding module 3, and places the resin-encapsulated substrate Sa on the substrate set portion of the lower LM with the side on which the semiconductor chip is mounted facing upward.
  • the resin tablet T is housed in the pot 21 (see FIG. 2, # 51 in FIG. 5).
  • the lower heater 36 built in the lower LM heats the resin tablet T to become the molten resin Ta.
  • a release film (not shown) is adsorbed on the mold surface below the upper mold UM.
  • the movable platen 34 is moved upward by the mold clamping mechanism 35 to move the lower mold LM relatively toward the upper mold UM, and the lower mold LM and the upper mold UM are brought into close contact with each other.
  • the control unit 6 sets the driving force of the driving mechanism Ds to Middle (for example, 1t), lowers the movable block 16, and narrows the side flow path 15 by the movable block 16 (almost the movable block 16 is downward). (In contact with the mold LM), air is discharged from the cavity MC through the air vent 26 (see FIGS. 3 to 4, # 52 in FIG. 5, and “cylinder driving force” in FIG. 6 at T0). ..
  • the control unit 6 operates the mold clamping mechanism 35 to raise the clamping force to a predetermined value (# 53 in FIG. 5, "clamping force" in FIG. 6 at the time points T0 to T1).
  • a predetermined value for increasing the clamping force can be preset as a clamping force for clamping the mold, and the clamping force can be measured by the load sensor Wa.
  • the clamping force in the present embodiment is held at a predetermined value until T7 in FIG. 6, which will be described later, but after being increased to less than the predetermined value at the time of T1 in FIG. 6, it is predetermined between T1 and T5 in FIG. You may raise it to the value.
  • control unit 6 raises and holds the driving force of the driving mechanism Ds from Middle to High (for example, 1.5t) (# 54 in FIG. 5, "cylinder driving force” in FIG. 6 at the time of T1). Further, the plunger 25 is moved upward by the electric motor Mb, and the molten resin Ta is circulated from the pot 21 to the gate 23 via the runner 22 (see FIG. 2, # 55 in FIG. 5, and “transfer position” in FIG. "At the time of T1 to T2). As a result, the molten resin Ta is supplied to the cavity MC.
  • the molten resin Ta supplied from the gate 23 flows from one side S of the cavity MC toward the other side E. Then, the molten resin Ta that has reached the chip existing region enters the narrow region between the substrate 11 and the chip 13 in the central region of the substrate 11, and the flow rate decreases.
  • the protruding electrode 12 between the chip 13 and the substrate 11 also blocks the flow of the molten resin Ta, so that the flow rate is reduced.
  • the flow rate of the molten resin Ta is reduced by narrowing the side flow path 15 with the movable block 16 for a predetermined time.
  • the flow velocity of the molten resin Ta approaches in the narrow region between the substrate 11 and the chip 13 and the side flow path 15, and the molten resin Ta that flows inside the cavity MC melts on the flow end side.
  • the leading portion of the resin Ta is substantially parallel to the other side E of the cavity MC. This prevents the molten resin Ta from wrapping around from the outer side to the inner side at the flow end (other side E) and surrounding the air.
  • the movable block 16 is raised by the force of the molten resin Ta flowing through the cavity MC while the driving force of the driving mechanism Ds is constant, so that the width between the substrate 11 and the chip 13 is narrow.
  • the air staying in the region flows in the direction of the side flow path 15 and is discharged to the outside from the narrow region between the substrate 11 and the chip 13.
  • the air between the substrate 11 and the chip 13 can be removed, voids are less likely to occur on the resin-sealed substrate Sb, and the molding accuracy can be improved.
  • the control unit 6 When the transfer force reaches the set value, the control unit 6 holds the transfer force and executes the cure for a predetermined time (at the time of "transfer force" T4 to T7 in FIG. 6).
  • This set value can be set in advance as the transfer force for starting the cure, and the transfer force can be measured by the load sensor Wb.
  • the control unit 6 reduces the driving force of the driving mechanism Ds from High to Low (for example, 0t) (# 57 in FIG. 5 and “# 57 in FIG. 6”. Cylinder driving force "at T5).
  • This first set time can be set in advance as the elapsed time (several seconds after the start of curing) after the transfer force reaches the set value.
  • the control unit 6 raises the driving force of the driving mechanism Ds from Low to Middle (for example, 1t) (# 58 in FIG. 5 and “Cylinder” in FIG. Driving force "at T6).
  • This second set time is longer than the first set time and is set in advance as the time (several seconds before) before the end of the cure, so that the set time is subtracted from the predetermined time for executing the cure.
  • the driving force of the driving mechanism Ds before the end of curing is set to Middle, but any driving force may be used as long as the resin-sealed substrate Sb is not chipped.
  • the control unit 6 moves the movable platen 34 downward by reducing the clamping force of the mold clamping mechanism 35 to open the mold C of the molding mold C (see FIG. 2 and FIG. 6 “clamping”). Power "at T7). Then, the resin-sealed substrate Sb is released from the cavity MC to complete the resin molding (# 59 in FIG. 5). In the present embodiment, since the driving force of the driving mechanism Ds is increased to Middle before the curing is completed, the descending movable block 16 can assist the release of the resin-sealed substrate Sb (FIG. 6). "Movable block position" T7 or later). The resin-sealed substrate Sb is accommodated in the substrate accommodating portion 46 by the unloader 42 (see also FIG. 1).
  • the chip 13 is mounted in the central region of the substrate 11, and a plurality of individual capacitors, coils, resistors, etc. are individually mounted in the lateral region of the substrate 11.
  • the passive component 14 is mounted.
  • a plurality of movable blocks 16A for narrowing the side flow path 15 will be installed at positions avoiding the individual passive components 14.
  • the size and arrangement of the movable block 16A are determined in consideration of the flow velocity of the molten resin Ta in the narrow region between the substrate 11 and the chip 13, the flow resistance of the individual passive component 14, the mounting area, and the like. .. That is, the size and arrangement of the movable block 16A may be determined by simulation so that the flow velocity of the molten resin Ta approaches in the narrow region between the substrate 11 and the chip 13 and the side flow path 15.
  • the chip 13 is mounted in the central region of the substrate 11, and a plurality of individual capacitors, coils, resistors, etc. are mounted on both sides of the chip 13. Passive components 14 are densely mounted.
  • the movable block 16B cannot be arranged in the lateral region of the chip 13, a pair of movable blocks 16B for narrowing the side flow path 15 are arranged on the gate 23 side of the lateral region of the substrate 11 with respect to the chip 13. ing.
  • the flow path of the molten resin Ta in the lateral region of the substrate 11 is narrowed between the gate 23 and the chip 13, and the flow velocity of the molten resin Ta on the outer side of the cavity MC in which the chip 13 does not exist is determined.
  • the flow velocity of the molten resin Ta in the narrow region between the substrate 11 and the chip 13 can be brought close to each other.
  • the size and arrangement are taken into consideration in consideration of the flow velocity of the molten resin Ta in the narrow region between the substrate 11 and the chip 13, the flow resistance of the individual passive component 14, the mounting area, and the like. Is determined.
  • a liquid may be used as the fluid of the drive mechanism Ds that drives the movable block 16.
  • the control mode in which the driving force of the driving mechanism Ds is changed by the control unit 6 is not limited to the above-described embodiment.
  • the control for reducing the driving force of the driving mechanism Ds after the start of curing may be omitted, or the control for increasing the driving force of the driving mechanism Ds before the end of curing may be omitted.
  • the movable blocks 16, 16A, 16B in the above-described embodiment are arranged only in the side flow path 15, but may be arranged adjacent to the gate 23 or the air vent 26 in the internal flow path of the cavity MC. good.
  • the molding module 3 may have a release film supply mechanism (not shown). This release film supply mechanism supplies the release film to the upper mold UM, and adsorbs the supplied release film to the mold surface of the upper mold UM. By adsorbing the release film on the mold surface of the upper mold UM, the mold release is facilitated, and it is possible to prevent the molten resin Ta from flowing into the gap for the movable block 16 to move in the upper mold UM.
  • the tip 16a of the movable block 16 may be provided with an uneven portion. In this case, when the movable block 16 is brought into close contact with the substrate 11, the side flow path 15 can be narrowed down by the uneven portion. Since the tip 16a and the uneven portion come into contact with the substrate 11, it is not necessary to precisely control the gap between the movable block 16 and the substrate 11.
  • the example in which the protruding electrodes 12 are arranged in a grid pattern is shown, but it may be arranged in a two-dimensional array, for example, even in a form in which two arrays are arranged. good.
  • the pot 21, the cavity block and the cal block may be provided in either the upper type UM or the lower type LM. Further, the gate 23 may be provided over the entire side S of the cavity MC, and the arrangement and quantity of the gate 23 are not particularly limited. Further, the object to be molded such as the resin-sealed substrate Sa may be fixed to the upper mold UM, and the cavity MC may be provided to the lower mold LM.
  • the object to be molded to be resin-sealed is not limited to the flip chip substrate, and may be any substrate on which the semiconductor chip is mounted. Further, the above-mentioned resin molding apparatus D may be used in order to manufacture a MAP (molded array packaging) in which a substrate on which a plurality of semiconductor chips are mounted is collectively resin-sealed.
  • MAP molded array packaging
  • the surface of the chip 13 is exposed and molded, but the surface of the chip 13 may be resin-sealed.
  • a movable block 16 that temporarily stops the flow of the molten resin Ta flowing on the upper surface of the chip 13 from the gate 23 toward the air vent 26 may be provided above the chip 13.
  • the characteristic configuration of the resin molding apparatus D is that the resin-sealed substrate Sa (molding target) in which the chip 13 is arranged is held on the substrate 11, and the molten resin Ta (resin material) is supplied from the gate 23.
  • a mold C having a cavity MC, a mold clamping mechanism 35 for molding the mold C, and a control unit 6 for controlling the operation of the molding mold C and the mold clamping mechanism 35 are provided, and the molding mold C is a chip. It includes a movable block 16 that narrows at least a part (side flow path 15) of the internal flow path of the cavity MC in which the 13 is not arranged, and a drive mechanism Ds that drives the movable block 16 by air (fluid).
  • the control unit 6 executes control to change the driving force of the driving mechanism Ds when the resin-sealed substrate Sa (molding object) is resin-molded.
  • a movable block 16 that narrows at least a part of the internal flow path of the cavity MC in which the chip 13 is not arranged is provided.
  • the flow rate of the molten resin Ta in the region where the chip 13 of the cavity MC does not exist can be brought close to the flow rate of the molten resin Ta in the region where the chip 13 of the cavity MC exists. This prevents the molten resin Ta from wrapping around from the region where the chip 13 of the cavity MC does not exist to the chip 13 side and surrounding the air.
  • the resin-sealed substrate Sa is resin-molded
  • the driving force of the driving mechanism Ds driven by air is changed.
  • the driving force of the driving mechanism Ds is changed according to the situation as compared with the case where the urging force of the movable block 16 is constant, so that the molding accuracy can be improved with a simple configuration.
  • the control unit 6 may increase the driving force of the driving mechanism Ds when the clamping force of the mold clamping mechanism 35 reaches a predetermined value.
  • the control unit 6 may reduce the driving force of the driving mechanism Ds after the start of curing.
  • the movable block 16 can be reliably moved out of the cavity MC.
  • the control unit may increase the driving force of the driving mechanism Ds before the end of curing.
  • the movable block 16 can assist the release of the resin-sealed substrate Sb.
  • the feature of the method for manufacturing a resin molded product is that the cavity MC is filled with the molten resin Ta (resin material) supplied from the gate 23, so that the chip 13 is arranged on the substrate 11 before resin encapsulation.
  • the molding step which includes a molding step of resin molding of Sa (molding object)
  • the movable block 16 is moved by the drive mechanism Ds driven by air (fluid), and the internal flow of the cavity MC in which the chip 13 is not arranged. At least a part of the path (side flow path 15) is narrowed down, and the resin molding of the resin-sealed substrate Sa (molding target) is performed while changing the driving force by the driving mechanism Ds.
  • the flow rate of the molten resin Ta in the region where the chip 13 of the cavity MC does not exist can be brought close to the flow rate of the molten resin Ta in the region where the chip 13 of the cavity MC exists. This prevents the molten resin Ta from wrapping around from the region where the chip 13 of the cavity MC does not exist to the chip 13 side and surrounding the air.
  • the driving force of the driving mechanism Ds driven by air is changed. Thereby, for example, as compared with the case where the urging force of the movable block 16 is made constant, the driving force of the driving mechanism Ds is changed according to the situation, so that the molding accuracy can be improved.
  • This disclosure can be used for a resin molding apparatus and a method for manufacturing a resin molded product.
  • it is effective in the case of a thick package having a sealing resin thickness of 1 mm or more, or in an in-vehicle package, and is effective in mold underfilling a flip-chip substrate having a distance between the substrate and the chip of 100 ⁇ m or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

簡便な構成で成形精度を向上させる樹脂成形装置及び樹脂成形品の製造方法を提供する。基板11上にチップ13が配置された成形対象物を保持し、ゲートから樹脂材料Taが供給されるキャビティMCを有する成形型Cと、成形型Cを型締めする型締め機構と、成形型C及び型締め機構の作動を制御する制御部6と、を備え、成形型Cは、チップ13が配置されていないキャビティMCの内部流路の少なくとも一部を絞る可動ブロック16と、可動ブロック16を流体により駆動させる駆動機構Dsと、を含んでおり、制御部6は、成形対象物を樹脂成形するとき、駆動機構Dsの駆動力を変化させる制御を実行する。

Description

樹脂成形装置及び樹脂成形品の製造方法
 本開示は、樹脂成形装置及び樹脂成形品の製造方法に関する。
 チップが実装された基板等は、一般的に樹脂封止することにより電子部品として用いられる。従来、基板等を樹脂封止するための樹脂成形装置として、BGA(ball grid array)等の基板を樹脂封止して半導体パッケージを製造するトランスファ成形用の樹脂成形装置が知られている(例えば、特許文献1参照)。
 特許文献1に記載の樹脂成形装置を用いた樹脂成形品の製造方法は、基板が存在しないキャビティの内部流路の略全域に設けられた上型キャビティ駒の端面が基板のチップ接続面と面一となるように、上型キャビティ駒を圧縮コイルばねの付勢力により移動させてからキャビティに溶融樹脂を供給するものである。このとき、上型キャビティ駒の端面に作用する溶融樹脂からの力が上型キャビティ駒を付勢する圧縮コイルばねの付勢力を上回ることにより、上型キャビティ駒が次第に上昇する。次いで、上型キャビティ駒を固定した状態で下型を上昇させ、キャビティ容積を縮小させてキャビティへの溶融樹脂の充填を完了するものである。
特開2019-181872号公報
 しかしながら、特許文献1に記載の樹脂成形装置は、付勢力が予め設定された圧縮コイルばねにより上型キャビティ駒を所定位置まで移動させることから、製品の種類に応じて付勢力の異なるコイルばねを用意することを必要とする場合があり、効率的ではない。また、圧縮コイルばねの付勢力が大きい場合、型開き時に成形樹脂に負荷がかかり、樹脂成形品に欠けが生じるおそれがある。
 そこで、簡便な構成で成形精度を向上させる樹脂成形装置及び樹脂成形品の製造方法が望まれている。
 本開示に係る樹脂成形装置の特徴構成は、基板上にチップが配置された成形対象物を保持し、樹脂材料が供給されるキャビティを有する成形型と、前記成形型を型締めする型締め機構と、前記成形型及び前記型締め機構の作動を制御する制御部と、を備え、前記成形型は、前記チップが配置されていない前記キャビティの内部流路の少なくとも一部を絞る可動ブロックと、当該可動ブロックを流体により駆動させる駆動機構と、を含んでおり、前記制御部は、前記成形対象物を樹脂成形するとき、前記駆動機構の駆動力を変化させる制御を実行する点にある。
 本開示に係る樹脂成形品の製造方法の特徴は、ゲートから供給された樹脂材料をキャビティに充填させることにより、基板上にチップが配置された成形対象物の樹脂成形を行う成形工程を含み、前記成形工程では、流体により駆動させる駆動機構により可動ブロックを移動させて前記チップが配置されていない前記キャビティの内部流路の少なくとも一部を絞り、前記駆動機構による駆動力を変化させながら前記成形対象物の樹脂成形を行う点にある。
 本開示によれば、簡便な構成で成形精度を向上させる樹脂成形装置及び樹脂成形品の製造方法を提供することができる。
は、樹脂成形装置を示す模式図である。 は、成形モジュールの概略図である。 は、成形型の概略平面図である。 は、図3のIV-IV線概略断面図である。 は、樹脂成形時の制御フロー図である。 は、樹脂成形時の可動ブロックの作動を説明する図である。 は、別実施形態1に係る成形型の概略平面図である。 は、別実施形態2に係る成形型の概略平面図である。
 以下に、本開示に係る樹脂成形装置及び樹脂成形品の製造方法の実施形態について、図面に基づいて説明する。ただし、以下の実施形態に限定されることなく、その要旨を逸脱しない範囲内で種々の変形が可能である。
[装置構成]
 半導体チップ(以下、単に「チップ」と称する場合がある)が実装された基板等の成形対象物は樹脂封止することにより電子部品として用いられる。この電子部品は、例えば、携帯通信端末用の高周波モジュール基板、電力制御用モジュール基板、機器制御用基板等として用いられる。成形対象物を樹脂封止する技術の一つとして、BGA(ball grid array)基板等を樹脂封止して半導体パッケージを製造するトランスファ方式がある。このトランスファ方式は、チップが実装された基板等を成形型のキャビティに収容し、成形型のポットに粉粒体状樹脂を固めた樹脂タブレットを供給して加熱,溶融した後、該成形型を型締めした状態で樹脂タブレットが溶融した溶融樹脂をキャビティに供給して硬化させ、型開きして樹脂成形品を製造する方式である。
 従来のトランスファ方式は、樹脂成形品にボイド(気泡)が発生すると成形不良の原因となることから、成形型にエアベントを設けて、ボイドを防止するために基板やチップの形状等に応じてエアベント等の位置を最適なものに設計する必要がある。また、最適なエアベントを設けたとしても、チップや抵抗、コンデンサなどが存在しない基板の領域の方が、チップ等が存在する領域に比べて溶融樹脂の流動速度が相対的に大きくなり、この速度差に起因して、側方領域からチップ存在領域に溶融樹脂が回り込んで空気(溶融樹脂から発生するガスを含む)を取り囲むため、ボイドが発生し易い。特に、基板に突起状電極を介してチップを有するフリップチップ基板をモールドアンダーフィルする場合、基板とチップとの間の幅狭領域において溶融樹脂の流動速度が小さくなるため、チップが存在しない領域から幅狭領域に溶融樹脂が回り込んでボイドが発生し易い。その結果、樹脂成形品の成形不良が発生するといった問題があった。
 そこで、本実施形態では、簡便な構成で成形精度を向上させる樹脂成形装置D及び樹脂成形品の製造方法を提供する。以下において、平面視矩形状のフリップチップ基板を成形対象物の一例として説明し、重力方向を下、重力方向とは反対方向を上として説明することがある。
 図1には、樹脂成形装置Dの模式図が示されている。本実施形態における樹脂成形装置Dは、成形モジュール3と供給モジュール4と制御部6と搬送機構とを備えている。成形モジュール3は、成形対象物を粉粒体状樹脂又は液状樹脂で樹脂封止するための成形型Cを含んでいる。制御部6は、樹脂成形装置Dの作動を制御するソフトウェアとして、HDDやメモリ等のハードウェアに記憶されたプログラムを含んでおり、コンピュータのASIC,FPGA,CPU又は他のハードウェアを含むプロセッサにより実行される。つまり、制御部6は、図5に示すフローチャート(プログラム)等を実行するプロセッサを備えている。 
 なお、粉粒体状樹脂は、粉粒体状の樹脂だけでなく、粉粒体状の樹脂を押し固めた固形樹脂で形成される樹脂タブレットを含んでおり、いずれも加熱により溶融して液状となる溶融樹脂となる。この粉粒体状樹脂は、熱可塑性樹脂でも熱硬化性樹脂でも良い。熱硬化性樹脂は、加熱すると粘度が低下し、さらに加熱すると重合して硬化し、硬化樹脂となる。本実施形態における粉粒体状樹脂は、取扱いの容易性から固形樹脂で形成される樹脂タブレットが好ましく、さらに、チップと基板との間に溶融樹脂を確実に充填するために、微粒子化したフィラーを含む高流動性の熱硬化性樹脂であることが好ましい。
 成形モジュール3は、樹脂封止前基板Sa(成形対象物の一例)を樹脂封止して樹脂封止済基板Sb(樹脂成形品の一例)を成形する。この成形モジュール3は、複数(本実施形態では3つ)設けられており、夫々の成形モジュール3を独立して装着又は取り外しできる。成形モジュール3の詳細は後述する。
 供給モジュール4は、基板供給機構43と基板整列機構44と樹脂供給機構45と基板収容部46とを含み、搬送機構に含まれるローダ41とアンローダ42の待機位置になる。基板供給機構43は、ストックしている樹脂封止前基板Saを基板整列機構44に受け渡す。樹脂封止前基板Saには、1つの半導体チップが、又は複数個の半導体チップが縦方向及び/又は横方向に整列して、実装されている。基板整列機構44は、基板供給機構43から受け渡された樹脂封止前基板Saを搬送に適した状態にする。樹脂供給機構45は、樹脂タブレットTをストックしており、樹脂タブレットTを搬送に適した状態に配置する。
 搬送機構は、樹脂封止前の半導体チップが実装された樹脂封止前基板Saや樹脂タブレットTを搬送するローダ41と、樹脂封止後の樹脂封止済基板Sbを搬送するアンローダ42とを含んでいる。ローダ41は、基板整列機構44から複数(本実施形態では4個)の樹脂封止前基板Saを受け取り、また、樹脂供給機構45から複数(本実施形態では6個)の樹脂タブレットTを受け取って、レール上を供給モジュール4から各成形モジュール3まで移動し、各成形モジュール3に樹脂封止前基板Saと樹脂タブレットTを受け渡すことができる。アンローダ42は、樹脂封止済基板Sbを成形モジュール3から取り出して、レール上を各成形モジュール3から基板収容部46まで移動し、基板収容部46に樹脂封止済基板Sbを収容することができる。樹脂封止済基板Sbでは、半導体チップが、溶融樹脂が固化した硬化樹脂により封止されている。
 以下、成形モジュール3について詳述する。
 図2に示すように、成形モジュール3は、平面視矩形状の下部固定盤31の四隅にタイバー32が立設されており、タイバー32の上端付近には平面視矩形状の上部固定盤33が設けられている。下部固定盤31と上部固定盤33の間には平面視矩形状の可動プラテン34が設けられている。可動プラテン34は、四隅にタイバー32が貫通する孔が設けられており、タイバー32に沿って上下に移動可能である。下部固定盤31の上には、可動プラテン34を上下に移動させる装置である型締め機構35が設けられている。この型締め機構35は、駆動源としてサーボモータ等で構成される電動モータMaと、成形型Cの型締め力(以下、「クランプ力」と称する)を計測するためのひずみゲージやロードセル等で構成される荷重センサWaとを含んでいる。型締め機構35は、可動プラテン34を上方に移動させることにより成形型Cの型締めを行い、可動プラテン34を下方に移動させることにより成形型Cの型開きを行うことができる。
 成形型Cは、下型LMと上型UMとを有する。下型LM及び上型UMは、互いに対向して配置される金型等で構成されている。
 下型LMには、樹脂封止前基板Saを、半導体チップ等が実装されている面を上にして載置する基板セット部が形成されている。また、下型LMには、樹脂封止前基板Sa及び樹脂タブレットTを加熱する下側ヒータ36が内蔵されている。さらに、下型LMには、樹脂タブレットT(加熱により溶融する樹脂)が充填される円筒状のポット21が焼き嵌め等により固定されている。ポット21の円柱状の空間の下方には、サーボモータ等の電動モータMbにより駆動されるプランジャ25が上下移動可能に内挿されている。また、下型LMは、プランジャ25が溶融樹脂Ta(樹脂材料の一例)を押し出す力(以下、「トランスファ力」と称する)を計測するためのひずみゲージやロードセル等で構成される荷重センサWbを有している。
 上型UMには、溶融樹脂Taが供給される平面視矩形状のキャビティMCが形成されており、このキャビティMCを加熱する上側ヒータ37が内蔵されている。上型UMは、キャビティMCが形成されたキャビティブロックと、ポット21からキャビティMCに向けて溶融樹脂Taを流動させるランナ22を有するカルブロックとを含み、キャビティブロックにはキャビティMCから空気を排出するエアベント26が設けられている。キャビティブロックとカルブロックは別部材として上型UMに固定されている。カルブロックには、溶融樹脂Taがランナ22からキャビティMCへ流入する入り口であるゲート23が設けられている。なお、キャビティブロックとカルブロックとを一体部材として構成しても良い。また、エアベント26は、キャビティブロックとは別体のエアベントブロックとして構成しても良い。
 図3~図4を用いて成形型Cを詳述する。図3には、上方から見たキャビティMCの概略平面図が示されている。図4は、図3の紙面に垂直な方向(上下方向)でのIV-IV線概略断面図である。なお、本実施形態では、チップ13の表面を露出成形する場合について記載しているが(図4参照)、チップ13の表面を樹脂封止する場合であっても良い。
 図3に示すように、ゲート23は、キャビティMCの一辺Sの中央部分に設けられており、このゲート23を介して、上述したポット21からランナ22へと流動する溶融樹脂TaがキャビティMCに供給される。キャビティMCの一辺Sに対向する他辺Eには、エアベント26が設けられており、このエアベント26を介してキャビティMCから空気を排出することができる。図3~図4に示すように、本実施形態における樹脂封止前基板Saは、基板11上で二次元アレイ状に配置された複数の突起状電極12にチップ13が電気的に接続された基板(フリップチップ基板)で構成されている。突起状電極12及びチップ13は、平面視において、基板11の中央領域に実装されており、基板11の中央領域がチップ存在領域となっており、基板11の中央領域を囲む周辺領域がチップ不存在領域となっている。チップ13は、半導体上に多数の電子素子や配線を実装したICチップ等で構成されている。
 このようなフリップチップ基板では、ゲート23から供給された溶融樹脂Taは、キャビティMCの一辺S(流動始端)から他辺E(流動終端)に向けて流動する。このとき、チップ13が配置されていない基板11の側方領域(キャビティMCの一辺Sから他辺Eまでを接続する両側辺に沿った領域)では、チップ13が存在するチップ存在領域(基板11の中央領域)に比べて溶融樹脂Taの流動速度が相対的に大きくなり、この速度差に起因して、側方領域からチップ存在領域に溶融樹脂Taが回り込んで空気(溶融樹脂Taから発生するガスを含む)を取り囲むため、ボイドが発生し易い。特に、基板11に突起状電極12を介してチップ13を有するフリップチップ基板の場合、基板11とチップ13との間の幅狭領域(突起状電極12が存在する領域)において、チップ13が存在しない側方領域より溶融樹脂Taの流動速度が相対的に小さくなるため、側方領域から幅狭領域に溶融樹脂Taが回り込んでボイドが発生し易い。
 そこで、本実施形態の成形型C(上型UM)は、キャビティMCの一辺S及び他辺Eと交わる両側辺の側にキャビティMCの内部を流動する溶融樹脂Taの側方流路15(キャビティMCの内部流路の少なくとも一部の一例)を絞る可動ブロック16と、可動ブロック16をエア(流体の一例)により駆動させるエアシリンダ等で構成される駆動機構Dsと、可動ブロック16を上方向に付勢する圧縮スプリングSpとを含んでいる。本実施形態における可動ブロック16は、上型UMに上下移動自在に備えられており、キャビティMCの一対の側方流路15におけるチップ13と対向する領域に設けられている。この可動ブロック16は、溶融樹脂Taの供給開始から所定時間、側方流路15を絞る(側方流路15の流路断面積を小さくする)ことにより、側方流路15を流動する溶融樹脂Taの流量を低下させる。本実施形態における可動ブロック16は直方体で、可動ブロック16の幅W2は、側方流路15の幅W1(すなわちチップ13の側辺からキャビティMCの壁面までの最小幅)の約90%である。側方流路15の幅W1の幅に対する可動ブロック16の幅W2の割合は、溶融樹脂Taの粘度やチップ13と基板11の隙間のサイズ、突起状電極12の大きさと数などを考慮して適宜設定すれば良いが、約50%以上であることが好ましい。側面視において、基板11とチップ13との間の幅狭領域(基板11とチップ13との間の間隙領域)がある高さに夫々の可動ブロック16の先端16a(下側の端面)が位置することにより、側方流路15を絞った状態にする。換言すると、可動ブロック16は、側方流路15を絞った状態において、側面視で基板11とチップ13との間の幅狭領域に先端16aが重なっている。
 この可動ブロック16は、駆動機構Dsの駆動力(以下、「シリンダ駆動力」と称する)によりキャビティMC内に挿入され、駆動機構Dsの駆動力をゼロにすることで圧縮スプリングSpの付勢力により、上型UMのキャビティMCに隣接する内面と可動ブロック16の先端16a(下側の端面)とが面一となるようにキャビティMC内から抜去することが可能となっている。また、可動ブロック16は、圧縮スプリングSpの付勢力とキャビティMCを流動する溶融樹脂Taから可動ブロック16に作用する力との合計が、駆動機構Dsの駆動力よりも上回ったとき、上型UMのキャビティMCに隣接する内面と可動ブロック16の先端16aとが面一となるように移動する。つまり、可動ブロック16は、キャビティMCの側方流路15を絞った状態と、側方流路15を全開にした状態との間で変化することができる。
 このように、キャビティMCの一辺S及び他辺Eと交わる両側辺の側でキャビティMCの内部に流動する溶融樹脂Taの側方流路15を絞る可動ブロック16により、側方流路15における溶融樹脂Taの流量を低下させる。その結果、溶融樹脂Taの流動抵抗となるチップ13や突起状電極12が樹脂封止前基板Saに実装されている場合であっても、チップ13が存在しないキャビティMCの外方側における溶融樹脂Taの流動速度と、チップ13が存在するキャビティMCの内方側における溶融樹脂Taの流動速度とを近付けることができる。これにより、キャビティMCの内部を流動する溶融樹脂Taの流動終端(他辺E)において、キャビティMCの外方側とキャビティMCの内方側とにおける溶融樹脂Taの先頭部分が近付き、外方側から内方側に溶融樹脂Taが回り込んで空気を取り囲むことが防止される。よって、樹脂封止済基板Sb(樹脂成形品)にボイドが発生し難く、成形精度を向上させることができる。
[樹脂成形品の製造方法及び樹脂成形の制御形態]
 図1~図6を用いて樹脂成形品の製造方法について説明する。樹脂成形品(樹脂封止済基板Sb)の製造方法は、樹脂封止前基板Sa及び樹脂タブレットTを成形型Cに供給する供給工程と、成形型Cを型締めする型締工程と、ゲート23から供給された溶融樹脂TaをキャビティMCに充填させることにより、樹脂封止前基板Saの樹脂成形を行う成形工程とを含んでいる。この成形工程は、樹脂封止前基板Saの成形モジュール3への搬入から樹脂封止済基板Sbの成形モジュール3からの搬出までの間において、成形モジュール3が樹脂封止前基板Saを樹脂成形する工程であり、当該成形工程には、型締工程が含まれている。成形工程において、制御部6は、成形型C及び型締め機構35の作動を制御する。以下、制御部6の制御形態については、主に図5~図6を用いて説明する。
 図1に示すように、予め、ローダ41を、樹脂タブレットTの収容空間を断熱した状態で加熱しておく。また、予めヒータ36,37に通電して、成形型Cを加熱しておく(図2も参照)。そして、基板供給機構43から取り出した複数の樹脂封止前基板Saをローダ41に載置する。また、樹脂供給機構45により整列された樹脂タブレットTを、ローダ41の樹脂タブレットTの収容空間に収容する。そして、ローダ41は、樹脂封止前基板Saを成形モジュール3まで搬送し、樹脂封止前基板Saを、半導体チップが実装された側を上方に向けて下型LMの基板セット部に載置すると共に、樹脂タブレットTをポット21内に収容する(図2参照、図5の♯51)。樹脂タブレットTをポット21内に収容することにより、下型LMに内蔵された下側ヒータ36が樹脂タブレットTを加熱して、溶融樹脂Taとなる。なお、後述する型締め機構35による可動プラテン34の上昇前に、上型UMの下方の型面に不図示の離型フィルムを吸着させた状態としておく。
 次いで、図2に示すように、型締め機構35により可動プラテン34を上方に移動させて下型LMを上型UMの方向に相対的に移動させ、下型LMと上型UMとを密着させる。次いで、制御部6は、駆動機構Dsの駆動力をMiddle(例えば1t)に設定して可動ブロック16を下降させ、可動ブロック16により側方流路15を絞った状態(ほぼ可動ブロック16が下型LMに当接した状態)にしておくと共に、エアベント26を介してキャビティMCから空気を排出する(図3~図4参照、図5の♯52、図6の「シリンダ駆動力」T0時点)。そして、制御部6は、型締め機構35を作動させてクランプ力を所定値まで上昇させる(図5の♯53、図6の「クランプ力」T0~T1時点)。本実施形態では、成形型Cの型締めを開始する前(図6のT0~T1時点)、駆動機構Dsの駆動力を比較的小さい力に設定しているため、可動ブロック16による成形型Cの変形を防止することができる。また、クランプ力を上昇させる所定値は、型締めをするクランプ力として予め設定することができ、クランプ力は荷重センサWaで計測することができる。なお、本実施形態におけるクランプ力は、後述する図6のT7まで所定値で保持するが、図6のT1の時点で所定値未満まで上昇させた後、図6のT1~T5の間で所定値まで上昇させても良い。
 次いで、制御部6は、駆動機構Dsの駆動力をMiddleからHigh(例えば1.5t)に上昇させて保持する(図5の♯54、図6の「シリンダ駆動力」T1時点)。また、電動モータMbによりプランジャ25を上方に移動させて、溶融樹脂Taを、ポット21からランナ22を介してゲート23へ流通させる(図2参照、図5の♯55、図6の「トランスファ位置」T1~T2時点)。その結果、溶融樹脂TaがキャビティMCに供給される。
 図3に示すように、ゲート23から供給された溶融樹脂Taは、キャビティMCの一辺Sから他辺Eに向けて流動する。そして、チップ存在領域に到達した溶融樹脂Taは、基板11の中央領域において基板11とチップ13との間の幅狭領域に入り込んで流量が低下する。チップ13と基板11との間の突起状電極12も溶融樹脂Taの流れを塞ぐため、流量を低下させる。このとき、基板11の側方領域において、所定時間、可動ブロック16により側方流路15を絞ることにより溶融樹脂Taの流量を低下させる。その結果、基板11とチップ13との間の幅狭領域と側方流路15とにおいて、溶融樹脂Taの流動速度が近付いて、キャビティMCの内部を流動する溶融樹脂Taの流動終端側では溶融樹脂Taの先頭部分がキャビティMCの他辺Eに略平行になる。これにより、流動終端(他辺E)において外方側から内方側に溶融樹脂Taが回り込んで、空気を取り囲むことが防止される。
 次いで、キャビティMCに溶融樹脂Taが充填されると、プランジャ25の上方移動に伴って、プランジャ25が溶融樹脂Taを押し出す力が上昇する(図6の「トランスファ力」T2~T4時点)。そして、圧縮スプリングSpの付勢力とキャビティMCを流動する溶融樹脂Taから可動ブロック16に作用する力との合計が、駆動機構Dsの駆動力よりも上回ったとき、可動ブロック16の先端16aが上型UMのキャビティMCに隣接する内面と面一となるまで、可動ブロック16が自然と上昇する(図5の♯56、図6の「可動ブロック位置」T3時点)。本実施形態では、駆動機構Dsの駆動力を一定にした状態で、キャビティMCを流動する溶融樹脂Taの力によって可動ブロック16を上昇させているため、基板11とチップ13との間の幅狭領域に滞留している空気は、側方流路15の方向に流動して、基板11とチップ13との間の幅狭領域より外部に排出される。これにより、基板11とチップ13との間にある空気を除去することが可能となり、樹脂封止済基板Sbにボイドが発生し難く、成形精度を向上させることができる。
 トランスファ力が設定値に達すると、制御部6は、トランスファ力を保持して、所定時間、キュアを実行する(図6の「トランスファ力」T4~T7時点)。この設定値は、キュアを開始するトランスファ力として予め設定することができ、トランスファ力は荷重センサWbで計測することができる。キュアを開始してから、第一設定時間を経過したとき、制御部6は、駆動機構Dsの駆動力をHighからLow(例えば、0t)に低下させる(図5の♯57,図6の「シリンダ駆動力」T5時点)。この第一設定時間は、トランスファ力が設定値に達してからの経過時間(キュア開始してから数秒後)として予め設定することができる。駆動機構Dsの駆動力をLow(例えば、0t)に低下させることにより、仮に可動ブロック16がキャビティMCを流動する溶融樹脂Taの力によって上昇していなかったとしても、圧縮スプリングSpの付勢力により、確実に上昇させることができる。
 キュアを開始してから、第二設定時間を経過したとき、制御部6は、駆動機構Dsの駆動力をLowからMiddle(例えば1t)に上昇させる(図5の♯58,図6の「シリンダ駆動力」T6時点)。この第二設定時間は、第一設定時間より長く、キュアを終了する前の時間(数秒前)として予め設定することにより、キュアを実行する所定時間から設定された時間を減算したものである。なお、本実施形態では、キュア終了前の駆動機構Dsの駆動力をMiddleに設定しているが、樹脂封止済基板Sbに欠けが生じない駆動力であれば良い。
 キュアを終了した後、制御部6は、型締め機構35のクランプ力を低下させることにより可動プラテン34を下方に移動させて成形型Cの型開きを行う(図2参照、図6の「クランプ力」T7時点)。そして、樹脂封止済基板SbをキャビティMCから離型させて、樹脂成形を終了する(図5の♯59)。本実施形態では、キュアを終了する前に駆動機構Dsの駆動力をMiddleに上昇させているので、下降する可動ブロック16により樹脂封止済基板Sbの離型をアシストすることができる(図6の「可動ブロック位置」T7以降)。この樹脂封止済基板Sbをアンローダ42により基板収容部46に収容する(図1も参照)。
[別実施形態]
 以下、上述した実施形態と同様の部材については、理解を容易にするため、同一の用語、符号を用いて説明する。
<1>図7に示すように、本実施形態における成形対象物は、基板11の中央領域にチップ13が実装されており、基板11の側方領域にコンデンサ、コイル、抵抗等の複数の個別受動部品14が実装されている。この場合、側方流路15を絞る複数の可動ブロック16Aが、個別受動部品14を回避する位置に設置されることとなる。この可動ブロック16Aは、基板11とチップ13との間の幅狭領域における溶融樹脂Taの流動速度と、個別受動部品14の流動抵抗や実装面積等を加味して、サイズや配置が決定される。つまり、シミュレーションにより、基板11とチップ13との間の幅狭領域と側方流路15とにおいて、溶融樹脂Taの流動速度が近付くように、可動ブロック16Aのサイズや配置を決定すれば良い。
<2>図8に示すように、本実施形態における成形対象物は、基板11の中央領域にチップ13が実装されており、チップ13の両側方全域にコンデンサ、コイル、抵抗等の複数の個別受動部品14が密集して実装されている。この場合、チップ13の側方領域に可動ブロック16Bを配置できないため、側方流路15を絞る一対の可動ブロック16Bが、基板11の側方領域のうちチップ13よりもゲート23側に配置されている。その結果、ゲート23からチップ13までの間で、基板11の側方領域における溶融樹脂Taの流路が絞られ、チップ13が存在しないキャビティMCの外方側における溶融樹脂Taの流動速度と、基板11とチップ13との間の幅狭領域における溶融樹脂Taの流動速度とを、近付けることができる。本実施形態における可動ブロック16Bにおいても、基板11とチップ13との間の幅狭領域における溶融樹脂Taの流動速度と、個別受動部品14の流動抵抗や実装面積等を加味して、サイズや配置が決定される。
<3>可動ブロック16を駆動させる駆動機構Dsの流体は、液体を用いても良い。また、制御部6により駆動機構Dsの駆動力を変化させる制御形態は、上述した実施形態に限定されない。例えば、キュア開始後の駆動機構Dsの駆動力を低下させる制御を省略したり、キュア終了前の駆動機構Dsの駆動力を上昇させる制御を省略したりしても良い。
<4>上述した実施形態における可動ブロック16,16A,16Bは、側方流路15のみに配置したが、キャビティMCの内部流路のうち、ゲート23又はエアベント26に隣接して配置しても良い。
<5>成形モジュール3は、離型フィルム供給機構(不図示)を有していても良い。この離型フィルム供給機構は、離型フィルムを上型UMに供給し、供給された離型フィルムを上型UMの型面に吸着させる。離型フィルムを上型UMの型面に吸着させることにより、離型が容易となり、上型UMにおいて可動ブロック16が移動するための隙間に溶融樹脂Taが流入することを防止できる。
<6>可動ブロック16の先端16aに凹凸部位を施しても良い。この場合、可動ブロック16を基板11に密着させたとき、凹凸部位により側方流路15を絞ることができる。先端16aや凹凸部位が基板11に当接するので、可動ブロック16と基板11との間の間隙を精緻に制御する必要がない。
<7>上記実施形態では、突起状電極12は格子状に配置されている例を示したが、二次元アレイ状に配置されていればよく、例えば、2本のアレイが配置された形態でも良い。
<8>ポット21、キャビティブロック及びカルブロックは、上型UM又は下型LMの何れに設けても良い。また、ゲート23をキャビティMCの一辺S全域に亘って設けても良く、ゲート23の配置や数量は特に限定されない。また、樹脂封止前基板Sa等の成形対象物を上型UMに固定し、キャビティMCを下型LMに設けても良い。
<9>樹脂封止される成形対象物はフリップチップ基板に限定されず、半導体チップが実装された基板であればどのようなものであっても良い。また、複数の半導体チップが実装された基板を一括して樹脂封止するMAP(molded array packaging)を製造するために、上述した樹脂成形装置Dを用いても良い。
<10>上述した実施形態では、チップ13の表面を露出成形する形態で説明したが、チップ13の表面を樹脂封止する形態であっても良い。この場合、ゲート23からエアベント26に向けてチップ13の上面を流れる溶融樹脂Taの流れを一時的に止める可動ブロック16が、チップ13の上方に備えられていても良い。
[上記実施形態の概要]
 以下、上述の実施形態において説明した樹脂成形装置D及び樹脂成形品の製造方法の概要について説明する。
(1)樹脂成形装置Dの特徴構成は、基板11上にチップ13が配置された樹脂封止前基板Sa(成形対象物)を保持し、ゲート23から溶融樹脂Ta(樹脂材料)が供給されるキャビティMCを有する成形型Cと、成形型Cを型締めする型締め機構35と、成形型C及び型締め機構35の作動を制御する制御部6と、を備え、成形型Cは、チップ13が配置されていないキャビティMCの内部流路の少なくとも一部(側方流路15)を絞る可動ブロック16と、可動ブロック16をエア(流体)により駆動させる駆動機構Dsと、を含んでおり、制御部6は、樹脂封止前基板Sa(成形対象物)を樹脂成形するとき、駆動機構Dsの駆動力を変化させる制御を実行する。
 本構成では、チップ13が配置されていないキャビティMCの内部流路の少なくとも一部を絞る可動ブロック16を設けている。その結果、キャビティMCのチップ13が存在しない領域における溶融樹脂Taの流動速度と、キャビティMCのチップ13が存在する領域における溶融樹脂Taの流動速度とを近付けることができる。これにより、キャビティMCのチップ13が存在しない領域からチップ13側に溶融樹脂Taが回り込んで空気を取り囲むことが防止される。さらに、本構成では、樹脂封止前基板Sa(成形対象物)を樹脂成形するとき、エアにより駆動させる駆動機構Dsの駆動力を変化させる。これにより、例えば、可動ブロック16の付勢力を一定にする場合に比べて、状況に応じて駆動機構Dsの駆動力を変化させるため、簡便な構成で成形精度を向上させることができる。
(2)制御部6は、型締め機構35のクランプ力が所定値に達したとき、駆動機構Dsの駆動力を上昇させても良い。
 本構成のように、型締め機構35のクランプ力が所定値に達したとき、駆動機構Dsの駆動力を上昇させれば、型締め前に可動ブロック16が成形型Cに強く当接して、成形型Cが変形するといった不都合を防止することができる。
(3)制御部6は、キュア開始後に、駆動機構Dsの駆動力を低下させても良い。
 本構成のように、キュア開始後に駆動機構Dsの駆動力を低下させれば、可動ブロック16をキャビティMC外に確実に移動させることができる。
(4)前記制御部は、キュア終了前に、駆動機構Dsの駆動力を上昇させても良い。
 本構成では、キュア終了前に駆動機構Dsの駆動力を上昇させているので、可動ブロック16が樹脂封止済基板Sbの離型をアシストすることができる。
(5)樹脂成形品の製造方法の特徴は、ゲート23から供給された溶融樹脂Ta(樹脂材料)をキャビティMCに充填させることにより、基板11上にチップ13が配置された樹脂封止前基板Sa(成形対象物)の樹脂成形を行う成形工程を含み、成形工程では、エア(流体)により駆動させる駆動機構Dsにより可動ブロック16を移動させてチップ13が配置されていないキャビティMCの内部流路の少なくとも一部(側方流路15)を絞り、駆動機構Dsによる駆動力を変化させながら樹脂封止前基板Sa(成形対象物)の樹脂成形を行う点にある。
 本方法では、成形工程において、キャビティMCのチップ13が存在しない領域における溶融樹脂Taの流動速度と、キャビティMCのチップ13が存在する領域における溶融樹脂Taの流動速度とを近付けることができる。これにより、キャビティMCのチップ13が存在しない領域からチップ13側に溶融樹脂Taが回り込んで空気を取り囲むことが防止される。さらに、本方法では、樹脂封止前基板Saを樹脂成形するとき、エアにより駆動させる駆動機構Dsの駆動力を変化させる。これにより、例えば、可動ブロック16の付勢力を一定にする場合に比べて、状況に応じて駆動機構Dsの駆動力を変化させるため、成形精度を向上させることができる。
 なお、上述した実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能である。また、本明細書において開示された実施形態は例示であって、本開示の実施形態はこれに限定されず、本開示の目的を逸脱しない範囲内で適宜改変することが可能である。
 本開示は、樹脂成形装置及び樹脂成形品の製造方法に利用可能である。特に、封止樹脂の厚さが1mm以上の厚物パッケージの場合や、車載用パッケージにおいて有効であり、基板とチップの間が100μm以下のフリップチップ基板をモールドアンダーフィルする場合に有効である。
11  :基板
13  :チップ
15  :側方流路(キャビティの内部流路の少なくとも一部)
16  :可動ブロック
23  :ゲート
35  :型締め機構
C   :成形型
D   :樹脂成形装置
MC  :キャビティ
Sa  :樹脂封止前基板(成形対象物)
Sb  :樹脂封止済基板(樹脂成形品)
Ta  :溶融樹脂(樹脂材料)
 

Claims (5)

  1.  基板上にチップが配置された成形対象物を保持し、ゲートから樹脂材料が供給されるキャビティを有する成形型と、
     前記成形型を型締めする型締め機構と、
     前記成形型及び前記型締め機構の作動を制御する制御部と、を備え、
     前記成形型は、前記チップが配置されていない前記キャビティの内部流路の少なくとも一部を絞る可動ブロックと、当該可動ブロックを流体により駆動させる駆動機構と、を含んでおり、
     前記制御部は、前記成形対象物を樹脂成形するとき、前記駆動機構の駆動力を変化させる制御を実行する樹脂成形装置。
  2.  前記制御部は、前記型締め機構のクランプ力が所定値に達したとき、前記駆動機構の駆動力を上昇させる請求項1に記載の樹脂成形装置。
  3.  前記制御部は、キュア開始後に、前記駆動機構の駆動力を低下させる請求項1又は2に記載の樹脂成形装置。
  4.  前記制御部は、キュア終了前に、前記駆動機構の駆動力を上昇させる請求項1~3の何れか一項に記載の樹脂成形装置。
  5.  ゲートから供給された樹脂材料をキャビティに充填させることにより、基板上にチップが配置された成形対象物の樹脂成形を行う成形工程を含み、
     前記成形工程では、流体により駆動させる駆動機構により可動ブロックを移動させて前記チップが配置されていない前記キャビティの内部流路の少なくとも一部を絞り、前記駆動機構による駆動力を変化させながら前記成形対象物の樹脂成形を行う樹脂成形品の製造方法。
     
PCT/JP2021/035758 2020-11-04 2021-09-29 樹脂成形装置及び樹脂成形品の製造方法 WO2022097392A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180071126.6A CN116390844A (zh) 2020-11-04 2021-09-29 树脂成型装置以及树脂成型品的制造方法
US18/034,268 US20230382027A1 (en) 2020-11-04 2021-09-29 Resin molding apparatus and method for producing resin molded product
KR1020237010025A KR20230054717A (ko) 2020-11-04 2021-09-29 수지 성형 장치 및 수지 성형품의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020184618A JP7360374B2 (ja) 2020-11-04 2020-11-04 樹脂成形装置及び樹脂成形品の製造方法
JP2020-184618 2020-11-04

Publications (1)

Publication Number Publication Date
WO2022097392A1 true WO2022097392A1 (ja) 2022-05-12

Family

ID=81457771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035758 WO2022097392A1 (ja) 2020-11-04 2021-09-29 樹脂成形装置及び樹脂成形品の製造方法

Country Status (6)

Country Link
US (1) US20230382027A1 (ja)
JP (1) JP7360374B2 (ja)
KR (1) KR20230054717A (ja)
CN (1) CN116390844A (ja)
TW (1) TWI827989B (ja)
WO (1) WO2022097392A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220347892A1 (en) * 2019-09-18 2022-11-03 Towa Corporation Mold die, resin molding apparatus, and method for producing resin molded product

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012192532A (ja) * 2011-03-15 2012-10-11 Apic Yamada Corp 樹脂モールド方法および樹脂モールド装置
WO2015159743A1 (ja) * 2014-04-18 2015-10-22 アピックヤマダ株式会社 樹脂モールド金型および樹脂モールド方法
JP2016196146A (ja) * 2015-04-06 2016-11-24 アピックヤマダ株式会社 樹脂成形金型
JP2019181872A (ja) * 2018-04-16 2019-10-24 アピックヤマダ株式会社 モールド金型、樹脂モールド装置及び樹脂モールド方法
JP2020174089A (ja) * 2019-04-09 2020-10-22 アサヒ・エンジニアリング株式会社 樹脂封止装置および樹脂封止方法
JP2021045890A (ja) * 2019-09-18 2021-03-25 Towa株式会社 成形型、樹脂成形装置及び樹脂成形品の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100714884B1 (ko) * 2005-06-02 2007-05-07 주식회사 티에스피 반도체 장치 제조용 금형
WO2006129926A1 (en) * 2005-06-02 2006-12-07 Tsp Co., Ltd. Mold for manufacturing semiconductor device and semiconductor device manufactred using the same
JP6304517B1 (ja) * 2017-02-14 2018-04-04 第一精工株式会社 樹脂封止方法及び樹脂封止装置
JP7068148B2 (ja) * 2018-12-05 2022-05-16 Towa株式会社 樹脂成形装置、及び樹脂成形品の製造方法
JP7034961B2 (ja) * 2019-01-30 2022-03-14 Towa株式会社 樹脂成形装置及び樹脂成形品の製造方法
US11446851B2 (en) * 2019-04-29 2022-09-20 Taiwan Semiconductor Manufacturing Company, Ltd. Molding apparatus, manufacturing method of molded semiconductor device and molded semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012192532A (ja) * 2011-03-15 2012-10-11 Apic Yamada Corp 樹脂モールド方法および樹脂モールド装置
WO2015159743A1 (ja) * 2014-04-18 2015-10-22 アピックヤマダ株式会社 樹脂モールド金型および樹脂モールド方法
JP2016196146A (ja) * 2015-04-06 2016-11-24 アピックヤマダ株式会社 樹脂成形金型
JP2019181872A (ja) * 2018-04-16 2019-10-24 アピックヤマダ株式会社 モールド金型、樹脂モールド装置及び樹脂モールド方法
JP2020174089A (ja) * 2019-04-09 2020-10-22 アサヒ・エンジニアリング株式会社 樹脂封止装置および樹脂封止方法
JP2021045890A (ja) * 2019-09-18 2021-03-25 Towa株式会社 成形型、樹脂成形装置及び樹脂成形品の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220347892A1 (en) * 2019-09-18 2022-11-03 Towa Corporation Mold die, resin molding apparatus, and method for producing resin molded product
US11938660B2 (en) * 2019-09-18 2024-03-26 Towa Corporation Mold die, resin molding apparatus, and method for producing resin molded product

Also Published As

Publication number Publication date
JP7360374B2 (ja) 2023-10-12
TW202218848A (zh) 2022-05-16
CN116390844A (zh) 2023-07-04
JP2022074514A (ja) 2022-05-18
KR20230054717A (ko) 2023-04-25
US20230382027A1 (en) 2023-11-30
TWI827989B (zh) 2024-01-01

Similar Documents

Publication Publication Date Title
JP5824765B2 (ja) 樹脂モールド方法及び樹脂モールド装置並びに供給ハンドラ
CN107170694B (zh) 树脂封装装置、树脂封装方法及树脂封装产品的制造方法
KR101832597B1 (ko) 수지 밀봉 장치 및 수지 밀봉 방법
TWI728725B (zh) 樹脂成形裝置以及樹脂成形品的製造方法
CN109719898B (zh) 树脂成型装置及树脂成型品的制造方法
WO2022097392A1 (ja) 樹脂成形装置及び樹脂成形品の製造方法
JP2009166415A (ja) 圧縮成形用樹脂、樹脂封止装置、及び樹脂封止方法
WO2021053879A1 (ja) 成形型、樹脂成形装置及び樹脂成形品の製造方法
KR101667864B1 (ko) 수지 밀봉 장치 및 수지 밀봉 방법
JP2021030515A (ja) 成形型、樹脂成形装置及び樹脂成形品の製造方法
TWI778332B (zh) 樹脂成形裝置以及樹脂成形品的製造方法
TWI663039B (zh) 壓縮成型裝置、壓縮成型方法、及壓縮成型品的製造方法
WO2024014060A1 (ja) 成形型、樹脂成形装置及び樹脂成形品の製造方法
TWI854661B (zh) 成形模、樹脂成形裝置及樹脂成形品之製造方法
KR20060134602A (ko) 칩 대체물을 이용하는 반도체 패키지의 압축 몰딩 방법
CN113211686A (zh) 树脂成型装置及树脂成型品的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888945

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237010025

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18034268

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21888945

Country of ref document: EP

Kind code of ref document: A1