WO2022091888A1 - 状態監視システム、状態監視装置、状態監視方法、及びコンピュータプログラム - Google Patents

状態監視システム、状態監視装置、状態監視方法、及びコンピュータプログラム Download PDF

Info

Publication number
WO2022091888A1
WO2022091888A1 PCT/JP2021/038678 JP2021038678W WO2022091888A1 WO 2022091888 A1 WO2022091888 A1 WO 2022091888A1 JP 2021038678 W JP2021038678 W JP 2021038678W WO 2022091888 A1 WO2022091888 A1 WO 2022091888A1
Authority
WO
WIPO (PCT)
Prior art keywords
blower
operation data
cycle
condition monitoring
event
Prior art date
Application number
PCT/JP2021/038678
Other languages
English (en)
French (fr)
Inventor
和也 山田
浩司 角野
真之 來田
寛正 清水
Original Assignee
新明和工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新明和工業株式会社 filed Critical 新明和工業株式会社
Priority to KR1020237013653A priority Critical patent/KR20230070302A/ko
Priority to JP2022559045A priority patent/JP7499347B2/ja
Publication of WO2022091888A1 publication Critical patent/WO2022091888A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B51/00Testing machines, pumps, or pumping installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present invention relates to a condition monitoring system, a condition monitoring device, a condition monitoring method, and a computer program.
  • a turbo blower which is a type of blower, includes an impeller and a motor that rotationally drives the impeller, and is configured to transfer gas such as air by rotating the impeller by driving the motor (for example, Patent Document). See 1-3).
  • the turbo blower is equipped with components such as a motor that rotates the impeller, an inverter that supplies drive power to drive the motor, and a cooling fan that cools the inverter. It has a mechanism to automatically stop the operation of the turbo blower. For example, if the cooling fan that cools the inverter fails, the inverter cannot be cooled and a temperature abnormality occurs in the inverter. When the turbo blower detects an abnormality in the temperature of the inverter, the turbo blower stops the operation of its own device.
  • An object of the present invention is to provide a condition monitoring system, a condition monitoring device, a condition monitoring method, and a computer program capable of estimating a failure or deterioration of a component constituting a blower.
  • the state monitoring system acquires the operation data of the blower transmitted from the communication device and the communication device for transmitting the operation data of the blower, and based on the acquired operation data, the state of the blower.
  • the communication device has a first transmission unit for transmitting operation data of the blower recorded in the first cycle and a second cycle shorter than the first cycle.
  • the blower operation data recorded in the above is provided with a second transmission unit that transmits the occurrence of an event as a trigger, and the state monitoring device includes the operation data of the first cycle and the first cycle transmitted from the communication device. It includes an acquisition unit that acquires operation data of two cycles, an estimation unit that analyzes the acquired operation data of the second cycle and estimates the state of the blower, and an output unit that outputs the estimation result by the estimation unit. ..
  • the state monitoring device acquires the operation data of the blower transmitted from the communication device, and transmits from the communication device in the state monitoring device that estimates the state of the blower based on the acquired operation data.
  • the state monitoring method includes the blower operation data recorded in the first cycle using a computer in the state monitoring method for monitoring the state of the blower based on the blower operation data.
  • the operation data of the blower recorded in the second cycle shorter than the first cycle, which is transmitted with the occurrence of an event as a trigger, is acquired, and the acquired operation data of the second cycle is analyzed to analyze the blower. Estimate the state and output the estimation result.
  • the computer program according to one aspect of the present invention is recorded in a second cycle shorter than the first cycle, which is transmitted to the computer with the blower operation data recorded in the first cycle and the occurrence of an event as a trigger.
  • the operation data of the blower is acquired, the acquired operation data of the second cycle is analyzed, the state of the blower is estimated, and a process of outputting the estimation result is executed.
  • FIG. 1 is a schematic diagram showing the configuration of a condition monitoring system.
  • the condition monitoring system according to the embodiment is a system for monitoring the condition of the blower 1 based on the operation data of the blower 1.
  • the blower 1 is used for aeration applications in, for example, a wastewater treatment facility. Alternatively, the blower 1 may be used for powder transfer in a powder processing apparatus, drying or cooling of articles, and the like.
  • the condition monitoring system includes a control device 100 mounted on the blower 1 and a condition monitoring device 200 provided outside the blower 1.
  • the control device 100 and the condition monitoring device 200 are configured so that the cloud server 300 can be accessed via a communication network N such as an Internet network.
  • the control device 100 controls the operation of the blower 1 and transmits (uploads) the operation data obtained during the operation of the blower 1 to the cloud server 300.
  • the control device 100 transmits the operation data recorded in the first cycle (for example, at 1-minute intervals) to the cloud server 300, and the occurrence of the event is used as a trigger for the second cycle (for example, 0.1 second).
  • the operation data recorded at the interval) is transmitted to the cloud server 300.
  • the event includes a blower 1 start event, a stop event, an abnormal stop event, and the like.
  • the control device 100 transmits not only the operation data obtained after the event occurs but also the operation data of the second cycle obtained in a predetermined period before and after the event occurrence to the cloud server 300.
  • starting the blower 1 means operating the motor 12 (see FIG. 2) described later to start the rotational drive of the impeller 11 (see FIG. 2).
  • Stopping the blower 1 means stopping the operation of the motor 12 to stop the rotational drive of the impeller 11.
  • operation data is transmitted to the cloud server 300 regardless of whether or not the motor 12 is operating (that is, whether or not the impeller 11 is rotationally driven). It means that you are in a state where you can do it.
  • the condition monitoring device 200 appropriately acquires and analyzes the operation data of the blower 1 transmitted to the cloud server 300, and presents the information based on the analysis result to the administrator of the blower 1 and the like. For example, the condition monitoring device 200 generates a trend graph based on the operation data of the first cycle (for example, every 1 minute), and presents the generated trend graph to the manager or the like. Further, the condition monitoring device 200 estimates the cause of deterioration of the components constituting the blower 1 and the abnormal stop occurring in the blower 1 based on the operation data of the second cycle (for example, at intervals of 0.1 seconds), and estimates the estimation result. Present it to the administrator, etc.
  • the operation data is transmitted from the control device 100 to the cloud server 300, and the state monitoring device 200 acquires the operation data transmitted to the cloud server 300.
  • the operation data may be directly transmitted from the control device 100 of the blower 1 to the state monitoring device 200.
  • the control device 100 mounted on the blower 1 and the state monitoring device 200 provided outside the blower 1 are used to monitor the state of the blower 1.
  • the operation data may be analyzed by the mounted control device 100, and information based on the analysis result may be presented to the manager or the like. That is, the control device 100 and the condition monitoring device 200 do not have to be separate bodies, and may be integrally configured and mounted on the blower 1.
  • FIG. 2 is a schematic diagram showing the configuration of the blower 1.
  • the blower 1 is a turbo type blower (turbo blower).
  • a turbo blower is a blower for sending gas such as air by the rotational movement of an impeller (blade).
  • Such blowers are roughly classified into turbo type and positive displacement type.
  • the turbo type includes the axial flow type and the centrifugal type, and the positive displacement type includes the roots type.
  • the suction direction and the discharge direction are aligned in a straight line.
  • Axial flow type blowers are suitable for low pressure and large air volume, and are used for tunnel blowers and the like.
  • the suction direction and the discharge direction intersect at a substantially right angle, and a gas such as air is sent by using centrifugal force.
  • the roots type blower sends gas by synchronizing two rotors in a housing and rotating them in opposite directions, and increasing or decreasing the volume of the space surrounded by the housing and the rotor. Therefore, there is a feature that the amount of air blown with respect to the rotation speed is stable.
  • Centrifugal and roots type blowers are used for aeration in wastewater treatment facilities and the like.
  • the blower 1 shown as an example in FIG. 2 is a centrifugal blower among turbo blowers, and the suction direction and the discharge direction intersect at a substantially right angle.
  • the blower 1 is not limited to the centrifugal blower, but may be an axial flow type blower or a roots type blower.
  • a bypass path L3 for bypassing a part of the gas to be discharged is connected in the middle of the discharge path L1.
  • a blow-off line L4 and a cooling gas discharge line L5 are connected to the bypass path L3 via a blow-off valve BOV.
  • a filter F for removing foreign matter such as dust and dirt contained in the gas to be sucked is provided on the side surface portion of the blower 1 facing the suction port 10A of the impeller housing 10.
  • a non-woven fabric is used for the filter F.
  • the drive device 120 converts the three-phase AC voltage supplied from the commercial power supply into a DC voltage and outputs the converter 121, and converts the DC voltage input from the converter 121 into a PWM (Pulse Width Modulation) waveform voltage. It is provided with an inverter 122 that outputs a voltage.
  • the drive device 120 changes the voltage waveform of the inverter 122 according to the required rotation speed of the motor 12, and adjusts the magnitude of the current supplied to the motor 12.
  • the drive device 120 may be configured to directly input commercial power to the inverter 122 without the converter 121.
  • the blower 1 includes a current sensor S1 for measuring the current supplied to the motor 12 (output current of the inverter 122), and measures the output current of the inverter 122 as one of the operation data in the blower 1.
  • the measurement data of the current sensor S1 is given to the control device 100.
  • the blower 1 includes a rotation speed sensor S2 for measuring the rotation speed of the motor 12, and measures the rotation speed of the motor 12 as one of the operation data in the blower 1.
  • the measurement data of the rotation speed sensor S2 is given to the control device 100.
  • the output current of the inverter 122 may be calculated from the power consumption of the inverter 122, and the rotation speed of the motor 12 may be calculated from the output frequency of the inverter 122 and the number of poles of the motor 12.
  • the motor 12 included in the blower 1 is driven by the current supplied from the inverter 122 of the drive device 120 to rotate the impeller 11.
  • the blower 1 has a temperature sensor S3 that measures the temperature (suction temperature) of the gas sucked from the suction port 10A of the impeller housing 10, a flow sensor S4 that measures the flow rate (suction gas amount) of the sucked gas, and a gas discharged to the discharge path L1.
  • a pressure sensor S5 or the like for measuring the pressure (discharge pressure) of the blower 1 may be provided, and these values may be measured as operation data in the blower 1.
  • the measurement data of the temperature sensor S3, the flow rate sensor S4, and the pressure sensor S5 are given to the control device 100.
  • the suction gas amount represents the gas amount per unit time sucked from the suction port 10A.
  • amount of gas a converted value in a state where the temperature is 20 ° C., the humidity is 65%, and the pressure is atmospheric pressure (industrial standard state) may be used, and the temperature is 0 ° C., the humidity is 0%, and the pressure. You may use the value converted into the amount of gas under a specific condition, such as the converted value in the state of atmospheric pressure (academic standard state).
  • the measurement data measured as the operation data of the blower 1 is not limited to the above.
  • the temperature of the motor 12, the temperature of the drive device 120, the power consumption of the blower 1, the filter loss in the filter F, the cumulative operation time, the cumulative start-up time, and the like may be measured, and these measurement data may be given to the control device 100. ..
  • the control unit 101 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • the ROM included in the control unit 101 stores a control program or the like that controls the operation of each of the above-mentioned hardware units.
  • the CPU in the control unit 101 causes at least a part of the control device 100 to function as the communication device in the present invention by executing the control program stored in the ROM. Data generated during execution of the control program is temporarily stored in the RAM.
  • the control unit 101 may be equipped with functions such as a clock for outputting date and time information, a timer for measuring the elapsed time from giving a measurement start instruction to giving a measurement end instruction, and a counter for counting the number. ..
  • the storage unit 102 includes a storage device using a hard disk, a flash memory, or the like.
  • the storage unit 102 stores data necessary for various controls, operation data input through the input unit 103, and the like.
  • the storage unit 102 since the operation data is periodically uploaded to the cloud server 300, the storage unit 102 does not need to store all the input operation data, and has a fixed time (for example, 1) from the latest time. It suffices to store the operation data for the period retroactive by (a day or a few minutes).
  • the storage unit 102 has a first storage area (ROM) for storing the operation data of the first cycle for one day and a second storage area (RAM) for storing the operation data of the second cycle for several minutes while overwriting. ) And.
  • the input unit 103 includes a connection interface for connecting various sensors.
  • the connection interface included in the input unit 103 may be a wired interface or a wireless interface.
  • the sensors connected to the input unit 103 include, for example, a current sensor S1 for measuring the output current of the inverter 122, a rotation speed sensor S2 for measuring the rotation speed of the motor 12, a temperature sensor S3 for measuring the suction temperature, and a suction gas amount. It includes a flow sensor S4 for measuring, a pressure sensor S5 for measuring discharge pressure, and the like.
  • the control unit 101 acquires measurement data by various sensors S1 to S5 through the input unit 103.
  • the communication unit 104 is provided with a communication interface for communicating with an external device.
  • the communication interface included in the communication unit 104 is, for example, a communication interface conforming to a LAN (Local Area Network) communication standard used in WiFi (registered trademark), Ethernet (registered trademark), or the like.
  • a communication interface conforming to a communication standard such as Bluetooth (registered trademark), ZigBee (registered trademark), 3G, 4G, 5G, LTE (LongTermEvolution) may be used.
  • the control device 100 is connected to the communication network N through the communication unit 104, and is configured to be able to communicate with the cloud server 300 via the communication network N.
  • control device 100 may include an operation unit that receives instructions or operations from the administrator of the blower 1, a display unit that displays information to be notified to the administrator of the blower 1, and the like.
  • the control device 100 transmits the operation data of the blower 1 (measurement data of various sensors S1 to S5) to the cloud server 300. More specifically, the control device 100 records the operation data in the first cycle (for example, at 1-minute intervals) after the operation of the blower 1 starts, and transmits the recorded operation data to the cloud server 300 at an appropriate timing. The control device 100 may transmit the operation data to the cloud server 300 each time the operation data is recorded in the first cycle, or may collectively transmit the operation data of the first cycle for a predetermined time to the cloud server 300.
  • the control device 100 collects operation data for a predetermined period (for example, 3 minutes) including the start time of the event among the data recorded in the second cycle (for example, 0.1 second interval) as a cloud server. Send to 300.
  • the control device 100 transmits, for example, to the cloud server 300 after the recording of the operation data of the second cycle related to the event is completed.
  • the start time of the event may be given by the administrator of the blower 1 or the like, and may be determined by the control unit 101 based on, for example, the output of the current sensor S1.
  • the cloud server 300 stores the operation data of the first cycle and the operation data of the second cycle received from the control device 100 via the communication network N in the operation history table.
  • FIG. 5 is a conceptual diagram showing an example of an operation history table included in the cloud server 300.
  • the operation history table included in the cloud server 300 is composed of a first operation history table 301A that stores operation data of the first cycle and a second operation history table 301B that stores operation data of the second cycle.
  • the operation data of the first cycle (for example, 1 minute interval) of the blower 1 is stored in the first operation history table 301A.
  • the operation data of the second cycle (for example, 0.1 second interval) of the blower 1 transmitted with the occurrence of the event as a trigger is stored.
  • the operation data includes the current supplied to the motor 12 (output current of the inverter 122), the rotation speed of the motor 12, the suction temperature of the blower 1, the amount of suction gas of the blower 1, the discharge pressure of the blower 1, and the like.
  • the first operation history table 301A stores long-term operation data measured during the operation of the blower 1, while the second operation history table 301B stores a predetermined period for each event (for example, before and after the event occurs). Short-term and detailed operation data (3 minutes) is stored. For example, when the activation event occurs at 12:00 on August 1, 2020 in the blower 1, the operation data at 0.1 second intervals from 11:59 to 12:02 is stored in the second operation history table 301B. ..
  • FIG. 6 is a block diagram showing the internal configuration of the condition monitoring device 200.
  • the condition monitoring device 200 is a dedicated or general-purpose computer, and includes a control unit 201, a storage unit 202, a communication unit 203, an operation unit 204, and a display unit 205.
  • the condition monitoring device 200 acquires operation data from the cloud server 300, analyzes the acquired operation data, and estimates the state of the blower 1.
  • the control unit 201 includes, for example, a CPU, ROM, RAM, and the like.
  • the ROM included in the control unit 201 stores a control program or the like that controls the operation of each of the above-mentioned hardware units.
  • the CPU in the control unit 201 executes the control program stored in the ROM and various computer programs stored in the storage unit 202 described later, and controls the operation of each hardware unit to control the operation of each unit of the hardware to provide the condition monitoring device 200. It functions as a condition monitoring device in.
  • the RAM included in the control unit 201 temporarily stores data and the like used during the execution of the calculation.
  • control unit 201 is configured to include a CPU, a ROM, and a RAM, but the configuration is not necessarily limited to such a configuration.
  • the control unit 201 is one or a plurality of arithmetic circuits or control circuits including a GPU (Graphics Processing Unit), FPGA (Field Programmable Gate Array), DSP (Digital Signal Processor), quantum processor, volatile or non-volatile memory, and the like. There may be. Further, the control unit 201 may be provided with functions such as a clock for outputting date and time information, a timer for measuring the elapsed time from the time when the measurement start instruction is given to the time when the measurement end instruction is given, and a counter for counting the number.
  • the computer program stored in the storage unit 202 includes a state estimation program PG for estimating the state of the blower 1 based on the operation data of the blower 1.
  • the state estimation program PG acquires the operation data of the blower 1 recorded in the first cycle and the operation data of the blower 1 recorded in the second cycle, analyzes the acquired operation data of the second cycle, and analyzes the blower 1 It is a computer program for causing a computer to execute a process of estimating the state of the above and outputting the estimation result.
  • the computer program stored in the storage unit 202 is provided by a non-temporary recording medium M in which the computer program is readablely recorded.
  • the recording medium M is, for example, a portable memory such as a CD-ROM, a USB memory, an SD (Secure Digital) card, or a compact flash (registered trademark).
  • the control unit 201 reads a computer program recorded on the recording medium M using a reading device (not shown in the figure), and stores the read computer program in the storage unit 202.
  • the computer program stored in the storage unit 202 may be provided by communication. In this case, the control unit 201 may acquire a computer program through the communication unit 203 and store the acquired computer program in the storage unit 202.
  • the operation unit 204 is equipped with operation devices such as a keyboard, mouse, and touch panel, and accepts various operations and settings by an administrator or the like.
  • the control unit 201 performs appropriate control based on various operation information given by the operation unit 204, and stores the setting information in the storage unit 202 as needed.
  • the display unit 205 is provided with a display device such as a liquid crystal monitor or an organic EL (Electro-Luminescence), and displays information to be notified to an administrator or the like in response to an instruction from the control unit 201.
  • a display device such as a liquid crystal monitor or an organic EL (Electro-Luminescence)
  • condition monitoring device 200 acquires the operation data of the first cycle and the operation data of the second cycle from the cloud server 300, for example, when an event occurs, the operation data before and after the event occurrence is presented to the administrator or the like. be able to.
  • the display screen 220 includes, for example, an event type selection field 221, an event date / time designation field 222, a display item selection field 223, an item group selection field 224, and a graph display field 225.
  • the event type selection field 221 is a pull-down menu type selection field, and accepts event type selection. Event types include start, stop, and abnormal stop.
  • the event date / time designation field 222 is a pull-down menu format designation field, and accepts the designation of the occurrence date / time for the event selected in the event type selection field 221. In the example of FIG. 7, it is shown that the activation event that occurred at 9:26:0.863 on August 20, 2020 is selected.
  • the display item selection field 223 is a check box type selection field, and accepts the selection of operation data (measured value) to be displayed.
  • the item group selection field 224 is composed of a selection button and accepts the selection of the item group to be displayed. For example, when the selection button labeled "power" is selected, the items related to power (power consumption, input current, output current in the example of FIG. 7) are automatically selected in the display item selection field 223. It is configured to be.
  • the operation data of the items selected in the display item selection field 223 is displayed as a graph with respect to the event selected by the event type selection field 221 and the event date / time designation field 222.
  • the display item selection field 223 "motor rotation speed”, "suction air amount”, “discharge pressure”, “power consumption”, and “output current” are selected, so these measured values are selected.
  • a graph showing the time change of is displayed in the graph display column 225.
  • the horizontal axis of the graph shows time, and the vertical axis shows the size of each measured value as a ratio to the presumed maximum value.
  • the display range on the horizontal axis (time) is a predetermined period including the event occurrence time.
  • the operation data of the second cycle (for example, 0.1 second interval) of 1 minute before the start of the event and 2 minutes after the start of the event is displayed.
  • the operation data of the second cycle (for example, 0.1 second interval) of 2 minutes before the start of the event and 1 minute after the start of the event is displayed.
  • the operation data before and after the start of the event can be displayed in detail, so that the behavior (waveform) of each measured value can be analyzed in detail.
  • the control unit 201 analyzes the behavior of the rotation speed of the motor 12 and the output current of the inverter 122 immediately after the blower 1 is started (for example, until 30 seconds have elapsed from the start of the blower 1). By doing so, deterioration of the airfoil bearing 13 can be estimated.
  • the control unit 201 has the rotation speed of the motor 12, the output current of the inverter 122, and the blower 1.
  • FIG. 8 is an explanatory diagram illustrating an example of the analysis method.
  • the graph shown in FIG. 8 shows the time change of the output current of the inverter 122 immediately after the start-up.
  • the horizontal axis of the graph is time, and the vertical axis is the value of output current.
  • the control unit 201 derives, for example, a linear approximation formula and a deviation in advance from the waveform of the output current immediately after the start-up collected in the past with respect to the time change of the output current of the inverter 122.
  • the derived linear approximation formula is shown by a solid line
  • the confidence interval (deviation) is shown by a broken line.
  • the control unit 201 determines whether or not the value of the output current of the inverter 122 included in the operation data is included in the confidence interval. When included in the confidence interval, the control unit 201 estimates that the airfoil bearing 13 has not deteriorated. On the other hand, if it deviates from the confidence interval, the control unit 201 estimates that the airfoil bearing 13 has deteriorated. In addition, in order to eliminate the possibility of measurement error, deterioration may be estimated only when a plurality of measured values continuously deviate from the confidence interval.
  • the output current waveform of the inverter 122 is linearly approximated and the confidence interval is set.
  • the curve approximation may be performed and the confidence interval may be set for the obtained approximate expression.
  • a confidence interval for estimating deterioration and a confidence interval for estimating a sign of deterioration may be provided.
  • the deterioration of the air foil bearing 13 is estimated based on the output current of the inverter 122, but the deterioration of the air foil bearing 13 is estimated based on the rotation speed of the motor 12 instead of the output current of the inverter. May be configured to estimate. Further, the deterioration of the airfoil bearing 13 may be estimated based on the rotation speed of the motor 12 and the output current of the inverter 122.
  • the control unit 201 immediately after the stop instruction is given to the blower 1 (for example, from the time when the stop instruction is given until 10 seconds have elapsed), the rotation speed of the motor 12 and the output current of the inverter 122 are changed. Deterioration of the airfoil bearing 13 may be estimated by analyzing what kind of behavior it exhibits.
  • control unit 201 determines the rotational speed of the motor 12 and the output current of the inverter 122 in the constant speed operation after the blower 1 is started (for example, between 30 seconds and 45 seconds after the start). By analyzing the behavior of the discharge pressure of the blower 1 and the amount of air sucked in by the blower, it is possible to estimate the efficiency decrease due to the adhesion of dust to the impeller 11.
  • the analysis method is the same as the estimation of deterioration of the airfoil bearing 13, and the determination may be made based on the presence or absence of deviation from the confidence interval.
  • the control unit 201 may estimate the cause of the abnormal stop by analyzing the operation data before and after the abnormal stop. In the analysis method, the presence or absence of deviation from the confidence interval may be determined in the same manner as the estimation of deterioration of the airfoil bearing 13, and the cause of the abnormal stop may be estimated by identifying the measured value in which the deviation occurs from the confidence interval. .. For example, when an abnormal stop event occurs, if the output current of the inverter 122 deviates from the confidence interval and other measured values fall within the confidence interval, the control unit 201 estimates that the cause of the abnormal stop is an abnormality of the inverter 122. can do.
  • FIG. 9 is a flowchart illustrating a procedure of processing executed by the control device 100.
  • the control unit 101 of the control device 100 acquires measurement data output from various sensors S1 to S5 from the input unit 103 at any time.
  • the control unit 101 refers to the output of the built-in clock, records the acquired measurement data in the first storage area of the storage unit 102 in the first cycle, and records it in the second storage area of the storage unit 102 in the second cycle. Record.
  • the measurement data from the sensors S1 to S5 are the operation data of the blower 1.
  • step S101 When it is determined in step S101 to transmit (S101: YES), the control unit 101 transmits the operation data of the first cycle recorded in the first storage area of the storage unit 102 to the cloud server 300 (step S102). At this time, the control unit 101 may transmit the operation data of the first cycle recorded between the previous transmission and the current transmission to the cloud server 300.
  • the transmitted operation data of the first cycle is stored in the first operation history table 301A in the cloud server 300.
  • the learning model MD (see FIG. 12) in which the relationship between the measured suction flow and the discharge pressure measured by the pressure sensor S5 and the state of the blower 1 is learned, the state of the blower 1 can be measured.
  • the learning model MD is stored, for example, in the storage unit 202 of the condition monitoring device 200.
  • the learning model MD may be stored in an external device (eg, cloud server 300) accessible from the condition monitoring device 200.
  • the number of nodes constituting the output layer LY4 and the calculation result assigned to each node are not limited to the above example, and can be appropriately designed.
  • the cause of the abnormal stop from the first node of the output layer LY4 may be an inverter abnormality (probability P1)
  • the cause of the abnormal stop from the second node may be a failure of the motor 12 (probability P2)
  • the third may be output from the node.
  • the learning model MD may be prepared for each event type, or may be prepared for each type of measurement data to be input.
  • FIG. 13 is a flowchart illustrating an estimation procedure using the learning model MD.
  • the control unit 201 of the condition monitoring device 200 performs the following processing by executing the state estimation program PG stored in the storage unit 202.
  • the control unit 201 inputs the operation data of the second period acquired from the cloud server 300 to the learning model MD (step S201) through the communication unit 203, and executes the calculation by the learning model MD (step S202).
  • the data given to the node of the input layer LY1 is output to the node of the adjacent intermediate layer LY2.
  • an operation using an activation function including weights and biases between nodes is performed, and the operation result is output to the intermediate layer LY3 in the subsequent stage.
  • an operation using an activation function including weights and biases between nodes is further performed, and the operation result is output to each node of the output layer LY4.
  • Each node of the output layer LY4 outputs the calculation result regarding the state of the blower 1.
  • the control unit 201 estimates the state of the blower 1 based on the calculation result of the learning model MD (step S203).
  • the control unit 201 has these.
  • the control unit 201 may estimate the cause of the abnormal stop based on the output from the output layer LY4.
  • the control unit 201 outputs information based on the estimation result (step S204). For example, the control unit 201 displays information on the deterioration of the component or information on the cause of the abnormal stop on the display unit 205. Further, the control unit 201 may notify the terminal device such as the administrator from the communication unit 203 of the information regarding the deterioration of the component or the information regarding the cause of the abnormal stop. In addition, in order to avoid erroneous determination based on single-shot measurement data, the control unit 201 deteriorates the component only when the number of times estimated that there is deterioration (or a sign of deterioration) is continuous for a predetermined number of times (for example, 10 times) or more. You may output the information to that effect.
  • a predetermined number of times for example, 10 times
  • the state of the blower 1 can be estimated by using the learning model MD of machine learning including deep learning, and the information based on the estimation result can be output. It is possible to encourage the user to replace or maintain the components constituting the blower 1.
  • the configuration of acquiring the calculation result regarding the state of the blower 1 by using the learning model MD of machine learning configured by the neural network has been described, but the learning model MD can be obtained by using a specific method. Not limited to models.
  • a learning model using a perceptron instead of a neural network based on deep learning, a learning model using a perceptron, a convolutional neural network, a recurrent neural network, a residual network, a self-organizing map, or the like may be used.
  • a regression analysis method including linear regression, logistic regression, support vector machine, etc., and a method using a search tree such as a decision tree, a regression tree, a random forest, and a gradient boosting tree.
  • Bayes estimation method including simple bays, AR (Auto Regressive), MA (Moving Average), ARIMA (Auto Regressive Integrated Moving Average), time series prediction method including state space model, clustering method including K neighborhood method, etc.
  • Boosting methods using ensemble learning including bagging, hierarchical clustering, non-hierarchical clustering, clustering methods including topic models, association analysis, learning models learned by other methods including emphasis filtering, etc. There may be.
  • a learning model may be constructed using multivariate analysis including PLS (Partial Least Squares) regression, multiple regression analysis, principal component analysis, factor analysis, cluster analysis, and the like.
  • PLS Partial Least Squares
  • the measurement data obtained from the sensors S1 to S5 is input to the learning model MD, but instead of the configuration in which the measurement data is input, a graph (image) showing the time-series change of the measurement value. ) May be input.
  • the learning model MD is constructed by CNN (Convolutional Neural Networks), R-CNN (Region-based CNN), YOLO (You Only Look Once), SSD (Single Shot Detector), GAN (Generative Adversarial Network), etc.
  • the learning model to be used may be used.
  • the blower 1 provided with the air foil bearing (air bearing) 13 is used as a base, but not limited to the air foil bearing, a slide bearing other than the air foil bearing such as a magnetic bearing or a tilting pad bearing is used. It may be a blower.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

ブロワ(1)の運転データを送信する通信装置(100)と、通信装置から送信される前記ブロワの運転データを取得し、取得した運転データに基づき、ブロワの状態を監視する状態監視装置(200)とを備える状態監視システムにおいて、通信装置は、第1周期で記録された前記ブロワの運転データを送信する第1送信部と、第1周期よりも短い第2周期で記録されたブロワの運転データを、イベントの発生をトリガとして送信する第2送信部とを備え、状態監視装置は、通信装置より送信される第1周期の運転データ及び第2周期の運転データを取得する取得部と、取得した前記第2周期の運転データを分析し、ブロワの状態を推定する推定部と、推定部による推定結果を出力する出力部とを備える。

Description

状態監視システム、状態監視装置、状態監視方法、及びコンピュータプログラム
 本発明は、状態監視システム、状態監視装置、状態監視方法、及びコンピュータプログラムに関する。
 近年、排水処理施設などにおける曝気用途、粉体処理装置における粉体の移送用途などにブロワが使用されている。ブロワの一種であるターボブロワは、インペラと、インペラを回転駆動するモータとを備え、モータの駆動によりインペラを回転させることにより、空気などのガスを移送するように構成されている(例えば、特許文献1~3を参照)。
特開2012-236164号公報 特開2015-182036号公報 特開2016-185513号公報
 ターボブロワは、例えば、インペラを回転させるモータ、モータを駆動するための駆動電力を供給するインバータ、インバータを冷却する冷却ファンなどのコンポーネントを備えており、コンポーネントの故障に伴う異常が検知された場合、ターボブロワの動作を自動的に停止させる仕組みを有する。例えば、インバータを冷却する冷却ファンが故障した場合、インバータを冷却することができず、インバータに温度異常が発生する。ターボブロワは、インバータの温度異常を検知した場合、自装置の動作を停止させる。
 このように、従来では、コンポーネントに故障が発生したことに伴う異常を検知した場合、ブロワの動作を停止させることが可能であるが、コンポーネントの故障や劣化を推定することは行っていない。
 本発明は、ブロワを構成するコンポーネントの故障又は劣化を推定できる状態監視システム、状態監視装置、状態監視方法、及びコンピュータプログラムを提供することを目的とする。
 本発明の一態様に係る状態監視システムは、ブロワの運転データを送信する通信装置と、該通信装置から送信される前記ブロワの運転データを取得し、取得した運転データに基づき、前記ブロワの状態を監視する状態監視装置とを備える状態監視システムにおいて、前記通信装置は、第1周期で記録された前記ブロワの運転データを送信する第1送信部と、前記第1周期よりも短い第2周期で記録された前記ブロワの運転データを、イベントの発生をトリガとして送信する第2送信部とを備え、前記状態監視装置は、前記通信装置より送信される前記第1周期の運転データ及び前記第2周期の運転データを取得する取得部と、取得した前記第2周期の運転データを分析し、前記ブロワの状態を推定する推定部と、該推定部による推定結果を出力する出力部とを備える。
 本発明の一態様に係る状態監視装置は、通信装置より送信されるブロワの運転データを取得し、取得した運転データに基づき、前記ブロワの状態を推定する状態監視装置において、前記通信装置より送信される第1周期で記録された前記ブロワの運転データと、イベントの発生をトリガとして前記通信装置より送信される、前記第1周期よりも短い第2周期で記録された前記ブロワの運転データとを取得する取得部と、取得した前記第2周期の運転データを分析し、前記ブロワの状態を推定する推定部と、該推定部による推定結果を出力する出力部とを備える。
 本発明の一態様に係る状態監視方法は、ブロワの運転データに基づき、前記ブロワの状態を監視する状態監視方法において、コンピュータを用いて、第1周期で記録された前記ブロワの運転データと、イベントの発生をトリガとして送信される、前記第1周期よりも短い第2周期で記録された前記ブロワの運転データとを取得し、取得した前記第2周期の運転データを分析して前記ブロワの状態を推定し、推定結果を出力する。
 本発明の一態様に係るコンピュータプログラムは、コンピュータに、第1周期で記録されたブロワの運転データと、イベントの発生をトリガとして送信される、前記第1周期より短い第2周期で記録された前記ブロワの運転データとを取得し、取得した前記第2周期の運転データを分析して前記ブロワの状態を推定し、推定結果を出力する処理を実行させる。
 本願によれば、ブロワを構成するコンポーネントの故障又は劣化を推定できる。
状態監視システムの構成を示す模式図である。 ブロワの構成を示す模式図である。 ブロワにおける計測系の構成を説明する説明図である。 制御装置の内部構成を示すブロック図である。 クラウドサーバが備える運転履歴テーブルの一例を示す概念図である。 状態監視装置の内部構成を示すブロック図である。 運転データの表示例を示す模式図である。 分析手法の一例を説明する説明図である。 制御装置が実行する処理の手順を説明するフローチャートである。 状態監視装置が実行する処理の手順を説明するフローチャートである。 推定結果の出力例を示す模式図である。 学習モデルの構成例を説明する模式図である。 学習モデルを用いた推定手順を説明するフローチャートである。
 以下、本発明をその実施の形態を示す図面に基づいて具体的に説明する。
(実施の形態1)
 図1は状態監視システムの構成を示す模式図である。実施の形態に係る状態監視システムは、ブロワ1の運転データに基づき、ブロワ1の状態を監視するためのシステムである。ブロワ1は、例えば、排水処理施設において曝気用途に使用される。代替的に、ブロワ1は、粉体処理装置における粉体の移送用途、物品の乾燥や冷却用途などに使用されるものであってもよい。状態監視システムは、ブロワ1に搭載される制御装置100と、ブロワ1の外部に設けられる状態監視装置200とを含む。制御装置100及び状態監視装置200は、インターネット網などの通信ネットワークNを介して、クラウドサーバ300にアクセスできるように構成されている。
 制御装置100は、ブロワ1の動作を制御すると共に、ブロワ1の運転中に得られる運転データをクラウドサーバ300へ送信(アップロード)する。本実施の形態では、制御装置100は、第1周期(例えば1分間隔)で記録される運転データをクラウドサーバ300へ送信し、イベントの発生をトリガとして、第2周期(例えば0.1秒間隔)で記録される運転データをクラウドサーバ300へ送信する。ここで、イベントは、ブロワ1の起動イベント、停止イベント、異常停止イベントなどを含む。制御装置100は、イベントが発生した場合、イベント発生後に得られる運転データだけでなく、イベント発生前後の所定期間にて得られる第2周期の運転データをクラウドサーバ300へ送信する。
 なお、ブロワ1の起動とは、後述するモータ12(図2を参照)を作動させてインペラ11(図2を参照)の回転駆動を開始することをいう。ブロワ1の停止とは、モータ12の作動を停止してインペラ11の回転駆動を停止させることをいう。これに対し、ブロワ1の運転中とは、モータ12が作動しているか否かに関わらず(すなわち、インペラ11を回転駆動しているか否かに関わらず)、運転データをクラウドサーバ300へ送信できる状態にあることをいう。
 状態監視装置200は、クラウドサーバ300へ送信されたブロワ1の運転データを適宜取得して分析し、分析結果に基づく情報をブロワ1の管理者等に提示する。例えば、状態監視装置200は、第1周期(例えば1分間隔)の運転データに基づき、トレンドグラフを生成し、生成したトレンドグラフを管理者等に提示する。また、状態監視装置200は、第2周期(例えば0.1秒間隔)の運転データに基づき、ブロワ1を構成するコンポーネントの劣化やブロワ1で発生した異常停止の原因を推定し、推定結果を管理者等に提示する。
 本実施の形態では、制御装置100からクラウドサーバ300へ運転データを送信し、クラウドサーバ300へ送信された運転データを状態監視装置200が取得する構成としたが、クラウドサーバ300を介さずに、ブロワ1の制御装置100から状態監視装置200へ直接的に運転データを送信する構成としてもよい。また、本実施の形態では、ブロワ1に搭載される制御装置100と、ブロワ1の外部に設けられる状態監視装置200とを用いて、ブロワ1の状態を監視する構成としたが、ブロワ1に搭載される制御装置100にて運転データを分析し、分析結果に基づく情報を管理者等に提示してもよい。すなわち、制御装置100と状態監視装置200とは別体である必要はなく、一体的に構成されてブロワ1に搭載されるものであってもよい。
 図2はブロワ1の構成を示す模式図である。本実施の形態において、ブロワ1は、ターボ型のブロワ(ターボブロワ)である。ターボブロワは、インペラ(羽根)の回転運動により空気などのガスを送るための送風機である。このような送風機はターボ型と容積型とに大別される。ターボ型は軸流型及び遠心型を含み、容積型はルーツ型を含む。軸流型の送風機は、吸込方向と吐出方向とが一直線状に並ぶ。軸流型の送風機は、低圧大風量に適しており、トンネル送風機等に利用されている。一方、遠心型の送風機は、吸込方向と吐出方向とが略直角に交わり、遠心力を利用して空気などのガスを送る。ルーツ型の送風機は、ハウジング内で2つのロータを同期させて逆方向に回転させ、ハウジングとロータとで囲まれた空間の容積が増減することを利用してガスを送るものであり、容積型故に回転数に対する送風量が安定しているという特徴がある。遠心型やルーツ型の送風機は、排水処理施設等の曝気用に利用されている。図2に一例として示すブロワ1はターボブロワの中でも遠心型送風機であり、吸込方向と吐出方向とが略直角に交わる。ブロワ1は、遠心型送風機に限らず、軸流型送風機やルーツ型送風機であってもよい。
 ブロワ1は、インペラハウジング10に収容されるインペラ11と、インペラ11を回転駆動するモータ12とを備える。実施の形態に係るブロワ1は、高信頼性及び省メンテナンス性を実現するために、モータ回転軸12Aの軸受にエアフォイルベアリング(空気軸受)13を採用している。エアフォイルベアリング13は、モータ回転軸12Aを非接触で支持するものであるが、起動時や停止時においてモータ12の回転速度が3000min-1以下になると、モータ回転軸12Aとエアフォイルベアリング13の部品であるトップフォイル(不図示)とが接触する場合がある。
 ブロワ1は、吸込口10Aを通じてインペラハウジング10の内部に導入されるガスを、インペラ11の回転運動によって生じる遠心力により、ガスの吸込方向とは略直角に交わる方向(図2の例では上方)へ送り出す。インペラハウジング10から送り出されるガスは、吐出路L1を通じてブロワ1の外部へ吐出される。ブロワ1の外部へ吐出されるガスは、図2に部分的に示すガス供給ラインL2を通じて貯水槽などの所定の供給先へ送られる。
 吐出路L1の中途には、吐出すべきガスの一部をバイパスさせるバイパス路L3が接続されている。このバイパス路L3には、ブローオフバルブBOVを介して、放風ラインL4、冷却ガス排出ラインL5が接続される。また、インペラハウジング10の吸込口10Aと対向するブロワ1の側面部には、吸い込むべきガスに含まれる塵や埃などの異物を除去するためのフィルタFが設けられている。フィルタFには例えば不織布が用いられる。
 図3はブロワ1における計測系の構成を説明する説明図である。ブロワ1は、前述のモータ12を駆動する駆動装置120と、駆動装置120を含むブロワ全体の動作を制御する制御装置100とを備える。
 駆動装置120は、商用電源から供給される三相交流電圧などを直流電圧に変換して出力するコンバータ121と、コンバータ121から入力される直流電圧をPWM(Pulse Width Modulation)波形の電圧に変換して出力するインバータ122とを備える。駆動装置120は、必要なモータ12の回転速度に応じて、インバータ122の電圧波形を変化させ、モータ12に供給する電流の大きさを調整する。なお、駆動装置120は、コンバータ121を備えずに商用電源を直接インバータ122に入力する構成としてもよい。
 ブロワ1は、モータ12に供給する電流(インバータ122の出力電流)を計測する電流センサS1を備え、ブロワ1における運転データの1つとして、インバータ122の出力電流を計測する。電流センサS1の計測データは制御装置100に与えられる。また、ブロワ1は、モータ12の回転速度を計測する回転速度センサS2を備え、ブロワ1における運転データの1つとして、モータ12の回転速度を計測する。回転速度センサS2の計測データは制御装置100に与えられる。なお、インバータ122の出力電流はインバータ122の消費電力から算出してもよく、モータ12の回転速度はインバータ122の出力周波数とモータ12の極数とから算出してもよい。
 ブロワ1が備えるモータ12は、駆動装置120のインバータ122から供給される電流により駆動され、インペラ11を回転させる。ブロワ1は、インペラハウジング10の吸込口10Aから吸い込むガスの温度(吸込温度)を計測する温度センサS3、吸い込むガスの流量(吸込ガス量)を計測する流量センサS4、吐出路L1へ吐出するガスの圧力(吐出圧力)を計測する圧力センサS5などを備え、ブロワ1における運転データとして、これらの値を計測してもよい。温度センサS3、流量センサS4、及び圧力センサS5の計測データは制御装置100に与えられる。なお、吸込ガス量は、吸込口10Aから吸い込まれる単位時間あたりのガス量を表す。ガス量とは、温度を20℃、湿度を65%、圧力を大気圧とした状態(工業的な標準状態)での換算値を用いてもよく、温度を0℃、湿度を0%、圧力を大気圧とした状態(学術的な基準状態)での換算値など特定の条件におけるガス量に換算した値を用いてもよい。
 ブロワ1の運転データとして計測される計測データは上記に限定されない。例えば、モータ12の温度、駆動装置120の温度、ブロワ1の消費電力、フィルタFにおけるフィルタ損失、累積運転時間、累積起動時間などを計測し、これらの計測データを制御装置100に与えてもよい。
 図4は制御装置100の内部構成を示すブロック図である。制御装置100は、制御部101、記憶部102、入力部103、及び通信部104を備え、ブロワ1の動作を制御すると共に、ブロワ1の運転中に得られる運転データをクラウドサーバ300へ出力する。
 制御部101は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)などを備える。制御部101が備えるROMには、上述したハードウェア各部の動作を制御する制御プログラム等が記憶される。制御部101内のCPUは、ROMに記憶された制御プログラムを実行することにより、制御装置100の少なくとも一部を本発明における通信装置として機能させる。RAMには、制御プログラムの実行中に生成されるデータが一時的に記憶される。また、制御部101には、日時情報を出力するクロック、計測開始指示を与えてから計測終了指示を与えるまでの経過時間を計測するタイマ、数をカウントするカウンタ等の機能が搭載されてもよい。
 記憶部102は、ハードディスク、フラッシュメモリなどを用いた記憶装置を備える。記憶部102には、各種の制御に必要なデータ、入力部103を通じて入力される運転データ等が記憶される。なお、本実施の形態では、運転データを定期的にクラウドサーバ300にアップロードするので、記憶部102は、入力された全ての運転データを蓄積する必要はなく、最新の時刻から一定時間(例えば1日や数分)だけ遡った期間の運転データを記憶していればよい。例えば、記憶部102は、1日分の第1周期の運転データを記憶する第1記憶領域(ROM)と、数分間の第2周期の運転データを上書きしながら記憶する第2記憶領域(RAM)とを備える。
 入力部103は、各種センサを接続するための接続インタフェースを備える。入力部103が備える接続インタフェースは、有線のインタフェースであってもよく、無線のインタフェースであってもよい。入力部103に接続されるセンサは、例えば、インバータ122の出力電流を計測する電流センサS1、モータ12の回転速度を計測する回転速度センサS2、吸込温度を計測する温度センサS3、吸込ガス量を計測する流量センサS4、吐出圧力を計測する圧力センサS5などを含む。制御部101は、入力部103を通じて、各種センサS1~S5による計測データを取得する。
 通信部104は、外部機器と通信するための通信インタフェースを備える。通信部104が備える通信インタフェースは、例えば、WiFi(登録商標)やイーサネット(登録商標)などで用いられるLAN(Local Area Network)の通信規格に準じた通信インタフェースである。代替的に、Bluetooth(登録商標) 、ZigBee(登録商標)、3G、4G、5G、LTE(Long Term Evolution)等の通信規格に準じた通信インタフェースであってもよい。本実施の形態では、制御装置100は、通信部104を通じて通信ネットワークNに接続されており、通信ネットワークNを介してクラウドサーバ300と通信できるように構成されている。
 更に、制御装置100は、ブロワ1の管理者等の指示又は操作を受付ける操作部、ブロワ1の管理者等に報知すべき情報を表示する表示部などを備えてもよい。
 本実施の形態では、制御装置100は、ブロワ1の運転データ(各種センサS1~S5の計測データ)をクラウドサーバ300へ送信する。より詳細には、制御装置100は、ブロワ1の運転開始後は運転データを第1周期(例えば1分間隔)で記録し、記録した運転データを適宜のタイミングでクラウドサーバ300へ送信する。制御装置100は、運転データを第1周期で記録する都度、クラウドサーバ300へ送信してもよく、所定時間分の第1周期の運転データをまとめてクラウドサーバ300へ送信してもよい。また、制御装置100は、イベントが発生した場合、第2周期(例えば0.1秒間隔)で記録したデータのうち、イベントの開始時点を含む所定期間(例えば3分間)の運転データをクラウドサーバ300へ送信する。制御装置100は、例えば、前記イベントに関する第2周期の運転データの記録が完了した後にクラウドサーバ300へ送信する。なお、イベントの開始時点は、ブロワ1の管理者等によって与えられてもよく、例えば電流センサS1の出力等に基づき制御部101が判断してもよい。
 クラウドサーバ300は、通信ネットワークNを介して制御装置100から受信した第1周期の運転データ及び第2周期の運転データを運転履歴テーブルに記憶する。図5はクラウドサーバ300が備える運転履歴テーブルの一例を示す概念図である。クラウドサーバ300が備える運転履歴テーブルは、第1周期の運転データを記憶する第1運転履歴テーブル301Aと、第2周期の運転データを記憶する第2運転履歴テーブル301Bとにより構成される。
 第1運転履歴テーブル301Aには、ブロワ1の第1周期(例えば1分間隔)の運転データが記憶される。第2運転履歴テーブル301Bには、イベントの発生をトリガとして送信されるブロワ1の第2周期(例えば0.1秒間隔)の運転データが記憶される。運転データは、モータ12に供給する電流(インバータ122の出力電流)、モータ12の回転速度、ブロワ1の吸込温度、ブロワ1の吸込ガス量、ブロワ1の吐出圧力などを含む。
 第1運転履歴テーブル301Aには、ブロワ1の運転中に計測される長期的な運転データが記憶されるのに対し、第2運転履歴テーブル301Bには、イベント毎の所定期間(例えばイベント発生前後の3分間)の短期的かつ詳細な運転データが記憶される。例えば、ブロワ1において起動イベントが2020年8月1日の12時に発生した場合、11時59分から12時02分までの0.1秒間隔の運転データが第2運転履歴テーブル301Bに記憶される。
 図6は状態監視装置200の内部構成を示すブロック図である。状態監視装置200は、専用又は汎用のコンピュータであり、制御部201、記憶部202、通信部203、操作部204、及び表示部205を備える。状態監視装置200は、クラウドサーバ300から運転データを取得し、取得した運転データを分析してブロワ1の状態を推定する。
 制御部201は、例えば、CPU、ROM、RAMなどを備える。制御部201が備えるROMには、上述したハードウェア各部の動作を制御する制御プログラム等が記憶される。制御部201内のCPUは、ROMに記憶された制御プログラムや後述する記憶部202に記憶された各種コンピュータプログラムを実行し、ハードウェア各部の動作を制御することにより、状態監視装置200を本発明における状態監視装置として機能させる。制御部201が備えるRAMには、演算の実行中に利用されるデータ等が一時的に記憶される。
 本実施の形態において、制御部201は、CPU、ROM、及びRAMを備える構成としたが、必ずしもこのような構成に限定されない。制御部201は、GPU(Graphics Processing Unit)、FPGA(Field Programmable Gate Array)、DSP(Digital Signal Processor)、量子プロセッサ、揮発性又は不揮発性のメモリ等を備える1又は複数の演算回路又は制御回路であってもよい。また、制御部201は、日時情報を出力するクロック、計測開始指示を与えてから計測終了指示を与えるまでの経過時間を計測するタイマ、数をカウントするカウンタ等の機能を備えてもよい。
 記憶部202は、HDD(Hard Disk Drive)、SSD(Solid State Drive)などの記憶装置を備える。記憶部202には、制御部201によって実行される各種コンピュータプログラムや制御部201によって利用される各種データが記憶される。
 記憶部202に記憶されるコンピュータプログラムは、ブロワ1の運転データに基づきブロワ1の状態を推定するための状態推定プログラムPGを含む。状態推定プログラムPGは、第1周期で記録されるブロワ1の運転データと第2周期で記録されるブロワ1の運転データとを取得し、取得した第2周期の運転データを分析してブロワ1の状態を推定し、推定結果を出力する処理をコンピュータに実行させるためのコンピュータプログラムである。
 記憶部202に記憶されるコンピュータプログラムは、当該コンピュータプログラムを読み取り可能に記録した非一時的な記録媒体Mにより提供される。記録媒体Mは、例えば、CD-ROM、USBメモリ、SD(Secure Digital)カード、コンパクトフラッシュ(登録商標)などの可搬型メモリである。制御部201は、図に示していない読取装置を用いて、記録媒体Mに記録されたコンピュータプログラムを読み取り、読み取ったコンピュータプログラムを記憶部202に記憶させる。代替的に、記憶部202に記憶されるコンピュータプログラムは、通信によって提供されてもよい。この場合、制御部201は、通信部203を通じてコンピュータプログラムを取得し、取得したコンピュータプログラムを記憶部202に記憶させればよい。
 通信部203は、各種データを送受信する通信インタフェースを備える。通信部203が備える通信インタフェースは、例えば、WiFi(登録商標)やイーサネット(登録商標)で用いられるLAN(Local Area Network)の通信規格に準じた通信インタフェースである。本実施の形態において、通信部203は、通信ネットワークNを介してクラウドサーバ300にアクセスし、第1運転履歴テーブル301Aに記憶されている第1周期の運転データ、及び第2運転履歴テーブル301Bに記憶されている第2周期の運転データを取得する。
 操作部204は、キーボード、マウス、タッチパネルなどの操作デバイスを備え、管理者等による各種の操作及び設定を受付ける。制御部201は、操作部204より与えられる各種の操作情報に基づき適宜の制御を行い、必要に応じて設定情報を記憶部202に記憶させる。
 表示部205は、液晶モニタや有機EL(Electro-Luminescence)などの表示デバイスを備え、制御部201からの指示に応じて管理者等に報知すべき情報を表示する。
 なお、状態監視装置200は、単一のコンピュータである必要はなく、複数のコンピュータや周辺機器からなるコンピュータシステムであってもよい。更に、状態監視装置200は、ソフトウェアによって仮想的に構築される仮想マシンであってもよい。
 状態監視装置200は、クラウドサーバ300から第1周期の運転データ及び第2周期の運転データを取得するので、例えば、イベントが発生した場合において、イベント発生前後の運転データを管理者等に提示することができる。
 図7は運転データの表示例を示す模式図である。図7は起動イベント発生時の運転データの表示例を示している。状態監視装置200の制御部201は、操作部204を通じて管理者等の指示を受付けた場合、ブロワ1にて所定のイベントが発生した場合などにおいて、表示画面220の画面データを生成し表示部205に表示させる。
 表示画面220は、例えば、イベント種別選択欄221、イベント日時指定欄222、表示項目選択欄223、項目グループ選択欄224、グラフ表示欄225を備える。イベント種別選択欄221は、プルダウンメニュー形式の選択欄であり、イベント種別の選択を受付ける。イベント種別は、起動、停止、異常停止を含む。イベント日時指定欄222は、プルダウンメニュー形式の指定欄であり、イベント種別選択欄221にて選択されたイベントに関して発生日時の指定を受付ける。図7の例では、2020年8月20日9時26分0.863秒に発生した起動イベントが選択されていることを示している。
 表示項目選択欄223は、チェックボックス形式の選択欄であり、表示すべき運転データ(計測値)の選択を受付ける。項目グループ選択欄224は、選択ボタンにより構成されており、表示すべき項目グループの選択を受付ける。例えば、「電力」のラベルが付された選択ボタンが選択された場合、表示項目選択欄223において、電力に関する項目(図7の例では、消費電力、入力電流、出力電流)が自動的に選択されるように構成されている。
 グラフ表示欄225には、イベント種別選択欄221、及びイベント日時指定欄222により選択されたイベントに関し、表示項目選択欄223で選択された項目の運転データがグラフとして表示される。図7の例では、表示項目選択欄223において、「モータ回転速度」、「吸込空気量」、「吐出圧力」、「消費電力」、「出力電流」が選択されているので、これらの計測値の時間変化を示すグラフがグラフ表示欄225に表示されている。グラフの横軸は時間を示し、縦軸は各計測値の大きさを予め想定した最大値に対する割合により示している。横軸(時間)の表示範囲は、イベント発生時刻を含む所定期間である。起動イベントでは、イベント開始前の1分及びイベント開始後の2分の第2周期(例えば0.1秒間隔)の運転データが表示される。一方、停止イベント及び異常停止イベントでは、イベント開始前の2分及びイベント開始後の1分の第2周期(例えば、0.1秒間隔)の運転データが表示される。
 このように、本実施の形態では、イベント発生の開始前後の運転データを詳細に表示することができるので、各計測値の挙動(波形)を詳細に分析することができる。例えば、制御部201は、ブロワ1の起動直後(例えば起動開始から30秒経過するまでの間)において、モータ12の回転速度やインバータ122の出力電流がどのような振る舞いを示しているのかを分析することにより、エアフォイルベアリング13の劣化を推定することができる。また、制御部201は、起動後の定速運転時(例えば起動開始後30秒経過した時点から45秒経過するまでの間)において、モータ12の回転速度、インバータ122の出力電流、ブロワ1の吐出圧力、ブロワ1の吸込空気量がどのような振る舞いを示しているのかを分析することにより、インペラ11への塵埃の付着に伴う効率低下やエアフォイルベアリング13の劣化を推定することができる。
 図8は分析手法の一例を説明する説明図である。図8に示すグラフは、起動直後のインバータ122の出力電流の時間変化を示している。グラフの横軸は時間であり、縦軸は出力電流の値である。制御部201は、過去に収集された起動直後の出力電流の波形から、インバータ122の出力電流の時間変化に関して、例えば線形近似式と偏差とを事前に導出しておく。図8では、導出した線形近似式を実線により示し、破線により信頼区間(偏差)を示している。
 制御部201は、起動時の運転データを新たに取得した場合、運転データに含まれるインバータ122の出力電流の値が信頼区間に含まれるか否かを判断する。信頼区間に含まれる場合、制御部201は、エアフォイルベアリング13の劣化はないと推定する。一方、信頼区間から外れる場合、制御部201は、エアフォイルベアリング13の劣化があると推定する。なお、計測誤差の可能性を排除するために、複数の計測値が連続して信頼区間から外れる場合にのみ、劣化と推定してもよい。
 図8の例では、インバータ122の出力電流波形を線形近似し、信頼区間を設定する構成としたが、曲線近似を行い、得られた近似式に対して信頼区間を設定してもよい。また、図8の例では、1つの信頼区間を設けた構成としたが、劣化を推定するための信頼区間、劣化の予兆を推定する信頼区間を設けてもよい。
 図8の例では、インバータ122の出力電流に基づき、エアフォイルベアリング13の劣化を推定する構成としたが、インバータの出力電流に代えて、モータ12の回転速度に基づき、エアフォイルベアリング13の劣化を推定する構成としてもよい。また、モータ12の回転速度とインバータ122の出力電流とに基づき、エアフォイルベアリング13の劣化を推定する構成としてもよい。
 同様に、制御部201は、ブロワ1に停止指示が与えられた直後(例えば、停止指示が与えられてから10秒経過するまでの間)において、モータ12の回転速度、インバータ122の出力電流がどのような振る舞いを示しているのかを分析することにより、エアフォイルベアリング13の劣化を推定してもよい。
 また、制御部201は、ブロワ1の起動後の定速運転(例えば、起動後に30秒経過してから45秒が経過するまでの間)において、モータ12の回転速度、インバータ122の出力電流、ブロワ1の吐出圧力、ブロワの吸込空気量がどのような振る舞いを示しているのかを分析することにより、インペラ11への塵埃の付着に伴う効率低下を推定してもよい。分析手法は、エアフォイルベアリング13の劣化の推定と同様であり、信頼区間からのずれの有無に基づいて判断すればよい。
 更に、制御部201は、異常停止イベントが発生した場合、異常停止前後の運転データを分析することにより、異常停止の原因を推定してもよい。分析手法は、エアフォイルベアリング13の劣化の推定と同様に信頼区間からのずれの有無を判断し、信頼区間からずれが生じた計測値を特定することにより、異常停止の原因を推定すればよい。例えば、異常停止イベントが発生した際、インバータ122の出力電流が信頼区間から外れ、他の計測値が信頼区間に収まっている場合、制御部201は、異常停止の原因をインバータ122の異常と推定することができる。
 以下、本実施の形態に係る状態監視システムの動作について説明する。
 図9は制御装置100が実行する処理の手順を説明するフローチャートである。制御装置100の制御部101は、ブロワ1の運転開始後、各種センサS1~S5から出力される計測データを入力部103より随時取得する。制御部101は、内蔵クロックの出力を参照して、取得した計測データを第1周期で記憶部102の第1記憶領域内に記録し、第2周期で記憶部102の第2記憶領域内に記録する。本実施の形態において、センサS1~S5からの計測データは、ブロワ1の運転データである。
 制御部101は、第1周期の運転データをクラウドサーバ300へ送信するか否かを判断する(ステップS101)。制御部101は、例えば、計測データを第1周期で記録する都度、クラウドサーバ300へ送信すると判断する。代替的に、制御部101は、第1周期と異なる所定周期(例えば数分間隔~数時間間隔)で送信すると判断してもよく、所定時刻に送信すると判断してもよい。ステップS101で送信しないと判断した場合(S101:NO)、制御部101は、ステップS103以降の処理を実行する。
 ステップS101で送信すると判断した場合(S101:YES)、制御部101は、記憶部102の第1記憶領域に記録された第1周期の運転データをクラウドサーバ300へ送信する(ステップS102)。このとき、制御部101は、前回送信してから今回送信するまでの間に記録した第1周期の運転データをクラウドサーバ300へ送信すればよい。送信された第1周期の運転データは、クラウドサーバ300において、第1運転履歴テーブル301Aに記憶される。
 次いで、制御部101は、イベントが発生したか否かを判断する(ステップS103)。ステップS103では、ブロワ1の起動イベント、停止イベント、異常停止イベント等が判断できればよい。イベント発生の有無は、第1周期の運転データに基づき判断される。例えば、制御部101は、インバータ122の出力電流を監視することにより、ブロワ1が起動したタイミング、停止したタイミング、異常停止したタイミングを特定することができる。また、制御部101は、ブロワ1に起動指示や停止指示が与えられた場合、イベントが発生したと判断してもよい。イベントが発生していない場合(S103:NO)、制御部101は、処理をステップS101へ戻す。
 イベントが発生したと判断した場合(S103:YES)、制御部101は、そのイベントに関する第2周期の運転データを送信するか否かを判断する(ステップS104)。発生したイベントが停止イベント又は異常停止イベントである場合、制御部101は、イベント発生時より例えば1分が経過した時点で第2周期の運転データを送信すると判断する。また、発生したイベントが起動イベントである場合、制御部101は、イベント発生時より例えば2分が経過した時点で第2周期の運転データを送信すると判断する。
 ステップS104で送信しないと判断した場合(S104:NO)、制御部101は、送信タイミングとなるまで待機する。この待機期間において、制御部101は、運転データの記録を継続的に行う。すなわち、制御部101は、入力部103を通じて取得した運転データを第1周期で記憶部102の第1記憶領域に記録すると共に、第2周期で記憶部102の第2記憶領域に記録する。
 ステップS104で送信すると判断した場合(S104:YES)、制御部101は、記憶部102の第2記憶領域に記録された第2周期の運転データをクラウドサーバ300へ送信する(ステップS105)。発生したイベントが停止イベント又は異常停止イベントである場合、制御部101は、例えばイベント発生時より2分前から1分後の合計3分間の運転データを記憶部102の第2記憶領域から読み出し、読み出した運転データを通信部104よりクラウドサーバ300へ送信する。発生したイベントが起動イベントである場合、制御部101は、例えばイベント発生時より1分前から2分後の合計3分間の運転データを記憶部102の第2記憶領域から読み出し、読み出した運転データを通信部104よりクラウドサーバ300へ送信する。送信された第2周期の運転データは、クラウドサーバ300において、第2運転履歴テーブル301Bに記憶される。
 図10は状態監視装置200が実行する処理の手順を説明するフローチャートである。状態監視装置200の制御部201は、記憶部202に記憶された状態推定プログラムPGを読み出して実行することにより、以下の処理を実行する。制御部201は、通信部203を通じて、クラウドサーバ300にアクセスし、第1周期の運転データを取得する(ステップS121)。このとき、状態監視装置200は、ユーザ認証を受付け、認証に成功した場合にのみ、クラウドサーバ300へのアクセスを許可してもよい。
 制御部201は、イベントが発生したか否かを判断する(ステップS122)。ステップS122では、ブロワ1の起動イベント、停止イベント、異常停止イベント等が判断できればよい。イベント発生の有無は、第1周期の運転データに基づき判断される。例えば、制御部201は、インバータ122の出力電流を監視することにより、ブロワ1が起動したタイミング、停止したタイミング、異常停止したタイミングを特定することができる。代替的に、制御部201は、ブロワ1に起動指示や停止指示が与えられた旨の情報を制御装置100から取得して、イベントの発生の有無を判断してもよい。イベントが発生していない場合(S122:NO)、制御部201は、処理をステップS121へ戻す。
 イベントが発生したと判断した場合(S122:YES)、制御部201は、通信部203を通じて、クラウドサーバ300にアクセスし、第2周期の運転データを取得する(ステップS123)。
 次いで、制御部201は、取得した第2周期の運転データを分析し、ブロワ1の状態を推定する(ステップS124)。制御部201は、例えば、インバータ122の出力電流やモータ12の回転速度が事前に得られた信頼区間に収まっているか否かを判断することにより、エアフォイルベアリング13の劣化を推定することができる。また、制御部201は、ブロワ1の起動後の定速運転時(例えば、起動後に30秒経過してから45秒が経過するまでの間)におけるモータ12の回転速度、インバータ122の出力電流、ブロワ1の吐出圧力、ブロワの吸込空気量が事前に得られた信頼区間に収まっているか否かを判断することにより、インペラ11への塵埃の付着に伴う効率低下を推定してもよい。更に、制御部201は、異常停止イベントが発生した場合、異常停止前後の運転データを分析することにより、異常停止の原因を推定してもよい。
 次いで、制御部201は、推定結果を出力する(ステップS125)。図11は推定結果の出力例を示す模式図である。図11の出力例は、エアフォイルベアリング13の劣化が生じている旨の文字情報を、各計測値のグラフと共に表示部205に表示した例を示している。このとき、制御部201は、エアフォイルベアリング13の劣化の推定に用いた推定値(例えば、インバータ122の出力電流)のグラフをハイライト表示してもよい。図11では、エアフォイルベアリング13に劣化が生じた旨の文字情報を表示した例を示したが、同様に、制御部201は、インペラ11への塵埃の付着に伴う効率低下が発生した旨の文字情報、異常停止の原因を示す文字情報等を表示部205に表示させてもよい。また、制御部201は、表示部205に表示させる構成に代えて、通信部203を通じて、管理者等が使用する端末装置に通知してもよい。
 以上のように、本実施の形態では、イベントが発生した際に送信される第2周期の運転データを分析し、ブロワ1の状態を推定するので、ブロワ1を構成する各コンポーネントの振る舞いを詳細に把握することができ、例えば、エアフォイルベアリング13の劣化、インペラ11への塵埃の付着による効率低下、異常停止の原因等を把握することができる。
(実施の形態2)
 実施の形態2では、学習モデルを用いて、ブロワ1の状態を推定する構成について説明する。
 実施の形態2では、電流センサS1により計測されるインバータ122の出力電流、回転速度センサS2により計測されるモータ12の回転速度、温度センサS3により計測されるブロワ1の吸込温度、流量センサS4により計測される吸込流量、圧力センサS5により計測される吐出圧力の計測データと、ブロワ1の状態との関係を学習してある学習モデルMD(図12を参照)を用いて、ブロワ1の状態を推定する。学習モデルMDは、例えば状態監視装置200の記憶部202に記憶される。代替的に、学習モデルMDは、状態監視装置200からアクセス可能な外部装置(例えば、クラウドサーバ300)に記憶されてもよい。
 図12は学習モデルMDの構成例を説明する模式図である。学習モデルMDは、例えば、深層学習を含む機械学習の学習モデルであり、ニューラルネットワークによって構成される。学習モデルMDは、入力層LY1、中間層LY2,LY3、及び出力層LY4を備える。図12の例では、2つの中間層LY2,LY3を記載しているが、中間層の数は2つに限定されず、3つ以上であってもよい。
 入力層LY1、中間層LY2,LY3、及び出力層LY4には、1つまたは複数のノードが存在し、各層のノードは、前後の層に存在するノードと一方向に所望の重みおよびバイアスで結合されている。学習モデルMDの入力層LY1には、入力層LY1が備えるノードの数と同数のデータが入力される。本実施の形態において、入力層LY1のノードに入力されるデータは、ブロワ1に関して得られる第2周期の運転データである。すなわち、入力層LY1のノードに入力されるデータは、インバータ122の出力電流、モータ12の回転速度、ブロワ1の吸込温度、吸込流量、吐出圧力の第2周期の計測データが入力される。
 入力された計測データは、入力層LY1を構成するノードを通じて、最初の中間層LY2が備えるノードへ出力される。最初の中間層LY2に入力されたデータは、中間層LY2を構成するノードを通じて、次の中間層LY3が備えるノードへ出力される。このとき、ノード間において設定されている重み及びバイアスを含む活性化関数を用いて出力が算出される。以下同様にして、ノード間において設定されている重み及びバイアスを含む活性化関数を用いた演算を実行し、出力層LY4による演算結果が得られるまで次々と後の層に伝達される。
 ここで、ノード間を結合する重み、バイアス等のパラメータは、所定の学習アルゴリズムによって学習される。各種パラメータを学習する学習アルゴリズムには、例えば誤差逆伝搬法を含む深層学習の学習アルゴリズムが用いられる。本実施の形態では、前述の計測データと、ブロワ1の状態(劣化の有無、異常発生の原因など)を示すラベルデータとを訓練データとして収集し、収集した訓練データを用いて、計測データが入力された場合、ブロワ1の状態に関する演算結果を出力するように、所定の学習アルゴリズムによってノード間の重み及びバイアスを含む各種パラメータを学習する。なお、学習モデルMDの生成は、状態監視装置200の内部で行ってもよく、外部サーバ(例えばクラウドサーバ300)で行ってもよい。
 出力層LY4は、ブロワ1の状態に関する演算結果を出力する。例えば、出力層LY4を第1ノードから第3ノードまでの3個のノードにより構成し、第1ノードからブロワ1のコンポーネントが劣化している可能性(確率P1)を出力し、第2ノードから劣化の予兆がある可能性(確率P2)、第3ノードから劣化していない可能性(確率P3)を出力する。
 出力層LY4を構成するノードの数や各ノードに割り当てる演算結果は、上述の例に限定されるものではなく、適宜設計することが可能である。例えば、出力層LY4の第1ノードから異常停止の原因がインバータ異常である可能性(確率P1)、第2ノードから異常停止の原因がモータ12の故障である可能性(確率P2)、第3ノードからエアフォイルベアリング13の故障である可能性(確率P3)を出力してもよい。
 また、学習モデルMDは、イベント種別毎に用意されてもよく、入力する計測データの種別毎に用意されてもよい。
 図13は学習モデルMDを用いた推定手順を説明するフローチャートである。状態監視装置200の制御部201は、記憶部202に記憶された状態推定プログラムPGを実行することにより、以下の処理を行う。
 制御部201は、通信部203を通じて、クラウドサーバ300より取得した第2周期の運転データを学習モデルMDへ入力し(ステップS201)、学習モデルMDによる演算を実行する(ステップS202)。入力層LY1のノードに与えられたデータは、隣接する中間層LY2のノードへ出力される。中間層LY2ではノード間の重み及びバイアスを含む活性化関数を用いた演算が行われ、演算結果は後段の中間層LY3へ出力される。中間層LY3において、更に、ノード間の重み及びバイアスを含む活性化関数を用いた演算が行われ、演算結果は出力層LY4の各ノードへ出力される。出力層LY4の各ノードは、ブロワ1の状態に関する演算結果を出力する。
 制御部201は、学習モデルMDの演算結果に基づきブロワ1の状態を推定する(ステップS203)。学習モデルMDの出力層LY4がブロワ1のコンポーネントが劣化している可能性、劣化の予兆がある可能性、劣化していない可能性を確率P1~P3として出力する場合、制御部201は、これらの確率P1~P3のうち、最も高い確率を出力するノードを特定することにより、コンポーネントの劣化を推定することができる。また、学習モデルMDの出力層LY4が異常停止の原因に関する情報を出力する場合、制御部201は、出力層LY4からの出力に基づき、異常停止の原因を推定してもよい。
 制御部201は、推定結果に基づく情報を出力する(ステップS204)。例えば、制御部201は、コンポーネントの劣化に関する情報、又は異常停止の原因に関する情報を表示部205に表示する。また、制御部201は、コンポーネントの劣化に関する情報、又は異常停止の原因に関する情報を通信部203より管理者等の端末装置に通知してもよい。なお、制御部201は、単発の計測データによる誤判定を避けるために、劣化(若しくは劣化予兆)ありと推定した回数が所定回数(例えば10回)以上連続した場合にのみ、コンポーネントが劣化している旨の情報を出力してもよい。
 以上のように、実施の形態2では、深層学習を含む機械学習の学習モデルMDを用いて、ブロワ1の状態を推定し、推定結果に基づく情報を出力することができるので、必要に応じてブロワ1を構成するコンポーネントの交換やメンテナンスをユーザに促すことができる。
 本実施の形態2では、ニューラルネットワークによって構成される機械学習の学習モデルMDを用いてブロワ1の状態に関する演算結果を取得する構成について説明したが、学習モデルMDは特定の手法を用いて得られるモデルに限定されない。
 例えば、深層学習によるニューラルネットワークに代えて、パーセプトロン、畳み込みニューラルネットワーク、再帰型ニューラルネットワーク、残差ネットワーク、自己組織化マップ等による学習モデルであってもよい。
 また、上記のニューラルネットワークによる学習モデルに代えて、線形回帰、ロジスティック回帰、サポートベクターマシン等を含む回帰分析手法、決定木、回帰木、ランダムフォレスト、勾配ブースティング木等の探索木を用いた手法、単純ベイズ等を含むベイズ推定法、AR(Auto Regressive)、MA(Moving Average)、ARIMA(Auto Regressive Integrated Moving Average)、状態空間モデル等を含む時系列予測手法、K近傍法等を含むクラスタリング手法、ブースティング、バギング等を含むアンサンブル学習を用いた手法、階層型クラスタリング、非階層型クラスタリング、トピックモデル等を含むクラスタリング手法、アソシエーション分析、強調フィルタリング等を含むその他の手法により学習された学習モデルであってもよい。
 更に、PLS(Partial Least Squares)回帰、重回帰分析、主成分分析、因子分析、クラスター分析等を含む多変量分析を用いて学習モデルを構築してもよい。
 また、本実施の形態では、センサS1~S5から得られる計測データを学習モデルMDへ入力する構成としたが、計測データを入力する構成に代えて、計測値の時系列変化を示すグラフ(画像)を入力する構成としてもよい。この場合、学習モデルMDには、CNN(Convolutional Neural Networks)、R-CNN(Region-based CNN)、YOLO(You Only Look Once)、SSD(Single Shot Detector)、GAN(Generative Adversarial Network)などにより構築される学習モデルを用いればよい。
 また、本実施の形態では、センサS1~S5から得られる計測データを基にしたが、センサの種類はS1~S5に限ったものではなく、モータ温度、インバータ温度など、図7の表示項目選択欄223に示す計測データを用いてもよい。
 本実施の形態では、エアフォイルベアリング(空気軸受)13を備えたブロワ1を基にしたが、エアフォイルベアリングに限らず、磁気軸受やティルティングパッド軸受などエアフォイルベアリング以外のすべり軸受を用いたブロワであってもよい。
 1 ブロワ
 11 インペラ
 12 モータ
 100 制御装置
 101 制御部
 102 記憶部
 103 入力部
 104 通信部
 120 駆動装置
 121 コンバータ
 122 インバータ
 200 状態監視装置
 201 制御部
 202 記憶部
 203 通信部
 204 操作部
 205 表示部
 300 クラウドサーバ
 

Claims (14)

  1.  ブロワの運転データを送信する通信装置と、該通信装置から送信される前記ブロワの運転データを取得し、取得した運転データに基づき、前記ブロワの状態を監視する状態監視装置とを備える状態監視システムにおいて、
     前記通信装置は、
     第1周期で記録された前記ブロワの運転データを送信する第1送信部と、
     前記第1周期よりも短い第2周期で記録された前記ブロワの運転データを、イベントの発生をトリガとして送信する第2送信部と
     を備え、
     前記状態監視装置は、
     前記通信装置より送信される前記第1周期の運転データ及び前記第2周期の運転データを取得する取得部と、
     取得した前記第2周期の運転データを分析し、前記ブロワの状態を推定する推定部と、
     該推定部による推定結果を出力する出力部と
     を備える状態監視システム。
  2.  通信装置より送信されるブロワの運転データを取得し、取得した運転データに基づき、前記ブロワの状態を推定する状態監視装置において、
     前記通信装置より送信される第1周期で記録された前記ブロワの運転データと、イベントの発生をトリガとして前記通信装置より送信される、前記第1周期よりも短い第2周期で記録された前記ブロワの運転データとを取得する取得部と、
     取得した前記第2周期の運転データを分析し、前記ブロワの状態を推定する推定部と、
     該推定部による推定結果を出力する出力部と
     を備える状態監視装置。
  3.  前記第2周期の運転データは、前記イベントが発生するよりも前の時点から前記イベントが発生した後の時点までの期間の運転データである
     請求項2に記載の状態監視装置。 
  4.  前記イベントは、前記ブロワの起動イベント又は停止イベントを含み、
     前記推定部は、前記ブロワの起動又は停止の際に得られる前記第2周期の運転データに基づき、前記ブロワが備えるコンポーネントの劣化を推定する
     請求項2又は請求項3に記載の状態監視装置。
  5.  前記ブロワは、インペラと、該インペラを回転駆動するモータと、該モータの回転軸を非接触で支持する空気軸受とを備え、
     前記取得部は、前記第2周期の運転データとして、前記モータに供給する電流、及び前記モータの回転速度の少なくとも1つを含む計測データを取得し、
     前記推定部は、取得した計測データに基づき、前記空気軸受の劣化を推定する
     請求項4に記載の状態監視装置。
  6.  前記ブロワは、インペラと、該インペラを回転駆動するモータと、該モータの回転軸を非接触で支持する空気軸受とを備え、
     前記取得部は、前記第2周期の運転データとして、前記モータに供給する電流、前記モータの回転速度、前記ブロワの吐出圧力、及び前記ブロワの吸込空気量の少なくとも1つを含む計測データを取得し、
     前記推定部は、取得した計測データに基づき、前記インペラへの塵埃の付着に伴う効率低下を推定する
     請求項4に記載の状態監視装置。
  7.  前記推定部は、第2周期の運転データが入力された場合、前記コンポーネントの劣化に関する情報を出力するように構成された学習モデルを用いて、前記コンポーネントの劣化を推定する
     請求項4から請求項6の何れか1つに記載の状態監視装置。
  8.  前記イベントは、前記ブロワの異常停止イベントを含み、
     前記推定部は、前記ブロワの異常停止の際に得られる前記第2周期の運転データに基づき、異常発生の原因を推定する
     請求項2又は請求項3に記載の状態監視装置。
  9.  前記ブロワは、インペラと、該インペラを回転駆動するモータと、該モータの回転軸を非接触で支持する空気軸受とを備え、
     前記取得部は、前記第2周期の運転データとして、前記モータに供給する電流、前記回転軸の回転速度、前記ブロワの吐出圧力、及び前記ブロワの吸込空気量の少なくとも1つを含む計測データを取得し、
     前記推定部は、取得した計測データに基づき、異常発生の原因を推定する
     請求項8に記載の状態監視装置。
  10.  前記推定部は、前記第2周期の運転データが入力された場合、前記ブロワにおける異常発生の原因に関する情報を出力するように構成された学習モデルを用いて、前記ブロワにおける異常発生の原因を推定する
     請求項8又は請求項9に記載の状態監視装置。
  11.  前記出力部は、前記推定結果と共に、前記状態の推定に用いた運転データのグラフをハイライト表示する
     請求項2から請求項10の何れか1つに記載の状態監視装置。
  12.  取得した前記第1周期の運転データに基づき、イベント発生の有無を判断する判断部を備える
     請求項2から請求項10の何れか1つに記載の状態監視装置。
  13.  ブロワの運転データに基づき、前記ブロワの状態を監視する状態監視方法において、
     コンピュータを用いて、
     第1周期で記録された前記ブロワの運転データと、イベントの発生をトリガとして送信される、前記第1周期よりも短い第2周期で記録された前記ブロワの運転データとを取得し、
     取得した前記第2周期の運転データを分析して前記ブロワの状態を推定し、
     推定結果を出力する
     状態監視方法。
  14.  コンピュータに、
     第1周期で記録されたブロワの運転データと、イベントの発生をトリガとして送信される、前記第1周期より短い第2周期で記録された前記ブロワの運転データとを取得し、
     取得した前記第2周期の運転データを分析して前記ブロワの状態を推定し、
     推定結果を出力する
     処理を実行させるためのコンピュータプログラム。
     
PCT/JP2021/038678 2020-10-27 2021-10-20 状態監視システム、状態監視装置、状態監視方法、及びコンピュータプログラム WO2022091888A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237013653A KR20230070302A (ko) 2020-10-27 2021-10-20 상태 감시 시스템, 상태 감시 장치, 상태 감시 방법, 및 기록매체
JP2022559045A JP7499347B2 (ja) 2020-10-27 2021-10-20 状態監視システム、状態監視装置、状態監視方法、及びコンピュータプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-179725 2020-10-27
JP2020179725 2020-10-27

Publications (1)

Publication Number Publication Date
WO2022091888A1 true WO2022091888A1 (ja) 2022-05-05

Family

ID=81383846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038678 WO2022091888A1 (ja) 2020-10-27 2021-10-20 状態監視システム、状態監視装置、状態監視方法、及びコンピュータプログラム

Country Status (3)

Country Link
JP (1) JP7499347B2 (ja)
KR (1) KR20230070302A (ja)
WO (1) WO2022091888A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726300A (en) * 1980-07-25 1982-02-12 Hitachi Ltd Detector of dust stuck to turbo unit
JP2008019763A (ja) * 2006-07-12 2008-01-31 Ebara Corp ポンプ遠隔管理システム
JP2019120433A (ja) * 2017-12-28 2019-07-22 ダイキン工業株式会社 空調システム及びローカルコントローラ
WO2020136897A1 (ja) * 2018-12-28 2020-07-02 株式会社安川電機 流体圧送システム、電力変換システム、電力変換装置及び流体圧送方法
JP2021161933A (ja) * 2020-03-31 2021-10-11 新明和工業株式会社 コンピュータプログラム、ブロワの状態監視方法、及びブロワの状態監視装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236164A (ja) 2011-05-12 2012-12-06 Mitsubishi Heavy Ind Ltd エアレーション装置及びこれを備えた海水排煙脱硫装置、エアレーション装置の運転方法
JP6239418B2 (ja) 2014-03-25 2017-11-29 三機工業株式会社 散気装置及び洗浄方法
JP6447302B2 (ja) 2015-03-27 2019-01-09 住友重機械エンバイロメント株式会社 水処理システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726300A (en) * 1980-07-25 1982-02-12 Hitachi Ltd Detector of dust stuck to turbo unit
JP2008019763A (ja) * 2006-07-12 2008-01-31 Ebara Corp ポンプ遠隔管理システム
JP2019120433A (ja) * 2017-12-28 2019-07-22 ダイキン工業株式会社 空調システム及びローカルコントローラ
WO2020136897A1 (ja) * 2018-12-28 2020-07-02 株式会社安川電機 流体圧送システム、電力変換システム、電力変換装置及び流体圧送方法
JP2021161933A (ja) * 2020-03-31 2021-10-11 新明和工業株式会社 コンピュータプログラム、ブロワの状態監視方法、及びブロワの状態監視装置

Also Published As

Publication number Publication date
JPWO2022091888A1 (ja) 2022-05-05
JP7499347B2 (ja) 2024-06-13
KR20230070302A (ko) 2023-05-22

Similar Documents

Publication Publication Date Title
US20240068864A1 (en) Systems and methods for monitoring of mechanical and electrical machines
Amihai et al. An industrial case study using vibration data and machine learning to predict asset health
US11494531B2 (en) Systems and methods for equipment performance modeling
US8909384B1 (en) Computing apparatus operable under multiple operational policies
JP6514239B2 (ja) 機械診断装置および機械診断方法
CN112005181B (zh) 异常检测
US11268760B2 (en) Dryer machine learning predictive maintenance method and apparatus
US20240094095A1 (en) Managing The Effectiveness Of Repairs In Refrigeration Assets
US20100058092A1 (en) Method for characterizing the health of a computer system power supply
CN103827774A (zh) 回避计算机系统中的频率激励
JP7349400B2 (ja) コンピュータプログラム、ブロワの状態監視方法、及びブロワの状態監視装置
WO2022091888A1 (ja) 状態監視システム、状態監視装置、状態監視方法、及びコンピュータプログラム
JP5196100B2 (ja) プロジェクタ、プログラム、情報記憶媒体および投写方法
JP2017215230A (ja) 回転機械の運転状態を診断する診断装置及び診断方法
CN112286759A (zh) 服务器磁盘共振防控方法及相关设备
CN107725456A (zh) 离心压缩机机组的分析诊断方法和装置
WO2022180878A1 (ja) 予測方法、プログラム、予測システム、サーバ、及び表示装置
JP2012168547A (ja) プロジェクタ、プログラムおよび投写方法
US9690339B2 (en) Systems and methods for providing user-visible thermal performance degradation monitoring in an information handling system
EP4354244A1 (en) Anomaly detection for industrial assets
US11603850B2 (en) Analysis device of vacuum pump, vacuum pump, storage medium recording analysis program, and analysis method
US20230158438A1 (en) Method and system for automatically cleaning air filters of a medical imaging system
EP4057093A1 (en) Condition monitoring of rotating machines
JP2023116377A (ja) 故障予測装置、及び、故障予測方法
JP6980392B2 (ja) 制御基板、遊技機、表示装置、リユース管理システム及び制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886007

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559045

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237013653

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21886007

Country of ref document: EP

Kind code of ref document: A1