WO2022094869A1 - 一种空间距离可调控的纳米管阵列超级电容器电极材料及其制备方法 - Google Patents

一种空间距离可调控的纳米管阵列超级电容器电极材料及其制备方法 Download PDF

Info

Publication number
WO2022094869A1
WO2022094869A1 PCT/CN2020/126776 CN2020126776W WO2022094869A1 WO 2022094869 A1 WO2022094869 A1 WO 2022094869A1 CN 2020126776 W CN2020126776 W CN 2020126776W WO 2022094869 A1 WO2022094869 A1 WO 2022094869A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation
electrode material
solution
nanotube array
spatial distance
Prior art date
Application number
PCT/CN2020/126776
Other languages
English (en)
French (fr)
Inventor
李高仁
李成飞
古林非
谢灵杰
赵佳伟
吴金齐
Original Assignee
中山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山大学 filed Critical 中山大学
Priority to PCT/CN2020/126776 priority Critical patent/WO2022094869A1/zh
Publication of WO2022094869A1 publication Critical patent/WO2022094869A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention belongs to the field of supercapacitor electrode materials, and relates to a nanotube array supercapacitor electrode material with adjustable spatial distance and a preparation method thereof, in particular to a Ni(OH) 2 electrode material with adjustable spatial distance and preparation thereof Methods and their use in supercapacitor electrode materials.
  • nanotube array supercapacitor electrode materials mainly use titanium dioxide, zinc oxide, etc. as templates, and then wrap a layer of target electrode materials on their surface by liquid phase infiltration method/ultrasonic method or magnetron sputtering method or hydrothermal method, such as Manganese dioxide, nickel oxide, nickel hydroxide, polyaniline, polypyrrole, polythiophene, graphene and other materials.
  • the key to whether the above method can prepare the target electrode material lies in the spatial distance of the nanotube array. On the one hand, the spatial distance of the nanotube arrays is too small, or the nanotube arrays are too dense per unit area, so that the target electrode material cannot be wrapped.
  • the spatial distance regulation of nanotube arrays plays a cornerstone role in the subsequent regulation of the morphology of the loaded target electrode material and the scalability of composition regulation, but the feasible regulation method has always been a difficult problem in the industry.
  • the purpose of the present invention is to provide a nanotube array supercapacitor electrode material with adjustable spatial distance and a preparation method thereof.
  • the technical scheme adopted in the present invention is: a preparation method of nanotube array supercapacitor electrode material with adjustable space distance, comprising the following steps:
  • (3a) configure zinc nitrate solution and ammonium nitrate or hexamethylene tetraammonium solution
  • step (3b) taking the solution of step (3a), then adding the modified substrate, and electroplating with constant current at a certain temperature;
  • (4a) configure a mixed solution of nickel nitrate and ammonium nitrate
  • step (4b) taking the nanorods electroplated in step (3) to the mixed solution of step (4a), and then electroplating with constant current;
  • step (4c) take the electrode material that has been electroplated in step (4b) to react in an alkaline solution, wash, and dry to obtain a nanotube array electrode material whose spatial distance can be regulated.
  • the substrate in step (1) is a carbon-based material, such as one or more of carbon paper, carbon cloth, graphite paper and the like.
  • the pretreatment in step (1) is one or more of calcination in air at 300-500° C. for 10-90 min, magnetron sputtering and sandpaper polishing.
  • the main purpose of low-temperature calcination in air is to increase oxygen-containing functional groups (such as carboxyl groups, carbonyl groups), and oxygen-containing functional groups have the advantage of strong coordination with metal zinc ions compared to carbon atoms. Therefore, in electroplating zinc oxide nanorods site is provided. Due to the discontinuous distribution of oxygen-containing functional groups during the low-temperature calcination process, the spatial distance of ZnO nanorods was regulated.
  • Treatment methods such as sandpaper grinding or magnetron sputtering are all aimed at increasing the bumps on the surface of the carbon substrate, as shown in Figure 7 below, while the zinc oxide nanorods will preferentially grow on the bumps. On the one hand, it provides nucleation sites, on the other hand, it reduces the energy of nucleation growth, so the spatial distance of ZnO nanorods can be regulated.
  • the acid used for pickling in step (1) is 0.5-2M dilute hydrochloric acid, dilute sulfuric acid, or dilute nitric acid, and the like.
  • the main purpose of the acid washing step is to remove impurities on the surface of the material, especially when a lot of metal impurities are added during grinding.
  • the pickling time in step (1) is 10-60 min.
  • the modifier in step (2) is one or more of 4-chlorobenzoyl chloride, polyetherimide and aniline.
  • the purpose of small molecule modification on the carbon surface is to construct inert sites, because organic small molecules cause zinc ions to not nucleate on the modified sites and can only grow in unmodified places, thus regulating the space of ZnO nanotubes distance.
  • the solvent in step (2) is one or more of 1,2-dichloroethane, dichloromethane, water, methanol, and ethanol.
  • the volume ratio of the modifier to the solvent is 1:1-30.
  • the temperature of the reaction in step (2) is 0-25°C.
  • the reaction time in step (2) is 5-24 h.
  • the concentration of the zinc nitrate solution in step (3a) is 0.01-0.1 mol/liter.
  • the concentration of the ammonium nitrate or hexamethylenetetraammonium solution in step (3a) is 0.01-0.1 mol/liter.
  • the constant current density in step (3b) is 0.1-1 mA cm -2 .
  • the temperature in step (3b) is 50-90°C.
  • the concentration of the nickel nitrate solution is 0.005-0.05 mol/liter, and the concentration of the ammonium nitrate solution is 0.02-0.2 mol/liter.
  • the density of the constant current in step (4b) is 0.5-2.0 mA cm -2 .
  • the temperature of the electroplating in step (4b) is 20-50°C.
  • the electroplating time in step (4b) is 10-60 min.
  • the concentration of the alkaline solution in step (4c) is 0.5-6 mol/L, and the reaction time is 30-120 min.
  • the present invention also provides a nanotube array supercapacitor electrode material with adjustable spatial distance prepared according to the above preparation method.
  • the surface of carbon-based materials is modified by small molecules to reduce nucleation sites, or to increase discontinuous hydrophilic groups to provide fast reaction sites, or to increase the concave and convex points on the surface of materials to provide nucleation sites by magnetron sputtering or surface grinding It reduces the energy of crystal nucleus growth, so that the ZnO nanorods grow preferentially on the provided sites to control the distance of the nanorod array and provide favorable conditions for the surface coating of the subsequent electrode materials, such as complete surface coating and Cover thickness is adjustable. When the zinc oxide template is removed, the electrode material still retains the nanotube array.
  • the coating thickness is adjustable, mainly for the spatial distance between the nanorod precursors. If the distance between the nanorods is too small, the electrode material will not be completely coated, or the coating thickness will not be adjustable, and the nanorods The distance between the nanorods is controllable, and the thickness of the subsequent electrode material can be adjusted according to the spatial distance of the nanorods.
  • the preparation method of the present invention is relatively simple and intuitive, and has good economic benefits.
  • Fig. 1 SEM morphology of the polished graphite paper.
  • FIG. 2 is a SEM image of the zinc oxide nanorods on the carbon cloth modified in Example 1.
  • FIG. 3 is a SEM image of the Ni(OH) 2 nanotube electrode material on the modified carbon cloth in Example 1.
  • FIG. 4 is a SEM image of the zinc oxide nanorods on the polished graphite paper in Example 2.
  • FIG. 5 is a SEM image of the Ni(OH) 2 nanotube electrode material on the polished graphite paper in Example 2.
  • Figure 6 is the SEM image of the zinc oxide nanorods on the unmodified carbon cloth of the comparative example.
  • FIG. 7 is the SEM topography of the Ni(OH) 2 nanotube electrode material on the unmodified carbon cloth of the comparative example.
  • the 1*0.5cm 2 graphite paper polished with sandpaper was treated with 2M dilute hydrochloric acid for 30min, washed with deionized water, and dried at 80°C. Get the carbon cloth after drying and place it in 20mL 1,2-dichloroethane, then add 5ml 4-chlorobenzoyl chloride and wash and dry with deionized water after 24 hours of ice-water bath reaction, then the carbon cloth is transferred into 0.01M Zinc nitrate solution and 0.05M ammonium nitrate mixed solution, and finally washed with a constant current of 0.08 mA cm -2 at a temperature of 70 °C for 90 min after electroplating, and then put into 1.0 M KOH solution to react for 3 hours and then taken out and washed ,drying.

Abstract

一种空间距离可调控的纳米管阵列超级电容器电极材料及其制备方法。通过对碳基材料进行包括增加含氧功能基团,磁控溅射或打磨等预处理,以及在材料表面进行小分子修饰,然后在其表面生长空间距离可调控的氧化锌等电极材料模板,最后通过恒电流电镀氢氧化镍纳米管阵列电极材料。由于氧化锌纳米棒阵列之间存在空间距离,所以电极材料可完整包覆,且厚度可控,当模板去除后依然能保持纳米管阵列。

Description

一种空间距离可调控的纳米管阵列超级电容器电极材料及其制备方法 技术领域
本发明属于超级电容器电极材料领域,涉及一种空间距离可调控的纳米管阵列超级电容器电极材料及其制备方法,具体地说是涉及一种空间距离可调控Ni(OH) 2电极材料及其制备方法和其在超级电容器电极材料中的应用。
背景技术
目前纳米管阵列超级电容器电极材料主要以二氧化钛,氧化锌等为模板,然后在其表面通过液相渗透法/超声法或磁控溅射法或水热法等技术包裹一层目标电极材料,如二氧化锰,氧化镍,氢氧化镍,聚苯胺,聚吡咯,聚噻吩,石墨烯等材料。上述方法能否制备出目标电极材料的关键在于纳米管阵列的空间距离。一方面,纳米管阵列空间距离太小,或者说纳米管阵列在单位面积上太密集,使目标电极材料无法包裹上去。另一方面,纳米管阵列空间距离太大将会导致纳米管表层包裹太厚,一方面浪费电极材料增加成本,另一方面引起电子传输慢导致性能衰减。因此纳米管阵列的空间距离调控对后续负载目标电极材料的形貌调控,成分调控的伸缩性起到了基石作用,但是可行的调控方法一直是行业内难以攻克的难题。
发明内容
为克服现有技术存在的问题,本发明的目的在于提供一种空间距离可调控的纳米管阵列超级电容器电极材料及其制备方法。
本发明采用的技术方案是:一种空间距离可调控的纳米管阵列超级电容器电极材料的制备方法,包括以下步骤:
(1)取基材进行预处理,然后依次经过酸洗、水洗,烘干;
(2)取烘干后的基材与含修饰剂的溶液在一定温度下反应;
(3)氧化锌纳米棒阵列制备,其步骤包括:
(3a)配置硝酸锌溶液和硝酸铵或六次甲基四铵溶液;
(3b)取步骤(3a)溶液,然后加入已修饰的基材,在一定温度下恒电流电镀;
(4)制备Ni(OH) 2纳米管阵列电极材料,其步骤包括:
(4a)配置硝酸镍和硝酸铵混合溶液;
(4b)取步骤(3)已电镀的纳米棒至步骤(4a)的混合溶液,然后恒电流电镀;
(4c)取步骤(4b)已电镀的电极材料至碱性溶液反应后洗涤,烘干,即可得到一 种空间距离可调控的纳米管阵列电极材料。
优选的,步骤(1)中所述基材为碳基材料,例如碳纸,碳布,石墨纸等中的一种或多种。
优选的,步骤(1)中所述预处理为在300~500℃空气下煅烧10-90min、磁控溅射和砂纸打磨中的一种或多种。空气下低温煅烧主要目的为了增加含氧功能基团(如羧基,羰基),而含氧功能基团相比于碳原子,具有与金属锌离子强配位的优点,因此在电镀氧化锌纳米棒时提供了位点。由于低温煅烧处理过程中,含氧功能基团的分布是不连续,因此调控了氧化锌纳米棒空间距离。砂纸打磨或磁控溅射等处理手段都是为了增加碳基材表面的凸点,如下图7所示,而氧化锌纳米棒会优先在凸点的位点上生长,这是由于凸点一方面提供了成核位点,另一方面减低了晶核生长的能量,因此可调控氧化锌纳米棒的空间距离。
优选的,步骤(1)中酸洗所使用的酸为0.5~2M的稀盐酸、稀硫酸或稀硝酸等。该酸洗涤步骤主要目的是为了去除材料表面的杂质,尤其在打磨的时候会增加很多金属杂质。
优选的,步骤(1)中所述酸洗的时间为10~60min。
优选的,步骤(2)中所述修饰剂为4-氯苯甲酰氯、聚醚酰亚胺和苯胺等中的一种或多种。碳表面进行小分子修饰,目的是为了构造惰性位点,因为有机小分子导致锌离子在修饰的位点上不能成核,只能在未修饰的地方生长,因此调控了氧化锌纳米管的空间距离。
优选的,步骤(2)中所述溶剂为1,2-二氯乙烷、二氯甲烷、水、甲醇和,乙醇等中的一种或多种。
优选的,步骤(2)中所述含修饰剂溶液中,修饰剂与溶剂的体积比为1:1~30。
优选的,步骤(2)中所述反应的温度为0~25℃。
优选的,步骤(2)中所述反应的时间为5~24h。
优选的,步骤(3a)中所述硝酸锌溶液的浓度为0.01~0.1摩尔/升。
优选的,步骤(3a)中所述硝酸铵或六次甲基四铵溶液的浓度为0.01~0.1摩尔/升。
优选的,步骤(3b)中所述恒电流密度为0.1~1mA cm -2
优选的,步骤(3b)中所述温度为50-90℃。
优选的,步骤(4a)中所述硝酸镍溶液的浓度为0.005~0.05摩尔/升,所述硝酸铵溶液的浓度为0.02~0.2摩尔/升。
优选的,步骤(4b)中所述恒电流的密度为0.5~2.0mA cm -2
优选的,步骤(4b)中所述电镀的温度为20~50℃。
优选的,步骤(4b)中所述电镀的时间为10~60min。
优选的,步骤(4c)中所述碱性溶液的浓度为0.5~6摩尔/升,反应时间为30~120min。
本发明还提供一种根据上述制备方法制得的空间距离可调控的纳米管阵列超级电容器电极材料。
本发明的有益效果是:
1.碳基材料表面通过小分子修饰降低成核位点,或增加不连续的亲水基团提供快速的反应位点,或经过磁控溅射或表面打磨增加材料表面凹凸点提供成核位点,减低了晶核生长的能量,从而氧化锌纳米棒在提供的位点上优先生长以此来调控纳米棒阵列距离,为后面电极材料表面包覆提供有利的条件,例如表面完整包覆和包覆厚度可调。当氧化锌模板去除后,电极材料依然能保持纳米管阵列。
2.包覆厚度可调,主要针对纳米棒前躯体之间的空间距离,如果纳米棒之间距离太小,那么电极材料将无法完全包覆,或者包覆厚度将无法调控,而纳米棒之间的距离可控,后续电极材料的厚度可根据纳米棒空间距离来调控厚度。
3.本发明的制备方法较为简单直观,经济效益好。
附图说明
图1打磨后的石墨纸的SEM形貌图。
图2为实施例1修饰后的碳布上氧化锌纳米棒的SEM形貌图。
图3为实施例1修饰后的碳布上Ni(OH) 2纳米管电极材料的SEM形貌图。
图4为实施例2打磨后的石墨纸上氧化锌纳米棒的SEM形貌图。
图5为实施例2打磨后的石墨纸上Ni(OH) 2纳米管电极材料的SEM形貌图。
图6为对比例未修饰的碳布上氧化锌纳米棒的SEM形貌图。
图7为对比例未修饰的碳布上Ni(OH) 2纳米管电极材料的SEM形貌图。
具体实施方式
实施例1
取1*0.5cm 2碳布在500℃的空气下煅烧10min,然后在2M稀盐酸下处理30min后用去离子水洗涤,80℃烘干。取烘干后的碳布放置在20mL 1,2-二氯乙烷中,然后加入5ml4-氯苯甲酰氯在冰水浴反应24小时后用去离子水洗涤,烘干,然后碳布转入0.01M硝酸锌溶液和0.05M硝酸铵混合溶液,最后以电流密度为0.8mA cm -2的恒电流在温度为70℃下电镀90min后洗涤,然后放入在1.0M KOH溶液反应3小时后取出,洗涤,烘干。
实施例2
取砂纸打磨后的1*0.5cm 2石墨纸在2M稀盐酸下处理30min后用去离子水洗涤,80℃烘干。取烘干后的碳布放置在20mL 1,2-二氯乙烷,然后加入5ml 4-氯苯甲酰氯在冰水浴反应24小时后用去离子水洗涤烘干,然后碳布转入0.01M硝酸锌溶液和0.05M硝酸铵混 合溶液,最后以电流密度为0.08mA cm -2的恒电流在温度为70℃下电镀90min后洗涤,然后放入1.0M KOH溶液中反应3小时后取出,洗涤,烘干。
对比例1
取1*0.5cm 2碳布在2M稀盐酸下处理30min后用去离子水洗涤,80℃烘干。取烘干后的碳布放置在20mL 1,2-二氯乙烷,然后加入5ml 4-氯苯甲酰氯在冰水浴反应24小时后用去离子水洗涤烘干,然后碳布转入0.01M硝酸锌溶液和0.05M硝酸铵混合溶液,最后以电流密度为0.08mA cm -2的恒电流在温度为70℃下电镀90min后洗涤,然后放入1.0M KOH溶液中反应3小时后取出,洗涤,烘干。
实施例1-2、对比例1的产品性能如下表1所示。
表1:实施例1-2、对比例1的产品性能对比
  比电容(F g -1)
实施例1 1194.4
实施例2 1158.3
对比例1 277.8

Claims (20)

  1. 一种空间距离可调控的纳米管阵列超级电容器电极材料的制备方法,包括以下步骤:
    (1)取基材进行预处理,然后依次经过酸洗、水洗,烘干;
    (2)取烘干后的基材与含修饰剂的溶液在一定温度下反应;
    (3)氧化锌纳米棒阵列制备,其步骤包括:
    (3a)配置硝酸锌溶液和硝酸铵或六次甲基四铵溶液;
    (3b)取步骤(3a)溶液,然后加入已修饰的基材,在一定温度下恒电流电镀;
    (4)制备Ni(OH) 2纳米管阵列电极材料,其步骤包括:
    (4a)配置硝酸镍和硝酸铵混合溶液;
    (4b)取步骤(3)已电镀的纳米棒至步骤(4a)的混合溶液,然后恒电流电镀;
    (4c)取步骤(4b)已电镀的电极材料至碱性溶液反应后洗涤,烘干,得到所述空间距离可调控的纳米管阵列电极材料。
  2. 根据权利要求1所述的制备方法,其特征在于:步骤(1)中所述基材为碳基材料,所述碳基材料包括碳纸、碳布和石墨纸中的一种或多种。
  3. 根据权利要求1所述的制备方法,其特征在于:步骤(1)中所述预处理为在300~500℃空气下煅烧10-90min、磁控溅射和砂纸打磨中的一种或多种。
  4. 根据权利要求1所述的制备方法,其特征在于:步骤(1)中酸洗所使用的酸为0.5~2M的稀盐酸、稀硫酸或稀硝酸。
  5. 根据权利要求1所述的制备方法,其特征在于:步骤(1)中所述酸洗的时间为10~60min。
  6. 根据权利要求1所述的制备方法,其特征在于:步骤(2)中所述修饰剂为4-氯苯甲酰氯、聚醚酰亚胺和苯胺中的一种或多种。
  7. 根据权利要求1所述的制备方法,其特征在于:步骤(2)中所述溶剂为1,2-二氯乙烷、二氯甲烷、水、甲醇和乙醇的一种或多种。
  8. 根据权利要求1所述的制备方法,其特征在于:步骤(2)中所述含修饰剂溶液中,修饰剂与溶剂的体积比为1:1~30。
  9. 根据权利要求1所述的制备方法,其特征在于:步骤(2)中所述反应的温度为0~25℃。
  10. 根据权利要求1所述的制备方法,其特征在于:步骤(2)中所述反应的时间为5~24h。
  11. 根据权利要求1所述的制备方法,其特征在于:步骤(3a)中所述硝酸锌溶液的浓 度为0.01~0.1摩尔/升。
  12. 根据权利要求1所述的制备方法,其特征在于:步骤(3a)中所述硝酸铵或六次甲基四铵溶液的浓度为0.01~0.1摩尔/升。
  13. 根据权利要求1所述的制备方法,其特征在于:步骤(3b)中所述恒电流的密度为0.1~1mA cm -2
  14. 根据权利要求1所述的制备方法,其特征在于:步骤(3b)中所述温度为50-90℃。
  15. 根据权利要求1所述的制备方法,其特征在于:步骤(4a)中所述硝酸镍溶液的浓度为0.005~0.05摩尔/升;所述硝酸铵溶液的浓度为0.02~0.2摩尔/升。
  16. 根据权利要求1所述的制备方法,其特征在于:步骤(4b)中所述恒电流的密度为0.5~2.0mA cm -2
  17. 根据权利要求1所述的制备方法,其特征在于:步骤(4b)中所述电镀的温度为20~50℃。
  18. 根据权利要求1所述的制备方法,其特征在于:步骤(4b)中所述电镀的时间为10~60min。
  19. 根据权利要求1所述的制备方法,其特征在于:步骤(4c)中所述碱性溶液的浓度为0.5~6摩尔/升,反应时间为30~120min。
  20. 一种根据权利要求1-19中任一项所述的制备方法制得的空间距离可调控的纳米管阵列超级电容器电极材料。
PCT/CN2020/126776 2020-11-05 2020-11-05 一种空间距离可调控的纳米管阵列超级电容器电极材料及其制备方法 WO2022094869A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/126776 WO2022094869A1 (zh) 2020-11-05 2020-11-05 一种空间距离可调控的纳米管阵列超级电容器电极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/126776 WO2022094869A1 (zh) 2020-11-05 2020-11-05 一种空间距离可调控的纳米管阵列超级电容器电极材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2022094869A1 true WO2022094869A1 (zh) 2022-05-12

Family

ID=81458534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126776 WO2022094869A1 (zh) 2020-11-05 2020-11-05 一种空间距离可调控的纳米管阵列超级电容器电极材料及其制备方法

Country Status (1)

Country Link
WO (1) WO2022094869A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114823158A (zh) * 2022-05-19 2022-07-29 一汽解放汽车有限公司 一种锌离子电容器及其制备方法与蓄电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8287753B2 (en) * 2009-11-13 2012-10-16 Industrial Technology Research Institute Gel electrolyte composition, method of fabricating thereof and dye-sensitized solar cell using the same
CN106531470A (zh) * 2016-11-24 2017-03-22 华南理工大学 一种柔性自支撑碳纸超级电容器电极材料的制备方法与应用
CN108010746A (zh) * 2018-01-29 2018-05-08 南昌航空大学 一种用于柔性超级电容器电极的碳布表面修饰方法
CN110223847A (zh) * 2019-06-11 2019-09-10 江苏先创新能源有限公司 一种超级电容器电极材料及制备方法
CN111223682A (zh) * 2020-03-19 2020-06-02 桂林理工大学 一种柔性超级电容器的电极复合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8287753B2 (en) * 2009-11-13 2012-10-16 Industrial Technology Research Institute Gel electrolyte composition, method of fabricating thereof and dye-sensitized solar cell using the same
CN106531470A (zh) * 2016-11-24 2017-03-22 华南理工大学 一种柔性自支撑碳纸超级电容器电极材料的制备方法与应用
CN108010746A (zh) * 2018-01-29 2018-05-08 南昌航空大学 一种用于柔性超级电容器电极的碳布表面修饰方法
CN110223847A (zh) * 2019-06-11 2019-09-10 江苏先创新能源有限公司 一种超级电容器电极材料及制备方法
CN111223682A (zh) * 2020-03-19 2020-06-02 桂林理工大学 一种柔性超级电容器的电极复合材料及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114823158A (zh) * 2022-05-19 2022-07-29 一汽解放汽车有限公司 一种锌离子电容器及其制备方法与蓄电池
CN114823158B (zh) * 2022-05-19 2023-07-25 一汽解放汽车有限公司 一种锌离子电容器及其制备方法与蓄电池

Similar Documents

Publication Publication Date Title
WO2019113993A1 (zh) 一种碳纳米管及其制备方法
CN108383154B (zh) 一种具有大比表面积的空心介孔Ti4O7@C纳米球的制备方法
WO2015184816A1 (zh) 一种氮掺杂石墨烯片及其制备方法和应用
Gao et al. MnO2–TiO2/C nanocomposite arrays for high-performance supercapacitor electrodes
CN106829918A (zh) 一种尺寸可控的微孔碳纳米棒的制备方法
WO2022094869A1 (zh) 一种空间距离可调控的纳米管阵列超级电容器电极材料及其制备方法
Kang et al. One-pot synthesis of vanadium dioxide nanoflowers on graphene oxide
CN109082654B (zh) 一种基于纳米晶锌镀层水热反应制备氧化锌纳米线薄膜的方法
CN111243871B (zh) 新型NiSe2包覆介孔空心碳球复合材料及其制备方法和在超级电容器中的应用
CN105470485B (zh) 一种碳包覆纳米二氧化钛的低温高效制备方法
WO2018205815A1 (zh) 氮掺杂石墨烯的宏量制备方法
US20200102227A1 (en) Nanoporous copper supported copper oxide nanosheet array composites and method thereof
CN111285368A (zh) 一种氮硼双掺杂多孔中空碳纳米胶囊材料的制备方法
CN110142042B (zh) 一种RGO/TiO2/Ag气凝胶型光催化剂的制备方法和应用
KR100813178B1 (ko) 금속촉매가 함유된 고분자를 이용한 중공형 그라파이트나노카본 및 이의 제조방법
CN107151009A (zh) 一种氮掺杂石墨烯及其制备方法和应用
CN111268681A (zh) 一种MXene材料及其制备方法与应用
CN110589899A (zh) 一种棒簇状纳米球结构钼酸钴材料的制备方法
CN106830072B (zh) 一种二氧化钛纳米线阵列的制备方法
CN107622878B (zh) 纳米多孔金/二氧化锰复合电极材料的制备方法
CN113929135A (zh) 一种纳米多孔Ti4O7的制备方法
TWI434959B (zh) 低溫快速合成電極材料的方法
CN110872108A (zh) 生物质纳米孔碳的制备方法
CN110872110A (zh) 一种制备生物质纳米孔碳的方法
CN111533112A (zh) 一种石墨烯纳米空心球及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960330

Country of ref document: EP

Kind code of ref document: A1