WO2022095123A1 - 一种mocvd设备 - Google Patents

一种mocvd设备 Download PDF

Info

Publication number
WO2022095123A1
WO2022095123A1 PCT/CN2020/129596 CN2020129596W WO2022095123A1 WO 2022095123 A1 WO2022095123 A1 WO 2022095123A1 CN 2020129596 W CN2020129596 W CN 2020129596W WO 2022095123 A1 WO2022095123 A1 WO 2022095123A1
Authority
WO
WIPO (PCT)
Prior art keywords
top cover
gas
mocvd equipment
equipment according
curved surface
Prior art date
Application number
PCT/CN2020/129596
Other languages
English (en)
French (fr)
Inventor
钟蓉
王杨波
甄龙云
熊诵明
黄文献
Original Assignee
温州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 温州大学 filed Critical 温州大学
Publication of WO2022095123A1 publication Critical patent/WO2022095123A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating

Definitions

  • the invention belongs to the technical field of semiconductor thin film materials, and in particular relates to an MOCVD device.
  • MOCVD Metal Organic Chemical Vapor Deposition
  • MOVPE Metal Organic Vapor Phase Epitaxy
  • the saturated vapor pressure is related to the temperature. Since the temperature of the organic source is constant, the organic source has a fixed saturated vapor pressure. We can control the flow of the carrier gas through a flowmeter, thereby controlling the flow of the carrier gas through the organic source.
  • the amount of organic sources carried during the time; the multi-channel carrier gas carries different organic sources and transports them to the air inlet of the reaction chamber to mix, and then transported to the vicinity of the surface of the Wafer (substrate), where a chemical reaction occurs under the action of high temperature and is deposited on the Wafer to complete the epitaxial growth of the thin film.
  • Ceiling is a quartz piece whose main component is SiO 2 .
  • the main function of this component is to protect the top cover from erosion and to ensure the lateral trajectory of the gas flow, thereby ensuring that the process temperature in the deposition area is consistent.
  • the structure of the traditional MOCVD equipment as shown in the Chinese invention patent of the authorized announcement number "CN 102766851 B", the Ceiling is a single-layer or multi-layer plane structure, and there is a channel for the reaction gas to pass between the top cover (furnace cover) and the Ceiling. .
  • the microstructures of the edge portion and the center portion of the epitaxial film prepared by the traditional MOCVD equipment were inconsistent: the center portion of the epitaxial film had no cracks, while the edge portion had many cracks.
  • the reason for this phenomenon is that, on the one hand, the flow velocity of the gas at each position is different, resulting in different heat taken away by the gas, so the gas reaction temperature at different positions is inconsistent, resulting in inconsistent film growth rates at different positions; on the other hand, Wafer The surface is scoured and impacted by gas molecules and changes with different positions, resulting in inconsistent gas pressure on its microscopic surface, resulting in uneven distribution of cracks.
  • the technical problem to be solved by the present invention is to provide a MOCVD equipment with a better lateral trajectories of the gas flow, and which can ensure the uniform process temperature of each position in the deposition area.
  • the technical solution adopted in the present invention includes: a top cover, a top cover panel, a base and a foil, all of which are circular in radial cross section, characterized in that: the upper surface of the top cover panel is embedded in the bottom of the top cover , The lower surface is a curved surface with a thin middle and thick sides, a gas pipeline is arranged in the vertical direction of the center of the top cover, and the lower end of the gas pipeline extends to the center of the base, and the sidewall of the gas pipeline is provided with several layers of circumferentially arranged vent.
  • the shown MOCVD equipment is characterized in that: the height H of the curved surface is 1-10 mm.
  • the MOCVD equipment shown is characterized in that: the height H of the curved surface is 2 mm.
  • the MOCVD equipment shown is characterized in that: the foils are arranged at the bottom of the reaction chamber of the base in a circular arrangement, and the circumscribed circle thereof is arranged concentrically with the curved surface.
  • the MOCVD equipment shown is characterized in that: the radius R1 of the largest opening part circle of the curved surface is slightly larger than the diameter R2 of the circumscribed circle of the foil.
  • the MOCVD equipment shown is characterized in that: the R1 is 1-10 mm larger than the R2.
  • the MOCVD equipment shown is characterized in that: the R1 is 2 mm larger than the R2.
  • the MOCVD equipment shown is characterized in that: at least one layer of circumferentially arranged gas outlet holes is located in the curved surface on the gas pipeline.
  • the MOCVD equipment shown is characterized in that: the gas pipeline is provided with three layers of gas outlet holes arranged in a circle.
  • the MOCVD equipment shown is characterized in that: the gas outlet holes of each layer are equally spaced on the side wall of the gas pipeline.
  • the advantages of the MOCVD equipment of the present invention are: 1. Through the design of the new top cover panel, the force on the edge and the center position is more uniform and the growth rate of the film is closer, thereby improving the uniformity of the film; 2. Through the new top cover The cover plate design can reduce the variation in the flow rate of the reactant gas in the deposition area in MOCVD equipment, and reduce the variation in the deposition tendency to be swept and impinged by the gas.
  • Fig. 1 is the sectional view of MOCVD equipment of the present invention
  • Fig. 2 is the exploded view of MOCVD equipment of the present invention
  • Fig. 3 is the structural schematic diagram of the top cover panel of the present invention.
  • Fig. 4 is the structural representation of the base reaction chamber of the present invention.
  • Fig. 5 is the intensity contrast schematic diagram of the XRD rocking curve of GaN (002) plane
  • FIG. 6 is a schematic diagram showing the comparison of optical microscope photographs of GaN thin films.
  • the MOCVD equipment of the present invention includes a top cover 1 , a top cover panel 2 , a base 3 and a foil 4 , which are all circular in radial cross section.
  • the top cover panel 2 is embedded in the bottom of the top cover 1
  • the lower surface of the top cover panel 2 is a curved surface 5 that is thin in the middle and thick on both sides.
  • the height H of the curved surface 5 is 1-10 mm, ideally 2 mm.
  • the purpose is to make the frequency of the reaction gas hitting the surface of the Wafer (substrate) at various positions to be consistent, so that the gas pressure and reaction speed at the edge of the deposition zone and the center position tend to be consistent.
  • the reaction gas enters the reaction chamber from the gas inlet, and flows laterally toward the Wafer position under the control of Ceiling as indicated by the arrow. During the flow, the gas continues to react and deposit. Therefore, the further away from the gas inlet, the density of the reactant gas decreases, and the deposition rate of the film also slows down.
  • a gas pipeline 6 is arranged in the vertical direction of the center of the top cover 1, and the lower end of the gas pipeline 6 extends to the center of the base 3, and the reaction gas is introduced from the top cover and swept out through the gas pipeline.
  • the foils 4 are arranged at the bottom of the reaction chamber 9 of the base 3 in a circular arrangement, there is a gap between adjacent foils 4, and the circumscribed circle 10 thereof is arranged concentrically with the curved surface 5 .
  • the radius R1 of the largest opening part circle 8 of the curved surface 5 is slightly larger (in the range of 1-10mm, ideally 2mm) than the diameter R2 of the circumscribed circle 10 of the foil 4 . Therefore, the gas pressure and reaction speed at the edge of the deposition zone are more consistent with the central position.
  • the gas pipe 6 is provided with three layers of air outlet holes 7 arranged in a circle, and the air outlet holes 7 of each layer are equally spaced on the side wall of the gas pipe 6 .
  • the gas pipeline 6 has a layer of circumferentially arranged air outlet holes 7 located in the curved surface 5 .
  • the reaction gas can be swept out more uniformly, so that the gas pressure and reaction speed at the edge position of the deposition zone are more consistent with the center position.
  • the upper end of the gas pipeline 6 is provided with a mounting flange 11
  • the center of the top cover panel 2 is provided with a central mounting hole 12 adapted to the mounting flange 11 .
  • the center of the top cover panel 2 is provided with a central mounting hole 12 adapted to the mounting flange 11 .
  • the deposition rate of the film is determined by the moving distance of the reactive gas in the device, that is, the distance from the gas inlet to the deposition point, which results in the deposition rate of the epitaxial film at the edge of the Wafer being smaller than that of the Wafer.
  • the deposition rate at the center also causes the temperature at the edge of the wafer to be lower than that at the center of the wafer.
  • the grain quality at the center of the film is higher than that at its edge (the XRD peak at the center of the GaN film is about 48% higher than that at the edge) %, and the FWHM value (754 arcsec) at the center position is much lower than the FWHM value at the edge position (1133 arcsec), indicating that the grain quality at the center position is higher, that is, the uniformity of the film is lower at this time) .
  • the optical microscope results in Figure 6(a) and (b) no cracks were found in the center of the GaN film but a large number of tiny holes were found, while a large number of cracks were found at the edges.
  • the deposition rate of the thin film is determined by the moving distance of the reaction gas in the equipment and the deposition distance of the reaction gas (reducing the height of the reaction chamber can reduce the deposition distance of the gas).
  • the deposition rate of the film decreases accordingly.
  • the surface shape of the new Ceiling reduces the height of the reaction chamber, thereby reducing the deposition distance of the reaction gas, that is, at the position closest to the gas inlet, the deposition distance of the gas is the largest.
  • the deposition rate of the film is the smallest, and the deposition distance of the gas is the smallest at the position farthest from the gas inlet, and the deposition rate of the film is the largest at this time. Therefore, when these two factors are combined, the deposition rate of each location of the film tends to be uniform.
  • the deposition rate of each position is the same, the heat taken away by the reaction gas hitting the surface of the Wafer can be uniform, and the result is that the surface temperature and surface pressure of each position also tend to be the same.
  • Ceiling of the present invention in MOCVD equipment can improve the uniformity and film quality of the GaN epitaxial thin film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

一种MOCVD设备包括:径向截面均呈圆形的顶盖(1)、顶盖面板(2)、底座(3)和衬托(4),所述顶盖面板(2)的上表面嵌入所述顶盖(1)底部、下表面为中间薄两边厚的曲面(5),所述顶盖(1)中心的垂直方向设置气体管道(6)、且所述气体管道(6)的下端延伸至所述底座(3)中心,所述气体管道(6)侧壁设有若干层圆周排列的出气孔(7)。通过顶盖面板(2)设计,使边缘和中心位置受力更为均匀且薄膜的生长速度更为接近,从而改善薄膜的均匀性问题。

Description

一种MOCVD设备 技术领域
本发明属于半导体薄膜材料技术领域,具体涉及一种MOCVD设备。
背景技术
金属有机化学气相沉积,简称MOCVD(Metal Organic Chemical Vapor Deposition),也称MOVPE(Metal Organic Vapor Phase Epitaxy),是一种半导体外延生长的重要技术。
MOCVD设备的工作过程大致为:饱和蒸汽压与温度相关,由于有机源的温度恒定,因此有机源具有固定的饱和蒸汽压,我们可以通过流量计控制载气的流量,从而控制载气流经有机源时携带的有机源的量;多路载气携带不同的有机源输运到反应室进气孔处混合,然后被运输到Wafer(衬底)表面附近,在高温作用下发生化学反应并沉积在Wafer上,从而完成薄膜的外延生长。
在大部分MOCVD设备中,Ceiling是石英件,其主要成分是SiO 2。这个部件主要作用是保护顶盖不受侵蚀,并保证气流的横向轨迹,从而保证沉积区域的工艺温度达成一致。传统的MOCVD设备结构,如授权公告号“CN 102766851 B”的中国发明专利所示,Ceiling为单层或多层的平面结构,顶盖(炉盖)与Ceiling之间有供反应气体通过的通道。但是在使用过程中发现,传统的MOCVD设备所制备的外延薄膜其边缘部分和中心部分的微观结构不一致:外延薄膜的中心部分无裂纹,而边缘部分裂纹非常多。造成这个现象的原因一方面是气体在各个位置的流动速度不同,导致气体带走的热量不同,因此不同位置的气体反应温度不一致,从而导致不同位置的薄膜生长速度也不一致;另一方面是Wafer表面受气体分子的冲刷和撞击随位置不同而改变,导致其微观表面所受的气体压力不 一致,使得裂纹分布不均匀。
本专利依托2016年国家重点研发计划项目-科技部政府间国际科技创新合作重点专项(中美):“改进纳米元器件薄膜均一性的控制策略和方法研究”的项目所支持,项目编号:2016YFE0105900。
发明内容
本发明要解决的技术问题是提供一种更好的气流横向轨迹,并能保证沉积区域各个位置工艺温度一致的MOCVD设备。
为解决上述问题,本发明采用的技术方案包括:径向截面均呈圆形的顶盖、顶盖面板、底座和衬托,其特征在于:所述顶盖面板的上表面嵌入所述顶盖底部、下表面为中间薄两边厚的曲面,所述顶盖中心的垂直方向设置气体管道、且所述气体管道的下端延伸至所述底座中心,所述气体管道侧壁设有若干层圆周排列的出气孔。
所示的MOCVD设备,其特征在于:所述曲面的高度H为1-10mm。
所示的MOCVD设备,其特征在于:所述曲面的高度H为2mm。
所示的MOCVD设备,其特征在于:所述衬托以圆周排列的方式设置在所述底座的反应腔底部、且其外切圆与所述曲面同心设置。
所示的MOCVD设备,其特征在于:所述曲面的最大开口部分圆的半径R1略大于所述衬托的外切圆的直径R2。
所示的MOCVD设备,其特征在于:所述R1比R2大1-10mm。
所示的MOCVD设备,其特征在于:所述R1比R2大2mm。
所示的MOCVD设备,其特征在于:所述气体管道上至少有一层圆周排列的出气孔位于所述曲面内。
所示的MOCVD设备,其特征在于:所述气体管道上设有三层圆周排列的出气孔。
所示的MOCVD设备,其特征在于:每层所述出气孔之间等距地分布在所述气体管道侧壁。
本发明的MOCVD设备优点:1、通过新型的顶盖面板设计,使边缘和中心位置受力更为均匀且薄膜的生长速度更为接近,从而改善薄膜的均匀性问题;2、通过新型的顶盖面板设计,可在MOCVD设备中减小沉积区域内反应气体流量的变化幅度,且降低该沉积趋于受气体冲刷和撞击的变化幅度。
下面结合说明书附图对本发明做进一步说明。
附图说明
图1是本发明MOCVD设备的剖视图;
图2是本发明MOCVD设备的爆炸图;
图3是本发明顶盖面板的结构示意图;
图4是本发明底座反应腔的结构示意图;
图5是GaN(002)面的XRD摇摆曲线的强度对比示意图;
图6是GaN薄膜的光学显微镜照片对比示意图。
具体实施方式
参照图1-6所示,本发明的MOCVD设备,包括径向截面均呈圆形的顶盖1、顶盖面板2、底座3和衬托4。所述顶盖面板2嵌入所述顶盖1底部,且所述顶盖面板2下表面为中间薄两边厚的曲面5。所述曲面5的高度H为1-10mm,理想为2mm。通过所述曲面5的设计,目的是让反应气体在各个位置撞击Wafer(衬底)表面的频率趋于一致,从而使沉积区的边缘位置的气体压力和反应速度与中心位置趋于一致。具体如图1所示,反应气体从进气孔进入反应腔内,并如箭头所示在Ceiling的控制下朝着Wafer位置方向进行横向流动,在该流动过程中气体持续发生反应并沉积下来。因此,离进气孔越远,反应气体的密度随之降低,薄膜的沉积速度也随之变慢。所述顶盖1中心的垂直方向设置气体管道6、且所述气 体管道6的下端延伸至所述底座3中心,反应气体从顶盖导入经气体管道吹扫出去。
优选的,所述衬托4以圆周排列的方式设置在所述底座3的反应腔9底部,相邻的所述衬托4之间存有间隙,且其外切圆10与所述曲面5同心设置。所述曲面5的最大开口部分圆8的半径R1略大于(在1-10mm范围之间,最理想为2mm)所述衬托4的外切圆10的直径R2。从而使沉积区的边缘位置的气体压力和反应速度与中心位置更加的趋于一致。
优选的,所述气体管道6上设有三层圆周排列的出气孔7,每层所述出气孔7之间等距地分布在所述气体管道6侧壁。所述气体管道6上有一层圆周排列的出气孔7位于所述曲面5内。使反应气体能更加均匀的吹扫出去,从而使沉积区的边缘位置的气体压力和反应速度与中心位置更加的趋于一致。
优选的,所述气体管道6上端设有安装法兰11,所述顶盖面板2中心设有与所述安装法兰11相适应的中心安装孔12。以使于所述气体管道6和所述顶盖面板2的安装。
下面通过实验例进一步证明本发明的有益效果:
以Si衬底外延生长GaN薄膜为例,在使用本发明的顶盖面板(Ceiling)进行外延生长薄膜后,在光学显微镜观察下发现,薄膜的中心位置和边缘位置均无明显裂纹;采用XRD(X射线衍射仪)测量薄膜中心位置和边缘位置的特定晶格取向,也发现其半峰宽基本不变,表明薄膜的中心位置和边缘位置的薄膜质量比较接近。
以下通过不同形状的Ceiling做外延生长对比实验,进行详细讲解。
在使用普通Ceiling进行外延生长时,薄膜的沉积速度由反应气体在设备中的运动距离决定,即从进气孔到沉积点的距离决定,因此导致了外延薄膜在Wafer边缘位置的沉积速率小于Wafer中心位置的沉积速率,同时也导致了Wafer 边缘位置的温度低于Wafer中心位置的温度。如图5(a)中外延薄膜的XRD结果所示,薄膜中心位置的晶粒质量高于其边缘位置的晶粒质量(GaN薄膜的中心位置的XRD峰值比边缘位置的XRD峰值高出约48%,且中心位置的FWHM(半高峰宽)值(754 arcsec)远低于边缘位置的FWHM值(1133 arcsec),说明中心位置的晶粒质量更高,即此时薄膜的均匀性较低)。如图6(a)和(b)中光学显微镜结果所示,GaN薄膜的中心位置未发现裂纹但有大量微小孔洞,而边缘位置存在大量裂纹。
在使用本发明的Ceiling进行外延生长时,薄膜的沉积速度同时由反应气体在设备中的运动距离和反应气体的沉积距离(降低反应腔高度可减少气体的沉积距离)决定。在反应气体的运动距离增大时,此时薄膜的沉积速率随之降低。但随着反应气体的运动距离增大,新型Ceiling的表面形状降低了反应腔的高度,从而减少了反应气体的沉积距离,即在离进气孔最近的位置,气体的沉积距离最大,此时薄膜的沉积速率最小,而离进气孔最远的位置,气体的沉积距离最小,此时薄膜的沉积速率最大。因此,当这两种因素结合在一起时,最终使得薄膜的各个位置的沉积速率趋于一致。当各个位置的沉积速率一致时,反应气体撞击Wafer表面所带走的热量可达一致,其结果是各个位置表面温度和表面压力也趋向一致。
当我们进一步采用优选方案(即具体实施方式第2至3段限定的方案)时,得到如图5(b)中外延薄膜的XRD结果所示,薄膜中心位置的晶粒质量与边缘位置的晶粒质量相差不大(GaN薄膜的中心位置的XRD峰值比边缘位置的XRD峰值高出约22%,且中心位置的FWHM值(731 arcsec)与边缘位置的FWHM值(798 arcsec)非常接近,即晶粒质量比较一致,说明此时薄膜的均匀性较高。另外,比较相同位置的XRD数据发现,采用新型Ceiling制备的GaN薄膜质量高于普通Ceiling制备的GaN薄膜质量。)。如图6(c)和(d)中光学显微镜结果所示,GaN薄膜的中心 位置未发现裂纹且此时孔洞也较少,而边缘位置未发现裂纹但有大量微小孔洞,说明此时薄膜的均匀性较高且薄膜质量较好。
综上所述,在MOCVD设备中使用本发明的Ceiling,可以提高GaN外延薄膜的均匀性和薄膜质量。
以上所述,并非对本发明做任何形式上的限制,虽然本发明已以较佳实施案例揭示如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的结构及技术内容做出些许的更动或修饰为等同变化的等效实施案例,但是凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施案例所作的任何简单修改、等同变化与修饰,均仍属本发明技术方案范围。

Claims (10)

  1. 一种MOCVD设备,包括径向截面均呈圆形的顶盖(1)、顶盖面板(2)、底座(3)和衬托(4),其特征在于:所述顶盖面板(2)的上表面嵌入所述顶盖(1)底部、下表面为中间薄两边厚的曲面(5),所述顶盖(1)中心的垂直方向设置气体管道(6)、且所述气体管道(6)的下端延伸至所述底座(3)中心,所述气体管道(6)侧壁设有若干层圆周排列的出气孔(7)。
  2. 根据权利要求1所示的MOCVD设备,其特征在于:所述曲面(5)的高度H为1-10mm。
  3. 根据权利要求2所示的MOCVD设备,其特征在于:所述曲面(5)的高度H为2mm。
  4. 根据权利要求1所示的MOCVD设备,其特征在于:所述衬托(4)以圆周排列的方式设置在所述底座(3)的反应腔(9)底部、且其外切圆(10)与所述曲面(5)同心设置。
  5. 根据权利要求4所示的MOCVD设备,其特征在于:所述曲面(5)的最大开口部分圆(8)的半径R1略大于所述衬托(4)的外切圆(10)的直径R2。
  6. 根据权利要求5所示的MOCVD设备,其特征在于:所述R1比R2大1-10mm。
  7. 根据权利要求6所示的MOCVD设备,其特征在于:所述R1比R2大2mm。
  8. 根据权利要求1所示的MOCVD设备,其特征在于:所述气体管道(6)上至少有一层圆周排列的出气孔(7)位于所述曲面(5)内。
  9. 根据权利要求1所示的MOCVD设备,其特征在于:所述气体管道(6)上设有三层圆周排列的出气孔(7)。
  10. 根据权利要求1所示的MOCVD设备,其特征在于:每层所述出气孔(7)之间等距地分布在所述气体管道(6)侧壁。
PCT/CN2020/129596 2020-11-09 2020-11-18 一种mocvd设备 WO2022095123A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011236149.1 2020-11-09
CN202011236149.1A CN112501590B (zh) 2020-11-09 2020-11-09 一种mocvd设备

Publications (1)

Publication Number Publication Date
WO2022095123A1 true WO2022095123A1 (zh) 2022-05-12

Family

ID=74955595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129596 WO2022095123A1 (zh) 2020-11-09 2020-11-18 一种mocvd设备

Country Status (2)

Country Link
CN (1) CN112501590B (zh)
WO (1) WO2022095123A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115506012A (zh) * 2022-09-30 2022-12-23 江苏第三代半导体研究院有限公司 一种用于制备外延片的反应器、制备方法及应用
CN116752121B (zh) * 2023-06-15 2024-05-14 拓荆科技(上海)有限公司 一种盖板以及流体气相沉积装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239098A (ja) * 1988-03-18 1989-09-25 Mitsubishi Kasei Corp 2−6族化合物超格子の製造方法
CN102094189A (zh) * 2011-03-14 2011-06-15 福建钧石能源有限公司 化学气相沉积反应设备
CN102325921A (zh) * 2008-12-23 2012-01-18 艾克斯特朗欧洲公司 带有圆柱形进气机构的金属有机化合物化学气相沉积反应器
WO2012082225A1 (en) * 2010-12-17 2012-06-21 Veeco Instruments Inc. Gas injection system for chemical vapor deposition using sequenced valves
CN102766851A (zh) * 2011-05-04 2012-11-07 广东量晶光电科技有限公司 一种金属有机化学气相沉积反应器
CN103014669A (zh) * 2011-09-23 2013-04-03 理想能源设备(上海)有限公司 化学气相沉积装置
CN105463411A (zh) * 2016-01-23 2016-04-06 冯雅清 一种金属有机物化学气相沉积设备的中央支柱

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343722A (ja) * 2001-05-16 2002-11-29 Toshiba Ceramics Co Ltd 減圧cvd用石英ガラス炉心管

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239098A (ja) * 1988-03-18 1989-09-25 Mitsubishi Kasei Corp 2−6族化合物超格子の製造方法
CN102325921A (zh) * 2008-12-23 2012-01-18 艾克斯特朗欧洲公司 带有圆柱形进气机构的金属有机化合物化学气相沉积反应器
WO2012082225A1 (en) * 2010-12-17 2012-06-21 Veeco Instruments Inc. Gas injection system for chemical vapor deposition using sequenced valves
CN102094189A (zh) * 2011-03-14 2011-06-15 福建钧石能源有限公司 化学气相沉积反应设备
CN102766851A (zh) * 2011-05-04 2012-11-07 广东量晶光电科技有限公司 一种金属有机化学气相沉积反应器
CN103014669A (zh) * 2011-09-23 2013-04-03 理想能源设备(上海)有限公司 化学气相沉积装置
CN105463411A (zh) * 2016-01-23 2016-04-06 冯雅清 一种金属有机物化学气相沉积设备的中央支柱

Also Published As

Publication number Publication date
CN112501590A (zh) 2021-03-16
CN112501590B (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
WO2022095123A1 (zh) 一种mocvd设备
JP4534978B2 (ja) 半導体薄膜製造装置
US6599367B1 (en) Vacuum processing apparatus
US4596208A (en) CVD reaction chamber
JPH08325093A (ja) サセプタ
TWI386525B (zh) 以化學氣相沉積法(cvd)在半導體晶圓上沉積一層之方法及實施該方法之室
JPH07235501A (ja) 結晶成長装置
CN103160814B (zh) 反应室及其气流控制方法
TW200527511A (en) Chemical vapor deposition apparatus and film deposition method
CN114072900B (zh) 晶片承载盘与晶片外延装置
JP2005520932A (ja) 基板上への薄膜堆積装置
JP4058364B2 (ja) 半導体製造装置
CN102644106B (zh) 一种单片炉外延层厚度均匀性生长的控制方法
JP2009064850A (ja) エピタキシャル成長装置およびエピタキシャル成長方法
TWI490367B (zh) 金屬有機化合物化學氣相沉積方法及其裝置
JP2007335800A (ja) 半導体薄膜の製造方法および製造装置
JPS61186288A (ja) 炭化珪素化合物半導体の気相エピタキシヤル成長装置
JPS6332915A (ja) 半導体気相成長装置
JP2004014535A (ja) 気相成長装置及び気相成長方法、並びに基体保持用サセプタ
JPH0722318A (ja) 縦形気相エピタキシャル成長装置
JPH0235814Y2 (zh)
CN117904601A (zh) 一种衬底处理设备及方法
Jumaah et al. Manufacturing of Gallium Nitride Thin Films in a Multi-Wafer MOCVD Reactor
CN117587379A (zh) 一种用于提升mocvd薄膜生长均匀性的装置
CN118147745A (zh) 一种喷淋头及气相外延装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960580

Country of ref document: EP

Kind code of ref document: A1