WO2022095579A1 - 壳体组件及其制备方法和电子设备 - Google Patents

壳体组件及其制备方法和电子设备 Download PDF

Info

Publication number
WO2022095579A1
WO2022095579A1 PCT/CN2021/116722 CN2021116722W WO2022095579A1 WO 2022095579 A1 WO2022095579 A1 WO 2022095579A1 CN 2021116722 W CN2021116722 W CN 2021116722W WO 2022095579 A1 WO2022095579 A1 WO 2022095579A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
porous ceramic
ceramic layer
housing assembly
layer
Prior art date
Application number
PCT/CN2021/116722
Other languages
English (en)
French (fr)
Inventor
李聪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2022095579A1 publication Critical patent/WO2022095579A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B29/00Machines or devices for polishing surfaces on work by means of tools made of soft or flexible material with or without the application of solid or liquid polishing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B19/00Machines or methods for applying the material to surfaces to form a permanent layer thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/77Measuring, controlling or regulating of velocity or pressure of moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/78Measuring, controlling or regulating of temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5035Silica
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0217Mechanical details of casings
    • H05K5/0243Mechanical details of casings for decorative purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76494Controlled parameter
    • B29C2945/76498Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76494Controlled parameter
    • B29C2945/76531Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76655Location of control
    • B29C2945/76732Mould
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Definitions

  • the present disclosure relates to the technical field of electronic devices, and in particular, to a housing assembly, a preparation method thereof, and an electronic device.
  • zirconia ceramic material Due to its high hardness, high toughness and gentle jade-like texture, zirconia ceramic material has become the new favorite of mobile terminals. It can be seen on smart wearables in many mobile phones released on the market. However, due to its high cost, heavy weight, and high dielectric constant, it is restricted from being used in large quantities like glass and plastic.
  • an object of the present invention is to provide a housing assembly, which is structurally stable.
  • a housing assembly in another aspect of the present disclosure, provides a housing assembly.
  • a housing assembly includes: a first substrate having a first surface; a second substrate having a second surface, the second surface having a At least part of the first surface is disposed in contact with at least part of the first surface through a porous ceramic layer, the porous ceramic layer has pores, and a part of the second substrate is embedded in a part of the pores.
  • a method of making a housing assembly includes: providing a first substrate, the first substrate having a first surface; and coating a porous ceramic on the first surface of the first substrate slurry, and obtain a porous ceramic layer by sintering treatment, the porous ceramic layer has pores; a second substrate is formed on the surface of the porous ceramic layer away from the first substrate, a part of the second substrate embedded in the pores of the part.
  • the present disclosure provides an electronic device.
  • the electronic device includes: the aforementioned casing assembly, wherein the porous ceramic layer of the casing assembly is disposed toward the inside of the electronic device; a display screen assembly, the display screen assembly and the The housing assembly is connected, and an installation space is defined between the display screen assembly and the housing assembly; and a main board is arranged in the installation space and is electrically connected with the display screen assembly.
  • FIG. 1 is a schematic structural diagram of a housing assembly in an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a housing assembly in another embodiment of the present disclosure.
  • Fig. 3 is the enlarged view in the dashed-line frame in Fig. 1;
  • Figure 4 is a top plan view of the housing assembly in Figure 1 or Figure 2;
  • FIG. 5 is a top plan view of a housing assembly in yet another embodiment of the present disclosure.
  • Figure 6 is a cross-sectional view along AA' in Figure 5;
  • FIG. 7 is a top plan view of a housing assembly in yet another embodiment of the present disclosure.
  • Figure 8 is a cross-sectional view along BB in Figure 5;
  • Figure 9 is a cross-sectional view along CC' in Figure 5;
  • FIG. 10 is a schematic structural diagram of a housing assembly in another embodiment of the present disclosure.
  • FIG. 11 is a flow chart of preparing a housing assembly in yet another embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of an electronic device in yet another embodiment of the present disclosure.
  • Embodiments of the present invention are described in detail below.
  • the embodiments described below are exemplary, only for explaining the present invention, and should not be construed as limiting the present invention. If no specific technique or condition is indicated in the examples, the technique or condition described in the literature in the field or the product specification is used.
  • the reagents or instruments used without the manufacturer's indication are conventional products that can be obtained from the market.
  • the present disclosure provides a housing assembly.
  • the housing assembly includes: a first substrate 10 having a first surface 13 ; a second substrate 20 , the second substrate The material 20 has a second surface, and at least a part of the second surface and at least a part of the first surface 13 are attached and disposed through the porous ceramic layer 30 , the porous ceramic layer 30 has pores 31 , and the second substrate 20 has pores 31 . A part is embedded in part of the aperture 31 .
  • a part of the second substrate 20 is filled in the pores 31 at the side ends of the porous ceramic layer 30, so that the porous ceramic layer 30 of the first substrate 10 can be effectively combined, so that the first substrate 10 and the second substrate 10 can be effectively bonded together.
  • the materials 20 have good bonding strength to ensure the structural stability of the shell assembly.
  • the second substrate 20 can be There is no step difference between the joint with the first base material 10, which ensures a good appearance effect of the casing assembly.
  • the first substrate is the battery back cover of the case assembly.
  • the first surface 13 includes a main body area S1 and an edge area S2 disposed outside the main body area.
  • the porous ceramic The layer is located in said edge region, and the porous ceramic layer 30 and the second substrate 20 constitute the middle frame of the housing assembly.
  • the edge area may include two opposite sides of the main area (as shown in FIG. 4 ), and may include the surrounding area of the main area, and those skilled in the art may design flexibly according to the actual situation.
  • those skilled in the art can flexibly design the housing assembly according to the actual application.
  • the second substrate and the via-hole ceramic layer constitute the side surface of the housing component, and the side surface of the housing component can be Horizontal plane, can also be a curved surface.
  • the second substrate 20 is the battery back cover of the case assembly and has a predetermined area
  • the first substrate 10 is on the second substrate 20
  • the orthographic projection of ⁇ is located in the predetermined area
  • the porous ceramic layer 30 is disposed around the edge of the first substrate 10 , wherein the housing assembly has a first substrate penetrating through the first substrate and the second substrate.
  • a through hole 11 a camera can be placed in the first through hole, and the first substrate can be used as a lens cover of the camera, wherein the first substrate can be made of hard materials such as ceramic materials, so as to have better wear resistance and ensure Good performance for lens covers.
  • the second substrate 20 is the battery back cover of the case assembly, and has second through holes 12 , and the porous ceramic layer 30 is disposed around the The edge of the first substrate 10, the first substrate 10 covers the second through hole 12, and the first substrate 10 has a third through hole 13, and the third through hole is located at the edge of the first substrate 10. inside the second through hole.
  • a camera can be placed in the first through hole, and the first substrate can be used as a lens cover of the camera, wherein the third substrate can be made of hard materials such as ceramic materials, so that it has better wear resistance, Guarantee the good performance of the lens cover.
  • the third through hole is located in the second through hole
  • the coverage area of the second through hole is larger than that of the second through hole
  • the orthographic projection on the horizontal plane of the second through hole covers the first through hole. Orthographic projection of the three through holes on a horizontal plane, where the horizontal plane refers to a plane parallel to the back cover of the battery.
  • the second substrate 20 When the second substrate 20 is the battery back cover of the case assembly, in some embodiments, as shown in FIG. 6 , the second substrate 20 may be provided with equal thickness; in other embodiments, the second substrate The thickness of the edge portion of the material 20 close to the second through hole is relatively thin, and the porous ceramic layer is disposed on the surface of the second substrate at the thinned area, and is disposed in combination with the first substrate 10 . Therefore, those skilled in the art can flexibly select the specific structure of the second substrate according to actual design requirements.
  • the shape of the through hole 11 there is no special requirement for the shape of the through hole 11 , and those skilled in the art can flexibly design the shape of the structure such as the camera or flash that needs to be placed, for example, it can be a circular or square structure.
  • the material of the first substrate is ceramic, glass, sapphire or metal.
  • the shell component can realize the combination of ceramics and imitation ceramics, thereby realizing the appearance effect of comprehensive ceramics.
  • the side wall of the through hole 11 is made of the material of the first base material, which has greater hardness and can effectively ensure the wear resistance of the inner wall of the through hole 11 .
  • the ceramic material is zirconia or alumina-toughened zirconia ceramic powder, wherein the molar percentage of yttrium oxide (Y 2 O 3 ) is 2-3 mol %; Dry pressing, casting or injection molding methods are sintered to prepare ceramic blanks, and then according to the shape requirements of the products, the ceramic substrates with the required structure are obtained by CNC and grinding processing, that is, the first substrates.
  • the second substrate is a ceramic-like layer
  • the ceramic-like layer includes second ceramic particles and an organic material, wherein the organic material is selected from at least one of PPS and PPSU.
  • the imitation ceramic layer with better imitation ceramic effect can be prepared.
  • the specific materials of the second ceramic particles include but are not limited to ceramic particles such as alumina, nanowhiskers, and silicon oxide.
  • the imitation ceramic layer also includes pigment particles, whereby the imitation ceramic layer can be rendered in different colors, such as black, white, red, dark green, sapphire blue, etc., to meet the requirements of the appearance color. demand. Therefore, those skilled in the art can flexibly select the specific materials of the pigment particles according to the actual desired appearance color, which is not limited herein.
  • the appearance color of the imitation ceramic layer and the first substrate is the same, so as to obtain a shell assembly with the same appearance color; in other embodiments, the appearance color of the imitation ceramic layer and the first substrate are different. In the same way, a shell assembly with a color-blocked appearance effect can be obtained.
  • the thickness of the porous ceramic layer is 0.01 mm ⁇ 0.20 mm, such as 0.01 mm, 0.05 mm, 0.08 mm, 0.1 mm, 0.13 mm, 0.15 mm, 0.18 mm, 0.20 mm. Therefore, the porous ceramic layer has an appropriate amount of pores, so as to be better combined with the second substrate; if the thickness of the porous ceramic layer is less than 0.01 mm, the pores of the porous ceramic layer are less, and the second substrate and the porous ceramic layer have fewer pores.
  • the contact area of the ceramic layer is relatively small, which will lead to a relatively reduced bonding force between the porous ceramic layer and the second substrate, that is, the bonding force between the first substrate and the second substrate will be relatively reduced; if the porous ceramic layer is If the thickness is greater than 0.20 mm, the porous ceramic layer is relatively easy to crack, which is still not conducive to improving the bonding force between the porous ceramic layer and the second substrate.
  • the pore size of the pores is 50 nm ⁇ 1 mm, such as 50 nm, 100 nm, 500 nm, 800 nm, 1 ⁇ m, 10 ⁇ m, 100 ⁇ m, 200 ⁇ m, 300 ⁇ m, 400 ⁇ m, 500 ⁇ m, 600 ⁇ m, 700 ⁇ m, 800 ⁇ m, 900 ⁇ m, 1000 ⁇ m.
  • the pores of the above size help the first substrate to be embedded in the porous ceramic layer, and help to improve the bonding force between the first substrate and the porous ceramic layer; if the pore size is less than 50 nm, due to the small pores, It is not conducive to the embedding of the second substrate, resulting in a relatively low bonding force between the second substrate and the porous ceramic layer; if the pore size is greater than 1 mm, due to the large pore size, the porous ceramic layer and the first may be relatively reduced. The bonding force between the substrates is still unfavorable to improve the bonding force between the first substrate and the second substrate.
  • the porosity of the porous ceramic layer is 5% to 50%, such as 55%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%. Therefore, the above-mentioned porosity helps the second base material to be embedded in the pores, thereby improving the bonding force between the porous ceramic layer and the second base material; if the porosity is less than 5%, the second base material is embedded into the porous ceramic layer.
  • the structure in the pores of the layer is small, which is not conducive to the occlusion between the porous ceramic layer and the second substrate, which in turn is not conducive to improving the bonding force between the first substrate and the second substrate; if the porosity is greater than 50%, then It is not conducive to the stability of the porous ceramic layer structure.
  • the porous ceramic layer includes first ceramic particles, and the particle size of the first ceramic particles is 50 nm ⁇ 2 ⁇ m, such as 50 nm, 100 nm, 150 nm, 200 nm, 300 nm, 500 nm, 800 nm, 1 ⁇ m, 1.2 ⁇ m, 1.5 ⁇ m, 1.8 ⁇ m, 2 ⁇ m.
  • the second ceramic particles with the above-mentioned particle size are helpful for preparing a porous ceramic layer having a suitable pore size.
  • specific materials of the second ceramic particles include, but are not limited to, zirconium oxide, aluminum oxide, silicon oxide, titanium oxide, magnesium oxide, and zinc oxide.
  • the bonding force between the first substrate and the second substrate is greater than 40 MPa, for example, the bonding force between the first substrate and the second substrate is 40.5 MPa , 41MPa, 42MPa, 43MPa, 44MPa, 45MPa, 46MPa, 47MPa, 48MPa, 49MPa, 50MPa, 51MPa, 52MPa, 53MPa, 54MPa, 55MPa, 56MPa, 57MPa, 58MPa, 59MPa, 60MPa, etc.
  • first base material and the second base material in the casing assembly in the present disclosure have better bonding force, so as to ensure the overall structural stability of the casing assembly, as well as to ensure good performance and better performance of the casing assembly. Long service life.
  • the casing assembly further includes: a superhard wear-resistant layer 40 on the outer surface of the casing assembly.
  • the scratch and wear resistance of the housing assembly can be further improved.
  • the super-hard wear-resistant layer 40 is disposed on the first substrate On the surface away from the first surface 13 ; in other embodiments, the second substrate constitutes the battery back cover of the casing assembly, and the superhard wear-resistant layer 40 is disposed on the outer surface of the second substrate 20 .
  • the superhard wear-resistant layer satisfies at least one of the following conditions: the pencil hardness is 5H-9H; the thickness is 5-100nm; the material is at least one of graphite, aluminum oxide, zirconium oxide, silicon oxide, chromium oxide and titanium oxide . Therefore, the above-mentioned superhard wear-resistant layer has better hardness and wear resistance.
  • a method of making the aforementioned housing assembly includes:
  • the porous ceramic slurry includes a mixture, a solvent, and wear-resistant particles, wherein the mixture includes first ceramic particles, a dispersant, a binder, a pore-forming agent, and a flux, and the mixture, the solvent, and the wear-resistant particles
  • the mass ratio of the grinding particles is 1:(1-3):(0.5-1). Therefore, the porous ceramic layer prepared by the porous ceramic slurry of the above proportion has certain pores and has good adhesion to the first substrate.
  • the porous ceramic slurry comprises: 30%-60% of the first ceramic particles; 0.1-2% of the dispersant; 0.5-5% of the bonding agent 5-20% of pore-forming agent; 0.5-5% of flux; and the balance of the solvent and the wear-resistant particles. Therefore, the porous ceramic layer prepared by the porous ceramic slurry of the above proportion has certain pores and has good adhesion to the first substrate.
  • the first ceramic particles are selected from one or more of zirconia, aluminum oxide, silicon oxide, titanium oxide, silicon carbide, magnesium oxide, and zinc oxide;
  • the dispersant is selected from silane coupling agent, polyethylene glycol, One or more of ammonium citrate, polyacrylic acid, polyammonium methacrylate, triethanolammonium, and sodium silicate to improve the stability of the porous ceramic slurry;
  • the binder is selected from polyvinyl alcohol (PVA ), one or more of polyethylene glycol (PEG), methylcellulose, ammonium alginate, and paraffin, so that the ceramic slurry can be well adhered to the surface of the first substrate;
  • pore-forming agent One or more selected from plastic powder, dolomite, limestone, sulfur powder, graphite powder, carbon powder, so as to obtain the porous structure of ceramics;
  • co-solvent is selected from feldspar, perlite, talc, serpentine, silicon One or more of limestone, limestone and dolomite to reduce the
  • porous ceramic slurry there are no special requirements for the method of coating the porous ceramic slurry, and those skilled in the art can flexibly choose according to the actual situation, such as spraying, dipping or screen printing.
  • the porous ceramic layer has a uniform thickness and good performance.
  • the sintering temperature of the sintering treatment is 500°C to 1200°C (such as 500°C, 600°C, 700°C, 800°C, 900°C, 1000°C, 1100°C, 1200°C), and the sintering time is 1 to 5 hours. Therefore, sintering under the above-mentioned sintering temperature conditions can volatilize the pore-forming agent in the porous ceramic slurry, thereby forming pores and obtaining a porous ceramic layer. It should be noted that the above-mentioned sintering time is the holding time during the sintering process.
  • a part of the second base material is embedded and filled in the pores of the porous ceramic layer, so that the porous ceramic layer of the first base material can be effectively combined, so that the first base material and the second base material can be effectively combined.
  • the two substrates have good bonding strength to ensure the structural stability of the housing assembly.
  • the second substrate and the second substrate can be ground together. There is no step difference between the joints between the base materials, which ensures a good appearance effect of the shell assembly; moreover, the above-mentioned preparation method has mature technology, strong feasibility, convenient industrial production, and low production cost.
  • the second base material is an imitation ceramic layer
  • the step of forming the imitation ceramic layer includes:
  • the specific shape of the mold can be flexibly designed by those skilled in the art according to the specific structure of the housing assembly, which is not limited herein.
  • the surface roughness Ra of the mold is less than or equal to 0.02 ⁇ m, thereby contributing to a second substrate with a smooth surface.
  • the imitation ceramic feedstock includes second ceramic particles and an organic material, wherein the organic material is selected from at least one of PPS and PPSU.
  • the organic material is selected from at least one of PPS and PPSU.
  • the imitation ceramic feedstock can be pre-dried at 80-150°C for 5-12 hours to ensure that its water content is lower than 0.1%, thereby further improving the strength and other properties of the square ceramic layer.
  • S330 forming a pseudo-ceramic body on the surface of the porous ceramic layer away from the first substrate by means of injection molding in a mold, wherein part of the pseudo-ceramic feedstock is embedded in the interior of the pores.
  • the injection molding conditions are: the injection molding temperature is 300 to 360 °C (such as 300 °C, 310 °C, 320 °C, 330 °C, 340 °C , 350°C, 360°C), the injection molding pressure is 100-200MPa (for example, 100), and the pressure holding time is 0.5-60s.
  • the imitation ceramic layer with good performance can be prepared, and the bonding force between the imitation ceramic layer and the porous ceramic layer is better.
  • S340 Baking the injection-molded product to obtain an imitation ceramic layer.
  • the organic material in the imitation ceramic body undergoes a polymerization reaction, and a network cross structure is formed in the pores of the porous ceramic layer, so that the imitation ceramic layer and the porous ceramic layer are combined more closely.
  • the temperature of the baking treatment is 300-400°C, such as 300°C, 320°C, 340°C, 360°C, 380°C, 400°C, and the time is 1-24 hours. Therefore, under the above conditions, the combination of the imitation ceramic layer and the porous ceramic layer is more closely.
  • a CNC machining process is further included, so as to obtain a casing assembly of a desired shape.
  • diamond PCD tools can be selected, the spindle speed is controlled at 10000-25000rpm, and the single cutting amount is controlled at 0.01-0.50mm.
  • the structural schematic diagrams of the prepared housing assembly can be referred to FIG. 1 to FIG. 9 . specific:
  • the first substrate is the battery back cover of the case assembly.
  • FIGS. 1-4 FIG. 4 is a plan view of FIGS. 1 and 2
  • the first surface 13 includes the main body area S1 and an edge region S2 disposed outside the main body region
  • the porous ceramic layer is located in the edge region
  • the porous ceramic layer 30 and the second substrate 20 constitute the middle frame of the housing assembly.
  • the edge area may include two opposite sides of the main area (as shown in FIG. 4 ), and may include the surrounding area of the main area, and those skilled in the art may design flexibly according to the actual situation.
  • those skilled in the art can flexibly design the housing assembly according to the actual application.
  • the second substrate and the via-hole ceramic layer constitute the side surface of the housing component
  • the side surface of the housing component can be Horizontal plane, can also be a curved surface.
  • the second substrate 20 is the battery back cover of the case assembly, and has a predetermined area
  • the The orthographic projection of the first substrate 10 on the second substrate 20 is located in the predetermined area
  • the porous ceramic layer 30 is disposed around the edge of the first substrate 10 , wherein the housing assembly has The first through hole 11 penetrates through the first base material and the second base material. Therefore, a camera can be placed in the first through hole, and the first substrate can be used as a lens cover of the camera, wherein the first substrate can be made of hard materials such as ceramic materials, so as to have better wear resistance and ensure Good performance for lens covers.
  • the second substrate 20 is The battery back cover of the case assembly has a second through hole 12, the porous ceramic layer 30 is disposed around the edge of the first substrate 10, and the first substrate 10 covers the second through hole. hole 12, and the first substrate 10 has a third through hole 13, and the third through hole is located in the second through hole.
  • a camera can be placed in the first through hole, and the first substrate can be used as a lens cover of the camera, wherein the third substrate can be made of hard materials such as ceramic materials, so that it has better wear resistance, Guarantee the good performance of the lens cover.
  • the above-mentioned "the third through hole is located in the second through hole” means that the coverage area of the second through hole is larger than that of the second through hole, and the orthographic projection on the horizontal plane of the second through hole covers the first through hole. Orthographic projection of the three through holes on a horizontal plane, where the horizontal plane refers to a plane parallel to the back cover of the battery.
  • the method further includes: grinding and polishing the side end surface where the first substrate and the second substrate are spliced.
  • the method further includes: grinding and polishing the side end surface where the first substrate and the second substrate are spliced.
  • a suitable grinding machine and polishing machine can be selected according to the specific shape of the housing assembly.
  • a five-axis grinding and polishing machine a 13.6B double-sided grinding machine or a scanning machine can be used for grinding and polishing.
  • 500-4000 mesh composite sponge sand can be selected, which is divided into three processes: roughing, medium repair and fine repair.
  • Sand, 2000-4000 mesh sponge sand is used for finishing; 4-5 stations of a single machine are synchronously processed, and the polishing time is 3-20min/piece.
  • the polishing disc is selected from one or more of pig hair, microdermabrasion disc, damping cloth, rubber wire, copper wire, carpet or pig hair + microdermabrasion composite material; polishing aids Select one or more of water-based diamond grinding fluid, oil-based diamond grinding fluid, silicon oxide polishing fluid, and cerium oxide polishing fluid; the particle size of the diamond fluid is 0.5-20 microns, and the concentration is 1wt%-30wt%; The particle size is 50-500 nanometers, and the concentration is 5wt%-40wt%.
  • the method for preparing the casing assembly further includes: forming a superhard wear-resistant layer 40 on the outer surface of the casing assembly, as shown in FIG. 10 .
  • the scratch and wear resistance of the housing assembly can be further improved.
  • forming the superhard wear-resistant layer 40 on the outer surface of the housing component means that the superhard wear-resistant layer 40 is formed on the outer surface of the housing component before the superhard wear-resistant layer 40 is formed. Layer 40.
  • the super-hard wear-resistant layer 40 is disposed on the first substrate On the surface away from the first surface 13 ; in other embodiments, the second substrate constitutes the battery back cover of the casing assembly, and the superhard wear-resistant layer 40 is disposed on the outer surface of the second substrate 20 .
  • the method for preparing the shell assembly can be used to prepare the aforementioned shell assembly, wherein, in the method for preparing the shell assembly, the porous ceramic layer, the first substrate, the second substrate are The requirements for the structure of the material, superhard wear-resistant layer, etc. are the same as those described above, and will not be repeated here.
  • the present disclosure provides an electronic device.
  • the electronic device 2000 includes: the casing assembly 1000 described above, the porous ceramic layer of the casing assembly 1000 is disposed toward the interior of the electronic device; the display screen assembly, the the display screen assembly is connected with the casing assembly, and an installation space is defined between the display screen assembly and the casing assembly; and a main board is arranged in the installation space and is connected with the display screen Components are electrically connected. Therefore, the housing assembly of the electronic device has better appearance, higher strength, better stability and lighter weight. Those skilled in the art can understand that the electronic device has all the features and advantages of the aforementioned housing assembly, which will not be repeated here.
  • the specific type of the electronic device is not particularly limited, and those skilled in the art can flexibly select according to actual needs.
  • the specific type of the electronic device includes, but is not limited to, a mobile phone (as shown in FIG. 12 ), a notebook, an iPad, a kindle and other electronic devices.
  • the preparation method of the shell assembly includes:
  • first base material Select dry-pressed ceramic powder of zirconia with yttrium oxide content of 2.6 mol% produced by Shandong National Ceramics, and adopt dry-pressing and isostatic pressing methods; ceramics are prepared after high-temperature sintering The blank, and then according to the requirements of the product drawing file, the ceramic substrate with the required structure is obtained by CNC and grinding processing;
  • porous ceramic slurry was prepared according to the following formula: alumina and silicon oxide were selected as the first ceramic particles (both accounted for 50% each), and the diameter of the first ceramic particles was 50-100 nm, The mass ratio of the first ceramic particles is 30%; PEG and silane coupling agent are selected as dispersants, and the mass ratio is 1%; polyvinyl alcohol (PVA) and paraffin are selected as binders, and the mass ratio is 0.5%; Dolomite, plastic powder and graphite powder are selected as pore-forming agents, accounting for 15% of the mass.
  • the flux is selected from feldspar and wollastonite, and the flux accounts for 0.8%.
  • the above-mentioned raw materials are prepared to obtain a mixed material, and then water and alumina balls are added to the mixed material.
  • the mixed material water: alumina ball mass
  • the ratio of 1:1.5:0.5 was placed in a ball-milling tank for ball milling and dispersion for 36 hours to obtain porous ceramic slurry.
  • step (3) firing the porous ceramic layer coating the porous ceramic slurry in step (2) on the ceramic substrate in step 1 by screen printing; and putting it into a kiln for sintering, and the sintering temperature is 1100 °C, the holding time is 2h, the thickness of the obtained porous ceramic layer is 0.05mm, the pore size of the porous ceramic layer is controlled between 100nm-200nm, and the porosity is 20%.
  • the imitation ceramic material of Nantong Tongzhouwan New Material is selected as the feed material.
  • the main plastic material of the feed is PPS, the color is black, and the inorganic nanoparticles are composite materials with alumina as the main body.
  • Mold preparation The abrasive tool is prepared according to the product design drawing, and the mold cavity needs to be polished to make the surface roughness Ra ⁇ 0.02 ⁇ m.
  • step (3) is used to obtain The ceramic component is placed in the mold cavity, and the area with the porous ceramic layer faces the injection port, and the injection is performed according to the following molding parameters: the injection molding temperature is controlled at 350 °C, the injection molding pressure is controlled at 150MPa, and the holding time is controlled at 2s.
  • step (6) Product copolymerization: the green body obtained in step (6) is placed in an oven, the temperature is raised to 330° C., and the temperature is kept for 8 hours, and a polymerization reaction is carried out to obtain a composite green body of imitation ceramic + ceramic.
  • CNC machining CNC machining the composite body obtained in step (7) according to the product drawing, using a diamond PCD tool for CNC machining, the spindle speed is controlled at 15000rpm, and the single cutting amount is controlled at 0.05mm.
  • step (8) Grinding and polishing: the CNC-processed products in step (8) are ground and roughly polished with a scanner: pig hair + microdermabrasion composite material is used for the scanning disc; water-based diamond grinding fluid is selected as the polishing aid, and the particle size of the diamond fluid is 5 ⁇ m. The concentration is 15wt%; after rough polishing, use a 13.6B grinder for fine polishing, the polishing liquid is a silicon oxide polishing liquid, the particle size is 100-200nm, and the concentration is 20wt%.
  • step (10) Preparation of superhard film layer: the polished product obtained in step (9) is coated with a superhard film-resistant layer on the outer surface of the ceramic substrate and the imitation ceramic substrate by sputtering vacuum plating,
  • the material of the superhard layer is alumina, and the thickness of the coating is 20-30nm. After the superhard coating is plated, the pencil hardness of the product surface can reach 6H.
  • Example 1 The method steps for preparing the shell assembly in Examples 1 to 6 are the same as those in Example 1, and the differences can be seen in Table 1, where the bonding strength refers to the bonding strength between the ceramic substrate and the imitation ceramic substrate.
  • Preparation of ceramic substrate Select dry-pressed ceramic powder of 2.6mol% zirconia with yttrium oxide produced by Shandong National Ceramics, adopt dry-pressing and isostatic pressing methods; prepare ceramic blanks after high temperature sintering, and then pass CNC, grinding and processing to obtain ceramic substrates with required structures;
  • the ceramic substrate is subjected to acid etching treatment to prepare nano-pores
  • the whole product is processed to obtain a ceramic substrate + plastic injection molding shell assembly.
  • the test shows that the bonding strength between the plastic substrate and the plastic layer is 30MPa.
  • first and second herein are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • “plurality” means two or more, unless otherwise expressly and specifically defined.

Abstract

本公开提供了壳体组件及其制备方法和电子设备。壳体组件包括: 第一基材,所述第一基材具有第一表面; 第二基材,所述第二基材具有第二表面,所述第二表面的至少部分与所述第一表面的至少部分通过多孔陶瓷层贴合设置,所述多孔陶瓷层具有孔隙,所述第二基材的一部分嵌入到部分的所述孔隙中。

Description

壳体组件及其制备方法和电子设备
优先权信息
本公开请求2020年11月04日向中国国家知识产权局提交的、专利申请号为202011216120.7的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本公开涉及电子设备技术领域,具体的,涉及壳体组件及其制备方法和电子设备。
背景技术
氧化锆陶瓷材料由于其高硬度和高韧性以及温婉如玉的质感,目前已成为移动终端的新宠,目前市场发布的多款手机,智能穿戴上都能看到其身影。但由于其成本高、质量重,介电常数高等因素,制约了其无法像玻璃、塑胶一样进行大批量的使用。
因此,关于陶瓷壳体的研究有待深入。
发明内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个目的在于提出一种壳体组件,该壳体组件结构稳定较佳。
在本公开的另一方面,本公开提供了一种壳体组件。根据本公开的实施例,壳体组件包括:第一基材,所述第一基材具有第一表面;第二基材,所述第二基材具有第二表面,所述第二表面的至少部分与所述第一表面的至少部分通过多孔陶瓷层贴合设置,所述多孔陶瓷层具有孔隙,所述第二基材的一部分嵌入到部分的所述孔隙中。
在本公开的另一方面,本公开提供了一种制备前面所述的壳体组件的方法。根据本公开的实施例,制备壳体组件的方法包括:提供第一基材,所述第一基材具有第一表面;在所述第一基材的所述第一表面上涂覆多孔陶瓷浆料,并通过烧结处理得到多孔陶瓷层,所述多孔陶瓷层具有孔隙;在所述多孔陶瓷层远离所述第一基材的表面上形成第二基材,所述第二基材的一部分嵌入到部分的所述孔隙中。
在本公开的又一方面,本公开提供了一种电子设备。根据本公开的实施例,该电子设备包括:前面所述的壳体组件,所述壳体组件的多孔陶瓷层朝向所述电子设备的内部 设置;显示屏组件,所述显示屏组件与所述壳体组件相连,且所述显示屏组件和所述壳体组件之间限定出安装空间;以及主板,所述主板设置在所述安装空间内且与所述显示屏组件电连接。
附图说明
图1是本公开一个实施例中壳体组件的结构示意图;
图2是本公开另一个实施例中壳体组件的结构示意图;
图3是是图1中虚线框中的放大图;
图4是图1或图2中壳体组件的平面俯视图;
图5是本公开又一个实施例中壳体组件的平面俯视图;
图6是图5中沿AA’的截面图;
图7是本公开又一个实施例中壳体组件的平面俯视图;
图8是图5中沿BB的截面图;
图9是图5中沿CC’的截面图;
图10是本公开另一个实施例中壳体组件的结构示意图;
图11是本公开又一个实施例中制备壳体组件的流程图;
图12是本公开又一个实施例中电子设备的结构示意图。
发明详细描述
下面详细描述本发明的实施例。下面描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
在本公开的另一方面,本公开提供了一种壳体组件。根据本公开的实施例,参照图1、图2和图3,壳体组件包括:第一基材10,第一基材10具有第一表面13;第二基材20,所述第二基材20具有第二表面,所述第二表面的至少部分与所述第一表面13的至少部分通过多孔陶瓷层30贴合设置,所述多孔陶瓷层30具有孔隙31,第二基材20的一部分嵌入到部分的孔隙31中。由此,第二基材20的一部分填充在多孔陶瓷层30侧端的孔隙31中,进而可以有效的将第一基材10多孔陶瓷层30结合在一起,使得第一基材10与第二基材20之间具有良好的结合强度,以保证壳体组件的结构稳定性,而且,制备过程中,通过对第一基材10和第二基材20一起研磨加工,可以使得第二基 材20与第一基材10之间的结合处无段差,保证壳体组件良好的外观效果。
在一些实施例中,第一基材为所述壳体组件的电池后盖,参照图1-4所示,第一表面13包括主体区域S1和设置在主体区域外侧的边缘区域S2,多孔陶瓷层位于所述边缘区域内,多孔陶瓷层30和第二基材20构成壳体组件的中框。其中,边缘区域可以包括主体区域相对的两侧(如图4所示),可以包括主体区域的四周,本领域技术人员可以根据实际情况灵活设计即可。另外,本领域技术人原可以根据壳体组件的实际应用灵活设计,如图1和图2所示,第二基材和过孔陶瓷层构成壳体组件的侧面,壳体组件的侧面可以为水平面,也可以为曲面。
在一些实施例中,参照图5和图6,第二基材20为所述壳体组件的电池后盖,且具有预定区域,所述第一基材10在所述第二基材20上的正投影位于所述预定区域内,且所述多孔陶瓷层30围绕设置在所述第一基材10的边缘,其中,壳体组件具有贯穿第一基材和所述第二基材的第一通孔11。由此,可以在第一通孔中可以放置摄像头,第一基材作为摄像头的镜片盖板,其中第一基材可以选用陶瓷材料等硬质材料,使其具有较佳的耐磨性,保证镜片盖板的良好使用性能。
在另一些实施例中,参照图7、图8和图9,第二基材20为所述壳体组件的电池后盖,且具有第二通孔12,所述多孔陶瓷层30围绕设置在所述第一基材10的边缘,所述第一基材10覆盖所述第二通孔12,且所述第一基材10具有第三通孔13,且所述第三通孔位于所述第二通孔内。由此,可以在第一通孔中可以放置摄像头,第一基材作为摄像头的镜片盖板,其中,第三基材可以选用陶瓷材料等硬质材料,使其具有较佳的耐磨性,保证镜片盖板的良好使用性能。需要说明的是,上述“所述第三通孔位于所述第二通孔内”是指第二通孔的覆盖面积大于第二通孔,且第二通孔的水平面上的正投影覆盖第三通孔在水平面上的正投影,其中,水平面是指与电池后盖平行的平面。
第二基材20为所述壳体组件的电池后盖时,在一些实施例中,如图6所示,第二基材20可以是等厚度设置;在另一些实施例种,第二基材20靠近第二通孔的边缘部分的厚度较薄,多孔陶瓷层设置在减薄区域处第二基材的表面上,与第一基材10结合设置。所以,本领域技术人员可以根据实际设计需求灵活选择第二基材的具体结构。
其中,通孔11的形状没有特殊的要求,本领域技术人员可以根据所需要放置的摄像头或闪光灯等结构的形状灵活设计,比如可以为圆形、方形等结构。
进一步的,第一基材的材料为陶瓷、玻璃、蓝宝石或金属。由此,本领域技术人员可以根据设计需求灵活选择不同材质的第一基材,进而得到不同的外观质感的壳体组件。其中,第一基材为陶瓷时,壳体组件可以实现陶瓷与仿陶瓷相结合,进而可以实现 全面陶瓷的外观效果。而且,壳体组件的结构为图4结构时,通孔11的侧壁为第一基材的材料,具有较大的硬度,可以有效保证通孔11内壁的耐磨性。
在一些实施例中,第一基材为陶瓷时,陶瓷材料为氧化锆或氧化铝增韧氧化锆的陶瓷粉,其中,氧化钇(Y 2O 3)的摩尔百分比为2~3mol%;采用干压、流延或注射等成型方式经烧结后制备陶瓷毛坯,然后根据产品的形状要求再经CNC、研磨加工制得需要结构的陶瓷基材,即第一基材。
在一些实施例中,第二基材为仿陶瓷层,仿陶瓷层包括第二陶瓷颗粒和有机材料,其中,有机材料选自PPS和PPSU中的至少一种。由此,可以制备仿陶瓷效果较佳的仿陶瓷层。其中,第二陶瓷颗粒的具体材料包括但不限于氧化铝、纳米晶须、氧化硅等陶瓷颗粒。
进一步的,仿陶瓷层还包括颜料粒子,由此,可以使得仿陶瓷层呈现不同的颜色,比如可以呈现为黑色、白色、红色、墨绿色、宝蓝色等多种不同颜色,以满足对外观色彩的需求。所以,本领域技术人员可以根据实际所需的外观色彩灵活选择颜料粒子的具体材料,在此不作限制要求。其中,在一些实施例中,仿陶瓷层与第一基材的外观颜色一致,进而得到外观色彩一致的壳体组件;在另一些实施例中,仿陶瓷层与第一基材的外观颜色不相同,如此可以得到拼色的外观效果的壳体组件。
根据本公开的实施例,多孔陶瓷层的厚度为0.01mm~0.20mm,比如0.01mm、0.05mm、0.08mm、0.1mm、0.13mm、0.15mm、0.18mm、0.20mm。由此,多孔陶瓷层具有适量的孔隙,以便于与第二基材较好的结合在一起;若是多孔陶瓷层的厚度小于0.01mm,则多孔陶瓷层的孔隙较少,第二基材与多孔陶瓷层接触的面积较小,如此会导致多孔陶瓷层与第二基材之间的结合力相对降低,即导致第一基材与第二基材之间的结合力相对降低;若多孔陶瓷层的厚度大于0.20mm,则多孔陶瓷层比较容易开裂,如此依然不利于提高多孔陶瓷层与第二基材之间的结合力。
进一步的,孔隙的孔径为50nm~1mm,比如50nm、100nm、500nm、800nm、1μm、10μm、100μm、200μm、300μm、400μm、500μm、600μm、700μm、800μm、900μm、1000μm。由此,上述大小的孔隙有助于第一基材嵌入到多孔陶瓷层中,有助于提高第一基材与多孔陶瓷层之间的结合力;若孔径小于50nm,则由于孔较小,不利于第二基材的嵌入,从而导致第二基材与多孔陶瓷层之间的结合力相对较低;若孔径大于1mm,则由于孔径较大,则可能会相对降低多孔陶瓷层与第一基材之间的结合力,如此依然不利于改善第一基材与第二基材之间的结合力。
进一步的,多孔陶瓷层的孔隙率为5%~50%,比如为55%、10%、15%、20%、25%、 30%、35%、40%、45%、50%。由此,上述孔隙率有助于第二基材嵌入到孔隙中,进而提高多孔陶瓷层与第二基材之间的结合力;若孔隙率小于5%,则第二基材嵌入到多孔陶瓷层孔隙中的结构较小,不利于多孔陶瓷层与第二基材之间的咬合,进而不利于改善第一基材与第二基材之间的结合力;若孔隙率大于50%,则不利于多孔陶瓷层结构的稳定性。
进一步对,多孔陶瓷层的包括第一陶瓷颗粒,所述第一陶瓷颗粒的粒径为50nm~2μm,比如50nm、100nm、150nm、200nm、300nm、500nm、800nm、1μm、1.2μm、1.5μm、1.8μm、2μm。由此,上述粒径大小第二陶瓷颗粒有助于制备具有适宜孔径的多孔陶瓷层。
其中,第二陶瓷颗粒的具体材料没有特殊要求,本领域技术人员可以根据实际需求灵活选择。在一些实施例中,第二陶瓷颗粒的具体材料包括但不限于氧化锆、氧化铝、氧化硅、氧化钛、氧化镁和氧化锌。
根据本公开的实施例,所述第一基材与所述第二基材之间的结合力大于40MPa,比如所述第一基材与所述第二基材之间的结合力为40.5MPa、41MPa、42MPa、43MPa、44MPa、45MPa、46MPa、47MPa、48MPa、49MPa、50MPa、51MPa、52MPa、53MPa、54MPa、55MPa、56MPa、57MPa、58MPa、59MPa、60MPa等。由此可见,本公开中壳体组件中的第一基材与第二基材具有较佳的结合力,以保证壳体组件整体的结构稳定性,并保证壳体组件良好的使用性能和较长的使用寿命。
根据本公开的实施例,参照图10,壳体组件还包括:超硬耐磨层40,超硬耐磨层40壳体组件的外表面上。由此,可以进一步提高壳体组件的耐刮擦和耐磨性能。在一些实施例中,如图10所述,第一基材为壳体组件的电池后盖,第二基材为壳体组件的中框时,超硬耐磨层40设置在第一基材远离第一表面13的表面上;在另一些实施例中,第二基材构成壳体组件的电池后盖,此时超硬耐磨层40设置在第二基材20的外表面上。
其中,超硬耐磨层满足以下条件至少之一:铅笔硬度为5H~9H;厚度为5~100nm;材料为石墨、氧化铝、氧化锆、氧化硅、氧化铬和氧化钛中的至少一种。由此,上述超硬耐磨层具有较佳的硬度、耐磨性能。
在本公开的另一方面,本公开提供了一种制备前面所述的壳体组件的方法。根据本公开的实施例,参照图11,制备壳体组件的方法包括:
S100:提供第一基材10,第一基材10具有第一表面13。
S200:在第一基材10的第一表面13上涂覆多孔陶瓷浆料,并通过烧结处理得到多孔陶瓷层30,多孔陶瓷层30具有孔隙31。
进一步的,多孔陶瓷浆料包括混合物料、溶剂和耐磨粒子,其中,所述混合物料包括第一陶瓷颗粒、分散剂、粘结剂、造孔剂、助熔剂,且混合物料、溶剂和耐磨粒子的质量比为1:(1-3):(0.5-1)。由此,上述比例的多孔陶瓷浆料制备的多孔陶瓷层具有一定的孔隙,而且对第一基材具有良好的附着力。
其中,基于多孔陶瓷浆料的总重量,按质量百分数计,所述多孔陶瓷浆料包括:30%~60%的第一陶瓷颗粒;0.1-2%的分散剂;0.5-5%的粘结剂;5-20%的造孔剂;0.5-5%的助熔剂;以及余量的所述溶剂和所述耐磨粒子。由此,上述比例的多孔陶瓷浆料制备的多孔陶瓷层具有一定的孔隙,而且对第一基材具有良好的附着力。
其中,第一陶瓷颗粒选自氧化锆、氧化铝、氧化硅、氧化钛、碳化硅、氧化镁、氧化锌中的一种或多种;分散剂选自硅烷偶联剂、聚乙二醇、柠檬酸铵、聚丙烯酸、聚甲基丙烯酸铵、三乙醇铵、硅酸钠中的一种或多种,以提高多孔陶瓷浆料的稳定性;粘结剂选自选自聚乙烯醇(PVA)、聚乙二醇(PEG)、甲基纤维素、海藻酸铵、石蜡中的一种或多种,使陶瓷浆料可以很好的粘附在第一基材的表面上;造孔剂选自塑胶粉、白云石、石灰石、硫粉、石墨粉、碳粉中的一种或多种,以便得到陶瓷的多孔结构;助溶剂选自长石、珍珠岩、滑石、蛇纹石、硅灰石、石灰石、白云石中的一种或多种,以降低烧结稳定和提高多孔陶瓷层的力学强度和化学稳定性;耐磨粒子选自氧化铝或氧化锆,以提高多孔陶瓷浆料的均匀性。
进一步的,涂覆多孔陶瓷浆料的方法没有特殊要求,本领域技术人员可以根据实际情况灵活选择,比如可以采用喷涂、浸渍或丝网印刷等方法,上述方法工艺成熟,便于实施,且制备的多孔陶瓷层厚度均匀,性能较佳。
进一步的,所述烧结处理的烧结温度为500℃~1200℃(比如500℃、600℃、700℃、800℃、900℃、1000℃、1100℃、1200℃),烧结时间为1~5h。由此,上述烧结温度条件下烧结,可以使多孔陶瓷浆料中的造孔剂挥发掉,从而形成孔隙,得到多孔陶瓷层。需要说明的是,上述烧结时间为烧结过程中的保温时间。
S300:在多孔陶瓷层30远离第一基材10的表面上形成第二基材20,第二基材20的一部分嵌入到部分的孔隙31中,结构示意图参照图1、图2和图4。
由此,在上述制备方法中,使得第二基材的一部分嵌设填充在多孔陶瓷层的孔隙中,进而可以有效的将第一基材多孔陶瓷层结合在一起,使得第一基材与第二基材之间具有良好的结合强度,以保证壳体组件的结构稳定性,而且,制备过程中,通过对第一基材和第二基材一起研磨加工,可以使得第二基材与第一基材之间的结合处无段差,保证壳体组件良好的外观效果;而且,上述制备方法工艺成熟,可行性强,便于工业化生产, 且制作成本较低。
进一步的,第二基材为仿陶瓷层,形成仿陶瓷层的步骤包括:
S310:将设置有所述多孔陶瓷层的所述第一基材放置在模具中。
其中,模具的具体形状本领域技术人员可以根据壳体组件的具体结构灵活设计,在此不作限制要求。另外,模具的表面粗糙度Ra≤0.02微米,由此,有助于表面光洁的第二基材。
S320:配制仿陶瓷喂料。
其中,仿陶瓷喂料包括第二陶瓷颗粒和有机材料,其中,所述有机材料选自PPS和PPSU中的至少一种。其中,第一陶瓷颗粒和有机材料的配比没有特殊要求,本领域技术人员可以根据实际情况灵活配置。
进一步的,可以预先将仿陶瓷喂料在80~150℃下烘干5~12小时,以确保其含水量低于0.1%,由此,可以进一步的提高方陶瓷层的强度等性能。
S330:在模具中通过注塑成型的方法在多孔陶瓷层远离所述第一基材的表面上形成仿陶瓷坯体,其中,部分仿陶瓷喂料嵌入到孔隙的内部。
其中,在注塑之前,需要预先将注塑机开机,并对模具升温预热,其预热温度为100~180℃;注塑时,将多孔陶瓷层的靠近第二基材侧端面朝向注射口,以确保注塑过程中仿陶瓷喂料能够打入到多孔陶瓷层的孔隙内部;注塑成型的条件为:注射成型的温度为300~360℃(比如300℃、310℃、320℃、330℃、340℃、350℃、360℃),注射成型的压力为100~200MPa(比如100),保压时间为0.5~60s。由此,可以制备性能良好的仿陶瓷层,且仿陶瓷层与多孔陶瓷层之间结合力较佳。
S340:对注塑成型的产品进行烘烤处理,得到仿陶瓷层。在烘烤的过程中,仿陶瓷坯体中的有机材料发生聚合反应,并在多孔陶瓷层的孔隙内形成网络交叉结构,使得仿陶瓷层和多孔陶瓷层的结合更加紧密。
其中,所述烘烤处理的温度为300~400℃,比如300℃、320℃、340℃、360℃、380℃、400℃,时间为1~24小时。由此,在上述条件下,仿陶瓷层与多孔陶瓷层的结合更加紧密。
根据本公开的实施例,在在形成第二基材之后,还进一步包括CNC加工处理,以便得到所需形状的壳体组件。在CNC加工处理时,可以选用金刚石PCD刀具,主轴转速控制在10000-25000rpm,单次切削量控制在0.01-0.50mm。
根据本公开的实施例,制备的壳体组件的结构示意图可参照图1至图9。具体的:
在一些实施例中,第一基材为所述壳体组件的电池后盖,参照图1-4所示(图4为 图1和图2的平面俯视图),第一表面13包括主体区域S1和设置在主体区域外侧的边缘区域S2,多孔陶瓷层位于所述边缘区域内,多孔陶瓷层30和第二基材20构成壳体组件的中框。其中,边缘区域可以包括主体区域相对的两侧(如图4所示),可以包括主体区域的四周,本领域技术人员可以根据实际情况灵活设计即可。另外,本领域技术人原可以根据壳体组件的实际应用灵活设计,如图1和图2所示,第二基材和过孔陶瓷层构成壳体组件的侧面,壳体组件的侧面可以为水平面,也可以为曲面。
在一些实施例中,参照图5和图6(图6为图5中沿AA’的截面图),第二基材20为所述壳体组件的电池后盖,且具有预定区域,所述第一基材10在所述第二基材20上的正投影位于所述预定区域内,且所述多孔陶瓷层30围绕设置在所述第一基材10的边缘,其中,壳体组件具有贯穿第一基材和所述第二基材的第一通孔11。由此,可以在第一通孔中可以放置摄像头,第一基材作为摄像头的镜片盖板,其中第一基材可以选用陶瓷材料等硬质材料,使其具有较佳的耐磨性,保证镜片盖板的良好使用性能。
在另一些实施例中,参照图7、图8和图9(图8为图7中沿BB’的截面图,图9为图7中沿CC’的截面图),第二基材20为所述壳体组件的电池后盖,且具有第二通孔12,所述多孔陶瓷层30围绕设置在所述第一基材10的边缘,所述第一基材10覆盖所述第二通孔12,且所述第一基材10具有第三通孔13,且所述第三通孔位于所述第二通孔内。由此,可以在第一通孔中可以放置摄像头,第一基材作为摄像头的镜片盖板,其中,第三基材可以选用陶瓷材料等硬质材料,使其具有较佳的耐磨性,保证镜片盖板的良好使用性能。需要说明的是,上述“所述第三通孔位于所述第二通孔内”是指第二通孔的覆盖面积大于第二通孔,且第二通孔的水平面上的正投影覆盖第三通孔在水平面上的正投影,其中,水平面是指与电池后盖平行的平面。
根据本公开的实施例,在形成第二基材之后,所述方法还进一步的包括:对第一基材和第二基材拼接处的侧端面进行研磨、抛光处理。如此,有助进一步提高壳体组件外观面的光泽度,而且,由于第一基材和第二基材同时进行研磨和抛光处理,可以使得两者拼接的界面处无段差,提高壳体组件外观的一致性。
其中,本领域技术人员可以根据壳体组件的具体形状选择适宜的研磨机和抛光机。在一些实施例中,可以采用五轴研磨抛光机、13.6B双面研磨机或扫光机进行研磨抛光。其中,采用五轴抛光时,可以选用500-4000目复合海绵砂,分为开粗、中修和精修3道工序,开粗选用500-1000目海绵砂,中修选用1000-2000目海绵砂,精修选用2000-4000目海绵砂;单机4-5工位同步加工,抛光时间3-20min/片。扫光机、双面研磨机抛光,抛光盘选自猪毛、磨皮盘、阻尼布、胶丝、铜丝、地毯或猪毛+磨皮复合材 料中的一种或多种;抛光助剂选用水系钻石研磨液、油系钻石研磨液、氧化硅抛光液、氧化铈抛光液中的一种或多种;钻石液的粒度为0.5-20微米,浓度为1wt%-30wt%;抛光液的粒度则选用50-500纳米,浓度为5wt%-40wt%。
根据本公开的实施例,制备壳体组件的方法还包括:在壳体组件的外表面上形成超硬耐磨层40,如图10所示。由此,可以进一步提高壳体组件的耐刮擦和耐磨性能。其中,本领域技术人员可以理解,上述“在壳体组件的外表面上形成超硬耐磨层40”是指在形成超硬耐磨层40之前的壳体组件的外表面形成超硬耐磨层40。
在一些实施例中,如图10所述,第一基材为壳体组件的电池后盖,第二基材为壳体组件的中框时,超硬耐磨层40设置在第一基材远离第一表面13的表面上;在另一些实施例中,第二基材构成壳体组件的电池后盖,此时超硬耐磨层40设置在第二基材20的外表面上。
本领域技术人员可以理解,该制备壳体组件的方法可以用于制备前面所述的壳体组件,其中,在制备壳体组件的方法中,对多孔陶瓷层、第一基材、第二基材、超硬耐磨层等结构的要求与前面所述的一致,在此不再过多的赘述。
在本公开的又一方面,本公开提供了一种电子设备。根据本公开的实施例,参照图12,该电子设备2000包括:前面所述的壳体组件1000,所述壳体组件1000的多孔陶瓷层朝向所述电子设备的内部设置;显示屏组件,所述显示屏组件与所述壳体组件相连,且所述显示屏组件和所述壳体组件之间限定出安装空间;以及主板,所述主板设置在所述安装空间内且与所述显示屏组件电连接。由此,该电子设备的壳体组件具有较佳的外观效果,较高的强度、较佳的稳定性以及较轻的重量。本领域技术人员可以理解,该电子设备具有前面所述的壳体组件的所有特征和优点,在此不再过多的赘述。
根据本公开的实施例,该电子设备的具体种类不受特别的限制,本领域技术人员可以根据实际需求灵活选择。在一些实施例中,该电子设备的具体种类包括但不限于手机(如图12所示)、笔记本、iPad、kindle等电子设备。
实施例
实施例1
壳体组件的制备方法包括:
(1)陶瓷基材(第一基材)制备:选用山东国瓷生产的氧化钇含量为2.6mol%氧化锆干压陶瓷粉,采用干压和等静压成型方式;经高温烧结后制备陶瓷毛坯,再根据产品图档要求经CNC、研磨加工制得需要结构的陶瓷基材;
(2)多孔陶瓷浆料制备:按以下配方制备多孔陶瓷浆料:选用氧化铝和氧化硅作为第一陶瓷颗粒(两者占比各50%),第一陶瓷颗粒的直径为50-100nm,第一陶瓷颗粒的质量占比为30%;选PEG和硅烷偶联剂作为分散剂,质量占比1%;选自聚乙烯醇(PVA)和石蜡为粘结剂,质量占比0.5%;选白云石、塑胶粉和石墨粉、为造孔剂,质量占比15%。选自长石、硅灰石为助熔剂,助熔剂占比0.8%,将上述原材配置好得到混合物料,之后将混合物料后加水和氧化铝球,按混合物料:水:氧化铝球质量为1:1.5:0.5,放于球磨罐中球磨分散36h,制得多孔陶瓷浆料。
(3)烧制多孔陶瓷层:将步骤(2)中的多孔陶瓷浆料采用丝网印刷的方式涂覆在步骤1中的陶瓷基材上;并放入窑炉进行烧结,烧结温度为1100℃,保温时间2h,得到多孔陶瓷层的厚度为0.05mm,多孔陶瓷层的孔径控制在100nm-200nm之间,孔隙率为20%。
(4)仿陶瓷材料制备:选用南通通州湾新材的仿陶瓷喂料,喂料的塑胶主体材料为PPS,颜色为黑色,无机纳米颗粒为氧化铝为主体的复合材料。
(5)模具制备:根据产品设计图档制备磨具,模具型腔需精抛处理,使其表面粗糙度Ra≤0.02μm。
(6)模内注塑成型:将仿陶瓷喂料在100℃进行烘干8h,确保含水率低于0.1%;开机后对模具升温,模具温度控制在150℃;随后将步骤(3)制得的陶瓷组件放于模具型腔内,且带多孔陶瓷层区域朝向注射口,并按以下成型参数进行注射:注射成型温度控制在350℃,注射成型压力控制在150MPa,保压时间控制在2s。
(7)产品共聚合:将步骤(6)制得的坯体放于烘箱中,升温至330℃,保温8h,进行聚合反应,制得仿陶瓷+陶瓷的复合坯体。
(8)CNC加工:将步骤(7)制得的复合坯体,按产品图纸进行CNC加工,CNC加工选用金刚石PCD刀具,主轴转速控制在15000rpm;单次切削量控制在0.05mm。
(9)研磨抛光:将步骤(8)CNC加工好产品用扫光机进行研磨粗抛:扫光盘选用猪毛+磨皮复合材料;抛光助剂选用水系钻石研磨液、钻石液粒度为5μm,浓度为15wt%;粗抛后用13.6B研磨机进行精抛,抛光液为氧化硅抛光液,粒度为100-200nm,浓度20wt%。
(10)超硬膜层制备:将步骤(9)制得的抛光好的产品,用溅射真空镀的方式在陶瓷基材和仿陶瓷基材的外表面镀一层超硬耐膜层,超硬层材料为氧化铝,涂层厚度为20-30nm,镀完超硬涂层后,产品表面铅笔硬度可达到6H。
实施例1至实施例6中制备壳体组件的方法步骤与实施例1一致,不同点可参见表 1,其中,结合强度是指陶瓷基材与仿陶瓷基材之间的结合强度。
表1
Figure PCTCN2021116722-appb-000001
对比例1
陶瓷基材制备:选用山东国瓷生产的氧化钇含量为2.6mol%氧化锆干压陶瓷粉,采用干压和等静压成型方式;经高温烧结后制备陶瓷毛坯,再根据产品图档要求经CNC、研磨加工制得需要结构的陶瓷基材;
对陶瓷基材进行酸腐蚀处理,制备出纳米微孔;
再将有纳米微孔的陶瓷基材放入模具中与塑胶一起成型,以便在陶瓷基材的侧端面形成塑胶层;
再对成型后再对产品整体进行加工处理,得到陶瓷基材+塑胶注塑的壳体组件。
通过测试得到,塑胶基材与塑胶层之间的结合强度为30MPa。
通过实施例1-6与对比例1的对比可知,实施例1-6中制备的壳体组件中陶瓷基材与仿陶瓷基材之间具有较佳的结合力,而且仿陶瓷基材具有较低的介电常数,可以有效解决纯陶瓷壳体中毫米波无法使用的难题。
文中术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、 材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (22)

  1. 一种壳体组件,其特征在于,包括:
    第一基材,所述第一基材具有第一表面;
    第二基材,所述第二基材具有第二表面,所述第二表面的至少部分与所述第一表面的至少部分通过多孔陶瓷层贴合设置,所述多孔陶瓷层具有孔隙,所述第二基材的一部分嵌入到部分的所述孔隙中。
  2. 根据权利要求1所述的壳体组件,其特征在于,所述第一基材为所述壳体组件的电池后盖,所述第一表面包括主体区域和设置在所述主体区域外侧的边缘区域,所述多孔陶瓷层位于所述边缘区域内,所述多孔陶瓷层和所述第二基材构成所述壳体组件的中框。
  3. 根据权利要求1所述的壳体组件,其特征在于,所述第二基材为所述壳体组件的电池后盖,且具有预定区域,所述第一基材在所述第二基材上的正投影位于所述预定区域内,且所述多孔陶瓷层围绕设置在所述第一基材的边缘,其中,所述壳体组件具有贯穿所述第一基材和所述第二基材的第一通孔;
    或,所述第二基材为所述壳体组件的电池后盖,且具有第二通孔,所述多孔陶瓷层围绕设置在所述第一基材的边缘,所述第一基材覆盖所述第二通孔,且所述第一基材具有第三通孔,且所述第三通孔位于所述第二通孔内。
  4. 根据权利要求1~3中任一项所述的壳体组件,其特征在于,所述多孔陶瓷层的厚度为0.01mm~0.20mm。
  5. 根据权利要求1~3中任一项所述的壳体组件,其特征在于,所述孔隙的孔径为50nm~1mm。
  6. 根据权利要求1~3中任一项所述的壳体组件,其特征在于,所述多孔陶瓷层的孔隙率为5%~50%。
  7. 根据权利要求1~3中任一项所述的壳体组件,其特征在于,所述多孔陶瓷层的包括第一陶瓷颗粒,所述第一陶瓷颗粒的粒径为50nm~2μm。
  8. 根据权利要求1~3中任一项所述的壳体组件,其特征在于,所述第二基材为仿陶瓷层,包括第二陶瓷颗粒和有机材料,其中,所述有机材料选自PPS和PPSU中的至少一种。
  9. 根据权利要求8所述的壳体组件,其特征在于,所述仿陶瓷层还包括颜料粒子。
  10. 根据权利要求1~3中任一项所述的壳体组件,其特征在于,所述第一基材的材料为陶瓷、玻璃、蓝宝石或金属。
  11. 根据权利要求1~3中任一项所述的壳体组件,其特征在于,所述第一基材与所述 第二基材之间的结合力大于40MPa。
  12. 根据权利要求1~3中任一项所述的壳体组件,其特征在于,还包括:超硬耐磨层,所述超硬耐磨层设置在所述壳体组件的外表面上。
  13. 根据权利要求11所述的壳体组件,其特征在于,所述超硬耐磨层满足以下条件至少之一:
    铅笔硬度为5H~9H;
    厚度为5~100nm;
    材料为石墨、氧化铝、氧化锆、氧化硅、氧化铬和氧化钛中的至少一种。
  14. 一种制备权利要求1~13中任一项所述的壳体组件的方法,其特征在于,包括:
    提供第一基材,所述第一基材具有第一表面;
    在所述第一基材的所述第一表面上涂覆多孔陶瓷浆料,并通过烧结处理得到多孔陶瓷层,所述多孔陶瓷层具有孔隙;
    在所述多孔陶瓷层远离所述第一基材的表面上形成第二基材,所述第二基材的一部分嵌入到部分的所述孔隙中。
  15. 根据权利要求14所述的方法,其特征在于,所述多孔陶瓷浆料包括混合物料、溶剂和耐磨粒子,其中,所述混合物料包括第一陶瓷颗粒、分散剂、粘结剂、造孔剂、助熔剂,且混合物料、溶剂和耐磨粒子的质量比为1:(1-3):(0.5-1)。
  16. 根据权利要求15所述的方法,其特征在于,基于所述多孔陶瓷浆料的总重量,按质量百分数计,所述多孔陶瓷浆料包括:
    30%~60%的第一陶瓷颗粒;
    0.1-2%的分散剂;
    0.5-5%的粘结剂;
    5-20%的造孔剂;
    0.5-5%的助熔剂;以及
    余量的所述溶剂和所述耐磨粒子。
  17. 根据权利要求14~16中任一项所述的方法,其特征在于,所述烧结处理的烧结温度为500℃~1200℃,烧结时间为1~5h。
  18. 根据权利要求17所述的方法,其特征在于,所述第二基材为仿陶瓷层,形成所述仿陶瓷层的步骤包括:
    将设置有所述多孔陶瓷层的所述第一基材放置在模具中;
    配制仿陶瓷喂料;
    在所述模具中通过注塑成型的方法在所述多孔陶瓷层远离所述第一基材的表面上形成仿陶瓷坯体,其中,部分所述仿陶瓷喂料嵌入到所述孔隙的内部;
    对所述注塑成型的产品进行烘烤处理,得到所述仿陶瓷层。
  19. 根据权利要求18所述的方法,其特征在于,所述注塑成型的条件为:
    注射成型的温度为300~360℃,注射成型的压力为100~200MPa,保压时间为0.5~60s。
  20. 根据权利要求18或19所述的方法,其特征在于,所述烘烤处理的温度为300~400℃,时间为1~24小时。
  21. 根据权利要求18或19所述的方法,其特征在于,还包括:
    在所述壳体组件的外表面上形成超硬耐磨层。
  22. 一种电子设备,其特征在于,包括:
    权利要求1~13中任一项所述的壳体组件,所述壳体组件的多孔陶瓷层朝向所述电子设备的内部设置;
    显示屏组件,所述显示屏组件与所述壳体组件相连,且所述显示屏组件和所述壳体组件之间限定出安装空间;以及
    主板,所述主板设置在所述安装空间内且与所述显示屏组件电连接。
PCT/CN2021/116722 2020-11-04 2021-09-06 壳体组件及其制备方法和电子设备 WO2022095579A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011216120.7A CN114436678A (zh) 2020-11-04 2020-11-04 壳体组件及其制备方法和电子设备
CN202011216120.7 2020-11-04

Publications (1)

Publication Number Publication Date
WO2022095579A1 true WO2022095579A1 (zh) 2022-05-12

Family

ID=81361307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116722 WO2022095579A1 (zh) 2020-11-04 2021-09-06 壳体组件及其制备方法和电子设备

Country Status (2)

Country Link
CN (1) CN114436678A (zh)
WO (1) WO2022095579A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102724840A (zh) * 2011-03-29 2012-10-10 富准精密工业(深圳)有限公司 壳体及其制造方法
CN105992478A (zh) * 2014-11-28 2016-10-05 宏达国际电子股份有限公司 电子装置的机壳及其制造方法
CN206452626U (zh) * 2017-01-07 2017-08-29 深圳富泰宏精密工业有限公司 电子装置外壳
CN109023497A (zh) * 2017-06-09 2018-12-18 深圳富泰宏精密工业有限公司 壳体及该壳体的制作方法
CN109093926A (zh) * 2018-07-12 2018-12-28 歌尔股份有限公司 一种陶瓷与塑胶的复合件及其制备方法
CN110016633A (zh) * 2019-05-17 2019-07-16 Oppo广东移动通信有限公司 电子设备的壳体及其制作方法、电子设备
CN110653993A (zh) * 2018-06-29 2020-01-07 富智康精密电子(廊坊)有限公司 壳体及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4882212A (en) * 1986-10-30 1989-11-21 Olin Corporation Electronic packaging of components incorporating a ceramic-glass-metal composite
CN104080285B (zh) * 2013-03-25 2017-07-14 华为技术有限公司 一种陶瓷壳体结构件及其制备方法
US11088718B2 (en) * 2016-09-06 2021-08-10 Apple Inc. Multi-colored ceramic housings for an electronic device
CN108002865B (zh) * 2017-11-29 2020-05-29 歌尔股份有限公司 功能陶瓷元件及在功能陶瓷层上形成电极的方法
CN110972418B (zh) * 2018-09-30 2022-01-07 比亚迪股份有限公司 电子设备壳体、电子设备和复合体
CN110971735B (zh) * 2018-09-30 2022-02-01 汕尾比亚迪实业有限公司 电子设备壳体、电子设备和复合体
CN109278382B (zh) * 2018-11-26 2021-05-28 Oppo广东移动通信有限公司 壳体及制备方法、电子设备
CN110357621B (zh) * 2019-08-12 2022-05-17 Oppo广东移动通信有限公司 陶瓷壳体及其制备方法、电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102724840A (zh) * 2011-03-29 2012-10-10 富准精密工业(深圳)有限公司 壳体及其制造方法
CN105992478A (zh) * 2014-11-28 2016-10-05 宏达国际电子股份有限公司 电子装置的机壳及其制造方法
CN206452626U (zh) * 2017-01-07 2017-08-29 深圳富泰宏精密工业有限公司 电子装置外壳
CN109023497A (zh) * 2017-06-09 2018-12-18 深圳富泰宏精密工业有限公司 壳体及该壳体的制作方法
CN110653993A (zh) * 2018-06-29 2020-01-07 富智康精密电子(廊坊)有限公司 壳体及其制备方法
CN109093926A (zh) * 2018-07-12 2018-12-28 歌尔股份有限公司 一种陶瓷与塑胶的复合件及其制备方法
CN110016633A (zh) * 2019-05-17 2019-07-16 Oppo广东移动通信有限公司 电子设备的壳体及其制作方法、电子设备

Also Published As

Publication number Publication date
CN114436678A (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
CN109790047B (zh) 氧化锆组合物、预煅烧体和烧结体以及它们的制造方法、以及层叠体
CN107445615B (zh) 氧化锆陶瓷及其制备方法、陶瓷柱塞和柱塞泵
CN106927819A (zh) 热压烧结高纯氧化锆复合陶瓷及其制备方法
CN110154204A (zh) 制备陶瓷基材的方法和系统
EP0824990B1 (en) Method of engraving pre-sintered ceramic articles
JP2009530127A (ja) 焼結体の製造方法および焼結体
EP0825159A2 (en) Method of making air lubricated hydrodynamic ceramic bearings
WO2022095579A1 (zh) 壳体组件及其制备方法和电子设备
US4952537A (en) Ceramic products and process for producing the same
JP7132673B2 (ja) セラミック構成要素およびその形成方法
US10589401B2 (en) Sintered vitrified superfinishing grindstone
US8663781B2 (en) Ceramic article and method for making same, and electronic device using same
WO2023109683A1 (zh) 陶瓷板材、壳体组件和电子设备
JPH1082421A (ja) 空気潤滑式流体力学的軸受組立体
US20060201205A1 (en) Mold for molding optical lenses
CN114180961B (zh) 壳体及其制备方法和电子设备
JP6492632B2 (ja) ジルコニア焼結体及びその用途
CN114180960B (zh) 壳体及其制备方法和电子设备
KR100935926B1 (ko) 와이어 본딩용 캐필러리 제조 방법 및 이에 의한 와이어 본딩용 캐필러리
CN213506607U (zh) 一种高致密氧化锆陶瓷背板结构
JPH0688832B2 (ja) 多結晶セラミックス製品及びその製造方法
JP2002173366A (ja) コーディエライト系セラミックス材料
JP2005123556A (ja) ウエーハ研磨用吸着プレート
JP2000128626A (ja) 酸化アルミニウム基焼結体及びその製造方法
CN113427597A (zh) 制备高强度的壳体组件的方法、壳体组件和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21888278

Country of ref document: EP

Kind code of ref document: A1