WO2022091677A1 - 船舶監視システム、船舶監視方法、情報処理装置、及びプログラム - Google Patents

船舶監視システム、船舶監視方法、情報処理装置、及びプログラム Download PDF

Info

Publication number
WO2022091677A1
WO2022091677A1 PCT/JP2021/035825 JP2021035825W WO2022091677A1 WO 2022091677 A1 WO2022091677 A1 WO 2022091677A1 JP 2021035825 W JP2021035825 W JP 2021035825W WO 2022091677 A1 WO2022091677 A1 WO 2022091677A1
Authority
WO
WIPO (PCT)
Prior art keywords
ship
course
speed
vessel
fluctuation range
Prior art date
Application number
PCT/JP2021/035825
Other languages
English (en)
French (fr)
Inventor
成一 魚下
Original Assignee
古野電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古野電気株式会社 filed Critical 古野電気株式会社
Publication of WO2022091677A1 publication Critical patent/WO2022091677A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G3/00Traffic control systems for marine craft
    • G08G3/02Anti-collision systems

Definitions

  • the present invention relates to a ship monitoring system, a ship monitoring method, an information processing device, and a program.
  • a bumper model is known in which an elliptical space (bumper) that keeps other ships away while sailing is set around the own ship, and other ships that invade the bumper are regarded as dangerous and the degree of danger is quantified (non-). See Patent Document 1).
  • the present invention has been made in view of the above problems, and its main purpose is a ship monitoring system, a ship monitoring method, and information processing capable of improving the accuracy of risk assessment by a bumper model. To provide equipment and programs.
  • the ship monitoring system estimates the position of the first ship at each time point based on the current position, speed, and course of the first ship.
  • the second estimation unit that estimates the position of the second ship at each time point, and the ship speed of the second ship based on the current position, speed, and course of the second ship. Based on this, the fluctuation range of the position of the second ship at each time point is calculated, and the bumper area estimation unit that estimates the bumper area indicating the area where the second ship may exist based on the fluctuation range. To prepare for.
  • the position of the first ship at each time point is estimated based on the current position, speed, and course of the first ship, and the current position of the second ship.
  • the position of the second ship at each time point is estimated based on the ship speed, and the course, and the change in the position of the second ship at each time point is based on the fluctuation range of the ship speed of the second ship.
  • the width is calculated and the bumper region indicating the region where the second vessel may exist is estimated based on the fluctuation width.
  • the information processing apparatus of another aspect of the present invention includes a first estimation unit that estimates the position of the first ship at each time point based on the current position, speed, and course of the first ship.
  • the second estimation unit that estimates the position of the second ship at each time point based on the current position, speed, and course of the two ships, and the time point based on the fluctuation range of the ship speed of the second ship. It is provided with a bumper area estimation unit that calculates the fluctuation range of the position of the second ship in the above and estimates the bumper area indicating the area where the second ship may exist based on the fluctuation range.
  • the program of another aspect of the present invention estimates the position of the first ship at each time point based on the current position, speed, and course of the first ship, the current position of the second ship, and the present position of the second ship. Estimating the position of the second ship at each time point based on the ship speed and course, and the position of the second ship at each time point based on the fluctuation range of the ship speed of the second ship.
  • the computer is made to calculate the fluctuation range of the above and estimate the bumper area indicating the area where the second vessel may exist based on the fluctuation range.
  • FIG. 1 is a block diagram showing a configuration example of the ship monitoring system 100 according to the embodiment.
  • the ship monitoring method according to the embodiment is realized in the ship monitoring system 100.
  • the ship monitoring system 100 is a system for monitoring ships mounted on the ship and existing in the surroundings.
  • a ship equipped with the ship monitoring system 100 is referred to as "own ship” in the following explanation.
  • the vessels that exist around the own vessel are referred to as “other vessels” in the following explanation.
  • speed is a vector quantity representing speed and direction (so-called ship speed vector), and "speed” is a scalar quantity.
  • the ship monitoring system 100 includes an information processing device 1, a display unit 2, a radar 3, an AIS4, a GNSS receiver 5, a gyro compass 6, an ECDIS7, and an alarm unit 8. These devices are connected to a network N such as a LAN, and can communicate with each other via a network.
  • a network N such as a LAN
  • the information processing device 1 is a computer including a CPU, RAM, ROM, non-volatile memory, an input / output interface, and the like.
  • the CPU of the information processing apparatus 1 executes information processing according to a program loaded from the ROM or the non-volatile memory into the RAM.
  • the program may be supplied via an information storage medium such as an optical disk or a memory card, or may be supplied via a communication network such as the Internet or a LAN.
  • the display unit 2 is, for example, a display device with a touch sensor.
  • the touch sensor detects the position indicated on the screen by a finger or the like. Not limited to the touch sensor, the indicated position may be input by a trackball or the like.
  • Radar 3 emits radio waves around its own ship, receives the reflected waves, and generates echo data based on the received signals. Further, the radar 3 identifies the target from the echo data and generates target tracking data (TT data) indicating the position and speed of the target.
  • TT data target tracking data
  • AIS Automatic Identification System 4 receives AIS data from other ships or land controls existing around its own ship. Not limited to AIS, VDES (VHFDataExchangeSystem) may be used.
  • the AIS data includes the positions and speeds of other ships.
  • the GNSS receiver 5 detects the position of its own ship based on the radio waves received from the GNSS (Global Navigation Satellite System).
  • the gyro compass 6 detects the direction of the ship. Not limited to the gyro compass, a GPS compass or a magnetic compass may be used.
  • ECDIS Electronic Chart Display and Information System 7 acquires the position of its own ship from the GNSS receiver 5 and displays the position of its own ship on the electronic chart.
  • the ECDIS 7 also displays the planned route of the ship on the electronic chart.
  • a GNSS plotter may be used.
  • the alarm unit 8 issues an alarm when there is a risk that the own ship will collide with another ship.
  • the alarm unit 8 may be, for example, an alarm by display, or an alarm by sound or light.
  • the display alarm may be given by the display unit 2. That is, the display unit 2 may also serve as the alarm unit 8.
  • the information processing device 1 is an independent device, but the information processing device 1 is not limited to this, and may be integrated with other devices such as ECDIS 7. That is, the functional unit of the information processing device 1 may be realized by another device such as ECDIS 7.
  • the display unit 2 is also an independent device, but the present invention is not limited to this, and the display unit of another device such as ECDIS 7 may be used as the display unit 2 for displaying the image generated by the information processing device 1. ..
  • the set of the GNSS receiver 5 and the ECDIS 7 is an example of the first data generation unit, and generates the own ship data representing the position and speed of the own ship. Specifically, the GNSS receiver 5 detects the position of the own ship, and the ECDIS 7 detects the speed of the own ship from the time change of the position of the own ship.
  • the speed of the own ship may be detected based on the direction of the own ship detected by the gyro compass 6 and the speed of the own ship detected by the speedometer (not shown).
  • the radar 3 or AIS4 is an example of the second data generation unit, and generates data of another ship representing the position and speed of another ship.
  • the TT data generated by the radar 3 corresponds to the data of another ship.
  • the AIS data generated by AIS4 also corresponds to the data of other ships.
  • FIG. 2 is a diagram showing an example of another ship management database built in the memory of the information processing device 1.
  • Other ship data generated by radar 3 or AIS4 is registered in the other ship management database.
  • the other ship management database includes fields such as "other ship identifier”, "position”, “speed”, and "direction”.
  • the positions and directions of other ships detected by the radar 3 are converted to the same coordinate system as GNSS.
  • FIG. 3 is a diagram showing a configuration example of the information processing apparatus 1 according to the embodiment.
  • the information processing device 1 includes a own ship position estimation unit 11, another ship position estimation unit 12, a bumper area estimation unit 13, a prediction course estimation unit 14, an index calculation unit 15, an alarm determination unit 16, and a display control unit 17. ing. These functional units are realized by the CPU of the information processing apparatus 1 executing information processing according to a program.
  • the own ship position estimation unit 11 estimates the position of the own ship at each time point based on the current position of the own ship, the speed of the ship, and the course. Specifically, the own ship position estimation unit 11 estimates the position of the own ship at each time point on the assumption that the own ship sails from the current position with the ship speed and course constant.
  • the own ship position estimation unit 11 is an example of the first estimation unit.
  • the other ship position estimation unit 12 estimates the position of the other ship at each time point based on the current position, the ship speed, and the course of the other ship. Specifically, the other ship position estimation unit 12 estimates the position of the other ship at each time point on the assumption that the other ship sails from the current position with the ship speed and course constant.
  • the other ship position estimation unit 12 is an example of the second estimation unit.
  • the bumper area estimation unit 13 calculates the fluctuation range of the position of the other ship at each time point based on the fluctuation range of the ship speed of the other ship, and indicates the region where the other ship may exist based on the fluctuation range. Estimate the bumper area. Further, the bumper area estimation unit 13 may estimate the bumper area based on the fluctuation range of the course of the other ship in addition to the fluctuation range of the ship speed of the other ship.
  • the bumper area estimation unit 13 calculates the fluctuation range of the position of the own ship at each time point based on the fluctuation range of the ship speed of the own ship, and the area where the own ship may exist based on the fluctuation range.
  • the bumper region indicating the above may be estimated.
  • the bumper area estimation unit 13 may estimate the bumper area based on the fluctuation range of the course of the own ship in addition to the fluctuation range of the ship speed of the own ship.
  • the predicted course assumption unit 14 calculates the fluctuation range of the position of the own ship at each time point based on the fluctuation range of the course of the own ship, and calculates the course that the own ship may navigate based on the fluctuation range. do. Further, the predicted course assumption unit 14 calculates the fluctuation range of the position of the other ship at each time point based on the fluctuation range of the course of the other ship, and the course that the other ship may navigate based on the fluctuation range. May be calculated.
  • the fluctuation range is also referred to as "variation".
  • the variation in ship speed (speed) is obtained from a plurality of instantaneous ship speeds accumulated in a predetermined period by storing the momentary ship speeds acquired periodically in a buffer memory (not shown).
  • the variation of the course is obtained from a plurality of instantaneous courses accumulated in a predetermined period by storing the momentary courses acquired periodically in a buffer memory (not shown).
  • the index calculation unit 15 evaluates the degree of risk using the bumper model. Specifically, the index calculation unit 15 sets the bumper region based on the position of one of the own ship and the other ship, and calculates an index indicating the approach of the other ship to the bumper area. For example, the index calculation unit 15 calculates an index indicating the approach of the position of the own ship on the course of the own ship to the bumper region of another ship. Further, the index calculation unit 15 may calculate an index indicating the approach of the position of the other ship on the course of the other ship to the bumper region of the own ship. The index indicating the approach is, for example, the approach time until the other ship reaches the bumper area of one ship. TCPA (Time to Closest Point of Approach) may be used for the approach time.
  • TCPA Time to Closest Point of Approach
  • the alarm determination unit 16 outputs an alarm command to the alarm unit 8 when the index indicating the approach to the bumper area satisfies a predetermined condition. For example, when the approach time until reaching the bumper area is equal to or less than the threshold value, the alarm command is output.
  • the alarm is issued, for example, on the display unit 2 that also serves as the alarm unit 8, highlighting such as changing the color of the symbol of another ship, blinking it, or adding a frame indicating that it is the target of the alarm. Is realized by doing.
  • the display control unit 17 generates an image showing the positional relationship between the own ship and the other ship based on the own ship data and the other ship data, and outputs the image to the display unit 2. Further, as will be described later, the display control unit 17 may display the course according to the variation in the speed of the own ship or another ship, or display the bumper area according to the variation in the speed of the own ship or another ship. You may.
  • FIG. 4 and 5 are diagrams for explaining the evaluation of speed variation. As shown in FIG. 4, it is assumed that the speed vector of the own ship and the speed vector of another ship have a two-dimensional variation. At this time, as shown in FIG. 5, the relative velocity vectors of the own ship and the other ship also have a two-dimensional variation.
  • the variation of the velocity vector can be decomposed into the direction of the representative velocity vector (course or bow direction) and the direction orthogonal to it.
  • the component in the direction of the representative velocity vector represents "variation in speed", and the component in the direction orthogonal to it represents "variation in course”.
  • the representative velocity vector is calculated from a plurality of velocity vectors using a low bus filter such as a moving average.
  • the variability is calculated using, for example, one or both of the variance-covariance matrices of the velocity vector.
  • the broken line circle representing the variation in the figure is a circle containing the tips of a plurality of velocity vectors with high probability (for example, a 95% confidence ellipse).
  • the velocity vector has been described, but the same applies to the relative velocity vector.
  • FIG. 6 is a diagram showing an example of setting the course variation range.
  • the course variation range is set based on the representative speed vector and the course variation, and is used for risk evaluation by the bumper model by the index calculation unit 15 and also used for screen display by the display control unit 17.
  • the course variation range is formed in a triangular shape or a fan shape that gradually expands in the port direction toward the bow, for example.
  • the width of the front end portion of the course variation range is a width corresponding to the course variation.
  • the length of the course variation range in the bow direction is a length corresponding to the representative speed vector.
  • a representative velocity vector is arranged by an arrow inside the course variation range. The arrow of the representative velocity vector may be arranged so as to reflect the positional relationship with the course variation, or may be arranged in the center of the course variation range.
  • FIG. 7 is a diagram for explaining a calculation example and a display example of a risk assessment by a bumper model when a bumper region is set around the own ship and a course variation range of a relative velocity vector is set for another ship. ..
  • the index calculation unit 15 calculates the approach time until the other ship reaches the bumper area of the own ship based on the bumper area of the own ship and the course variation range of the other ship. That is, the index calculation unit 15 approaches the bumper area of the own ship at the position of the other ship on the closest expected course that is closest to the bumper area of the own ship among the positions of the other ship on the predicted course of the other ship. Calculate the index to represent.
  • the index calculation unit 15 has at least a part of the bumper region of the own ship in the extension region (that is, the region between the extension line on the left side and the extension line on the right side) in which the course variation range of the other ship is extended.
  • the approach time until the other ship reaches the bumper area of the own ship is calculated.
  • the index calculation unit 15 considers that there is a risk of intrusion when the relative direction of the bumper region of the own ship as seen from the other ship is within the course variation range of the other ship.
  • FIG. 8 is a diagram for explaining a calculation example and a display example of a risk assessment by a bumper model when a bumper region is set around another ship and a course variation range of a relative velocity vector is set for the own ship. .. Similar to the example of FIG. 7, the index calculation unit 15 calculates the approach time until the own ship reaches the bumper area of the other ship based on the bumper area of the other ship and the course variation range of the own ship. .. That is, the index calculation unit 15 approaches the bumper area of the other ship at the position of the own ship on the closest expected course that is closest to the bumper area of the other ship among the positions of the own ship on the predicted course of the own ship. Calculate the index to represent.
  • FIG. 9 is a diagram showing an example of setting the bumper region according to the variation of the velocity vector.
  • the bumper region is expanded according to the variation of the velocity vector.
  • Such a bumper region is used not only for the risk evaluation by the index calculation unit 15 but also for the screen display by the display control unit 17.
  • the bumper region corresponding to the variation of the velocity vector is expanded in each direction with reference to the bumper region when there is no variation of the velocity vector.
  • the distance a from the tip of the representative speed vector to the end of the circle representing the variation range in the starboard direction
  • the distance b to the end in the starboard direction the distance c to the end in the stern direction
  • the end in the port direction the distances proportional to the distance d are extended in the nose direction, the starboard direction, the stern direction, and the port direction, respectively.
  • FIG. 10 is a diagram for explaining a calculation example and a display example of the danger evaluation by the bumper model when the bumper region corresponding to the variation of the speed vector is set around the own ship.
  • the index calculation unit 15 calculates the approach time until the other ship reaches the bumper area of the own ship based on the bumper area of the own ship and the relative speed vector of the other ship. Specifically, the index calculation unit 15 determines that if the bumper region of the own ship is located on an extension line extending the relative velocity vector of the other ship, there is a risk of intrusion, and the other ship enters the bumper region of the own ship. Calculate the approach time to reach.
  • FIG. 11 is a diagram for explaining a calculation example and a display example of the danger evaluation by the bumper model when the bumper region corresponding to the variation of the speed vector is set around the other ship. Similar to the example of FIG. 10, the index calculation unit 15 calculates the approach time until the own ship reaches the bumper area of the other ship based on the relative speed vector of the own ship and the bumper area of the other ship. ..
  • the operator can see at a glance how much the speed vectors of other ships are scattered without having to keep looking at the screen. It will be easier to grasp. Furthermore, since the risk value when approaching another ship whose speed is unstable is higher and easier to calculate, it is possible to issue an alarm promptly.
  • a course variation range may be set for one of the own ship and the other ship, and a bumper area corresponding to the variation of the speed vector may be set for the other, or both the own ship and the other ship may be set according to the variation of the speed vector.
  • the bumper area may be set.

Abstract

【課題】バンパーモデルによる危険度評価の精度向上を図ることが可能なことが可能な船舶監視システムを提供する。 【解決手段】船舶監視システムは、第1船舶の現在位置、船速、及び針路に基づいて、各時点での第1船舶の位置を推定する第1推定部と、第2船舶の現在位置、船速、及び針路に基づいて、各時点での第2船舶の位置を推定する第2推定部と、第2船舶の船速の変動幅に基づいて各時点での第2船舶の位置の変動幅を算出し、該変動幅に基づいて第2船舶が存する可能性のある領域を示すバンパー領域を推定するバンパー領域推定部と、を備える。

Description

船舶監視システム、船舶監視方法、情報処理装置、及びプログラム
 本発明は、船舶監視システム、船舶監視方法、情報処理装置、及びプログラムに関する。
 航行中に他船を近づけない楕円形の空間(バンパー)を自船の周囲に設定し、バンパーに侵入する他船を危険とみなして危険度を数値化するバンパーモデルが知られている(非特許文献1参照)。
井上欣三,宇佐美茂,柴田登紀子,"制約水域における航過距離と離隔距離に関する操船者意識のモデル化",日本航海学会論文集,1994年,Vol.90,p.297-306
 ところで、計測される他船の速度にはばらつきがあるため、バンパーモデルによる危険度評価が困難になることがある。なお、速度のばらつきの要因としては、例えば海況(海流)、波浪、天候(風)、推進力の変動(推進部の挙動)などが挙げられる。
 本発明は、上記課題に鑑みてなされたものであり、その主な目的は、バンパーモデルによる危険度評価の精度向上を図ることが可能なことが可能な船舶監視システム、船舶監視方法、情報処理装置、及びプログラムを提供することにある。
 上記課題を解決するため、本発明の一の態様の船舶監視システムは、第1船舶の現在位置、船速、及び針路に基づいて、各時点での前記第1船舶の位置を推定する第1推定部と、第2船舶の現在位置、船速、及び針路に基づいて、各時点での前記第2船舶の位置を推定する第2推定部と、前記第2船舶の船速の変動幅に基づいて前記各時点での前記第2船舶の位置の変動幅を算出し、該変動幅に基づいて前記第2船舶が存する可能性のある領域を示すバンパー領域を推定するバンパー領域推定部と、を備える。
 また、本発明の他の態様の船舶監視方法は、第1船舶の現在位置、船速、及び針路に基づいて、各時点での前記第1船舶の位置を推定し、第2船舶の現在位置、船速、及び針路に基づいて、各時点での前記第2船舶の位置を推定し、前記第2船舶の船速の変動幅に基づいて前記各時点での前記第2船舶の位置の変動幅を算出し、該変動幅に基づいて前記第2船舶が存する可能性のある領域を示すバンパー領域を推定する。
 また、本発明の他の態様の情報処理装置は、第1船舶の現在位置、船速、及び針路に基づいて、各時点での前記第1船舶の位置を推定する第1推定部と、第2船舶の現在位置、船速、及び針路に基づいて、各時点での前記第2船舶の位置を推定する第2推定部と、前記第2船舶の船速の変動幅に基づいて前記各時点での前記第2船舶の位置の変動幅を算出し、該変動幅に基づいて前記第2船舶が存する可能性のある領域を示すバンパー領域を推定するバンパー領域推定部と、を備える。
 また、本発明の他の態様のプログラムは、第1船舶の現在位置、船速、及び針路に基づいて、各時点での前記第1船舶の位置を推定すること、第2船舶の現在位置、船速、及び針路に基づいて、各時点での前記第2船舶の位置を推定すること、及び、前記第2船舶の船速の変動幅に基づいて前記各時点での前記第2船舶の位置の変動幅を算出し、該変動幅に基づいて前記第2船舶が存する可能性のある領域を示すバンパー領域を推定すること、をコンピュータに実行させる。
 本発明によれば、バンパーモデルによる危険度評価の精度向上を図ることが可能となる。
実施形態に係る船舶監視システムの構成例を示す図である。 他船管理データベースの例を示す図である。 実施形態に係る情報処理装置の構成例を示す図である。 速度のばらつきを説明するための図である。 相対速度のばらつきを説明するための図である。 針路ばらつき範囲の設定例を示す図である。 計算例及び表示例を説明するための図である。 計算例及び表示例を説明するための図である。 バンパー領域の設定例を示す図である。 計算例及び表示例を説明するための図である。 計算例及び表示例を説明するための図である。
 以下、本発明の実施形態について、図面を参照しながら説明する。
 図1は、実施形態に係る船舶監視システム100の構成例を示すブロック図である。実施形態に係る船舶監視方法は、船舶監視システム100において実現される。船舶監視システム100は、船舶に搭載され、周囲に存在する船舶を監視するためのシステムである。
 船舶監視システム100が搭載された船舶は、以下の説明では「自船」という。また、自船の周囲に存在する船舶は、以下の説明では「他船」という。
 また、以下の説明において、「速度」は速さと方位を表すベクトル量(いわゆる、船速ベクトル)であるとし、「速さ」はスカラー量であるとする。
 船舶監視システム100は、情報処理装置1、表示部2、レーダー3、AIS4、GNSS受信機5、ジャイロコンパス6、ECDIS7、及び警報部8を備えている。これらの機器は、例えばLAN等のネットワークNに接続されており、相互にネットワーク通信が可能である。
 情報処理装置1は、CPU、RAM、ROM、不揮発性メモリ、及び入出力インターフェース等を含むコンピュータである。情報処理装置1のCPUは、ROM又は不揮発性メモリからRAMにロードされたプログラムに従って情報処理を実行する。
 プログラムは、例えば光ディスク又はメモリカード等の情報記憶媒体を介して供給されてもよいし、例えばインターネット又はLAN等の通信ネットワークを介して供給されてもよい。
 表示部2は、例えばタッチセンサ付き表示装置である。タッチセンサは、指等による画面内の指示位置を検出する。タッチセンサに限らず、トラックボール等により指示位置が入力されてもよい。
 レーダー3は、自船の周囲に電波を発するとともにその反射波を受信し、受信信号に基づいてエコーデータを生成する。また、レーダー3は、エコーデータから物標を識別し、物標の位置及び速度を表す物標追跡データ(TTデータ)を生成する。
 AIS(Automatic Identification System)4は、自船の周囲に存在する他船又は陸上の管制からAISデータを受信する。AISに限らず、VDES(VHF Data Exchange System)が用いられてもよい。AISデータは、他船の位置及び速度等を含んでいる。
 GNSS受信機5は、GNSS(Global Navigation Satellite System)から受信した電波に基づいて自船の位置を検出する。ジャイロコンパス6は、自船の方位を検出する。ジャイロコンパスに限らず、GPSコンパス又は磁気コンパスが用いられてもよい。
 ECDIS(Electronic Chart Display and Information System)7は、GNSS受信機5から自船の位置を取得し、電子海図上に自船の位置を表示する。また、ECDIS7は、電子海図上に自船の予定航路も表示する。ECDISに限らず、GNSSプロッタが用いられてもよい。
 警報部8は、自船が他船と衝突するリスクがある場合に警報を発報する。警報部8は、例えば表示による警報であってもよいし、音又は光による警報であってもよい。表示による警報は、表示部2において行われてもよい。すなわち、表示部2が警報部8を兼ねてもよい。
 本実施形態において、情報処理装置1は独立した装置であるが、これに限らず、ECDIS7等の他の装置と一体であってもよい。すなわち、情報処理装置1の機能部がECDIS7等の他の装置で実現されてもよい。
 また、表示部2も独立した装置であるが、これに限らず、ECDIS7等の他の装置の表示部が、情報処理装置1により生成された画像を表示する表示部2として用いられてもよい。
 本実施形態において、GNSS受信機5とECDIS7の組は、第1データ生成部の例であり、自船の位置及び速度を表す自船データを生成する。具体的には、GNSS受信機5が自船の位置を検出するとともに、ECDIS7が自船の位置の時間変化から自船の速度を検出する。
 これに限らず、自船の速度は、ジャイロコンパス6により検出される自船の方位と、不図示の船速計により検出される自船の速さとに基づいて検出されてもよい。
 また、レーダー3又はAIS4は、第2データ生成部の例であり、他船の位置及び速度を表す他船データを生成する。具体的には、レーダー3により生成されるTTデータが他船データに相当する。また、AIS4により生成されるAISデータも他船データに相当する。
 図2は、情報処理装置1のメモリに構築される他船管理データベースの例を示す図である。他船管理データベースには、レーダー3又はAIS4により生成された他船データが登録される。
 他船管理データベースは、「他船識別子」、「位置」、「速さ」、及び「方位」等のフィールドを含んでいる。なお、レーダー3により検出される他船の位置及び方位は、GNSSと同じ座標系に変換される。
 図3は、実施形態に係る情報処理装置1の構成例を示す図である。情報処理装置1は、自船位置推定部11、他船位置推定部12、バンパー領域推定部13、予測針路想定部14、指標算出部15、発報判定部16、及び表示制御部17を備えている。これらの機能部は、情報処理装置1のCPUがプログラムに従って情報処理を実行することにより実現される。
 自船位置推定部11は、自船の現在位置、船速、及び針路に基づいて、各時点での自船の位置を推定する。具体的には、自船位置推定部11は、自船が現在位置から船速及び針路が一定のまま航行するとの仮定のもとで、各時点での自船の位置を推定する。自船位置推定部11は、第1推定部の例である。
 他船位置推定部12は、他船の現在位置、船速、及び針路に基づいて、各時点での他船の位置を推定する。具体的には、他船位置推定部12は、他船が現在位置から船速及び針路が一定のまま航行するとの仮定のもとで、各時点での他船の位置を推定する。他船位置推定部12は、第2推定部の例である。
 バンパー領域推定部13は、他船の船速の変動幅に基づいて各時点での他船の位置の変動幅を算出し、該変動幅に基づいて他船が存する可能性のある領域を示すバンパー領域を推定する。また、バンパー領域推定部13は、他船の船速の変動幅に加え、他船の針路の変動幅に基づいて、バンパー領域を推定してもよい。
 また、バンパー領域推定部13は、自船の船速の変動幅に基づいて各時点での自船の位置の変動幅を算出し、該変動幅に基づいて自船が存する可能性のある領域を示すバンパー領域を推定してもよい。また、バンパー領域推定部13は、自船の船速の変動幅に加え、自船の針路の変動幅に基づいて、バンパー領域を推定してもよい。
 予測針路想定部14は、自船の針路の変動幅に基づいて各時点での自船の位置の変動幅を算出し、該変動幅に基づいて自船が航行する可能性のある針路を算出する。また、予測針路想定部14は、他船の針路の変動幅に基づいて各時点での他船の位置の変動幅を算出し、該変動幅に基づいて他船が航行する可能性のある針路を算出してもよい。
 以下、変動幅を「ばらつき」ともいう。例えば、船速(速さ)のばらつきは、定期的に取得される瞬間船速を不図示のバッファメモリに記憶し、所定期間に蓄積された複数の瞬間船速から求められる。同様に、針路のばらつきは、定期的に取得される瞬間針路を不図示のバッファメモリに記憶し、所定期間に蓄積された複数の瞬間針路から求められる。
 指標算出部15は、バンパーモデルによる危険度評価を行う。具体的には、指標算出部15は、自船及び他船の一方の船舶の位置を基準にバンパー領域を設定し、他方の船舶によるバンパー領域への接近を表す指標を算出する。例えば、指標算出部15は、自船の針路上の自船の位置の他船のバンパー領域への接近を示す指標を算出する。また、指標算出部15は、他船の針路上の他船の位置の自船のバンパー領域への接近を示す指標を算出してもよい。接近を表す指標は、例えば一方の船舶のバンパー領域に他方の船舶が到達するまでの接近時間である。接近時間には、TCPA(Time to Closest Point of Approach)が用いられてもよい。
 発報判定部16は、バンパー領域への接近を表す指標が所定の条件を充足するときに、警報部8に発報指令を出力する。例えば、バンパー領域に到達するまでの接近時間が閾値以下である場合に、発報指令が出力される。警報の発報は、例えば警報部8を兼ねる表示部2において、他船のシンボルの色等を変更したり、点滅させたり、又は警報の対象であることを表す枠を付加する等の強調表示を行うことによって実現される。
 表示制御部17は、自船データ及び他船データに基づいて、自船及び他船の位置関係を示す画像を生成し、表示部2に出力する。また、表示制御部17は、後述するように、自船又は他船の速度のばらつきに応じた針路を表示してもよいし、自船又は他船の速度のばらつきに応じたバンパー領域を表示してもよい。
 図4及び図5は、速度のばらつきの評価を説明するための図である。図4に示すように、自船の速度ベクトル及び他船の速度ベクトルは2次元のばらつきを持つとする。このとき、図5に示すように、自船と他船の相対速度ベクトルも2次元のばらつきを持つ。
 速度ベクトルのばらつきは、代表速度ベクトルの方向(針路又は船首方向)と、それに直交する方向とに分解できる。代表速度ベクトルの方向の成分は「速さのばらつき」を表し、それと直交する方向の成分は「針路のばらつき」を表す。代表速度ベクトルは、例えば移動平均などのローバスフィルタを用いて、複数の速度ベクトルから算出される。ばらつきは、例えば速度ベクトルの分散共分散行列の一方又は両方を用いて算出される。図中のばらつきを表す破線の円は、複数の速度ベクトルの先端を高確率で含む円(例えば95%信頼楕円)である。速度ベクトルについて説明したが、相対速度ベクトルについても同様である。
 図6は、針路ばらつき範囲の設定例を示す図である。針路ばらつき範囲は、代表速度ベクトル及び針路のばらつきに基づいて設定され、指標算出部15によるバンパーモデルによる危険評価に用いられるとともに、表示制御部17による画面表示にも用いられる。
 具体的には、針路ばらつき範囲は、例えば船首方向に向かうに従って左右舷方向に徐々に広がる三角形ないし扇形に形成されている。針路ばらつき範囲の前端部の幅は、針路のばらつきに応じた幅となっている。また、針路ばらつき範囲の船首方向の長さは、代表速度ベクトルに応じた長さとなっている。針路ばらつき範囲の内側には、代表速度ベクトルが矢印で配置される。代表速度ベクトルの矢印は、針路のばらつきとの位置関係を反映するように配置されてもよいし、針路ばらつき範囲の中央に配置されてもよい。
 図7は、自船の周囲にバンパー領域を設定し、他船に相対速度ベクトルの針路ばらつき範囲を設定した場合の、バンパーモデルによる危険評価の計算例及び表示例を説明するための図である。指標算出部15は、自船のバンパー領域と他船の針路ばらつき範囲とに基づいて、他船が自船のバンパー領域に到達するまでの接近時間を算出する。すなわち、指標算出部15は、他船の予測針路上の他船の位置の中で最も自船のバンパー領域へ近づく最接近予想針路上の他船の位置の自船のバンパー領域への接近を表す指標を算出する。
 具体的には、指標算出部15は、他船の針路ばらつき範囲を延長した延長領域(すなわち、左辺の延長線と右辺の延長線との間の領域)に自船のバンパー領域の少なくとも一部が重複する場合に、侵入のおそれがあるとして、他船が自船のバンパー領域に到達するまでの接近時間を算出する。言い換えると、指標算出部15は、他船から見た自船のバンパー領域の相対方位が他船の針路ばらつき範囲内に存在する場合に、侵入のおそれがあるとする。
 図8は、他船の周囲にバンパー領域を設定し、自船に相対速度ベクトルの針路ばらつき範囲を設定した場合の、バンパーモデルによる危険評価の計算例及び表示例を説明するための図である。指標算出部15は、上記図7の例と同様に、他船のバンパー領域と自船の針路ばらつき範囲とに基づいて、自船が他船のバンパー領域に到達するまでの接近時間を算出する。すなわち、指標算出部15は、自船の予測針路上の自船の位置の中で最も他船のバンパー領域へ近づく最接近予想針路上の自船の位置の他船のバンパー領域への接近を表す指標を算出する。
 以上のように、自船又は他船に針路ばらつき範囲を設定することにより、針路のばらつきを考慮したバンパーモデルによる危険度評価が可能となる。また、特に他船について針路ばらつきを表示することで、操船者は、他船の速度ベクトルがどの程度ばらついているかを、画面を見続けなくても、一見して把握することが容易となる。
 図9は、速度ベクトルのばらつきに応じたバンパー領域の設定例を示す図である。本例では、バンパー領域が、速度ベクトルのばらつきに応じて拡張される。このようなバンパー領域は、指標算出部15による危険評価に用いられるとともに、表示制御部17による画面表示にも用いられる。
 速度ベクトルのばらつきに応じたバンパー領域は、速度ベクトルのばらつきが無い場合のバンパー領域を基準として、各方向に拡張されている。具体的には、代表速度ベクトルの先端からばらつき範囲を表す円の船首方向の端までの距離a、右舷方向の端までの距離b、船尾方向の端までの距離c、及び左舷方向の端までの距離dにそれぞれ比例する距離が、船首方向、右舷方向、船尾方向、及び左舷方向にそれぞれ拡張されている。
 図10は、自船の周囲に速度ベクトルのばらつきに応じたバンパー領域を設定した場合の、バンパーモデルによる危険評価の計算例及び表示例を説明するための図である。指標算出部15は、自船のバンパー領域と他船の相対速度ベクトルとに基づいて、他船が自船のバンパー領域に到達するまでの接近時間を算出する。具体的には、指標算出部15は、他船の相対速度ベクトルを延長した延長線上に自船のバンパー領域が位置する場合に、侵入のおそれがあるとして、他船が自船のバンパー領域に到達するまでの接近時間を算出する。
 図11は、他船の周囲に速度ベクトルのばらつきに応じたバンパー領域を設定した場合の、バンパーモデルによる危険評価の計算例及び表示例を説明するための図である。指標算出部15は、上記図10の例と同様に、自船の相対速度ベクトルと他船のバンパー領域とに基づいて、自船が他船のバンパー領域に到達するまでの接近時間を算出する。
 以上のように、自船又は他船に速度ベクトルのばらつきに応じたバンパー領域を設定することにより、速度ベクトルのばらつきを考慮したバンパーモデルによる危険度評価が可能となる。
 特には、他船について速度ベクトルのばらつきに応じたバンパー領域が表示されることで、操船者は、他船の速度ベクトルがどの程度ばらついているかを、画面を見続けなくても、一見して把握することが容易となる。さらに、速度が不安定な他船に接近したときのリスク値がより高く算出されやすくなるため、迅速な警報の発報が可能となる。
 なお、上記図7-8,10-11に説明した態様は、適宜組み合わされてもよい。例えば、自船及び他船の一方に針路ばらつき範囲を設定し、他方に速度ベクトルのばらつきに応じたバンパー領域を設定してもよいし、自船及び他船の両方に速度ベクトルのばらつきに応じたバンパー領域を設定してもよい。
 以上、本発明の実施形態について説明したが、本発明は以上に説明した実施形態に限定されるものではなく、種々の変更が当業者にとって可能であることはもちろんである。
1 情報処理装置、2 表示部、3 レーダー、4 AIS、5 GNSS受信機、6 ジャイロコンパス、7 ECDIS、8 警報部、11 自船位置推定部、12 他船位置推定部、13 バンパー領域推定部、14 予測針路想定部、15 指標算出部、16 発報判定部、17 表示制御部、100 船舶監視システム

 

Claims (12)

  1.  第1船舶の現在位置、船速、及び針路に基づいて、各時点での前記第1船舶の位置を推定する第1推定部と、
     第2船舶の現在位置、船速、及び針路に基づいて、各時点での前記第2船舶の位置を推定する第2推定部と、
     前記第2船舶の船速の変動幅に基づいて前記各時点での前記第2船舶の位置の変動幅を算出し、該変動幅に基づいて前記第2船舶が存する可能性のある領域を示すバンパー領域を推定するバンパー領域推定部と、
     を備える、船舶監視システム。
  2.  前記バンパー領域推定部は、前記第2船舶の船速の変動幅に加え、前記第2船舶の針路の変動幅に基づいて、前記バンパー領域を推定する、
     請求項1に記載の船舶監視システム。
  3.  前記第1船舶の針路上の前記第1船舶の位置の前記第2船舶の前記バンパー領域への接近を示す指標を算出する指標算出部をさらに備える、
     請求項1または2に記載の船舶監視システム、
  4.  前記指標が所定の条件を充足するときに警報を発報する警報部をさらに備える、
     請求項3に記載の船舶監視システム。
  5.  前記第1船舶の前記針路の変動幅に基づいて前記各時点での前記第1船舶の位置の変動幅を算出し、該変動幅に基づいて前記第1船舶が航行する可能性のある針路を算出する予測針路想定部を備え、
     前記指標算出部は、前記第1船舶の予測針路上の前記第1船舶の位置の中で最も前記第2船舶の前記バンパー領域へ近づく最接近予想針路上の前記第1船舶の位置の前記第2船舶の前記バンパー領域への接近を示す前記指標を算出する、
     請求項1ないし4の何れかに記載の船舶監視システム。
  6.  前記指標は、前記バンパー領域に到達するまでの時間である、
     請求項1ないし5の何れかに記載の船舶監視システム。
  7.  前記第2船舶の速度の変動幅を表示する表示部をさらに備える、
     請求項1ないし6の何れかに記載の船舶監視システム。
  8.  前記表示部は、前記第2船舶の速度の変動幅とともに、前記第2船舶の速度の代表ベクトルを表示する、
     請求項7に記載の船舶監視システム。
  9.  前記第2船舶の前記バンパー領域を表示する表示部をさらに備える、
     請求項1ないし8の何れかに記載の船舶監視システム。
  10.  第1船舶の現在位置、船速、及び針路に基づいて、各時点での前記第1船舶の位置を推定し、
     第2船舶の現在位置、船速、及び針路に基づいて、各時点での前記第2船舶の位置を推定し、
     前記第2船舶の船速の変動幅に基づいて前記各時点での前記第2船舶の位置の変動幅を算出し、該変動幅に基づいて前記第2船舶が存する可能性のある領域を示すバンパー領域を推定する、
     船舶監視方法。
  11.  第1船舶の現在位置、船速、及び針路に基づいて、各時点での前記第1船舶の位置を推定する第1推定部と、
     第2船舶の現在位置、船速、及び針路に基づいて、各時点での前記第2船舶の位置を推定する第2推定部と、
     前記第2船舶の船速の変動幅に基づいて前記各時点での前記第2船舶の位置の変動幅を算出し、該変動幅に基づいて前記第2船舶が存する可能性のある領域を示すバンパー領域を推定するバンパー領域推定部と、
     を備える、情報処理装置。
  12.  第1船舶の現在位置、船速、及び針路に基づいて、各時点での前記第1船舶の位置を推定すること、
     第2船舶の現在位置、船速、及び針路に基づいて、各時点での前記第2船舶の位置を推定すること、及び、
     前記第2船舶の船速の変動幅に基づいて前記各時点での前記第2船舶の位置の変動幅を算出し、該変動幅に基づいて前記第2船舶が存する可能性のある領域を示すバンパー領域を推定すること、
     をコンピュータに実行させるためのプログラム。

     
PCT/JP2021/035825 2020-10-29 2021-09-29 船舶監視システム、船舶監視方法、情報処理装置、及びプログラム WO2022091677A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-181422 2020-10-29
JP2020181422 2020-10-29

Publications (1)

Publication Number Publication Date
WO2022091677A1 true WO2022091677A1 (ja) 2022-05-05

Family

ID=81384028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035825 WO2022091677A1 (ja) 2020-10-29 2021-09-29 船舶監視システム、船舶監視方法、情報処理装置、及びプログラム

Country Status (1)

Country Link
WO (1) WO2022091677A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019204396A (ja) * 2018-05-25 2019-11-28 株式会社本間組 工事船舶運航管理システム
WO2020003856A1 (ja) * 2018-06-27 2020-01-02 古野電気株式会社 衝突警報装置及び衝突警報方法
WO2020008776A1 (ja) * 2018-07-06 2020-01-09 古野電気株式会社 表示データ生成装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019204396A (ja) * 2018-05-25 2019-11-28 株式会社本間組 工事船舶運航管理システム
WO2020003856A1 (ja) * 2018-06-27 2020-01-02 古野電気株式会社 衝突警報装置及び衝突警報方法
WO2020008776A1 (ja) * 2018-07-06 2020-01-09 古野電気株式会社 表示データ生成装置

Similar Documents

Publication Publication Date Title
US20170052029A1 (en) Ship display device
US11776411B2 (en) Ship navigation assisting device
US10126408B2 (en) Method and device for displaying ship vicinity information
US20200018601A1 (en) Navigation device and method of creating route
JP2021530828A (ja) 船舶を制御するシステムおよび方法
JP6984874B2 (ja) 航海計画方法及び航海計画システム
EP4095030A1 (en) Maneuvering assistance device
WO2022091677A1 (ja) 船舶監視システム、船舶監視方法、情報処理装置、及びプログラム
WO2022230332A1 (ja) 船舶監視システム、船舶監視方法、情報処理装置、及びプログラム
EP4234385A1 (en) Ship monitoring system, ship monitoring method, information processing device, and program
CN111984006B (zh) 融合海流及尺度差异影响的无人艇多目标会遇避碰方法
EP4357235A1 (en) Ship monitoring system, ship monitoring method, information processing device, and program
WO2022239401A1 (ja) 船舶監視システム、船舶監視方法、情報処理装置、及びプログラム
JPWO2020070841A1 (ja) 船舶の係留施設に対する衝突の防止を支援するためのシステム及びプログラム
EP4235622A1 (en) Ship monitoring system, ship monitoring method, information processing device, and program
WO2022239402A1 (ja) 船舶監視システム、船舶監視方法、情報処理装置、及びプログラム
WO2022249632A1 (ja) 船舶監視装置、船舶監視方法、及びプログラム
WO2024057826A1 (en) Navigation supporting device, navigation supporting system, navigation supporting method, and navigation supporting program
WO2023074014A1 (ja) 船舶監視装置、船舶監視方法、及びプログラム
WO2022102323A1 (ja) 船舶監視システム、船舶監視方法、情報処理装置、及びプログラム
JP2022170015A (ja) 操船支援システム、操船支援方法、情報処理装置、及びプログラム
WO2023210366A1 (ja) 航走波低減支援装置、プログラム及び方法
JP2022170012A (ja) 船舶監視システム、船舶監視方法、情報処理装置、及びプログラム
Priohutomo et al. Maneuver Control System for Collision Avoidance Based on Experimental Study
JP2023040679A (ja) 情報処理装置、判定方法、プログラム及び記憶媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21885796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP