WO2022097273A1 - 機器制御装置、プログラム及び機器制御方法 - Google Patents

機器制御装置、プログラム及び機器制御方法 Download PDF

Info

Publication number
WO2022097273A1
WO2022097273A1 PCT/JP2020/041527 JP2020041527W WO2022097273A1 WO 2022097273 A1 WO2022097273 A1 WO 2022097273A1 JP 2020041527 W JP2020041527 W JP 2020041527W WO 2022097273 A1 WO2022097273 A1 WO 2022097273A1
Authority
WO
WIPO (PCT)
Prior art keywords
control method
user
control
threshold value
personality
Prior art date
Application number
PCT/JP2020/041527
Other languages
English (en)
French (fr)
Inventor
丈明 下川
哲郎 志田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022560601A priority Critical patent/JP7403682B2/ja
Priority to CN202080106692.1A priority patent/CN116391180A/zh
Priority to PCT/JP2020/041527 priority patent/WO2022097273A1/ja
Priority to US18/028,775 priority patent/US20230329610A1/en
Priority to EP20960825.6A priority patent/EP4242857A4/en
Publication of WO2022097273A1 publication Critical patent/WO2022097273A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/12Arrangements for remote connection or disconnection of substations or of equipment thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/167Personality evaluation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units

Definitions

  • This disclosure relates to a device control device, a program, and a device control method.
  • Patent Document 1 describes a technique for creating episode data in which contents related to a specific episode are used as element data from living data, and a technique for analyzing the relationship between the element data included in the episode data.
  • a technique for identifying a life pattern characteristic of a user from the relationship between element data, and a technique for controlling a device by using the user's life pattern information are disclosed.
  • it is an object to enable device control according to a user's life pattern and a user's personality.
  • the device control device is a control method for a device used by the user from a personality information acquisition unit that acquires personality information indicating the user's personality, the personality information, and a life pattern of the user. It is characterized by including a control method specifying unit for specifying a device control method, and a control unit for controlling the device according to the device control method.
  • the program according to one aspect of the present disclosure is a method of controlling a device used by a user from a personality information acquisition unit for acquiring personality information indicating a user's personality, the personality information, and a life pattern of the user. It is characterized in that it functions as a control method specifying unit that specifies a device control method, and a control unit that controls the device according to the device control method.
  • the device control method is a device control method that acquires personality information indicating a user's personality and is a control method for the device used by the user from the personality information and the life pattern of the user. Is specified, and the device is controlled according to the device control method.
  • FIG. 3 is a block diagram schematically showing a configuration of an equipment control system including the equipment control device according to the first and second embodiments. It is a schematic diagram which shows an example of a living data. It is a graph which shows an example of the life pattern in Embodiment 1.
  • FIG. (A) and (B) are block diagrams showing a hardware configuration example. It is a flowchart which shows an example of the overall operation of a device control device. It is a flowchart which shows the operation of the control method specific part. It is a graph for demonstrating the 1st example which specifies a device control method. It is a graph for demonstrating the 2nd example which specifies the device control method. It is a graph for demonstrating the 3rd example which specifies a device control method.
  • FIG. 1 is a block diagram schematically showing a configuration of a device control system 100 including the device control device 110 according to the first embodiment.
  • the device control system 100 includes devices 101A and 101B, a sensor 102, a user device 103, and a device control device 110.
  • the devices 101A and 101B are objects to be controlled by the device control device 110.
  • Each of the devices 101A and 101B is a device such as an air conditioner, a television, a refrigerator, a cooking heater, a microwave oven, EcoCute or lighting.
  • a device 101 when it is not necessary to distinguish each of the devices 101A and 101B, each of the devices 101A and 101B is referred to as a device 101.
  • one device 101 may be present, or two or more devices 101 may be present.
  • the sensor 102 is a sensor that detects a predetermined target, such as a motion sensor, an open / close sensor, a thermo-hygrometer, a light meter, a carbon dioxide concentration meter, a pressure sensor, an acceleration sensor, or the like.
  • the sensor 102 may be built in any of the devices 101. Further, the device control system 100 may have one or more sensors 102, or may not have the sensors 102.
  • the user device 103 is a device such as a smartphone or a smart speaker, transmits information to a user who uses the device 101 to be controlled, and accepts input from the user.
  • the device 101 such as a television or a refrigerator may also serve as the user device 103.
  • the device control device 110 controls the device 101. As shown in FIG. 1, the device control device 110 controls a communication unit 111, a life data storage unit 112, a life pattern extraction unit 113, a personality information acquisition unit 114, a control method specifying unit 115, and the like. A unit 116 is provided.
  • the communication unit 111 is an interface that communicates with the device 101, the sensor 102, or the user device 103.
  • the living data storage unit 112 stores living data.
  • the living data at least shows the history of a plurality of events related to the device 101.
  • the living data may include a history of a plurality of events related to the sensor 102.
  • the history of the plurality of events is, for example, an operation history or an operation history of the device 101 or the sensor 102.
  • the operation is, for example, an on operation, an off operation, a setting change operation, a timer setting operation, or the like.
  • the operation is, for example, operation start, operation completion, operation change, sensor 102 detection, sensor 102 periodic measurement value acquisition, and the like.
  • FIG. 2 is a schematic diagram showing an example of living data.
  • the life data 120 is table information including an event date / time column 120a, a type column 120b, and an event content column 120c.
  • the event date and time column 120a stores the date and time when the event was performed.
  • the type column 120b stores the type of the device 101 or the sensor 102 in which the event was performed.
  • the event content column 120c stores information indicating the content of the event that has been performed. For example, the detection of the sensor 102, the use of the function of the device 101 (for example, on operation) or the stop (for example, off operation) may be stored in the event content column 120c.
  • the use or stop of the device 101 may indicate the use or stop of the one function.
  • the life data 120 may include an ID or the like which is identification information for identifying the device 101 or the sensor 102.
  • ID or the like is identification information for identifying the device 101 or the sensor 102.
  • the device 101A is an air conditioner
  • the device 101B is a television
  • the sensor 102 is a motion sensor is shown, but the device 101 and the sensor which are connected to the device control device 110 and store the history. 102 is not limited to these.
  • the event content related to the device 101 is not limited to ON and OFF as shown in FIG.
  • the event content may be such that a set temperature change operation or a temperature measured by a thermometer built in the air conditioner exceeds a preset threshold value.
  • the life pattern extraction unit 113 extracts a life pattern from the life data stored in the life data storage unit 112.
  • the life pattern in the first embodiment is the frequency with which each function of each device 101 is used for each condition such as time.
  • the life data includes a plurality of operations on the function of the device 101 as a plurality of events related to the device 101.
  • the life pattern extraction unit 113 calculates the frequency at which each of the plurality of operations is performed for each predetermined time zone by referring to the life data, and the plurality of the plurality of operations for each predetermined time zone. The frequency of each operation of is extracted as a life pattern.
  • FIG. 3 is a graph showing an example of a life pattern in the first embodiment.
  • FIG. 3 is a graph showing the frequency with which the air conditioner is turned on at each time.
  • the life pattern in the first embodiment is a predetermined frequency for each time zone, and the number of times that a specific function (here, cooling) is used in each time zone within a specific period is specified. It is divided by the number of days in the period.
  • the specific period is, for example, a predetermined period from the date on which the life pattern is extracted, for example, the past one month.
  • the specific period may be changed as needed.
  • the life pattern extraction unit 113 may divide a specific period into weekdays and holidays, and separately calculate the frequency for each time zone in each period to obtain a life pattern. This is suitable because it enables device control according to each lifestyle pattern on weekdays and holidays.
  • the life pattern may be, for example, the frequency in which the function is used for each value of room temperature, in addition to the frequency obtained for each time zone.
  • the time zone may be predetermined, for example, 30 minutes so as to be shorter than the above specific period.
  • the personality information acquisition unit 114 acquires personality information indicating the personality of the user who uses the device 101.
  • Personality information is, for example, the Big Five personality trait.
  • the Big Five personality trait also called a five-factor model, characterizes personality with five parameters: openness, diligence, extroversion, coordination, and emotional stability. That is, the personality information may include such a parameter as an element.
  • the Big Five personality traits are described in detail in the following references: John, Oliver P.M. , Laura P. Naumann, and Christopher J. et al. Soto. "Paradigm shift to the integral big five trait taxony.” Handbook of personality: Theory and research 3.2 (2008), pp. 114-158
  • Openness represents the degree of preference for new experiences or diversity, and may be rephrased as openness to experience.
  • Diligence represents the degree of aspiration and tendency to achieve or prefer planned behavior, and can be rephrased as integrity.
  • Extraversion represents the degree to which one likes to associate or talk with others.
  • Cooperativity represents the degree of tendency to be cooperative with others and may be rephrased as harmony or attachment.
  • Emotional stability represents the degree of tendency to have a stable personality and to experience unpleasant feelings, and in the opposite sense, it may be paraphrased as neuroticism.
  • the personality information may include, for example, a parameter indicating the strength of self-control as an element.
  • Self-control is described in detail in the following literature. Tangney, June P.M. , Roy F. Baumeister, and Angie Luzio Bone. "High self-control polypropylene good adhere, less pathology, better journals, and interpersonal journals.” Journal of personality 72.200. 271-324
  • the personality information may include other parameters whose definition and measurement method have been established in the field of psychology.
  • the personality information includes a plurality of users.
  • the personality information acquisition unit 114 may acquire personality information by, for example, conducting a personality questionnaire to the user.
  • the questionnaire may be conducted using the user device 103 or face-to-face at the time of purchasing the device 101.
  • the personality information acquisition unit 114 may acquire the score value of the personality scale that has already been measured via a network or the like, or may be acquired by inputting by the user.
  • the operation history such as "Like” of SNS (Social Network Service) or the one estimated from the writing history may be acquired via a network or the like.
  • the method of such acquisition is described in detail in the following documents. Youyou, Wu, Michal Kosinski, and David Stillwell. "Computer-based personality judgments are more accurate than this made by humans.” Proceedings of the National Academy of Sciences 112. 1036-1040
  • the personality information may be acquired from the operation history, operation history, stored contents, etc. of a user device such as a smartphone via a network or the like.
  • the method of such estimation is described in detail in the following literature. Stachl, Cremens, et al. "Predicting personality from patterns of behavior with collected with smartphones.” Proceedings of the National Academia of Sciences 117.30 (20). 17680-17687
  • the user device used for acquiring the personality information may be the same as or different from the user device 103 shown in FIG.
  • the device 101 when the device 101 is used by a plurality of users and the personality information of the plurality of users is acquired, if the personality information is acquired by repeating the above-mentioned method such as the questionnaire or the acquisition by estimation for the number of people. good. Further, it is preferable to register a user who uses the device 101 for each device 101 to be controlled because it is possible to control the device 101 according to the personality of the user who uses the device 101. At that time, it is preferable to set the frequency or time zone of use for each user because the specific accuracy of the user to be used can be improved and the device 101 can be controlled according to the personality of the user.
  • the sensor for identifying an individual may be the same as or different from the sensor 102 shown in FIG.
  • the sensor is a camera built in the device 101, and by registering a user's face image in advance, it is possible to identify an individual who uses the device 101.
  • the sensor may be a fingerprint sensor attached to the operation button of the device 101, thereby identifying the user.
  • the user when the user operates the device 101 by voice, the user may be identified from the voice information. Further, when the device 101 is operated via the user device held by each user, the user may be identified from the registration information of the user device used for the operation.
  • the control method specifying unit 115 specifies the device control method, which is the control method of the device 101, from the life pattern extracted by the life pattern extraction unit 113 and the personality information acquired by the personality information acquisition unit 114.
  • the control method specifying unit 115 specifies a threshold value based on personality information, and specifies a control method of the device 101 by comparing the specified threshold value with a life pattern.
  • control method specifying unit 115 specifies a threshold value according to the personality of the user by referring to the personality information, and when the frequency shown in the life pattern exceeds the threshold value, the corresponding time zone Specify the device control method so as to control the corresponding operation in.
  • the control method specifying unit 115 has a first device control method that automatically performs a corresponding operation as a control when the first threshold value is exceeded, and a first threshold value as the threshold value.
  • a second device control method that recommends performing the corresponding operation when the second threshold value lower than the second threshold value is exceeded is specified as the device control method. Details of the method for specifying the device control method will be described later.
  • the control unit 116 controls the device 101 according to the device control method specified by the control method specifying unit 115.
  • a part or all of the life pattern extraction unit 113, the personality information acquisition unit 114, the control method specifying unit 115, and the control unit 116 described above are stored in the memory 10 as shown in FIG. 4A, for example.
  • a processor 11 such as a CPU (Central Processing Unit) that executes a program stored in the memory 10.
  • a program may be provided through a network, or may be recorded and provided on a recording medium. That is, such a program may be provided, for example, as a program product.
  • the device control device 110 can be realized by a so-called computer.
  • a part or all of the life pattern extraction unit 113, the personality information acquisition unit 114, the control method specifying unit 115, and the control unit 116 are, for example, a single circuit or a composite as shown in FIG. 4 (B). It can also be configured by a circuit, a processor that operates in a program, a parallel processor that operates in a program, and a processing circuit 12 such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array). As described above, the life pattern extraction unit 113, the personality information acquisition unit 114, the control method specifying unit 115, and the control unit 116 can be realized by the processing network.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the living data storage unit 112 is configured by a storage device such as a memory such as a ROM (Read Only Memory) or a RAM (Random-access Memory), or a storage medium such as an HDD (Hard Disk Drive) or an SSD (Solid State Drive).
  • a storage device such as a memory such as a ROM (Read Only Memory) or a RAM (Random-access Memory), or a storage medium such as an HDD (Hard Disk Drive) or an SSD (Solid State Drive).
  • the communication unit 111 can be configured by a communication device such as a NIC (Network Interface Card).
  • the life data storage unit 112, the life pattern extraction unit 113, the personality information acquisition unit 114, the control method specifying unit 115, or the control unit 116 may be present on the cloud server or may be separate devices. It may be built in either 101 or 102. Further, those configurations may be divided into a plurality of parts and exist separately in the above-mentioned form.
  • FIG. 5 is a flowchart showing an example of the overall operation of the device control device 110.
  • the communication unit 111 receives the living data from the device 101, the sensor 102, and the like, and stores the living data in the living data storage unit 112 (S10).
  • the life pattern extraction unit 113 extracts a life pattern from the stored life data (S11).
  • the personality information acquisition unit 114 acquires the user's personality information via the communication unit 111 (S12).
  • the control method specifying unit 115 specifies the device control method, which is the control method of the device 101, from the life pattern and the personality information (S13).
  • the control unit 116 controls the device 101 based on the device control method specified by the control method specifying unit 115 (S14).
  • step S13 of FIG. 5 the device control method specified in step S13 of FIG. 5 will be described.
  • automatic control and recommendation are performed as the device control method.
  • the automatic control is a device control method that automatically executes an operation that is remarkably frequently performed in a life pattern and is remarkably likely to be performed by a user.
  • the device control method that performs automatic control is also referred to as the first device control method.
  • the recommendation is a device control method that notifies the user in advance of performing an operation that is frequently performed in a life pattern and is likely to be performed by the user, and controls the operation if the user accepts the operation.
  • the device control method for making recommendations is also called the second device control method.
  • FIG. 6 is a flowchart showing the operation of the control method specifying unit 115.
  • the control method specifying unit 115 determines an automatic control threshold value, which is a threshold value for automatic control, according to the personality information acquired by the personality information acquisition unit 114 (S20).
  • the automatic control threshold is also referred to as the first threshold.
  • the control method specifying unit 115 determines the target operation and the time for automatic control from the life pattern extracted by the life pattern extraction unit 113 and the automatic control threshold value determined in step S20 (S21).
  • the time may be any time in the corresponding time zone. For example, it may be a start time which is a time zone in which the time zone starts, an intermediate time which is an intermediate time in the time zone, or an end time which is a time when the time zone ends. .. Further, it may be the average time which is the average time when the event used in calculating the threshold value is performed.
  • control method specifying unit 115 determines the recommendation threshold value, which is the recommendation threshold value, according to the personality information acquired by the personality information acquisition unit 114 (S22).
  • the recommendation threshold is also called the second threshold.
  • the control method specifying unit 115 determines the target operation and the time to perform the recommendation from the life pattern extracted by the life pattern extraction unit 113 and the recommendation threshold value determined in step S22 (S23).
  • the time may be any time in the corresponding time zone. For example, it may be a start time which is a time zone in which the time zone starts, an intermediate time which is an intermediate time in the time zone, or an end time which is a time when the time zone ends. .. Further, it may be the average time which is the average time when the event used in calculating the threshold value is performed.
  • FIG. 7 is a graph for explaining a first example of specifying a device control method.
  • FIG. 7 describes an example in which the device 101 is an air conditioner and the control method is specified based on the frequency with which the air conditioner is turned on.
  • the personality information of the user is average. For example, in personality information, all parameters indicating openness, diligence, extroversion, cooperation, emotional stability, and self-control are included in a predetermined numerical range. The numerical range here may be the same for all parameters, or may be different for each parameter.
  • the control method specifying unit 115 sets, for example, the automatic control threshold value ATh that turns on the cooling of the device 101 from off to 90%, which is the reference threshold value for automatic control, and turns the cooling of the device 101 from off.
  • the recommendation threshold value RTh to be turned on is determined to be the recommendation reference threshold value of 50%, which is the reference threshold value for recommendations.
  • the control method specifying unit 115 shall perform automatic control to turn on the cooling of the air conditioner when the frequency of turning on the cooling of the air conditioner of the device 101 exceeds the automatic control threshold value ATh.
  • the time is a time when the frequency exceeds the automatic control threshold value ATh.
  • control method specifying unit 115 shall make a recommendation to turn on the cooling of the air conditioner when the frequency of turning on the air conditioner exceeds the recommendation threshold value RTh, and the frequency of the recommendation time is the recommendation threshold value. The time exceeds RTh.
  • the control method specifying unit 115 specifies a device control method in which a recommendation for turning on the air conditioner cooling is performed at 6:00 and an automatic control for turning on the air conditioner cooling is performed at 6:21. do.
  • the control method specifying unit 115 applies a rule to the device control method so that the control is not unnecessarily executed when the frequency at which the function of the device 101 is turned on fluctuates up and down across the threshold value.
  • the device control method has a rule that automatic control for the same operation is not performed for 30 minutes after the time when automatic control is performed, or a rule that recommendation for the same operation is not performed for 30 minutes after the time for recommendation. May be applied.
  • control method specifying unit 115 may control the function of the device 101 from on to off based on the frequency with which the function of the device 101 is on. Even if the control method specifying unit 115 determines, for example, the automatic control threshold value in the control for turning the function of the device 101 from on to off is 10%, which is the automatic control reference threshold value, and the recommendation threshold value is 50%, which is the recommendation reference threshold value. good.
  • the device control method is specified based on the frequency at which the air conditioner is turned on, but similarly, the frequency of the functions of the device 101 other than the air conditioner and the specific functions not turned on are used. The device control method may be specified based on the frequency of the air conditioner, the frequency of the value measured by the sensor 102 exceeding the threshold value, and the like.
  • FIG. 8 is a graph for explaining a second example of specifying a device control method.
  • the control method specifying unit 115 facilitates the generation of device control by lowering the control threshold. For example, in personality information, openness is higher than a predetermined numerical range, emotional stability is higher than a predetermined numerical range, diligence is lower than a predetermined numerical range, or , When self-control is lower than a predetermined numerical range.
  • the control method specifying unit 115 specifies, for example, the automatic control threshold value ATh to 80% lower than the automatic control reference threshold value and the recommendation threshold value RTh to 40% lower than the recommendation reference threshold value.
  • the control method specifying unit 115 specifies a device control method in which a recommendation for turning on the air conditioner cooling is performed at 5:59 and an automatic control for turning on the air conditioner cooling is performed at 6:11.
  • the control time is earlier than in the case of FIG. 7, in which the personality information is average.
  • the frequency of device control increases by lowering the threshold value.
  • the device control device 110 when the user's personality information is highly open, there is a high tendency to regard the automatic control or recommendation by the device control device 110 as a new experience or diversity in life and feel favorable. Further, for example, when the emotional stability is high in the personality information of the user, the possibility that the control by the device control device 110 is unpleasant is small. Therefore, it is possible to improve the effect of the service by the device control without causing discomfort to the user by performing the device control earlier or increasing the frequency as described above.
  • the user's behavior can be transformed into a desirable behavior by supporting the user's planned behavior by the device control device 110. There is a lot of room. Therefore, it is possible to more strongly support the user and improve the effect of the service by the device control by performing the device control earlier or increasing the frequency as described above.
  • FIG. 9 is a graph for explaining a third example of specifying a device control method.
  • the control method specifying unit 115 raises the control threshold value to make it difficult to generate device control. For example, in personality information, openness is lower than a predetermined numerical range, emotional stability is lower than a predetermined numerical range, diligence is higher than a predetermined numerical range, or , When self-control is higher than a predetermined numerical range.
  • the control method specifying unit 115 specifies, for example, the automatic control threshold value ATh to 95% higher than the automatic control reference threshold value and the recommendation threshold value RTh to 60% higher than the recommendation reference threshold value. At this time, the control method specifying unit 115 specifies a device control method of making a recommendation to turn on the cooling of the air conditioner at 6:02. As a result, the control time is delayed as compared with the case of FIG. 7 in which the personality information is average. In addition, by raising the threshold value, automatic control is no longer performed, and the frequency of device control is decreasing.
  • the user's personality information is not open, he / she does not like the new experience or diversity in his / her life, so he / she tends to feel unaware of the automatic control by the device control device 110 or the recommendation itself. Further, if the content of the device control does not match the intention of the user, the evaluation of the service by the device control may be further lowered, and the use of the service by the device control may be terminated.
  • the emotional stability is low in the personality information of the user
  • the content of the device control does not match the intention of the user
  • the evaluation of the service by the device control is significantly lowered, and the device control is used. There is a possibility that the use of the service will be discontinued.
  • FIG. 10 is a graph for explaining a fourth example of specifying a device control method.
  • the control method specifying unit 115 Make it easier to generate recommendations by changing the control threshold. For example, in personality information, extroversion is higher than a predetermined numerical range, or cooperation is higher than a predetermined numerical range.
  • the control method specifying unit 115 specifies, for example, the automatic control threshold value ATh to 95% higher than the automatic control reference threshold value and the recommendation threshold value RTh to 40% lower than the recommendation reference threshold value. At this time, the control method specifying unit 115 specifies a device control method of making a recommendation to turn on the cooling of the air conditioner at 5:59. As a result, the frequency of recommendations is higher and the frequency of automatic control is lower than in the case of FIG. 7, where the personality information is average.
  • the control method specifying unit 115 may reduce the frequency of recommendations.
  • the threshold value may be determined according to the personality information of that user.
  • the average of the parameters representing the personality information of those users is taken, and the threshold value is determined according to the value. Just do it. Instead of the average value of the parameter, it may be preset to take a representative value such as the median value of the parameter, a maximum value or a minimum value. In addition, if the frequency or time zone of use for each user is preset, or if the sensor 102 can identify an individual and the possibility of which user is currently using can be quantified, the value is used.
  • the threshold value may be determined according to the average of the parameters representing the personality information by weighting.
  • parameters indicating "openness”, “diligence”, “outwardness”, “cooperativeness”, “emotional stability” and “strength of self-control” are predetermined. If it is outside the specified numerical range, a negative weight value is specified when the threshold is lowered by the parameter, and a positive weight value is specified when the threshold is raised by the parameter, and each parameter of the personality information is weighted.
  • the threshold value is determined by adding the weighted sum obtained by multiplying the values to the reference threshold value.
  • the threshold value may be determined by applying a function such as a logistic function to the value of the weighted sum and adding it to the reference threshold value.
  • the weight value may be a predetermined constant value, and the farther the parameter is from the predetermined numerical range, the larger the positive weight value and the smaller the negative weight value. May be.
  • FIG. 11 is a flowchart showing the operation of the control unit 116.
  • the control unit 116 determines whether or not it is time to perform automatic control (S30).
  • the control unit 116 determines that it is not the timing for performing the control if the control is not effective.
  • the control is ineffective, for example, the control content is to turn on the air conditioner cooling, and the user has already turned on the air conditioner cooling before that time.
  • the process proceeds to step S31, and when it is not the timing to perform automatic control (No in S30), the process proceeds to step S33.
  • step S31 the control unit 116 executes the controlled target operation specified by the control method specifying unit 115.
  • the control unit 116 notifies the user device 103 of the executed control content via the communication unit 111 (S32). Then, the process proceeds to step S33.
  • step S33 the control unit 116 determines whether or not it is time to make a recommendation.
  • the control unit 116 determines that it is not the timing to make the recommendation if the recommendation is not effective. If the recommendation is not effective, for example, the content of the recommendation is to turn on the air conditioner cooling, and the user has already turned on the air conditioner cooling before that time.
  • the process proceeds to step S34, and when it is not the timing to perform the recommendation (No in S33), the process returns to step S30.
  • step S34 the control unit 116 recommends to the user via the user device 103 that the control target operation specified by the control method specifying unit 115 is performed.
  • the control unit 116 sends a screen image that recommends performing such a controlled target operation to the user device 103 via the communication unit 111, and causes the user device 103 to display such a screen image.
  • the control unit 116 determines whether or not the user accepts the recommended control target operation (S35). For example, when the control unit 116 receives a notification from the user indicating that the control target operation is accepted via the communication unit 111, it is determined that the control unit 116 has accepted the recommended control target operation. On the other hand, when the control unit 116 does not receive such a notification within a predetermined period of time via the communication unit 111, or when it receives a notification from the user indicating that the controlled operation is rejected. Determines that the user has not accepted to perform the recommended controlled operation. When the user accepts to perform the recommended controlled object operation (Yes in S35), the process proceeds to step S36, and when the user does not accept to perform the recommended controlled object operation (No in S35). ), The process returns to step S30.
  • step S36 the control unit 116 executes the controlled target operation specified by the control method specifying unit 115. Then, the process returns to step S30.
  • the control method specifying unit 115 specifies a threshold value so that the frequency of control increases.
  • the threshold value is specified so that the frequency of control is reduced.
  • the control method specifying unit 115 specifies a threshold value so that the frequency of control decreases.
  • the control method specifying unit 115 specifies the threshold value so that the frequency of control increases. Further, when the personality of the user prefers dialogue, the control method specifying unit 115 specifies a second threshold value so that the frequency of recommendation increases. On the other hand, when the personality of the user does not like the dialogue, the control method specifying unit 115 specifies the second threshold value so that the frequency of recommendation is reduced. In this case, the first threshold value may be raised in order to make automatic control difficult, but the first embodiment is not limited to such an example.
  • the more frequently the device is controlled the more control that matches the user's intention is included and the user's labor can be further reduced. It will also give more.
  • the degree of discomfort when control that does not match the user's intention occurs depends on the personality of the user.
  • the degree of comfort or discomfort when control close to the user's intention occurs also differs depending on the personality of the user.
  • the desirability of reducing the effort or the strength of the effect also differs depending on the personality of the user.
  • the user's satisfaction can be improved by determining the frequency of device control according to the personality.
  • the following effects can be obtained by providing a stage such as an automatic control that does not require the user's acceptance and a recommendation that requires the user's acceptance.
  • Controls that are extremely likely to be requested by the user can reduce the trouble of accepting the user by performing automatic control.
  • control that is not extremely likely by making a recommendation and requesting the user's acceptance, it is possible to reduce the control that does not match the user's intention and the discomfort caused by it.
  • the first embodiment by setting an appropriate frequency of device control in advance according to the personality of the user, it is possible to perform desirable device control from the initial stage in the service by device control. As a result, it is possible to eliminate the trouble of the user setting the frequency of each device control suitable for the user through trial and error, or the discomfort in the process.
  • the device control system 200 including the device control device 210 according to the second embodiment includes a device 101, a sensor 102, a user device 103, and a device control device 210.
  • the device 101, the sensor 102, and the user device 103 of the device control system 200 according to the second embodiment are the same as the device 101, the sensor 102, and the user device 103 of the device control system 100 according to the first embodiment.
  • the device control device 210 includes a communication unit 111, a life data storage unit 112, a life pattern extraction unit 213, a personality information acquisition unit 114, and a control method.
  • a specific unit 215 and a control unit 216 are provided.
  • the communication unit 111, the living data storage unit 112, and the personality information acquisition unit 114 of the device control device 210 according to the second embodiment are the communication unit 111, the living data storage unit 112, and the personality of the device control device 210 according to the first embodiment. This is the same as the information acquisition unit 114.
  • the life pattern extraction unit 213 extracts a life pattern from the life data stored in the life data storage unit 112.
  • the life pattern in the second embodiment is the frequency with which the events of the device 101 or the sensor 102 are linked for each condition.
  • the life data includes at least a history of a plurality of events related to the device 101, and the plurality of events include a plurality of operations for the functions of the device 101. Then, by referring to the life data, the life pattern extraction unit 213 predetermines the operation after the previous operation in the plurality of sequences in which the two operations are extracted from the plurality of operations. The frequency of occurrence within the above period is calculated, and the frequency in each of the plurality of sequences is extracted as a life pattern.
  • the life data includes at least the history of a plurality of events related to the device 101 and the sensor 102, and the plurality of events include a plurality of operations on the function of the device 101 and detection of a predetermined target by the sensor 102. It is included.
  • the life pattern extraction unit 213 calculates the frequency at which each of the plurality of operations is performed within a predetermined period from the detection by the sensor 102 by referring to the life data, and is calculated for each of the plurality of operations. The frequency is extracted as a life pattern.
  • FIG. 12 is a table showing an example of a life pattern in the second embodiment.
  • the device 101A is an air conditioner
  • the device 101B is a television
  • the sensor 102 is a motion sensor.
  • FIG. 12 shows the frequency with which events such as air conditioner cooling on operation, air conditioner cooling off operation, TV viewing on operation, TV viewing off operation, and human detection by a motion sensor are linked. There is.
  • the vertical columns in FIG. 12 show triggering operations or actions.
  • the air conditioner cooling on operation, the air conditioner cooling off operation, the television viewing on operation, the television viewing off operation, and the operation or operation triggered by the detection of a person by the motion sensor are performed.
  • the horizontal row in FIG. 12 shows an operation linked to the trigger.
  • the air conditioner cooling on operation, the air conditioner cooling off operation, the television viewing on operation, and the television viewing off operation are linked to the trigger.
  • the numerical values in the table shown in FIG. 12 are events that are linked to the trigger within a predetermined period from the time when the operation or operation that is the trigger event occurs within a specific period. Represents the frequency with which. In addition, "-" in the table indicates that the frequency is not calculated.
  • the specific period is also called the first period, and the predetermined period is also called the second period.
  • the specific period is from 5 am to 10 am on weekdays within the past month from the date of life pattern extraction, and the predetermined period is 5 minutes, but it can be changed as necessary. May be done.
  • the TV viewing is OFF when the air conditioner cooling is turned from OFF to ON within a specific period
  • the TV viewing is performed during a predetermined period of 5 minutes. It shows that the frequency of turning on was 89%.
  • Such frequency is linked to the number of times when a trigger event occurs within a specific period and the linked event occurs within a predetermined period, and when a trigger event occurs within a specific period. It is divided by the number of times the event can occur.
  • a linked event can occur.
  • the linked event is "TV viewing is turned on”. Then, if the television viewing is OFF when the trigger event occurs, it is the case that a linked event can occur. On the other hand, if the TV viewing is already ON when the trigger event occurs, the linked event cannot occur.
  • dividing a specific period into weekdays and holidays and calculating the frequency with which events are linked separately in each period to make a life pattern is a device control according to each life pattern of weekdays and holidays. It is suitable because it enables.
  • dividing a specific period into time zones such as morning and evening, and calculating the frequency of interlocking events separately in each period to make a life pattern is suitable for each life pattern in each time zone. It is suitable because it enables control of other devices.
  • the frequency of events of the sensor linked to the trigger may be omitted from the life pattern as shown in FIG. Further, as shown in FIG. 12, the interlocking related to the same operation such as ON and OFF of a specific function of the same device 101 may be omitted from the life pattern as shown in FIG.
  • the frequency may be omitted from the lifestyle pattern because it is unreliable. For example, if the number of times that a linked event can occur when a trigger event occurs within a specific period is less than a predetermined number of times (for example, 5 times), the frequency of linking is omitted. May be good. This can prevent improper control from unreliable values.
  • the control method specifying unit 215 specifies the control method of the device 101 based on the life pattern extracted by the life pattern extraction unit 213 and the personality information acquired by the personality information acquisition unit 114. For example, the control method specifying unit 215 specifies a threshold value based on personality information, and specifies a control method of the device 101 by comparing the specified threshold value with a life pattern. In the second embodiment, the control method specifying unit 215 specifies an event that becomes a trigger and an event that is linked to the trigger as a device control method.
  • the control method specifying unit 215 specifies a threshold value according to the personality of the user by referring to the personality information, and when the frequency shown in the life pattern exceeds the threshold value, the previous operation is performed in the corresponding sequence. Specify the device control method so that the control related to the later operation is performed at the time. Specifically, the control method specifying unit 215 automatically performs the subsequent operation when the earlier operation is performed in the corresponding sequence as control when the first threshold value is exceeded as the threshold value. And the second device control method that recommends to perform the later operation when the first operation is performed in the corresponding sequence when the second threshold value is exceeded as the threshold value. , Is specified as the device control method.
  • control method specifying unit 215 identifies the threshold value according to the personality of the user by referring to the personality information, and when the frequency shown in the life pattern exceeds the threshold value, the sensor 102 detects it. Specify device control methods to control the corresponding operations from time to time. Specifically, the control method specifying unit 215 is a first device control method that automatically performs a corresponding operation when detection is performed as a control when the first threshold value is exceeded as a threshold value. As a threshold value, when a second threshold value lower than the first threshold value is exceeded, as a control, a second device control method that recommends performing a corresponding operation when detection is performed, and device control. Identify as a method. The details of the method for specifying the control method will be described later.
  • the control unit 216 controls the device 101 according to the control method specified by the control method specifying unit 215.
  • the control unit 216 executes the control method related to the event linked to the trigger at the timing when the event that becomes the trigger specified by the control method specifying unit 215 occurs.
  • FIG. 13 is a table for explaining a first example of specifying a device control method based on the frequency with which the devices 101 are interlocked.
  • the device 101 is an air conditioner and a television
  • the sensor 102 is a motion sensor. Then, the case where the cooling of the air conditioner, the viewing of the television, and the detection of the motion sensor are linked will be described.
  • the frequency of interlocking was determined between 5 am and 10 am on weekdays.
  • the personality information of the user is average.
  • all parameters indicating openness, diligence, extroversion, cooperation, emotional stability, and self-control are included in a predetermined numerical range.
  • the numerical range here may be the same for all parameters, or may be different for each parameter.
  • the control method specifying unit 115 determines, for example, the automatic control threshold value for interlocking the device 101 is 90%, which is the automatic control reference threshold value, and the recommendation threshold value for interlocking the device is 50%, which is the recommendation reference threshold value.
  • the operation of turning off the air conditioner in conjunction with the television viewing on exceeds the automatic control threshold value.
  • TV viewing ON operation linked to air conditioner cooling ON TV viewing OFF operation linked to air conditioner cooling OFF
  • air conditioner cooling OFF operation linked to TV viewing OFF and air conditioner cooling OFF operation linked to human sensor detection.
  • the recommendation threshold is exceeded.
  • the control method specifying unit 215 automatically controls the interlocking events, and the timing of the automatic control is the time when the trigger event occurs. Identify the method. Further, the control method specifying unit 215 shall recommend the linked event when the frequency of interlocking events exceeds the recommendation threshold value, and the timing of the recommendation shall be the time when the trigger event occurs. To identify.
  • the control method specifying unit 215 has an air conditioner cooling ON, which is a device control method for automatically controlling the air conditioner cooling ON when the TV viewing ON occurs between 5 am and 10 am on weekdays.
  • a device control method that makes a recommendation to turn on the TV viewing when the TV viewing is turned off a device control method that makes a recommendation to turn off the air conditioner cooling when the TV viewing is turned off, and a recommendation to turn on the air conditioner cooling when the human sensor detection occurs.
  • the device control method for performing the operation and the device control method for performing the recommendation to turn off the TV viewing when the air conditioner cooling is turned off are calculated.
  • the device control method may be specified based on the combination of other devices 101 or sensors 102 and the frequency obtained in different periods.
  • FIG. 14 is a table for explaining a second example of specifying a device control method based on the frequency with which the devices 101 are interlocked.
  • the control method specifying unit 215 makes it easier to generate device control by lowering the control threshold. For example, in personality information, openness is higher than a predetermined numerical range, emotional stability is higher than a predetermined numerical range, diligence is lower than a predetermined numerical range, or , When self-control is lower than a predetermined numerical range.
  • the control method specifying unit 215 specifies, for example, the automatic control threshold value to be 80% lower than the automatic control reference threshold value and the recommendation threshold value to be 40% lower than the recommendation reference threshold value.
  • the device control method specified by the control method specifying unit 215 is recommended to turn on the television viewing when the motion sensor is detected, as compared with the case of FIG. 13 in which the personality information is average. A device control method of doing is added. Further, the device control method of the recommendation for turning on the TV viewing when the air conditioner cooling is turned on has been changed to the device control method for performing automatic control. By lowering the threshold value in this way, the frequency of device control increases. In addition, the recommendation has been changed to automatic control, and automation is being promoted.
  • FIG. 15 is a table for explaining a third example of specifying a device control method based on the frequency with which the devices 101 are interlocked.
  • the control method specifying unit 215 raises the control threshold value to make it difficult to generate device control. For example, in personality information, openness is lower than a predetermined numerical range, emotional stability is lower than a predetermined numerical range, diligence is higher than a predetermined numerical range, or , When self-control is higher than a predetermined numerical range.
  • the control method specifying unit 215 specifies, for example, the automatic control threshold value to be 95% higher than the automatic control reference threshold value and the recommendation threshold value to be 60% higher than the recommendation reference threshold value.
  • the device control method specified by the control method specifying unit 215 a recommendation is made to turn off the TV viewing when the air conditioner cooling is turned off, as compared with the case of FIG. 13 in which the personality information is average. The device control method has disappeared.
  • the automatic control device control method for turning on the air conditioner cooling when the TV viewing is turned on has been changed to the device control method for making recommendations. By raising the threshold value in this way, the frequency of device control decreases.
  • automatic control has been changed to recommendation, and automation is suppressed.
  • FIG. 16 is a graph for explaining a fourth example of specifying a device control method based on the frequency with which the devices 101 are interlocked.
  • the control method specifying unit 115 Make it easier to generate recommendations by changing the control threshold. For example, in personality information, extroversion is higher than a predetermined numerical range, or cooperation is higher than a predetermined numerical range.
  • the control method specifying unit 215 specifies, for example, the automatic control threshold value to be 95% higher than the automatic control reference threshold value and the recommendation threshold value to be 40% lower than the recommendation reference threshold value.
  • the device control method specified by the control method specifying unit 215 is recommended to turn on the television viewing when the motion sensor is detected, as compared with the case of FIG. 13 in which the personality information is average. A device control method of doing this has been added. Further, the device control method for automatically controlling the air conditioner to be turned on when the TV viewing is turned on has been changed to the device control method for recommending. By changing the threshold value in this way, the frequency of recommendations increases.
  • control method specifying unit 215 has parameters indicating "openness”, “diligence”, “extroversion”, “cooperation”, “emotional stability”, and “strength of self-control". However, if it is outside the predetermined numerical range, a negative weight value is specified when the reference threshold is lowered by the parameter, and a positive weight value is specified when the reference threshold is raised by the parameter.
  • the threshold value is determined by adding the weighted sum obtained by multiplying each parameter of the information by the weight value and adding them to the reference threshold value.
  • the threshold value may be determined by applying a function such as a logistic function to the value of the weighted sum and adding it to the reference threshold value.
  • the weight value may be a predetermined constant value, and the farther the parameter is from the predetermined numerical range, the larger the positive weight value and the smaller the negative weight value. It may be.
  • the device control desirable for the user can be performed by controlling the device according to the user's life pattern and the personality of the user.
  • the life pattern in the first embodiment described above is the frequency at which each function of each device 101 is used for each condition such as time, and the life pattern in the second embodiment is for each condition.
  • the frequency is such that the events of the device 101 or the sensor 102 are interlocked with each other, the life pattern in the first or second embodiment is not limited to the above examples.
  • an episode creation rule is prepared based on the method disclosed in Patent Document 1, episode data is created based on the episode creation rule, a frequent pattern tree is created from the episode data, and a frequent pattern tree is created. It may be extracted from the tree.
  • the life pattern is not limited to be extracted only from the user's life data.
  • the life pattern extraction unit 113, 213 may hold a life pattern with reference to a general user in advance.
  • the life pattern extraction unit 113, 213 may acquire the life pattern extracted from the life data of another user and hold it.
  • the present disclosure is not limited to such embodiments 1 or 2. Even when the life pattern is extracted by a different method, when the device control method is specified, the threshold value for determining the life pattern to be controlled is determined based on the personality information. Or it is possible to obtain the same effect as 2.
  • 100,200 device control system 101 device, 102 sensor, 103 user device, 110,210 device control device, 111 communication unit, 112 life data storage unit, 113,213 life pattern extraction unit, 114 personality information acquisition unit, 115, 215 Control method identification unit, 116, 216 control unit.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Hospice & Palliative Care (AREA)
  • Educational Technology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Developmental Disabilities (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Social Psychology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Child & Adolescent Psychology (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Selective Calling Equipment (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Details Of Television Systems (AREA)
  • Telephonic Communication Services (AREA)

Abstract

機器制御装置(110)は、ユーザの性格を示す性格情報を取得する性格情報取得部(114)と、性格情報と、ユーザの生活パターンとから、ユーザが使用する機器(101)の制御方法である機器制御方法を特定する制御方法特定部(115)と、その機器制御方法に従って、機器(101)を制御する制御部(116)とを備える。

Description

機器制御装置、プログラム及び機器制御方法
 本開示は、機器制御装置、プログラム及び機器制御方法に関する。
 従来から、ユーザによる機器の利用履歴からユーザに特徴的な生活パターンを抽出し、この生活パターンを利用することにより、ユーザの生活パターン及び状況に合わせた機器の制御が行われている。例えば、特許文献1には、生活データの中から特定のエピソードに関連した内容を要素データとし、これらを組み合わせたエピソードデータを作成する技術、エピソードデータに含まれる要素データ間の関係を解析する技術、要素データ間の関係からユーザに特徴的な生活パターンを特定する技術、及び、ユーザの生活パターン情報を利用して機器を制御する技術が開示されている。
特許第3744932号公報
 しかしながら、生活パターンを利用した機器制御がユーザにとって望ましいか否かは、ユーザ固有の性格に依存する。このため、生活パターンのみで制御内容を決定してしまうと、特定のユーザは、そのような制御内容を望ましくないと感じる。そのため、特定のユーザは、それ以降、機器制御サービスの利用を継続しない、又は、機器制御サービスへの満足度が低くなる、といった課題があった。
 そこで、本開示の一又は複数の態様によれば、ユーザの生活パターンと、ユーザの性格とに応じた機器制御を行うことができるようにすることを目的とする。
 本開示の一態様に係る機器制御装置は、ユーザの性格を示す性格情報を取得する性格情報取得部と、前記性格情報と、前記ユーザの生活パターンとから、前記ユーザが使用する機器の制御方法である機器制御方法を特定する制御方法特定部と、前記機器制御方法に従って、前記機器を制御する制御部と、を備えることを特徴とする。
 本開示の一態様に係るプログラムは、コンピュータを、ユーザの性格を示す性格情報を取得する性格情報取得部、前記性格情報と、前記ユーザの生活パターンとから、前記ユーザが使用する機器の制御方法である機器制御方法を特定する制御方法特定部、及び、前記機器制御方法に従って、前記機器を制御する制御部、として機能させることを特徴とする。
 本開示の一態様に係る機器制御方法は、ユーザの性格を示す性格情報を取得し、前記性格情報と、前記ユーザの生活パターンとから、前記ユーザが使用する機器の制御方法である機器制御方法を特定し、前記機器制御方法に従って、前記機器を制御することを特徴とする。
 本開示の一又は複数の態様によれば、ユーザの生活パターンと、ユーザの性格とに応じた機器制御を行うことができる。
実施の形態1及び2に係る機器制御装置を備える機器制御システムの構成を概略的に示すブロック図である。 生活データの一例を示す概略図である。 実施の形態1における生活パターンの一例を示すグラフである。 (A)及び(B)は、ハードウェア構成例を示すブロック図である。 機器制御装置の全体的な動作の一例を示すフローチャートである。 制御方法特定部の動作を示すフローチャートである。 機器制御方法を特定する第1の例を説明するためのグラフである。 機器制御方法を特定する第2の例を説明するためのグラフである。 機器制御方法を特定する第3の例を説明するためのグラフである。 機器制御方法を特定する第4の例を説明するためのグラフである。 制御部の動作を示すフローチャートである。 実施の形態2における生活パターンの一例を示す表である。 機器が連動する頻度に基づいて、機器制御方法を特定する第1の例を説明するための表である。 機器が連動する頻度に基づいて、機器制御方法を特定する第2の例を説明するための表である。 機器が連動する頻度に基づいて、機器制御方法を特定する第3の例を説明するための表である。 機器が連動する頻度に基づいて、機器制御方法を特定する第4の例を説明するためのグラフである。
実施の形態1.
 図1は、実施の形態1に係る機器制御装置110を備える機器制御システム100の構成を概略的に示すブロック図である。
 機器制御システム100は、機器101A、101Bと、センサ102と、ユーザデバイス103と、機器制御装置110とを備える。
 機器101A、101Bは、機器制御装置110で制御する対象である。機器101A、101Bの各々は、エアコン、テレビ、冷蔵庫、クッキングヒーター、レンジ、エコキュート又は照明等の機器である。
 ここで、機器101A、101Bの各々を特に区別する必要がない場合には、機器101A、101Bの各々を機器101という。機器制御システム100には、一つの機器101が存在していても、二つ以上の機器101が存在していてもよい。
 センサ102は、人感センサ、開閉センサ、温湿度計、光量計、二酸化炭素濃度計、圧力センサ又は加速度センサ等のように、予め定められた対象を検知するセンサである。
 センサ102は、機器101の何れかに内蔵されていてもよい。また、機器制御システム100には、一又は複数のセンサ102が存在していても、センサ102が存在していなくてもよい。
 ユーザデバイス103は、スマートフォン又はスマートスピーカーといったデバイスであり、制御対象となる機器101を利用するユーザに情報を伝達し、そのユーザからの入力を受け付ける。
 なお、テレビ又は冷蔵庫等の機器101がユーザデバイス103の役割を兼ねてもよい。制御対象となる機器101を利用する複数のユーザが存在する場合は、複数のユーザデバイス103が存在し、それぞれのユーザがそれぞれのユーザデバイス103を保持していてもよい。
 機器制御装置110は、機器101を制御する。
 図1に示されているように、機器制御装置110は、通信部111と、生活データ記憶部112と、生活パターン抽出部113と、性格情報取得部114と、制御方法特定部115と、制御部116とを備える。
 通信部111は、機器101、センサ102又はユーザデバイス103と通信を行うインタフェースである。
 生活データ記憶部112は、生活データを記憶する。
 生活データは、機器101に関する複数のイベントの履歴を少なくとも示す。生活データには、センサ102に関する複数のイベントの履歴が含まれていてもよい。
 複数のイベントの履歴は、例えば、機器101又はセンサ102の操作履歴又は動作履歴である。操作とは、例えば、オン操作、オフ操作、設定変更操作、タイマー設定操作等である。動作とは、例えば、動作開始、動作完了、動作変更、センサ102の検知、センサ102の定期的な計測値取得等である。
 図2は、生活データの一例を示す概略図である。
 図2に示されているように、生活データ120は、イベント日時列120aと、種別列120bと、イベント内容列120cとを備えるテーブル情報である。
 イベント日時列120aは、イベントが行われた日時を格納する。
 種別列120bは、イベントが行われた機器101又はセンサ102の種別を格納する。
 イベント内容列120cは、行われたイベントの内容を示す情報を格納する。イベント内容列120cには、例えば、センサ102の検知、機器101の有する機能の使用(例えば、オン操作)又は停止(例えば、オフ操作)等が格納されればよい。なお、機器101が一つの機能しか有しない場合には、機器101の使用又は停止は、その一つの機能の使用又は停止を示すものとしてもよい。
 なお、生活データ120には、その他に、機器101又はセンサ102を識別するための識別情報であるID等が含まれていてもよい。
 また、図2の例では、機器101Aがエアコン、機器101Bがテレビ、センサ102が人感センサである場合を示しているが、機器制御装置110に接続され、履歴が記憶される機器101及びセンサ102は、これらに限定されるものではない。
 また、機器101に関するイベント内容は、図2で示されているように、ON及びOFFに限定されない。例えば、エアコンであれば、設定温度変更操作、エアコンに内蔵された温度計が測定した温度が予め設定してあった閾値を超えたといったイベント内容であってもよい。
 図1に戻り、生活パターン抽出部113は、生活データ記憶部112に記憶された生活データから生活パターンを抽出する。
 実施の形態1における生活パターンは、時間等の条件毎に、それぞれの機器101のそれぞれの機能が利用される頻度である。
 例えば、生活データには、機器101に関する複数のイベントとして、機器101の機能に対する複数の操作が含まれている。そして、生活パターン抽出部113は、その生活データを参照することで、予め定められた時間帯毎にその複数の操作の各々が行われる頻度を算出し、予め定められた時間帯毎のその複数の操作の各々の頻度を生活パターンとして抽出する。
 図3は、実施の形態1における生活パターンの一例を示すグラフである。
 図3は、エアコンの冷房が時刻毎にオンである頻度を示すグラフである。
 実施の形態1における生活パターンは、予め定められた時間帯毎の頻度であり、特定の期間内に各々の時間帯において特定の機能(ここでは、冷房)が利用されている回数を、その特定の期間の日数で割ったものである。
 ここで、特定の期間は、例えば、生活パターンの抽出を行う日から予め定められた期間、例えば、過去1か月間である。特定の期間については、必要に応じて変更されてもよい。
 また、生活パターン抽出部113は、特定の期間を平日と休日とに分けて、それぞれの期間で別個に時間帯毎の頻度を算出して、生活パターンとしてもよい。これは、平日と休日のそれぞれの生活パターンに合わせた機器制御を可能とするため好適である。
 さらに、生活パターンは時間帯毎に求められた頻度以外にも、例えば、室温の値毎に機能が利用される頻度等であってもよい。
 時間帯は、上記の特定の期間よりも短くなるように、例えば、30分等のように予め定められていればよい。
 図1に戻り、性格情報取得部114は、機器101を利用するユーザの性格を示す性格情報を取得する。
 性格情報は、例えば、ビッグファイブパーソナリティ特性である。ビッグファイブパーソナリティ特性は、5因子モデルとも呼ばれ、開放性、勤勉性、外向性、協調性及び情緒安定性という5つのパラメータで性格(パーソナリティ)を特性付けるものである。即ち、性格情報は、そのようなパラメータを要素に含めばよい。ビッグファイブパーソナリティ特性については、下記の文献に詳細に説明されている。
 John, Oliver P., Laura P. Naumann, and Christopher J. Soto. “Paradigm shift to the integrative big five trait taxonamy.” Handbook of personality: Theory and research 3.2 (2008),pp.114-158
 開放性は、新しい経験又は多様性を好む度合いを表し、経験への開放性と言い換えてもよい。
 勤勉性は、向上心があり達成を目指す傾向又は計画的な行動を好む傾向の度合いを表し、誠実性と言い換えてもよい。
 外向性は、他者との付き合い又は会話を好む度合いを表す。
 協調性は、他者に協力的である傾向の度合いを表し、調和性又は愛着性と言い換えてもよい。
 情緒安定性は、安定した性格であり不快な感情を経験しにくい傾向の度合いを表し、その反対の意味で神経症傾向と言い換えてもよい。
 また、性格情報は、例えば、セルフコントロールの強さを示すパラメータを要素として含んでもよい。セルフコントロールについては、下記の文献に詳しく説明されている。
 Tangney, June P., Roy F. Baumeister, and Angie Luzio Boone. “High self-control predicts good adjustment, less pathology, better grades, and interpersonal succes.” Journal of personality 72.2(2004), pp.271-324
 セルフコントロールは、誘惑又は衝動に直面した際に自己の意思で望ましい行動を追求し望ましくない行動を抑制することである。
 なお、性格情報には、心理学分野でその定義と測定方法が確立されている他のパラメータが含まれてもよい。なお、機器101を利用するユーザが複数人存在する場合は、性格情報は、それらユーザの複数人分が存在することが好適である。
 そして、性格情報取得部114は、例えば、ユーザに性格に関するアンケートを行うことで性格情報を取得すればよい。アンケートは、ユーザデバイス103を用いて行っても、機器101の購入時に対面で行われてもよい。性格情報取得部114は、既に測定されたパーソナリティ尺度のスコア値を、ネットワーク等を介して取得しても、ユーザが入力することで取得してもよい。
 また、性格情報は、例えば、SNS(Social Network Service)の「いいね!」等の操作履歴、又は、書き込み履歴から推定されたものを、ネットワーク等を介して取得されてもよい。このような取得の方法については、下記の文献に詳細に説明されている。
 Youyou, Wu, Michal Kosinski, and David Stillwell. “Computer-based personality judgments are more accurate than those made by humans.” Proceedings of the National Academy of Sciences 112.4 (2015), pp. 1036-1040
 さらに、性格情報は、スマートフォンといったユーザデバイスの操作履歴、動作履歴又は保存内容等から推定されたものを、ネットワーク等を介して取得されてもよい。このような推定の方法については、下記の文献に詳細に説明されている。
 Stachl, Clemens, et al. “Predicting personality from patterns of behavior collected with smartphones.” Proceedings of the National Academy of Sciences 117.30 (2020), pp. 17680-17687
 なお、性格情報を取得する際に用いられるユーザデバイスは、図1に示されているユーザデバイス103と同一であっても別のユーザデバイスであってもよい。
 また、機器101を複数のユーザが利用し、複数のユーザの性格情報を取得する場合には、前述したアンケート又は推定による取得等の方法を人数分だけ繰り返すことで、性格情報が取得されればよい。
 また、制御対象となる機器101毎に、その機器101を利用するユーザを登録しておくことは、機器101を利用するユーザの性格に応じた機器101の制御を可能とするため好適である。その際にユーザ毎に利用する頻度又は時間帯を設定しておくことは、利用するユーザの特定の精度を上げ、よってユーザの性格に応じた機器101の制御を可能とするため好適である。
 さらに、ユーザがセンサ等により識別できるように予め設定しておくことは好適である。個人を識別するためのセンサは、図1に示されているセンサ102と同一であっても別のセンサであってもよい。例えば、センサが機器101に内蔵されたカメラであり、ユーザの顔画像を予め登録しておくことで機器101を利用する個人の識別が可能となる。
 また、センサが機器101の操作ボタンに付属した指紋センサであり、それによってユーザを識別してもよい。他にも、ユーザが音声により機器101を操作する場合に、音声情報からユーザが識別されてもよい。さらに、ユーザがそれぞれ保持するユーザデバイスを介して機器101の操作を行う場合に、操作に用いられたユーザデバイスの登録情報からユーザが識別されてもよい。
 制御方法特定部115は、生活パターン抽出部113が抽出した生活パターンと、性格情報取得部114が取得した性格情報とから、機器101の制御方法である機器制御方法を特定する。
 例えば、制御方法特定部115は、性格情報に基づいて閾値を特定し、特定された閾値と、生活パターンとを比較することで、機器101の制御方法を特定する。
 具体的には、制御方法特定部115は、性格情報を参照することで、ユーザの性格に応じて閾値を特定し、生活パターンで示される頻度がその閾値を超えた場合に、対応する時間帯において対応する操作に関する制御を行うように機器制御方法を特定する。
 実施の形態1では、制御方法特定部115は、閾値として第一の閾値を超えた場合に、制御として、対応する操作を自動的に行う第一の機器制御方法と、閾値として第一の閾値よりも低い第二の閾値を超えた場合に、制御として、対応する操作を行うことをリコメンドする第二の機器制御方法と、を機器制御方法として特定する。機器制御方法の特定方法の詳細については、後述する。
 制御部116は、制御方法特定部115が特定した機器制御方法に従って、機器101を制御する。
 以上に記載された生活パターン抽出部113、性格情報取得部114、制御方法特定部115及び制御部116の一部又は全部は、例えば、図4(A)に示されているように、メモリ10と、メモリ10に格納されているプログラムを実行するCPU(Central Processing Unit)等のプロセッサ11とにより構成することができる。このようなプログラムは、ネットワークを通じて提供されてもよく、また、記録媒体に記録されて提供されてもよい。即ち、このようなプログラムは、例えば、プログラムプロダクトとして提供されてもよい。このような場合、機器制御装置110は、いわゆるコンピュータにより実現することができる。
 また、生活パターン抽出部113、性格情報取得部114、制御方法特定部115及び制御部116の一部又は全部は、例えば、図4(B)に示されているように、単一回路、複合回路、プログラムで動作するプロセッサ、プログラムで動作する並列プロセッサ、ASIC(Application Specific Integrated Circuit)又はFPGA(Field Programmable Gate Array)等の処理回路12で構成することもできる。
 以上のように、生活パターン抽出部113、性格情報取得部114、制御方法特定部115及び制御部116は、処理回路網により実現することができる。
 なお、生活データ記憶部112は、ROM(Read Only Memory)又はRAM(Random-access Memory)等のメモリ、HDD(Hard Disc Drive)又はSSD(Solid State Drive)等の記憶媒体といった記憶装置により構成することができる。
 また、通信部111は、NIC(Network Interface Card)等の通信装置により構成することができる。
 なお、生活データ記憶部112、生活パターン抽出部113、性格情報取得部114、制御方法特定部115又は制御部116は、クラウドサーバー上に存在していても、別個の装置であっても、機器101又はセンサ102のいずれかに内蔵されていてもよい。また、それらの構成が複数に分かれて上記のような形で別々に存在していてもよい。
 次に、機器制御装置110の動作について説明する。
 図5は、機器制御装置110の全体的な動作の一例を示すフローチャートである。
 まず、通信部111は、機器101及びセンサ102等から生活データを受信し、その生活データを生活データ記憶部112に記憶させる(S10)。
 生活パターン抽出部113は、記憶された生活データから生活パターンを抽出する(S11)。
 性格情報取得部114は、通信部111を介して、ユーザの性格情報を取得する(S12)。
 制御方法特定部115は、生活パターンと、性格情報とから機器101の制御方法である機器制御方法を特定する(S13)。
 制御部116は、制御方法特定部115が特定した機器制御方法に基づいて、機器101の制御を行う(S14)。
 次に、図5のステップS13で特定される機器制御方法について説明する。
 実施の形態1では、機器制御方法として、自動制御及びレコメンドが行われるものとする。
 自動制御は、生活パターンにおいて頻度が著しく高く、ユーザによってなされる可能性が著しく高い操作を、自動で実行する機器制御方法である。自動制御を行う機器制御方法を、第一の機器制御方法ともいう。
 レコメンドは、生活パターンにおいて頻度が高く、ユーザによってなされる可能性が高い操作について、その操作を実行することを予めユーザに通知し、ユーザが受諾すればその制御を行う機器制御方法である。レコメンドを行う機器制御方法を第二の機器制御方法ともいう。
 図6は、制御方法特定部115の動作を示すフローチャートである。
 制御方法特定部115は、性格情報取得部114が取得した性格情報に応じて自動制御の閾値である自動制御閾値を決定する(S20)。自動制御閾値を第一の閾値ともいう。
 制御方法特定部115は、生活パターン抽出部113が抽出した生活パターンと、ステップS20で決定された自動制御閾値とから、自動制御を行う対象操作及び時刻を決定する(S21)。ここでの時刻は、対応する時間帯の何れの時刻であってもよい。例えば、その時間帯が開始される時間帯である開始時刻であってもよく、その時間帯の中間の時刻である中間時刻あってもよく、その時間帯が終了する時刻である終了時刻でもよい。また、閾値を算出する際に用いられたイベントが行われた平均の時刻である平均時刻であってもよい。
 また、制御方法特定部115は、性格情報取得部114が取得した性格情報に応じてレコメンドの閾値であるレコメンド閾値を決定する(S22)。レコメンド閾値を第二の閾値ともいう。
 制御方法特定部115は、生活パターン抽出部113が抽出した生活パターンと、ステップS22で決定されたレコメンド閾値とから、レコメンドを行う対象操作及び時刻を決定する(S23)。ここでの時刻は、対応する時間帯の何れの時刻であってもよい。例えば、その時間帯が開始される時間帯である開始時刻であってもよく、その時間帯の中間の時刻である中間時刻あってもよく、その時間帯が終了する時刻である終了時刻でもよい。また、閾値を算出する際に用いられたイベントが行われた平均の時刻である平均時刻であってもよい。
 ここで、図6に示されているステップS20~S23における閾値の決定と、制御を行う対象操作及び時刻の決定とについて詳細を説明する。
 図7は、機器制御方法を特定する第1の例を説明するためのグラフである。
 図7では、機器101がエアコンであり、冷房がオンにされた頻度に基づいて、制御方法を特定する例を説明する。ここでは、ユーザの性格情報は、平均的なものであるとする。例えば、性格情報において、開放性、勤勉性、外向性、協調性、情緒安定性及びセルフコントロールを示す全てのパラメータが、予め定められた数値範囲に含まれている場合である。ここでの数値範囲は、全てのパラメータについて同じとなっていてもよく、パラメータ毎に異なっていてもよい。
 このような場合、制御方法特定部115は、例えば機器101の冷房をオフからオンとする自動制御閾値AThを、自動制御の基準閾値である自動制御基準閾値90%、機器101の冷房をオフからオンとするレコメンド閾値RThを、レコメンドの基準閾値であるレコメンド基準閾値50%と決定する。
 そして、制御方法特定部115は、機器101であるエアコンの冷房がオンである頻度が、自動制御閾値AThを超える場合に、エアコンの冷房をオンとする自動制御を行うものとし、その自動制御の時刻は、その頻度が自動制御閾値AThを超える時刻とする。
 また、制御方法特定部115は、エアコンの冷房がオンである頻度がレコメンド閾値RThを超える場合に、エアコンの冷房をオンとするレコメンドを行うものとし、そのレコメンドの時刻は、その頻度がレコメンド閾値RThを超える時刻とする。
 図7の例では、制御方法特定部115は、6:00にエアコンの冷房をオンにするレコメンドを行い、6:21にエアコンの冷房をオンにする自動制御を行う、という機器制御方法を特定する。
 ここで、制御方法特定部115は、機器101の機能がオンである頻度が閾値をはさんで上下に揺らぐ場合に、制御が不必要に実行されないような規則を機器制御方法に適用してもよい。例えば、自動制御を行う時刻の後30分間は同一の操作に関する自動制御は行わないといった規則、又は、レコメンドを行う時刻の後30分間は同一の操作に関するレコメンドは行わないといった規則が機器制御方法に適用されてもよい。
 また、制御方法特定部115は、機器101の機能がオンである頻度に基づいて、機器101の機能をオンからオフとする制御を行うものとしてもよい。
 制御方法特定部115は、例えば、機器101の機能をオンからオフとする制御における自動制御閾値を自動制御基準閾値である10%、そのレコメンド閾値をレコメンド基準閾値である50%と決定してもよい。
 なお、図7の例ではエアコンの冷房がオンである頻度に基づいて機器制御方法を特定しているが、同様に、エアコン以外の機器101の機能の頻度、オンではない特定の機能が利用されている頻度、センサ102が測定した値が閾値を超えている頻度等に基づいて機器制御方法が特定されていてもよい。
 次に、制御方法特定部115が、ユーザの性格情報に応じて閾値を特定することによって、機器制御を発生させやすくさせる場合について説明する。
 図8は、機器制御方法を特定する第2の例を説明するためのグラフである。
 ユーザの性格情報において機器制御を発生させやすくした方が機器制御によるサービスの効果が向上する場合、例えば、ユーザの開放性が高い場合、情緒安定性が高い場合、勤勉性が低い場合、又は、セルフコントロールが低い場合には、制御方法特定部115は制御の閾値を下げることによって機器制御を発生させやすくする。
 例えば、性格情報において、開放性が予め定められた数値範囲よりも高い場合、情緒安定性が予め定められた数値範囲よりも高い場合、勤勉性が予め定められた数値範囲よりも低い場合、又は、セルフコントロールが予め定められた数値範囲よりも低い場合である。
 このような場合、制御方法特定部115は、例えば自動制御閾値AThを自動制御基準閾値よりも低い80%、レコメンド閾値RThをレコメンド基準閾値よりも低い40%に特定する。このときには、制御方法特定部115は、5:59にエアコンの冷房をオンにするレコメンドを行い、6:11にエアコンの冷房をオンにする自動制御を行う、という機器制御方法を特定する。これによって性格情報が平均的である図7の場合に比べて制御の時刻が早まっている。また、閾値を下げたことで機器制御の頻度は上昇する。
 例えば、ユーザの性格情報において開放性が高い場合には、機器制御装置110による自動制御又はレコメンドを、新しい経験又は生活における多様性として捉え、好ましく感じる傾向が高い。また、例えば、ユーザの性格情報において情緒安定性が高い場合には、機器制御装置110による制御を不快に感じる可能性が小さい。よって、上記のように機器制御をより早期に行ったり、頻度を上げたりすることでユーザに不快感を与えることなく機器制御によるサービスの効果を向上させることができる。
 また、例えば、ユーザの性格情報において勤勉性が低い、又は、セルフコントロールが低い場合には、機器制御装置110によってユーザの計画的な行動を支援することでユーザの行動を望ましい行動に変容させ得る余地が大きい。よって、上記のように機器制御をより早期に行ったり、頻度を上げたりすることでユーザをより強く支援し、機器制御によるサービスの効果を向上させることができる。
 次に、制御方法特定部115がユーザの性格情報に応じて閾値を特定することによって、機器制御を発生させにくくさせる場合について説明する。
 図9は、機器制御方法を特定する第3の例を説明するためのグラフである。
 ユーザの性格情報において機器制御を発生させにくくした方が機器制御によるサービスの効果が向上する場合、例えば、ユーザの開放性が低い場合、情緒安定性が低い場合、勤勉性が高い場合、又は、セルフコントロールが高い場合には、制御方法特定部115は制御の閾値を上げることによって機器制御を発生させにくくする。
 例えば、性格情報において、開放性が予め定められた数値範囲よりも低い場合、情緒安定性が予め定められた数値範囲よりも低い場合、勤勉性が予め定められた数値範囲よりも高い場合、又は、セルフコントロールが予め定められた数値範囲よりも高い場合である。
 このような場合、制御方法特定部115は、例えば自動制御閾値AThを自動制御基準閾値よりも高い95%、レコメンド閾値RThをレコメンド基準閾値よりも高い60%に特定する。このときには、制御方法特定部115は、6:02にエアコンの冷房をオンにするレコメンドを行うという機器制御方法を特定する。これによって性格情報が平均的である図7の場合に比べて制御の時刻が遅くなっている。また、閾値を上げたことで自動制御が行われなくなり、機器制御の頻度は減少している。
 例えば、ユーザの性格情報において開放性が低い場合には、新しい経験又は生活における多様性を好ましく感じないため、機器制御装置110による自動制御又はレコメンド自体を疎ましく感じる傾向がある。さらに、機器制御の内容がユーザの意図と合っていなかった場合には機器制御によるサービスへの評価をさらに下げてしまい、機器制御によるサービスの利用を打ち切ってしまう可能性がある。
 また、例えば、ユーザの性格情報において情緒安定性が低い場合には、機器制御の内容がユーザの意図と合っていなかったときに、機器制御によるサービスへの評価を著しく下げてしまい、機器制御によるサービスの利用を打ち切ってしまう可能性がある。
 さらに、例えば、ユーザの性格情報において勤勉性が高い又はセルフコントロールが高い場合には、元々ユーザが計画的な行動を取るため、ユーザの行動を望ましい行動に変容させ得る余地が小さい。そこで、このような場合には、上記のように機器制御の対象をより確実なものに絞ることでユーザに不快感を与える可能性を減らし、機器制御によるサービスを継続して利用してもらう可能性を高める。
 次に、制御方法特定部115がユーザの性格情報に応じて閾値を決定することによって、レコメンドを発生させやすくさせる場合について説明する。
 図10は、機器制御方法を特定する第4の例を説明するためのグラフである。
 ユーザの性格情報においてレコメンドを発生させやすくした方が機器制御によるサービスの効果が向上する場合、例えば、ユーザの外向性が高い場合、又は、協調性が高い場合には、制御方法特定部115は、制御の閾値を変更することによってレコメンドを発生させやすくする。
 例えば、性格情報において、外向性が予め定められた数値範囲よりも高い場合、又は、協調性が予め定められた数値範囲よりも高い場合である。
 このような場合、制御方法特定部115は、例えば自動制御閾値AThを自動制御基準閾値よりも高い95%、レコメンド閾値RThをレコメンド基準閾値よりも低い40%に特定する。このときには、制御方法特定部115は、5:59にエアコンの冷房をオンにするレコメンドを行うという機器制御方法を特定する。これによって性格情報が平均的である図7の場合に比べてレコメンドの頻度は上昇し、自動制御の頻度は減少している。
 例えば、ユーザの性格情報において外向性が高い場合には、機器制御装置110との意思疎通又は会話を好ましく感じる傾向が高い。また、例えば、ユーザの性格情報において協調性が高い場合には、ユーザの意図と大きく外れていないときに、レコメンドを受容する傾向が高い。そのため、上記のようにレコメンドの頻度を上げることでユーザに不快感を与えることなく機器制御によるサービスの効果を向上させることができる。なお、逆の場合、つまりユーザの外向性が低い又は協調性が低い場合には、制御方法特定部115は、レコメンドの頻度を下げるとしてもよい。
 ここで、制御方法特定部115がユーザの性格情報に応じて閾値を特定する際に、機器101を複数のユーザが利用し、複数のユーザの性格情報を取得している場合について説明する。
 制御対象の機器101に対し単一のユーザのみが登録されている、又は、利用者が単一のユーザに特定できる場合には、そのユーザの性格情報に応じて閾値が決定されればよい。
 制御対象の機器101に対し複数のユーザが登録されており、利用者が特定できない場合は、例えば、それらのユーザの性格情報を表すパラメータの平均を取り、その値に応じて閾値が決定されればよい。パラメータの平均値の代わりに、パラメータの中央値等の代表値、最大値又は最小値といった値を取るように予め設定されていてもよい。
 また、ユーザ毎に利用する頻度若しくは時間帯が予め設定してある、又は、センサ102により個人の識別ができ、現在どのユーザが利用しているかについて可能性を定量化できる場合は、その値を重み付けして性格情報を表すパラメータの平均を取り、その値に応じて閾値が決定されてもよい。
 以上から、制御方法特定部115は、「開放性」、「勤勉性」、「外向性」、「協調性」、「情緒安定性」及び「セルフコントロールの強さ」を示すパラメータが、予め定められた数値範囲外となる場合には、そのパラメータにより閾値を下げる場合には負の重み値、そのパラメータにより閾値を上げる場合には、正の重み値を特定し、性格情報の各パラメータに重み値をかけて足し合わせた重みづけ和を、基準閾値に足し合わせることにより閾値を決定する。ここで重みづけ和の値に対しロジスティック関数といった関数を適用したうえで基準閾値に足し合わせることにより閾値が決定されてもよい。また、重み値は、予め定められた一定の値であってもよく、パラメータが予め定められた数値範囲から離れるほど、正の重み値であればより大きく、負の重み値であればより小さくなるようにしてもよい。
 次に、図5のステップS14において制御部116が実行する制御方法について詳細を説明する。
 図11は、制御部116の動作を示すフローチャートである。
 まず、制御部116は、自動制御を行うタイミングであるか否かを判断する(S30)。ここで、制御部116は、制御方法特定部115が特定した自動制御を行う時刻であったとしても、制御に効果がない場合は制御を行うタイミングではないと判断する。制御に効果がない場合は、例えば、制御内容がエアコンの冷房をオンにするものでありその時刻より前にユーザが既にエアコンの冷房をオンにしている場合等である。自動制御を行うタイミングである場合(S30でYes)には、処理はステップS31に進み、自動制御を行うタイミングではない場合(S30でNo)には、処理はステップS33に進む。
 ステップS31では、制御部116は、制御方法特定部115が特定した制御対象操作を実行する。
 制御部116は、通信部111を介して、ユーザデバイス103に実行した制御内容を通知する(S32)。そして、処理はステップS33に進む。
 ステップS33では、制御部116は、レコメンドを行うタイミングであるか否かを判断する。ここでは、制御部116は、制御方法特定部115が特定したレコメンドを行う時刻であったとしても、レコメンドに効果がない場合はレコメンドを行うタイミングではないと判断する。レコメンドに効果がない場合は、例えば、レコメンドの内容がエアコンの冷房をオンにするものでありその時刻より前にユーザが既にエアコンの冷房をオンにしている場合等である。レコメンドを行うタイミングである場合(S33でYes)には、処理はステップS34に進み、レコメンドを行うタイミングではない場合(S33でNo)には、処理はステップS30に戻る。
 ステップS34では、制御部116は、制御方法特定部115が特定した制御対象操作を行うことを、ユーザデバイス103を介してユーザに推薦する。例えば、制御部116は、通信部111を介して、そのような制御対象操作を行うことをレコメンドする画面画像をユーザデバイス103に送り、そのような画面画像をユーザデバイス103に表示させる。
 そして、制御部116は、ユーザが推薦された制御対象操作を行うことを受け入れるか否かを判断する(S35)。例えば、制御部116は、通信部111を介して、ユーザから制御対象操作を受諾することを示す通知を受け取った場合には、ユーザが推薦された制御対象操作を行うことを受け入れたと判断する。一方、制御部116は、通信部111を介して、そのような通知を予め定められた期間内に受け取らなかった場合、又は、ユーザから制御対象操作を拒否することを示す通知を受け取った場合には、ユーザが推薦された制御対象操作を行うことを受け入れなかったと判断する。ユーザが推薦された制御対象操作を行うことを受け入れた場合(S35でYes)には、処理はステップS36に進み、ユーザが推薦された制御対象操作を行うことを受け入れなかった場合(S35でNo)には、処理はステップS30に戻る。
 ステップS36では、制御部116は、制御方法特定部115が特定した制御対象操作を実行する。そして、処理はステップS30に戻る。
 以上のように、実施の形態1によれば、ユーザの生活パターンと、ユーザの性格とに応じて機器制御を行うことで、ユーザにとって望ましい機器制御を行うことができる。
 例えば、ユーザの性格が、機器制御装置110により機器101が制御されることを好ましく感じる場合には、制御方法特定部115は、制御の頻度が上がるように閾値を特定する。一方、ユーザの性格が、機器制御装置110により機器101が制御されることを好ましく感じない場合には、制御の頻度が下がるように閾値を特定する。
 また、ユーザの性格が、ユーザの行動を統制する程度が強い場合には、制御方法特定部115は、制御の頻度が下がるように閾値を特定する。一方、ユーザの性格がユーザの行動を統制する程度が弱い場合には、制御方法特定部115は、制御の頻度が上がるように閾値を特定する。
 さらに、ユーザの性格が対話を好ましく感じる場合には、制御方法特定部115は、リコメンドする頻度が上がるように第二の閾値を特定する。一方、ユーザの性格が対話を好ましく感じない場合には、制御方法特定部115は、リコメンドする頻度が下がるように第二の閾値を特定する。この場合には、自動制御がされにくくするために、第一の閾値があげられてもよいが、実施の形態1は、このような例に限定されない。
 一般に、機器制御の頻度を上げるほど、ユーザの意図と合った制御が含まれておりユーザの手間をより減らすことができるが、ユーザの意図と合わない制御も含まれておりユーザに不快感をより与えてしまうことにもなる。ここで、ユーザの意図と合わない制御が生じたときの不快感の程度は、ユーザの性格によって異なる。また、ユーザの意図に近い制御が生じたときの快又は不快の程度も、ユーザの性格によって異なる。さらに、手間が減る望ましさ又は効果の強弱も、ユーザの性格によって異なる。実施の形態1によれば、性格に応じて機器制御の頻度を決定することで、ユーザの満足度を向上させることができる。
 また、機器制御の方法として、ユーザの受諾を求めない自動制御と、ユーザの受諾を求めるレコメンド、といった段階を設けることで、以下のような効果が得られる。
 ユーザが求めるものである可能性が著しく高い制御は、自動制御を行うことでユーザの受諾といった手間を減らすことができる。また、可能性が著しく高くない制御の場合は、レコメンドを行いユーザの受諾を求めることで、ユーザの意図に一致していない制御及びそれによる不快感を減らすことができる。
 さらに、自動制御とレコメンドとのそれぞれについて好ましく感じる程度はユーザの性格に依存するため、それぞれの頻度をユーザの性格に応じて変更することで、ユーザの満足度を向上させることができる。
 また、実施の形態1によれば、機器制御の適切な頻度をユーザの性格に応じて予め設定することにより、機器制御によるサービスにおいて初期の段階から望ましい機器制御を行うことが可能である。それにより、ユーザに合ったそれぞれの機器制御の頻度をユーザが試行錯誤をしながら設定する等の手間、又は、その過程における不快感を除くことができる。
実施の形態2.
 図1に示されているように、実施の形態2に係る機器制御装置210を備える機器制御システム200は、機器101と、センサ102と、ユーザデバイス103と、機器制御装置210とを備える。
 実施の形態2における機器制御システム200の機器101、センサ102及びユーザデバイス103は、実施の形態1における機器制御システム100の機器101、センサ102及びユーザデバイス103と同様である。
 図1に示されているように、実施の形態2に係る機器制御装置210は、通信部111と、生活データ記憶部112と、生活パターン抽出部213と、性格情報取得部114と、制御方法特定部215と、制御部216とを備える。
 実施の形態2に係る機器制御装置210の通信部111、生活データ記憶部112及び性格情報取得部114は、実施の形態1に係る機器制御装置210の通信部111、生活データ記憶部112及び性格情報取得部114と同様である。
 生活パターン抽出部213は、生活データ記憶部112に記憶された生活データから生活パターンを抽出する。
 実施の形態2における生活パターンは、条件毎に機器101又はセンサ102のイベントが連動する頻度である。
 例えば、生活データには、機器101に関する複数のイベントの履歴が少なくとも含まれており、その複数のイベントには、機器101の機能に対する複数の操作が含まれている。そして、生活パターン抽出部213は、生活データを参照することで、複数の操作から二つの操作を抽出した複数の順列の内、二つの操作の内の先の操作から後の操作が予め定められた期間内に行われる頻度を算出し、複数の順列の各々における頻度を生活パターンとして抽出する。
 また、生活データには、機器101及びセンサ102に関する複数のイベントの履歴が少なくとも含まれており、複数のイベントには、機器101の機能に対する複数の操作及びセンサ102による予め定められた対象の検知が含まれている。そして、生活パターン抽出部213は、生活データを参照することで、センサ102による検知から複数の操作の各々が予め定められた期間内に行われる頻度を算出し、複数の操作の各々において算出された頻度を生活パターンとして抽出する。
 図12は、実施の形態2における生活パターンの一例を示す表である。
 図12では、機器101Aは、エアコン、機器101Bは、テレビ、及び、センサ102は、人感センサであるものとする。
 図12では、エアコンの冷房のオン操作、エアコンの冷房のオフ操作、テレビの視聴のオン操作、テレビの視聴のオフ操作、及び、人感センサによる人の検知といったイベントが連動する頻度を示している。
 具体的には、図12の縦の列は、トリガとなる操作又は動作が示されている。ここでは、エアコンの冷房のオン操作、エアコンの冷房のオフ操作、テレビの視聴のオン操作、テレビの視聴のオフ操作、及び、人感センサによる人の検知がトリガとなる操作又は動作である。
 そして、図12の横の行は、トリガに連動する操作が示されている。ここでは、エアコンの冷房のオン操作、エアコンの冷房のオフ操作、テレビの視聴のオン操作、及び、テレビの視聴のオフ操作がトリガに連動する操作である。
 図12に示されている表の中の数値は、特定の期間内に、トリガとなるイベントである操作又は動作が生じたときから、予め定められた期間内にトリガに連動するイベントである操作が起きた頻度を表している。なお、表中の「-」は、頻度を算出していないことを示している。特定の期間は、第一の期間ともいい、予め定められた期間は、第二の期間ともいう。
 ここでは、特定の期間は、生活パターン抽出を行う日から過去1か月間の内、平日の午前5時から午前10時とし、予め定められた期間は5分間としたが、必要に応じて変更されてもよい。
 例えば、図12では、特定の期間内で、エアコンの冷房がOFFからONになったときに、テレビの視聴がOFFであれば、予め定められた期間である5分間の間に、テレビの視聴がONになる頻度が89%であったことを示している。このような頻度は、特定の期間内にトリガとなるイベントが生じて、予め定められた期間内に連動するイベントが起きた回数を、特定の期間内にトリガとなるイベントが生じたときに連動するイベントが起き得た回数で割ったものである。
 ここで、連動するイベントが起き得た場合の具体例を説明する。
 例えば、連動するイベントが「テレビの視聴がONとなる」であるものとする。そして、トリガとなるイベントが生じたときにテレビの視聴がOFFであれば、連動するイベントが起き得た場合になる。一方、トリガとなるイベントが生じたときに既にテレビの視聴がONであれば、連動するイベントが起き得なかった場合になる。
 なお、特定の期間を平日と休日とに分けて、それぞれの期間で別個にイベントが連動する頻度を算出して生活パターンとすることは、平日と休日のそれぞれの生活パターンに合わせた機器制御を可能とするため好適である。
 また、特定の期間を朝及び夕方等の時間帯に分けて、それぞれの期間で別個にイベントが連動する頻度を算出して生活パターンとすることは、それぞれの時間帯におけるそれぞれの生活パターンに合わせた機器制御を可能とするため好適である。
 センサ102はユーザが操作する対象とならないため、トリガに連動するセンサのイベントの頻度は、図12にも示されているように、生活パターンから省略されてもよい。
 また、同一の機器101の特定の機能のONと、そのOFFといった同一の操作に関する連動は制御に用いないとして、図12にも示されているように生活パターンから省略されてもよい。
 連動の頻度の根拠となるデータ数が少ないときは、その頻度は、信頼性に乏しいため、生活パターンから省略されてもよい。例えば、特定の期間内にトリガとなるイベントが生じたときに連動するイベントが起き得た回数が予め定められた回数(例えば、5回)未満であったときは、連動の頻度が省略されてもよい。これによって信頼性の乏しい値によって不適切な制御が生じることを防ぐことができる。
 制御方法特定部215は、生活パターン抽出部213が抽出した生活パターンと、性格情報取得部114が取得した性格情報とに基づいて、機器101の制御方法を特定する。
 例えば、制御方法特定部215は、性格情報に基づいて閾値を特定し、特定された閾値と、生活パターンとを比較することで、機器101の制御方法を特定する。実施の形態2では、制御方法特定部215は、トリガとなるイベントと、トリガに連動するイベントとを機器制御方法として特定する。
 制御方法特定部215は、性格情報を参照することで、ユーザの性格に応じて閾値を特定し、生活パターンで示される頻度が閾値を超えた場合に、対応する順列において先の操作が行われたときに後の操作に関する制御を行うように機器制御方法を特定する。
 具体的には、制御方法特定部215は、閾値として第一の閾値を超えた場合に、制御として、対応する順列において先の操作が行われたときに後の操作を自動的に行う第一の機器制御方法と、閾値として第二の閾値を超えた場合に、制御として、対応する順列において先の操作が行われたときに後の操作を行うことをリコメンドする第二の機器制御方法と、を機器制御方法として特定する。
 また、制御方法特定部215は、性格情報を参照することで、ユーザの性格に応じて閾値を特定し、生活パターンで示される頻度が閾値を超えた場合に、センサ102による検知が行われたときに対応する操作に関する制御を行うように機器制御方法を特定する。
 具体的には、制御方法特定部215は、閾値として第一の閾値を超えた場合に、制御として、検知が行われたときに対応する操作を自動的に行う第一の機器制御方法と、閾値として、第一の閾値よりも低い第二の閾値を超えた場合に、制御として、検知が行われたときに対応する操作を行うことをリコメンドする第二の機器制御方法と、を機器制御方法として特定する。
 なお、制御方法の特定方法の詳細については、後述する。
 制御部216は、制御方法特定部215が特定した制御方法に従って、機器101を制御する。実施の形態2では、制御部216は、制御方法特定部215が特定したトリガとなるイベントが発生したタイミングで、トリガに連動するイベントに関連する制御方法を実行する。
 図13は、機器101が連動する頻度に基づいて、機器制御方法を特定する第1の例を説明するための表である。
 図13では、機器101がエアコン及びテレビであり、センサ102は、人感センサであるものとする。そして、エアコンの冷房、テレビの視聴及び人感センサの検知が連動する場合を説明する。また連動する頻度は、平日の午前5時から午前10時の間で求められたものである。
 ここでは、ユーザの性格情報は、平均的なものであるとする。例えば、性格情報において、開放性、勤勉性、外向性、協調性、情緒安定性及びセルフコントロールを示す全てのパラメータが、予め定められた数値範囲に含まれている場合である。ここでの数値範囲は、全てのパラメータについて同じとなっていてもよく、パラメータ毎に異なっていてもよい。
 制御方法特定部115は、例えば機器101を連動させる自動制御閾値を、自動制御基準閾値である90%、機器を連動させるレコメンド閾値を、レコメンド基準閾値である50%と決定する。
 図13では、テレビ視聴オンに連動したエアコン冷房オフの操作が自動制御閾値を超えている。
 また、エアコン冷房ONに連動したテレビ視聴ONの操作、エアコン冷房OFFに連動したテレビ視聴OFFの操作、テレビ視聴OFFに連動したエアコン冷房OFFの操作、人感センサ検知に連動したエアコン冷房OFFの操作が、レコメンド閾値を超えている。
 制御方法特定部215は、イベントが連動する頻度が自動制御閾値を超える場合に、その連動するイベントの自動制御を行うものとし、その自動制御のタイミングはトリガのイベントが生じた時刻とする機器制御方法を特定する。
 また、制御方法特定部215は、イベントが連動する頻度がレコメンド閾値を超える場合に、その連動するイベントのレコメンドを行うものとし、そのレコメンドのタイミングはトリガのイベントが生じた時刻とする機器制御方法を特定する。
 図13の例では、制御方法特定部215は、平日の午前5時から午前10時の間において、テレビ視聴ONが生じたときにエアコン冷房ONにする自動制御を行う機器制御方法、エアコン冷房ONが生じたときにテレビ視聴ONにするレコメンドを行う機器制御方法、テレビ視聴OFFが生じたときにエアコン冷房OFFにするレコメンドを行う機器制御方法、人感センサ検知が生じたときにエアコン冷房ONにするレコメンドを行う機器制御方法、及び、エアコン冷房OFFが生じたときにテレビ視聴OFFにするレコメンドを行う機器制御方法を算出する。同様に、他の機器101又はセンサ102の組み合わせ、異なる期間で求めた頻度に基づいて機器制御方法が特定されてもよい。
 次に、制御方法特定部215が、ユーザの性格情報に応じて閾値を特定することによって、機器制御を発生させやすくさせる場合について説明する。
 図14は、機器101が連動する頻度に基づいて、機器制御方法を特定する第2の例を説明するための表である。
 ユーザの性格情報において機器制御を発生させやすくした方が機器制御によるサービスの効果が向上する場合、例えば、ユーザの開放性が高い場合、情緒安定性が高い場合、勤勉性が低い場合、又は、セルフコントロールが低い場合には、制御方法特定部215は制御の閾値を下げることによって機器制御を発生させやすくする。
 例えば、性格情報において、開放性が予め定められた数値範囲よりも高い場合、情緒安定性が予め定められた数値範囲よりも高い場合、勤勉性が予め定められた数値範囲よりも低い場合、又は、セルフコントロールが予め定められた数値範囲よりも低い場合である。
 このような場合には、制御方法特定部215は、例えば自動制御閾値を自動制御基準閾値よりも低い80%、レコメンド閾値をレコメンド基準閾値よりも低い40%に特定する。このような場合、制御方法特定部215が特定する機器制御方法には、性格情報が平均的である図13の場合と比べて、人感センサ検知が生じたときにテレビ視聴ONにするレコメンドを行う、という機器制御方法が追加される。また、エアコン冷房ONが生じたときにテレビ視聴ONにするレコメンドの機器制御方法が、自動制御を行う機器制御方法に変更されている。
 このように閾値を下げたことで機器制御の頻度は上昇する。また、レコメンドが自動制御に変更されており自動化が促進されている。
 次に、制御方法特定部215がユーザの性格情報に応じて閾値を特定することによって、機器制御を発生させにくくさせる場合について説明する。
 図15は、機器101が連動する頻度に基づいて、機器制御方法を特定する第3の例を説明するための表である。
 ユーザの性格情報において機器制御を発生させにくくした方が機器制御によるサービスの効果が向上する場合、例えば、ユーザの開放性が低い場合、情緒安定性が低い場合、勤勉性が高い場合、又は、セルフコントロールが高い場合には、制御方法特定部215は制御の閾値を上げることによって機器制御を発生させにくくする。
 例えば、性格情報において、開放性が予め定められた数値範囲よりも低い場合、情緒安定性が予め定められた数値範囲よりも低い場合、勤勉性が予め定められた数値範囲よりも高い場合、又は、セルフコントロールが予め定められた数値範囲よりも高い場合である。
 このような場合には、制御方法特定部215は、例えば自動制御閾値を、自動制御基準閾値よりも高い95%、レコメンド閾値を、レコメンド基準閾値よりも高い60%に特定する。このような場合、制御方法特定部215が特定する機器制御方法では、性格情報が平均的である図13の場合と比べて、エアコン冷房OFFが生じたときにテレビ視聴OFFにするレコメンドを行う、という機器制御方法が消えている。また、テレビ視聴ONが生じたときにエアコン冷房ONにする自動制御の機器制御方法が、レコメンドを行う機器制御方法に変更されている。
 このように閾値を上げたことで機器制御の頻度は減少する。また、自動制御がレコメンドに変更されており自動化が抑制されている。
 次に、制御方法特定部215がユーザの性格情報に応じて閾値を決定することによって、レコメンドを発生させやすくさせる場合について説明する。
 図16は、機器101が連動する頻度に基づいて、機器制御方法を特定する第4の例を説明するためのグラフである。
 ユーザの性格情報においてレコメンドを発生させやすくした方が機器制御によるサービスの効果が向上する場合、例えば、ユーザの外向性が高い場合、又は、協調性が高い場合には、制御方法特定部115は、制御の閾値を変更することによってレコメンドを発生させやすくする。
 例えば、性格情報において、外向性が予め定められた数値範囲よりも高い場合、又は、協調性が予め定められた数値範囲よりも高い場合である。
 このような場合には、制御方法特定部215は、例えば自動制御閾値を、自動制御基準閾値よりも高い95%、レコメンド閾値を、レコメンド基準閾値よりも低い40%に特定する。このような場合、制御方法特定部215が特定する機器制御方法には、性格情報が平均的である図13の場合と比べて、人感センサ検知が生じたときにテレビ視聴ONにするレコメンドを行う、という機器制御方法が追加されている。また、テレビ視聴ONが生じたときにエアコン冷房ONにする自動制御を行う機器制御方法が、レコメンドを行う機器制御方法に変更されている。
 このように閾値を変更したことでレコメンドの頻度は上昇する。
 実施の形態2においても、制御方法特定部215は、「開放性」、「勤勉性」、「外向性」、「協調性」、「情緒安定性」及び「セルフコントロールの強さ」を示すパラメータが、予め定められた数値範囲外となる場合には、そのパラメータにより基準閾値を下げる場合には負の重み値、そのパラメータにより基準閾値を上げる場合には、正の重み値を特定し、性格情報の各パラメータに重み値をかけて足し合わせた重みづけ和を、基準閾値に足し合わせることにより閾値を決定する。ここで重みづけ和の値に対しロジスティック関数といった関数を適用したうえで、基準閾値に足し合わせることにより閾値が決定されてもよい。また、重み値は、予め定められた一定の値であってもよく、パラメータが予め定められた数値範囲から離れるほど、正の重み値であればより大きく、負の重み値であればより小さくなるようにしてもよい。
 以上のように、実施の形態2によっても、ユーザの生活パターンと、ユーザの性格とに応じて機器制御を行うことで、ユーザにとって望ましい機器制御を行うことができる。
 なお、以上に記載された実施の形態1における生活パターンは、時間等の条件毎に、それぞれの機器101のそれぞれの機能が利用される頻度であり、実施の形態2における生活パターンは、条件毎に機器101又はセンサ102のイベントが連動する頻度であるが、実施の形態1又は2における生活パターンは、以上の例に限定されない。例えば、生活パターンは、特許文献1に開示されている方法に基づいて、エピソード作成規則を準備し、エピソード作成規則に基づいてエピソードデータを作成し、エピソードデータから頻出パターン木を作成し、頻出パターン木から抽出されてもよい。
 また、生活パターンは、ユーザの生活データのみから抽出されるように限定されているものでもない。例えば、生活パターン抽出部113、213が一般的なユーザを参考とした生活パターンを予め保持していてもよい。生活パターン抽出部113、213が別のユーザの生活データから抽出された生活パターンを取得して、それを保持していてもよい。
 また、以上のように実施の形態1及び2について説明したが、本開示は、このような実施の形態1又は2に限るものではない。異なる方法で生活パターンを抽出する場合であっても、機器制御方法を特定する際に、制御実行の対象となる生活パターンの判定の閾値を性格情報に基づいて決定することで、実施の形態1又は2と同様の効果を得ることが可能である。
 100,200 機器制御システム、 101 機器、 102 センサ、 103 ユーザデバイス、 110,210 機器制御装置、 111 通信部、 112 生活データ記憶部、 113,213 生活パターン抽出部、 114 性格情報取得部、 115,215 制御方法特定部、 116,216 制御部。

Claims (16)

  1.  ユーザの性格を示す性格情報を取得する性格情報取得部と、
     前記性格情報と、前記ユーザの生活パターンとから、前記ユーザが使用する機器の制御方法である機器制御方法を特定する制御方法特定部と、
     前記機器制御方法に従って、前記機器を制御する制御部と、を備えること
     を特徴とする機器制御装置。
  2.  前記機器に関する複数のイベントの履歴を少なくとも示す生活データを記憶する生活データ記憶部と、
     前記生活データから前記生活パターンを抽出する生活パターン抽出部と、をさらに備えること
     を特徴とする請求項1に記載の機器制御装置。
  3.  前記複数のイベントには、前記機器の機能に対する複数の操作が含まれており、
     前記生活パターン抽出部は、前記生活データを参照することで、予め定められた時間帯毎に前記複数の操作の各々が行われる頻度を算出し、前記予め定められた時間帯毎の前記複数の操作の各々の前記頻度を前記生活パターンとして抽出すること
     を特徴とする請求項2に記載の機器制御装置。
  4.  前記制御方法特定部は、前記性格情報を参照することで、前記ユーザの性格に応じて閾値を特定し、前記頻度が前記閾値を超えた場合に、対応する時間帯において対応する操作に関する制御を行うように前記機器制御方法を特定すること
     を特徴とする請求項3に記載の機器制御装置。
  5.  前記制御方法特定部は、前記閾値として第一の閾値を超えた場合に、前記制御として、前記対応する操作を自動的に行う第一の機器制御方法と、前記閾値として前記第一の閾値よりも低い第二の閾値を超えた場合に、前記制御として、前記対応する操作を行うことをリコメンドする第二の機器制御方法と、を前記機器制御方法として特定すること
     を特徴とする請求項4に記載の機器制御装置。
  6.  前記複数のイベントには、前記機器の機能に対する複数の操作が含まれており、
     前記生活パターン抽出部は、前記生活データを参照することで、前記複数の操作から二つの操作を抽出した複数の順列の内、前記二つの操作の内の先の操作から後の操作が予め定められた期間内に行われる頻度を算出し、前記複数の順列の各々における前記頻度を前記生活パターンとして抽出すること
     を特徴とする請求項2に記載の機器制御装置。
  7.  前記制御方法特定部は、前記性格情報を参照することで、前記ユーザの性格に応じて閾値を特定し、前記頻度が前記閾値を超えた場合に、対応する順列において先の操作が行われたときに後の操作に関する制御を行うように前記機器制御方法を特定すること
     を特徴とする請求項6に記載の機器制御装置。
  8.  前記制御方法特定部は、前記閾値として第一の閾値を超えた場合に、前記制御として、前記対応する順列において前記先の操作が行われたときに前記後の操作を自動的に行う第一の機器制御方法と、前記閾値として第二の閾値を超えた場合に、前記制御として、前記対応する順列において前記先の操作が行われたときに前記後の操作を行うことをリコメンドする第二の機器制御方法と、を前記機器制御方法として特定すること
     を特徴とする請求項7に記載の機器制御装置。
  9.  前記機器及びセンサに関する複数のイベントの履歴を少なくとも示す生活データを記憶する生活データ記憶部と、
     前記生活データから前記生活パターンを抽出する生活パターン抽出部と、をさらに備え、
     前記複数のイベントには、前記機器の機能に対する複数の操作及び前記センサによる予め定められた対象の検知が含まれており、
     前記生活パターン抽出部は、前記生活データを参照することで、前記検知から前記複数の操作の各々が予め定められた期間内に行われる頻度を算出し、前記複数の操作の各々において算出された前記頻度を前記生活パターンとして抽出すること
     を特徴とする請求項1に記載の機器制御装置。
  10.  前記制御方法特定部は、前記性格情報を参照することで、前記ユーザの性格に応じて閾値を特定し、前記頻度が前記閾値を超えた場合に、前記検知が行われたときに対応する操作に関する制御を行うように前記機器制御方法を特定すること
     を特徴とする請求項9に記載の機器制御装置。
  11.  前記制御方法特定部は、前記閾値として第一の閾値を超えた場合に、前記制御として、前記検知が行われたときに前記対応する操作を自動的に行う第一の機器制御方法と、前記閾値として、前記第一の閾値よりも低い第二の閾値を超えた場合に、前記制御として、前記検知が行われたときに前記対応する操作を行うことをリコメンドする第二の機器制御方法と、を前記機器制御方法として特定すること
     を特徴とする請求項10に記載の機器制御装置。
  12.  前記性格情報は、前記性格が、前記機器制御装置により前記機器が制御されることを好ましく感じるか否かを特定することができる要素を含み、
     前記制御方法特定部は、前記性格が前記機器制御装置により前記機器が制御されることを好ましく感じる場合には、前記制御の頻度が上がるように前記閾値を特定し、前記性格が前記機器制御装置により前記機器が制御されることを好ましく感じない場合には、前記制御の頻度が下がるように前記閾値を特定すること
     を特徴とする請求項4、5、7、8、10及び11の何れか一項に記載の機器制御装置。
  13.  前記性格情報は、前記性格が前記ユーザの行動を統制する程度が強いか弱いかを特定することができる要素を含み、
     前記制御方法特定部は、前記性格が前記ユーザの行動を統制する程度が強い場合には、前記制御の頻度が下がるように前記閾値を特定し、前記性格が前記ユーザの行動を統制する程度が弱い場合には、前記制御の頻度が上がるように前記閾値を特定すること
     を特徴とする請求項4、5、7、8、10及び11の何れか一項に記載の機器制御装置。
  14.  前記性格情報は、前記性格が対話を好ましく感じるか否かを特定することができる要素を含み、
     前記制御方法特定部は、前記性格が対話を好ましく感じる場合には、前記リコメンドする頻度が上がるように前記第二の閾値を特定し、前記性格が対話を好ましく感じない場合には、前記リコメンドする頻度が下がるように前記第二の閾値を特定すること
     を特徴とする請求項5、8及び11の何れか一項に記載の機器制御装置。
  15.  コンピュータを、
     ユーザの性格を示す性格情報を取得する性格情報取得部、
     前記性格情報と、前記ユーザの生活パターンとから、前記ユーザが使用する機器の制御方法である機器制御方法を特定する制御方法特定部、及び、
     前記機器制御方法に従って、前記機器を制御する制御部、として機能させることを特徴とするプログラム。
  16.  ユーザの性格を示す性格情報を取得し、
     前記性格情報と、前記ユーザの生活パターンとから、前記ユーザが使用する機器の制御方法である機器制御方法を特定し、
     前記機器制御方法に従って、前記機器を制御すること
     を特徴とする機器制御方法。
PCT/JP2020/041527 2020-11-06 2020-11-06 機器制御装置、プログラム及び機器制御方法 WO2022097273A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022560601A JP7403682B2 (ja) 2020-11-06 2020-11-06 機器制御装置、プログラム及び機器制御特定方法
CN202080106692.1A CN116391180A (zh) 2020-11-06 2020-11-06 设备控制装置、程序和设备控制方法
PCT/JP2020/041527 WO2022097273A1 (ja) 2020-11-06 2020-11-06 機器制御装置、プログラム及び機器制御方法
US18/028,775 US20230329610A1 (en) 2020-11-06 2020-11-06 Device control apparatus, non-transitory computer-readable medium, and device control method
EP20960825.6A EP4242857A4 (en) 2020-11-06 Apparatus control device, program, and apparatus control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/041527 WO2022097273A1 (ja) 2020-11-06 2020-11-06 機器制御装置、プログラム及び機器制御方法

Publications (1)

Publication Number Publication Date
WO2022097273A1 true WO2022097273A1 (ja) 2022-05-12

Family

ID=81457084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041527 WO2022097273A1 (ja) 2020-11-06 2020-11-06 機器制御装置、プログラム及び機器制御方法

Country Status (4)

Country Link
US (1) US20230329610A1 (ja)
JP (1) JP7403682B2 (ja)
CN (1) CN116391180A (ja)
WO (1) WO2022097273A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7286036B1 (ja) * 2022-06-08 2023-06-02 三菱電機株式会社 サービス提供装置、プログラム及びサービス提供方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003111157A (ja) * 2001-09-28 2003-04-11 Toshiba Corp 統合コントローラ、機器制御方法及び機器制御プログラム
JP2004007297A (ja) * 2002-06-03 2004-01-08 Hiroshi Sato 自動制御装置及び自動制御方法及び自動制御システム、並びに端末。
JP2004185612A (ja) * 2002-11-22 2004-07-02 Matsushita Electric Ind Co Ltd 操作履歴利用システム及びその方法
JP3744932B2 (ja) 2002-07-19 2006-02-15 松下電器産業株式会社 機器連携制御装置
JP2018120506A (ja) * 2017-01-27 2018-08-02 京セラ株式会社 制御システム及び制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003111157A (ja) * 2001-09-28 2003-04-11 Toshiba Corp 統合コントローラ、機器制御方法及び機器制御プログラム
JP2004007297A (ja) * 2002-06-03 2004-01-08 Hiroshi Sato 自動制御装置及び自動制御方法及び自動制御システム、並びに端末。
JP3744932B2 (ja) 2002-07-19 2006-02-15 松下電器産業株式会社 機器連携制御装置
JP2004185612A (ja) * 2002-11-22 2004-07-02 Matsushita Electric Ind Co Ltd 操作履歴利用システム及びその方法
JP2018120506A (ja) * 2017-01-27 2018-08-02 京セラ株式会社 制御システム及び制御方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JOHN, OLIVER PLAURA P. NAUMANNCHRISTOPHER J. SOTO: "Handbook of personality: Theory and research", vol. 3, 2008, article "Paradigm shift to the integrative big five trait taxonomy", pages: 114 - 158
STACHLCLEMENS ET AL.: "Predicting personality from patterns of behavior collected with smartphones", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, vol. 117, no. 30, 2020, pages 17680 - 17687
TANGNEY, JUNE PROY F. BAUMEISTERANGIE LUZIO BOONE: "High self-control predicts good adjustment, less pathology, better grades, and interpersonal success", JOURNAL OF PERSONALITY, vol. 72, no. 2, 2004, pages 271 - 324
YOUYOU, WUMICHAL KOSINSKIDAVID STILLWELL: "Computer-based personality judgments are more accurate than those made by humans", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, vol. 112, no. 4, 2015, pages 1036 - 1040, XP055701807, DOI: 10.1073/pnas.1418680112

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7286036B1 (ja) * 2022-06-08 2023-06-02 三菱電機株式会社 サービス提供装置、プログラム及びサービス提供方法
WO2023238278A1 (ja) * 2022-06-08 2023-12-14 三菱電機株式会社 サービス提供装置、プログラム及びサービス提供方法

Also Published As

Publication number Publication date
EP4242857A1 (en) 2023-09-13
JPWO2022097273A1 (ja) 2022-05-12
JP7403682B2 (ja) 2023-12-22
US20230329610A1 (en) 2023-10-19
CN116391180A (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
Smith et al. Gaze amplifies value in decision making
US11847260B2 (en) System and method for embedded cognitive state metric system
KR102178633B1 (ko) 사용자 신용 평가 방법 및 장치, 그리고 저장 매체
US8627454B2 (en) Dynamic quota-based entertainment manager
Barber et al. Rebound sex: Sexual motives and behaviors following a relationship breakup
WO2014014936A2 (en) Determination of influence scores
Liapis et al. Stress recognition in human-computer interaction using physiological and self-reported data: a study of gender differences
WO2022097273A1 (ja) 機器制御装置、プログラム及び機器制御方法
CN112735563A (zh) 推荐信息的生成方法、装置和处理器
JP7015927B2 (ja) 学習モデル適用システム、学習モデル適用方法、及びプログラム
CN115985523A (zh) 一种数字化慢病随访管理系统
KR102149160B1 (ko) 딥러닝 기반의 sns 역기능 개선 시스템 및 방법
US10410126B2 (en) Two-model recommender
US11854369B2 (en) Multi-computer processing system for compliance monitoring and control
US20180308180A1 (en) Systems Methods Devices Circuits and Computer Executable Code for Impression Measurement and Evaluation
JP5353390B2 (ja) 発想支援装置、発想支援方法および発想支援用プログラム
CN111340540B (zh) 广告推荐模型的监控方法、推荐方法及装置
JP2017091437A (ja) クラスタ選択装置
US20170368343A1 (en) Memories alive
KR102440397B1 (ko) 인공지능 기반 탈모 관리 장치 및 방법
US20210327591A1 (en) System for Efficiently Estimating and Improving Wellbeing
Vestergaard et al. Choice mechanisms for past, temporally extended outcomes
CN113038257B (zh) 音量调节方法、装置、智能电视及计算机可读存储介质
WO2022070349A1 (ja) 閾値算出システム、閾値算出方法、及びコンピュータプログラム
JP2020009114A (ja) 画像評価装置、システム、画像評価装置の制御方法およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960825

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022560601

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020960825

Country of ref document: EP

Effective date: 20230606