WO2022230332A1 - 船舶監視システム、船舶監視方法、情報処理装置、及びプログラム - Google Patents

船舶監視システム、船舶監視方法、情報処理装置、及びプログラム Download PDF

Info

Publication number
WO2022230332A1
WO2022230332A1 PCT/JP2022/007554 JP2022007554W WO2022230332A1 WO 2022230332 A1 WO2022230332 A1 WO 2022230332A1 JP 2022007554 W JP2022007554 W JP 2022007554W WO 2022230332 A1 WO2022230332 A1 WO 2022230332A1
Authority
WO
WIPO (PCT)
Prior art keywords
ship
time
predicted
range
current position
Prior art date
Application number
PCT/JP2022/007554
Other languages
English (en)
French (fr)
Inventor
成一 魚下
Original Assignee
古野電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古野電気株式会社 filed Critical 古野電気株式会社
Priority to JP2023517090A priority Critical patent/JPWO2022230332A1/ja
Priority to EP22795255.3A priority patent/EP4332942A1/en
Priority to CN202280031165.8A priority patent/CN117337453A/zh
Publication of WO2022230332A1 publication Critical patent/WO2022230332A1/ja
Priority to US18/383,974 priority patent/US20240053150A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G3/00Traffic control systems for marine craft
    • G08G3/02Anti-collision systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/203Specially adapted for sailing ships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/40Monitoring properties or operating parameters of vessels in operation for controlling the operation of vessels, e.g. monitoring their speed, routing or maintenance schedules

Definitions

  • the present invention relates to a ship monitoring system, a ship monitoring method, an information processing device, and a program.
  • Non-Patent Document 1 discloses a method of displaying an OZT (Obstacle Zone by Target).
  • the range where OZT is not displayed among the predicted courses of other ships is the range where the ship can navigate.
  • the present invention has been made in view of the above problems, and its main object is a ship monitoring system and a ship monitoring method that make it easy to grasp whether a ship is passing in front of or behind another ship. , an information processing device, and a program.
  • a ship monitoring system of one aspect of the present invention is a first ship data representing a position and speed of a first ship based on a first calculation formula.
  • a first estimating unit for estimating the predicted position of the first ship after the lapse of a first time in each direction when it is assumed that the ship is sailing while changing its course in an arbitrary direction;
  • a second estimation unit for estimating the predicted course of the second ship and the predicted position of the second ship after a second time included in the predicted course from the second ship data representing the position and speed of the second ship; of the predicted courses of the two ships, the second ship is closer than the coincidence point where the predicted position of the first ship and the predicted position of the second ship when the first time and the second time are equal
  • the side closer to the current position of the second ship is determined to be the range in which the first ship passes one of the front and rear of the second ship, and the side farther from the current position of the second ship than the coincidence point is determined to be the second ship and a passage determination unit that determines
  • a ship monitoring system includes a first data generation unit that generates first ship data representing the position and speed of a first ship, and second ship data representing the position and speed of a second ship. and after a first time in each direction, when it is assumed that the first ship changes its course and sails in an arbitrary direction at the current position based on the first ship data
  • a first estimating unit that creates a first calculation formula that represents the predicted position of the first vessel, and a second calculation formula that represents the predicted position of the second vessel after a second time has elapsed based on the second vessel data. and the first calculation formula and the second calculation formula under the condition that the second time is greater than the first time or the second time is less than the first time.
  • the range of the predicted course of the second ship represented by the second calculation formula in which the first ship passes ahead of the second ship and the range in which the first ship passes the and a passage determination unit that determines a range in which the second vessel passes behind.
  • a ship monitoring method is characterized in that the first ship data representing the position and speed of the first ship is obtained from the first ship data representing the position and speed of the first ship based on the first calculation formula, and the first ship changes course at the current position in an arbitrary direction.
  • second ship data representing the position and speed of the second ship based on a second calculation formula, estimating the predicted position of the first ship after the lapse of the first time in each direction when it is assumed that the from the predicted course of the second ship and the predicted position of the second ship after the elapse of a second time included in the predicted course, and of the predicted course of the second ship, the first time and the The first ship is closer to the current position of the second ship than the coincidence point where the predicted position of the first ship coincides with the predicted position of the second ship when the second time is equal to the second time. It is determined that the range passes through one of the front and rear of the two ships, and the first ship passes the other of the front and rear of the second ship on the side farther from the current position of the second ship than the coincidence point. It is judged as the range to do.
  • the information processing apparatus can change course of the first ship in an arbitrary direction at the current position from the first ship data representing the position and speed of the first ship based on the first calculation formula.
  • a first estimating unit for estimating the predicted position of the first ship after the first time has passed in each direction when it is assumed that the ship sails with a second estimation unit for estimating a predicted course of the second ship and a predicted position of the second ship after a second time included in the predicted course from the second ship data represented; and a predicted course of the second ship. closer to the current position of the second ship than the coincidence point where the predicted position of the first ship and the predicted position of the second ship match when the first time and the second time are equal.
  • a side farther from the current position of the second ship than the coincidence point is determined as a range in which the first ship passes one of the front and rear of the second ship. and a passage determination unit that determines a range in which the other one of the front and rear of the two vessels passes.
  • a program based on a first calculation formula, based on first ship data representing the position and speed of the first ship, the first ship changing course in an arbitrary direction at the current position. estimating a predicted position of the first vessel after a first time period in each direction assuming that it is sailing; and calculating from second vessel data representing the position and velocity of the second vessel based on a second formula.
  • FIG. 10 is a diagram showing another display example
  • FIG. 1 is a block diagram showing a configuration example of a ship monitoring system 100 according to an embodiment.
  • the ship monitoring system 100 is a system that is mounted on a ship and monitors surrounding ships.
  • the ship on which the ship monitoring system 100 is installed is an example of the first ship, and will be referred to as "own ship” in the following description.
  • ships existing around the own ship are examples of the second ship, and are referred to as “other ships” in the following description.
  • speed is a vector quantity representing speed and direction (so-called ship speed vector), and "speed” is a scalar quantity.
  • the ship monitoring system 100 includes an information processing device 1, a display unit 2, a radar 3, an AIS 4, a GNSS receiver 5, a gyrocompass 6, an ECDIS 7, and an alarm unit 8. These devices are connected to a network N such as a LAN, and are capable of network communication with each other.
  • a network N such as a LAN
  • the information processing device 1 is a computer including a CPU, RAM, ROM, non-volatile memory, an input/output interface, and the like.
  • the CPU of the information processing device 1 executes information processing according to a program loaded from the ROM or nonvolatile memory to the RAM.
  • the program may be supplied via an information storage medium such as an optical disk or memory card, or may be supplied via a communication network such as the Internet or LAN.
  • the display unit 2 is, for example, a display device with a touch sensor.
  • the touch sensor detects a position within the screen indicated by a finger or the like.
  • the indicated position may be input by a trackball or the like instead of the touch sensor.
  • the radar 3 emits radio waves around its own ship, receives the reflected waves, and generates echo data based on the received signals.
  • the radar 3 also identifies the target from the echo data and generates target tracking data (TT data) representing the position and speed of the target.
  • TT data target tracking data
  • the AIS (Automatic Identification System) 4 receives AIS data from other ships around the ship or from land control. Not limited to AIS, VDES (VHF Data Exchange System) may be used. AIS data includes the positions and velocities of other ships.
  • VDES VHF Data Exchange System
  • the GNSS receiver 5 detects the position of the own ship based on radio waves received from the GNSS (Global Navigation Satellite System).
  • the gyrocompass 6 detects the bearing of the own ship.
  • a GPS compass or a magnetic compass may be used instead of the gyrocompass.
  • the ECDIS (Electronic Chart Display and Information System) 7 acquires the ship's position from the GNSS receiver 5 and displays the ship's position on the electronic chart.
  • the ECDIS 7 also displays the scheduled route of the own ship on the electronic chart.
  • a GNSS plotter may be used.
  • the alarm unit 8 issues an alarm when there is a risk of the own ship colliding with another ship.
  • the alarm unit 8 may be, for example, an alarm by display, or may be an alarm by sound or light.
  • the display warning may be given on the display unit 2 . That is, the display unit 2 may also serve as the alarm unit 8 .
  • the information processing device 1 is an independent device, but it is not limited to this, and may be integrated with other devices such as ECDIS 7 . That is, the functional units of the information processing device 1 may be implemented by other devices such as the ECDIS 7 .
  • the display unit 2 is also an independent device, but the display unit is not limited to this, and a display unit of another device such as the ECDIS 7 may be used as the display unit 2 for displaying the image generated by the information processing device 1. .
  • the set of the GNSS receiver 5 and the ECDIS 7 is an example of the first data generation unit, and generates own ship data representing the position and speed of the own ship. Specifically, the GNSS receiver 5 detects the position of the own ship, and the ECDIS 7 detects the speed of the own ship from the time change of the position of the own ship.
  • the speed of the own ship may be detected based on the bearing of the own ship detected by the gyrocompass 6 and the speed of the own ship detected by a speedometer (not shown).
  • the radar 3 or AIS 4 is an example of a second data generation unit, and generates other ship data representing the position and speed of another ship.
  • the TT data generated by the radar 3 corresponds to other ship data.
  • AIS data generated by the AIS 4 also corresponds to other ship data.
  • FIG. 2 is a diagram showing an example of the other ship management database constructed in the memory of the information processing device 1.
  • FIG. Other ship data generated by the radar 3 or AIS 4 is registered in the other ship management database.
  • the other ship management database includes fields such as "other ship identifier”, "position”, “speed”, and “azimuth”.
  • the position and direction of the other ship detected by the radar 3 are converted into the same coordinate system as GNSS.
  • FIG. 3 is a diagram showing a display example (conventional example) of OZT.
  • OZT is a zone in which the navigation of own ship is obstructed by other ships, and is displayed on the predicted course of other ships.
  • the range GP in which the OZT is not displayed among the predicted courses of other ships is a range in which the own ship can navigate. It is difficult to figure out at first glance whether to pass through.
  • FIG. 4 is a block diagram showing a configuration example of the information processing device 1 according to the embodiment.
  • the information processing device 1 includes a first estimation unit 11 , a second estimation unit 12 , a passage determination unit 13 and a display control unit 14 . These functional units are implemented by the CPU of the information processing apparatus 1 executing information processing according to programs.
  • a procedure example of the ship monitoring method according to the embodiment is realized by the first estimation unit 11, the second estimation unit 12, the passage determination unit 13, and the display control unit 14.
  • FIG. 5 is a diagram for explaining calculations by the first estimation unit 11, the second estimation unit 12, and the passage determination unit 13.
  • FIG. 5 is a diagram for explaining calculations by the first estimation unit 11, the second estimation unit 12, and the passage determination unit 13.
  • the predicted position of own ship is represented by coordinates (x, y) on the xy plane.
  • the predicted position of the own ship is a circle of radius v O t O centered at the origin, as shown in the first formula below. is represented by the formula
  • v Tx is the x component of the other ship's velocity.
  • v Ty is the y component of the other ship's velocity.
  • the passage determination unit 13 determines the "other ship passing range” where the own ship passes ahead of the other ship, and the "other ship "Rear passing range” is determined.
  • the current position of the other ship (initial position x 0 , y 0 ) is determined as the range in which one's own ship passes either forward or backward of another ship, and the side farther from the current position of the other ship than the coincidence point is the range in which one's own ship is forward or backward of another ship. It is determined that the range passes through the other.
  • the passage determination unit 13 determines the side closer to the current position of the other ship than the first coincidence point P1 from the current position of the other ship to be the "passage range behind the other ship". Also, the far side from the current position of the other ship is determined as the "other ship forward passing range”.
  • the passage determination unit 13 determines that the side closer to the current position of the other ship than the second matching point P2 from the current position of the other ship is the "passage range ahead of the other ship". The side farther than P2 from the current position of the other ship is determined as the "passage range behind the other ship".
  • the passage determination unit 13 determines a predetermined range including the coincidence points P1 and P2 as a risk area where there is a risk of collision between the own ship and another ship.
  • the risk area is, for example, OZT (Obstacle Zone by Target).
  • the risk area is not limited to this, and may be a PAD (Predict Area of Danger) or the like.
  • OZT calculation is based on the assumption that own ship changes course at its current position and maintains speed while maintaining speed, and other ships maintain speed from current position. A risk value representing the risk of colliding with is calculated. Since this assumption is common to Equations 1 and 2 above, the calculation of OZT can be partly shared with the calculation of the forward/rear passing ranges described above.
  • the passage determination unit 13 determines the first formula and the second Based on the solutions of the simultaneous inequalities including the equations, the "other ship forward passage range" and the “other ship rearward passage range” are determined.
  • the relationship between the first time t0 and the second time tT is expressed by the following third and fourth expressions.
  • b is preferably 0, but may be a value close to 0.
  • the "passage range behind other ships" is determined based on the solution of the simultaneous inequalities of the first, second, and third equations above.
  • the "other ship's forward passage range" is determined based on the solutions of the simultaneous inequalities of the first, second, and fourth equations.
  • FIG. 6 is a diagram showing the calculation results of the other ship's forward passage range and the other ship's rearward passage range by the passage determination unit 13 .
  • the other ship's forward passing range is formed inside the circle of the first formula indicating the predicted position of the own ship, and the other ship's rear passing range is formed outside the circle.
  • the other ship's rear passage range is formed on the side closer to the current position of the other ship than the first coincident point P1 from the current position of the other ship, and is farther from the current position of the other ship than the coincident point P1.
  • the other ship forward passing range is formed on the side.
  • the forward passing range of the other ship is formed on the side closer to the current position of the other ship than the second coincident point P2 from the current position of the other ship, and the other ship's forward passage range is formed on the side farther from the current position of the other ship than the coincident point P2.
  • a rearward passage range is formed.
  • the entire range outside the circle of the first formula in the predicted course of the other ship is the other ship's forward passage range.
  • the display control unit 14 generates a display image based on the "passage range in front of the other ship” and the "passage range behind the other ship” determined by the passage determination unit 13, and outputs it to the display unit 2.
  • FIG. 6 is a diagram showing an example of a display image displayed on the display unit 2.
  • FIG. in the display image an OZT is displayed on the predicted course of the other ship, indicating that the risk value of collision between the own ship and the other ship is equal to or greater than the threshold.
  • the "passing range ahead of other ships" where your ship passes ahead of other ships and the "passing range behind other ships” where your ship passes behind other ships are displayed.
  • the predicted course of the other ship is displayed, for example, by an auxiliary line such as a dashed line.
  • the forward passing range of other ships and the backward passing range of other ships are displayed by changing the display mode such as color or texture so that they can be distinguished at a glance. Further, a character string may be added to the "other ship forward passing range” and the “other ship rearward passing range” for easy identification.
  • the forward passing range and the backward passing range of other ships are formed in a strip shape that has a predetermined width and extends along the predicted course of the other ship.
  • the width of the other ship forward passage range and the other ship rear passage range is narrower than the width of the OZT.
  • At least one of the other ship's forward passage range and the other ship's rearward passage range is displayed superimposed on the OZT.
  • the other ship forward passing range and the other ship rearward passing range may be arranged on the OZT, or may be arranged below the OZT which is formed translucent.
  • the OZT does not have to be displayed.
  • 1 information processing device 2 display unit, 3 radar, 4 AIS, 5 GNSS receiver, 6 gyrocompass, 7 ECDIS, 8 alarm unit, 11 first estimation unit, 12 second estimation unit, 13 passage determination unit, 14 display Control unit, 100 vessel monitoring system

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Ocean & Marine Engineering (AREA)
  • Traffic Control Systems (AREA)

Abstract

【課題】船舶が他船の前方を通過するか後方を通過するかを把握することが容易な船舶監視システムを提供する。 【解決手段】船舶監視システムは、第1計算式に基づいて、第1船舶の位置及び速度を表す第1船舶データから、第1船舶が現在位置で任意の方向に変針して航行すると仮定したときの、各方向における第1時間経過後の第1船舶の予測位置を推定する第1推定部と、第2計算式に基づいて、第2船舶の位置及び速度を表す第2船舶データから、第2船舶の予測針路及び予測針路に含まれる第2時間経過後の第2船舶の予測位置を推定する第2推定部と、第2船舶の予測針路のうちの、第1時間と第2時間とが等しいときの第1船舶の予測位置と第2船舶の予測位置とが一致する一致点よりも第2船舶の現在位置に近い側を、第1船舶が第2船舶の前方及び後方の一方を通過する範囲と判定し、一致点よりも第2船舶の現在位置から遠い側を、第1船舶が第2船舶の前方及び後方の他方を通過する範囲と判定する通過判定部と、を備える。

Description

船舶監視システム、船舶監視方法、情報処理装置、及びプログラム
 本発明は、船舶監視システム、船舶監視方法、情報処理装置、及びプログラムに関する。
 従来、船舶同士が衝突するリスクを評価する種々の手法が存在する。例えば、非特許文献1には、OZT(Obstacle Zone by Target)を表示する手法が開示されている。
今津隼馬,福戸淳司,沼野正義,"相手船による妨害ゾーンとその表示について",日本航海学会論文集,2002年,Vol.107,p.191-197
 ところで、OZTを表示する手法では、他船の予測針路のうちのOZTが表示されていない範囲は、船舶の航行が可能な範囲である。しかしながら、そのような範囲について、船舶が他船の前方を通過するか後方を通過するかを一見しただけで把握することは困難である。
 本発明は、上記課題に鑑みてなされたものであり、その主な目的は、船舶が他船の前方を通過するか後方を通過するかを把握することが容易な船舶監視システム、船舶監視方法、情報処理装置、及びプログラムを提供することにある。
 上記課題を解決するため、本発明の一の態様の船舶監視システムは、第1計算式に基づいて、第1船舶の位置及び速度を表す第1船舶データから、前記第1船舶が現在位置で任意の方向に変針して航行すると仮定したときの、各方向における第1時間経過後の前記第1船舶の予測位置を推定する第1推定部と、第2計算式に基づいて、第2船舶の位置及び速度を表す第2船舶データから、前記第2船舶の予測針路及び前記予測針路に含まれる第2時間経過後の前記第2船舶の予測位置を推定する第2推定部と、前記第2船舶の予測針路のうちの、前記第1時間と前記第2時間とが等しいときの前記第1船舶の予測位置と前記第2船舶の予測位置とが一致する一致点よりも前記第2船舶の現在位置に近い側を、前記第1船舶が前記第2船舶の前方及び後方の一方を通過する範囲と判定し、前記一致点よりも前記第2船舶の現在位置から遠い側を、前記第1船舶が前記第2船舶の前方及び後方の他方を通過する範囲と判定する通過判定部と、を備える。
 また、本発明の他の態様の船舶監視システムは、第1船舶の位置及び速度を表す第1船舶データを生成する第1データ生成部と、第2船舶の位置及び速度を表す第2船舶データを生成する第2データ生成部と、前記第1船舶データに基づいて、前記第1船舶が現在位置で任意の方向に変針して航行すると仮定したときの、各方向における第1時間経過後の前記第1船舶の予測位置を表す第1計算式を作成する第1推定部と、前記第2船舶データに基づいて、第2時間経過後の前記第2船舶の予測位置を表す第2計算式を作成する第2推定部と、前記第1時間より前記第2時間が大きい条件又は前記第1時間より前記第2時間が小さい条件での前記第1計算式及び前記第2計算式を含む連立式の解に基づいて、前記第2計算式により表される前記第2船舶の予測針路のうちの、前記第1船舶が前記第2船舶の前方を通過する範囲と、前記第1船舶が前記第2船舶の後方を通過する範囲とを判定する通過判定部と、を備える。
 また、本発明の他の態様の船舶監視方法は、第1計算式に基づいて、第1船舶の位置及び速度を表す第1船舶データから、前記第1船舶が現在位置で任意の方向に変針して航行すると仮定したときの、各方向における第1時間経過後の前記第1船舶の予測位置を推定し、第2計算式に基づいて、第2船舶の位置及び速度を表す第2船舶データから、前記第2船舶の予測針路及び前記予測針路に含まれる第2時間経過後の前記第2船舶の予測位置を推定し、前記第2船舶の予測針路のうちの、前記第1時間と前記第2時間とが等しいときの前記第1船舶の予測位置と前記第2船舶の予測位置とが一致する一致点よりも前記第2船舶の現在位置に近い側を、前記第1船舶が前記第2船舶の前方及び後方の一方を通過する範囲と判定し、前記一致点よりも前記第2船舶の現在位置から遠い側を、前記第1船舶が前記第2船舶の前方及び後方の他方を通過する範囲と判定する。
 また、本発明の他の態様の情報処理装置は、第1計算式に基づいて、第1船舶の位置及び速度を表す第1船舶データから、前記第1船舶が現在位置で任意の方向に変針して航行すると仮定したときの、各方向における第1時間経過後の前記第1船舶の予測位置を推定する第1推定部と、第2計算式に基づいて、第2船舶の位置及び速度を表す第2船舶データから、前記第2船舶の予測針路及び前記予測針路に含まれる第2時間経過後の前記第2船舶の予測位置を推定する第2推定部と、前記第2船舶の予測針路のうちの、前記第1時間と前記第2時間とが等しいときの前記第1船舶の予測位置と前記第2船舶の予測位置とが一致する一致点よりも前記第2船舶の現在位置に近い側を、前記第1船舶が前記第2船舶の前方及び後方の一方を通過する範囲と判定し、前記一致点よりも前記第2船舶の現在位置から遠い側を、前記第1船舶が前記第2船舶の前方及び後方の他方を通過する範囲と判定する通過判定部と、を備える。
 また、本発明の他の態様のプログラムは、第1計算式に基づいて、第1船舶の位置及び速度を表す第1船舶データから、前記第1船舶が現在位置で任意の方向に変針して航行すると仮定したときの、各方向における第1時間経過後の前記第1船舶の予測位置を推定すること、第2計算式に基づいて、第2船舶の位置及び速度を表す第2船舶データから、前記第2船舶の予測針路及び前記予測針路に含まれる第2時間経過後の前記第2船舶の予測位置を推定すること、及び、前記第2船舶の予測針路のうちの、前記第1時間と前記第2時間とが等しいときの前記第1船舶の予測位置と前記第2船舶の予測位置とが一致する一致点よりも前記第2船舶の現在位置に近い側を、前記第1船舶が前記第2船舶の前方及び後方の一方を通過する範囲と判定し、前記一致点よりも前記第2船舶の現在位置から遠い側を、前記第1船舶が前記第2船舶の前方及び後方の他方を通過する範囲と判定すること、をコンピュータに実行させる。
 本発明によれば、船舶が他船の前方を通過するか後方を通過するかを把握することが容易になる。
実施形態に係る船舶監視システムの構成例を示す図である。 他船管理データベースの例を示す図である。 OZTの表示例(従来例)を示す図である。 実施形態に係る情報処理装置の構成例を示す図である。 計算を説明するための図である。 計算を説明するための図である。 表示例を示す図である。 他の表示例を示す図である。
 以下、本発明の実施形態について、図面を参照しながら説明する。
 図1は、実施形態に係る船舶監視システム100の構成例を示すブロック図である。船舶監視システム100は、船舶に搭載され、周囲に存在する船舶を監視するためのシステムである。
 船舶監視システム100が搭載された船舶は、第1船舶の例であり、以下の説明では「自船」という。また、自船の周囲に存在する船舶は、第2船舶の例であり、以下の説明では「他船」という。
 また、以下の説明において、「速度」は速さと方位を表すベクトル量(いわゆる、船速ベクトル)であるとし、「速さ」はスカラー量であるとする。
 船舶監視システム100は、情報処理装置1、表示部2、レーダー3、AIS4、GNSS受信機5、ジャイロコンパス6、ECDIS7、及び警報部8を備えている。これらの機器は、例えばLAN等のネットワークNに接続されており、相互にネットワーク通信が可能である。
 情報処理装置1は、CPU、RAM、ROM、不揮発性メモリ、及び入出力インターフェース等を含むコンピュータである。情報処理装置1のCPUは、ROM又は不揮発性メモリからRAMにロードされたプログラムに従って情報処理を実行する。
 プログラムは、例えば光ディスク又はメモリカード等の情報記憶媒体を介して供給されてもよいし、例えばインターネット又はLAN等の通信ネットワークを介して供給されてもよい。
 表示部2は、例えばタッチセンサ付き表示装置である。タッチセンサは、指等による画面内の指示位置を検出する。タッチセンサに限らず、トラックボール等により指示位置が入力されてもよい。
 レーダー3は、自船の周囲に電波を発するとともにその反射波を受信し、受信信号に基づいてエコーデータを生成する。また、レーダー3は、エコーデータから物標を識別し、物標の位置及び速度を表す物標追跡データ(TTデータ)を生成する。
 AIS(Automatic Identification System)4は、自船の周囲に存在する他船又は陸上の管制からAISデータを受信する。AISに限らず、VDES(VHF Data Exchange System)が用いられてもよい。AISデータは、他船の位置及び速度等を含んでいる。
 GNSS受信機5は、GNSS(Global Navigation Satellite System)から受信した電波に基づいて自船の位置を検出する。ジャイロコンパス6は、自船の方位を検出する。ジャイロコンパスに限らず、GPSコンパス又は磁気コンパスが用いられてもよい。
 ECDIS(Electronic Chart Display and Information System)7は、GNSS受信機5から自船の位置を取得し、電子海図上に自船の位置を表示する。また、ECDIS7は、電子海図上に自船の予定航路も表示する。ECDISに限らず、GNSSプロッタが用いられてもよい。
 警報部8は、自船が他船と衝突するリスクがある場合に警報を発報する。警報部8は、例えば表示による警報であってもよいし、音又は光による警報であってもよい。表示による警報は、表示部2において行われてもよい。すなわち、表示部2が警報部8を兼ねてもよい。
 本実施形態において、情報処理装置1は独立した装置であるが、これに限らず、ECDIS7等の他の装置と一体であってもよい。すなわち、情報処理装置1の機能部がECDIS7等の他の装置で実現されてもよい。
 また、表示部2も独立した装置であるが、これに限らず、ECDIS7等の他の装置の表示部が、情報処理装置1により生成された画像を表示する表示部2として用いられてもよい。
 本実施形態において、GNSS受信機5とECDIS7の組は、第1データ生成部の例であり、自船の位置及び速度を表す自船データを生成する。具体的には、GNSS受信機5が自船の位置を検出するとともに、ECDIS7が自船の位置の時間変化から自船の速度を検出する。
 これに限らず、自船の速度は、ジャイロコンパス6により検出される自船の方位と、不図示の船速計により検出される自船の速さとに基づいて検出されてもよい。
 また、レーダー3又はAIS4は、第2データ生成部の例であり、他船の位置及び速度を表す他船データを生成する。具体的には、レーダー3により生成されるTTデータが他船データに相当する。また、AIS4により生成されるAISデータも他船データに相当する。
 図2は、情報処理装置1のメモリに構築される他船管理データベースの例を示す図である。他船管理データベースには、レーダー3又はAIS4により生成された他船データが登録される。
 他船管理データベースは、「他船識別子」、「位置」、「速さ」、及び「方位」等のフィールドを含んでいる。なお、レーダー3により検出される他船の位置及び方位は、GNSSと同じ座標系に変換される。
 図3は、OZTの表示例(従来例)を示す図である。OZTは、自船の航行が他船によって妨害されるゾーンであり、他船の予測針路上に表示される。
 ところで、他船の予測針路のうちのOZTが表示されていない範囲GPは、自船の航行が可能な範囲であるが、そのような範囲について、自船が他船の前方を通過するか後方を通過するかを一見しただけで把握することは困難である。
 そこで、本実施形態では、以下に説明するように、自船が他船の前方を通過するか後方を通過するかを判定して表示する。
 図4は、実施形態に係る情報処理装置1の構成例を示すブロック図である。情報処理装置1は、第1推定部11、第2推定部12、通過判定部13、及び表示制御部14を備えている。これらの機能部は、情報処理装置1のCPUがプログラムに従って情報処理を実行することにより実現される。
 実施形態に係る船舶監視方法の手順例は、第1推定部11、第2推定部12、通過判定部13、及び表示制御部14によって実現される。
 図5は、第1推定部11、第2推定部12、及び通過判定部13による計算を説明するための図である。
 第1推定部11は、第1計算式(以下、第1式ともいう)に基づいて、自船データから、自船が現在位置で任意の方向に変針して航行すると仮定したときの、各方向における第1時間t経過後(t=t)の自船の予測位置を推定する。具体的には、第1推定部11は、第1時間t経過後(t=t)の自船の予測位置を表す第1式を、下記のように作成する。自船の予測位置は、xy平面における座標(x,y)で表される。t=0のときの自船の初期位置は、xy平面の原点とする。自船が速さvを維持したまま瞬時に全方位に旋回可能であると仮定すると、自船の予測位置は、下記第1式のように原点を中心とする半径vの円の式で表される。
Figure JPOXMLDOC01-appb-M000003
 第2推定部12は、第2計算式(以下、第2式ともいう)に基づいて、他船データから、他船の予測針路及び予測針路に含まれる第2時間t経過後(t=t)の他船の予測位置を推定する。具体的には、第2推定部12は、第2時間t経過後(t=t)の他船の予測位置を表す第2式を、下記のように作成する。他船の予測位置は、xy平面における座標(x,y)で表される。t=0のときの他船の初期位置は(x,y)とする。他船が速度を維持したまま直進すると仮定すると、他船の予測位置は、下記第2式のように一次関数で表される。vTxは、他船の速度のx成分である。vTyは、他船の速度のy成分である。
Figure JPOXMLDOC01-appb-M000004
 通過判定部13は、上記第1式及び第2式に基づいて、自船が他船の前方を通過する「他船前方通過範囲」と、自船が他船の後方を通過する「他船後方通過範囲」とを判定する。
 通過判定部13は、第2式で表される他船の予測針路のうちの、第1時間tと第2時間tとが等しいとき(t=t)の自船の予測位置と他船の予測位置とが一致する一致点P1,P2(すなわち、第1式の円と第2式の直線との交点P1,P2)よりも他船の現在位置(初期位置x,y)に近い側を、自船が他船の前方及び後方の一方を通過する範囲と判定し、一致点よりも他船の現在位置から遠い側を、自船が他船の前方及び後方の他方を通過する範囲と判定する。
 具体的には、通過判定部13は、他船の現在位置から1番目の一致点P1よりも他船の現在位置に近い側を「他船後方通過範囲」と判定し、当該一致点P1よりも他船の現在位置から遠い側を「他船前方通過範囲」と判定する。
 また、通過判定部13は、通過判定部は、他船の現在位置から2番目の一致点P2よりも他船の現在位置に近い側を「他船前方通過範囲」と判定し、当該一致点P2よりも他船の現在位置から遠い側を「他船後方通過範囲」と判定する。
 さらに、通過判定部13は、一致点P1,P2を含む所定範囲を、自船と他船とが衝突するリスクがあるリスク領域と判定する。リスク領域は、例えばOZT(Obstacle Zone by Target)である。これに限らず、リスク領域は、PAD(Predict Area of Danger)等であってもよい。
 OZTの計算は、自船が現在位置で任意の方向に変針して速度を維持したまま航行し、他船が現在位置から速度を維持したまま航行するとの仮定のもので、自船と他船とが衝突するリスクを表すリスク値が算出される。この仮定は、上記第1式及び第2式と共通するので、OZTの計算を上述の前方/後方通過範囲の計算と部分的に共通化することができる。
 以下に説明するように、通過判定部13は、第1時間tより第2時間tが大きい条件又は第1時間tより第2時間tが小さい条件での第1式及び第2式を含む連立不等式の解に基づいて、「他船前方通過範囲」と「他船後方通過範囲」とを判定する。
 任意に設定可能な実数a,b,c(a<b<c)を用いて、第1時間tと第2時間tの関係を下記第3式及び第4式とする。ここで、bは0であることが好ましいが、0に近い値でもよい。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 「他船後方通過範囲」は、上記第1式、第2式、及び第3式の連立不等式の解に基づいて判定される。
 第1式及び第2式をtについて解くと、下記(ア)式が得られる。
Figure JPOXMLDOC01-appb-M000007
 (ア)式と第3式により、下記(イ)式及び(ウ)式が得られる。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 (イ)式、(ウ)式、t≧0の共通部分に
Figure JPOXMLDOC01-appb-I000010
を乗じた範囲が、自船が他船の後方を通過する「他船後方通過範囲」となる。t≧0とするのは、過去を除外するためである。
 一方、「他船前方通過範囲」は、上記第1式、第2式、及び第4式の連立不等式の解に基づいて判定される。
 第1式及び第2式をtについて解くと、上記(ア)式が得られる。
 (ア)式と第4式により、下記(キ)式及び(ク)式が得られる。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
 (キ)式、(ク)式、t≧0の共通部分に
Figure JPOXMLDOC01-appb-I000013
を乗じた範囲が、自船が他船の前方を通過する「他船前方通過範囲」となる。t≧0とするのは、過去を除外するためである。
 図6は、通過判定部13による他船前方通過範囲及び他船後方通過範囲の計算結果を示す図である。同図に示すように、自船の予測位置を示す第1式の円の内側に他船前方通過範囲が形成され、当該円の外側に他船後方通過範囲が形成される。
 具体的には、他船の現在位置から1番目の一致点P1よりも他船の現在位置に近い側に他船後方通過範囲が形成され、当該一致点P1よりも他船の現在位置から遠い側に他船前方通過範囲が形成される。
 また、他船の現在位置から2番目の一致点P2よりも他船の現在位置に近い側に他船前方通過範囲が形成され、当該一致点P2よりも他船の現在位置から遠い側に他船後方通過範囲が形成される。
 ここで、上記第3式においてcを上限とすることで、自船より他船が|c|よりも早く到達する範囲Gc(すなわち、到達時間差に十分余裕のある範囲)が、他船後方通過範囲から除外される。なお、cを∞にした場合には、他船の予測針路のうち、第1式の円の外側の全範囲が他船後方通過範囲となる。
 また、上記第4式においてaを下限とすることで、他船より自船が|a|よりも早く到達する領域Ga(すなわち、到達時間差に十分余裕のある領域)が、他船前方通過範囲から除外される。なお、aを-∞にした場合には、他船の予測針路のうち、第1式の円の外側の全範囲が他船前方通過範囲となる。
 本実施形態の計算手法によれば、OZTの計算のように判定点毎に計算をする必要がないため、「他船前方通過範囲」と「他船後方通過範囲」の理論上の分解能を無限小とすることが可能であるとともに、計算量を抑制することが可能である。
 表示制御部14は、通過判定部13により判定された「他船前方通過範囲」及び「他船後方通過範囲」に基づいて、表示用画像を生成し、表示部2に出力する。
 図6は、表示部2に表示される表示用画像の例を示す図である。表示用画像では、他船の予測針路上に、自船と他船が衝突するリスク値が閾値以上であることを表すOZTが表示される。さらに、他船の予測針路上には、自船が他船の前方を通過する「他船前方通過範囲」と自船が他船の後方を通過する「他船後方通過範囲」とが表示される。他船の予測針路は、例えば破線等の補助線で表示される。
 他船前方通過範囲と他船後方通過範囲は、一見して識別が可能なように、色又はテクスチャ等の表示態様を変えて識別表示されている。さらに、「他船前方通過範囲」と「他船後方通過範囲」には、識別を容易にするために文字列が付加されてもよい。
 他船前方通過範囲と他船後方通過範囲は、所定の幅を持ち、他船の予測針路に沿って延びる帯状に形成されている。他船前方通過範囲と他船後方通過範囲の幅は、OZTの幅より狭い。
 他船前方通過範囲及び他船後方通過範囲の少なくとも一方は、OZTに重ねて表示される。例えば、他船前方通過範囲と他船後方通過範囲は、OZT上に配置されてもよいし、半透明で形成されたOZT下に配置されてもよい。なお、図8に示すように、OZTは表示されなくてもよい。
 以上に説明した実施形態によれば、「他船前方通過範囲」と「他船後方通過範囲」が表示されるので、自船が他船の前方を通過するか後方を通過するかを一見して把握することが容易なとなる。
 以上、本発明の実施形態について説明したが、本発明は以上に説明した実施形態に限定されるものではなく、種々の変更が当業者にとって可能であることはもちろんである。
1 情報処理装置、2 表示部、3 レーダー、4 AIS、5 GNSS受信機、6 ジャイロコンパス、7 ECDIS、8 警報部、11 第1推定部、12 第2推定部、13 通過判定部、14 表示制御部、100 船舶監視システム

Claims (12)

  1.  第1計算式に基づいて、第1船舶の位置及び速度を表す第1船舶データから、前記第1船舶が現在位置で任意の方向に変針して航行すると仮定したときの、各方向における第1時間経過後の前記第1船舶の予測位置を推定する第1推定部と、
     第2計算式に基づいて、第2船舶の位置及び速度を表す第2船舶データから、前記第2船舶の予測針路及び前記予測針路に含まれる第2時間経過後の前記第2船舶の予測位置を推定する第2推定部と、
     前記第2船舶の予測針路のうちの、前記第1時間と前記第2時間とが等しいときの前記第1船舶の予測位置と前記第2船舶の予測位置とが一致する一致点よりも前記第2船舶の現在位置に近い側を、前記第1船舶が前記第2船舶の前方及び後方の一方を通過する範囲と判定し、前記一致点よりも前記第2船舶の現在位置から遠い側を、前記第1船舶が前記第2船舶の前方及び後方の他方を通過する範囲と判定する通過判定部と、
     を備える、船舶監視システム。
  2.  前記通過判定部は、前記第2船舶の現在位置から1番目の前記一致点よりも前記第2船舶の現在位置に近い側を、前記第1船舶が前記第2船舶の後方を通過する範囲と判定し、当該一致点よりも前記第2船舶の現在位置から遠い側を、前記第1船舶が前記第2船舶の前方を通過する範囲と判定する、
     請求項1に記載の船舶監視システム。
  3.  前記通過判定部は、前記第2船舶の現在位置から2番目の前記一致点よりも前記第2船舶の現在位置に近い側を、前記第1船舶が前記第2船舶の前方を通過する範囲と判定し、当該一致点よりも前記第2船舶の現在位置から遠い側を、前記第1船舶が前記第2船舶の後方を通過する範囲と判定する、
     請求項1または2に記載の船舶監視システム。
  4.  前記通過判定部は、前記一致点を含む所定範囲を、前記第1船舶と前記第2船舶とが衝突するリスクがあるリスク領域と判定する、
     請求項1ないし3の何れかに記載の船舶監視システム。
  5.  前記通過判定部は、前記第1時間より前記第2時間が大きい条件又は前記第1時間より前記第2時間が小さい条件での前記第1計算式及び前記第2計算式を含む連立式の解に基づいて、前記第1船舶が前記第2船舶の前方を通過する範囲と、前記第1船舶が前記第2船舶の後方を通過する範囲とを判定する、
     請求項1ないし4の何れかに記載の船舶監視システム。
  6.  前記第1計算式は、前記第1時間をtとし、前記第1船舶の速さをvとし、xy平面における前記第1船舶の位置を(x,y)とし、前記第1船舶の初期位置をxy平面の原点とするとき、下記のように表される、
     請求項1ないし5の何れかに記載の船舶監視システム。
    Figure JPOXMLDOC01-appb-I000001
  7.  前記第2計算式は、前記第2時間をtとし、前記第2船舶の速度のx成分をvTxとし、前記第2船舶の速度のy成分をvTyとし、xy平面における前記第2船舶の位置を(x,y)とし、前記第2船舶の初期位置を(x,y)とするとき、下記のように表される、
     請求項1ないし6の何れかに記載の船舶監視システム。
    Figure JPOXMLDOC01-appb-I000002
  8.  前記第2船舶の予測針路上に、前記第1船舶が前記第2船舶の前方を通過する範囲と前記第1船舶が前記第2船舶の後方を通過する範囲とを表示する表示部をさらに備える、
     請求項1ないし7の何れかに記載の船舶監視システム。
  9.  第1船舶の位置及び速度を表す第1船舶データを生成する第1データ生成部と、
     第2船舶の位置及び速度を表す第2船舶データを生成する第2データ生成部と、
     前記第1船舶データに基づいて、前記第1船舶が現在位置で任意の方向に変針して航行すると仮定したときの、各方向における第1時間経過後の前記第1船舶の予測位置を表す第1計算式を作成する第1推定部と、
     前記第2船舶データに基づいて、第2時間経過後の前記第2船舶の予測位置を表す第2計算式を作成する第2推定部と、
     前記第1時間より前記第2時間が大きい条件又は前記第1時間より前記第2時間が小さい条件での前記第1計算式及び前記第2計算式を含む連立式の解に基づいて、前記第2計算式により表される前記第2船舶の予測針路のうちの、前記第1船舶が前記第2船舶の前方を通過する範囲と、前記第1船舶が前記第2船舶の後方を通過する範囲とを判定する通過判定部と、
     を備える、船舶監視システム。
  10.  第1計算式に基づいて、第1船舶の位置及び速度を表す第1船舶データから、前記第1船舶が現在位置で任意の方向に変針して航行すると仮定したときの、各方向における第1時間経過後の前記第1船舶の予測位置を推定し、
     第2計算式に基づいて、第2船舶の位置及び速度を表す第2船舶データから、前記第2船舶の予測針路及び前記予測針路に含まれる第2時間経過後の前記第2船舶の予測位置を推定し、
     前記第2船舶の予測針路のうちの、前記第1時間と前記第2時間とが等しいときの前記第1船舶の予測位置と前記第2船舶の予測位置とが一致する一致点よりも前記第2船舶の現在位置に近い側を、前記第1船舶が前記第2船舶の前方及び後方の一方を通過する範囲と判定し、前記一致点よりも前記第2船舶の現在位置から遠い側を、前記第1船舶が前記第2船舶の前方及び後方の他方を通過する範囲と判定する、
     船舶監視方法。
  11.  第1計算式に基づいて、第1船舶の位置及び速度を表す第1船舶データから、前記第1船舶が現在位置で任意の方向に変針して航行すると仮定したときの、各方向における第1時間経過後の前記第1船舶の予測位置を推定する第1推定部と、
     第2計算式に基づいて、第2船舶の位置及び速度を表す第2船舶データから、前記第2船舶の予測針路及び前記予測針路に含まれる第2時間経過後の前記第2船舶の予測位置を推定する第2推定部と、
     前記第2船舶の予測針路のうちの、前記第1時間と前記第2時間とが等しいときの前記第1船舶の予測位置と前記第2船舶の予測位置とが一致する一致点よりも前記第2船舶の現在位置に近い側を、前記第1船舶が前記第2船舶の前方及び後方の一方を通過する範囲と判定し、前記一致点よりも前記第2船舶の現在位置から遠い側を、前記第1船舶が前記第2船舶の前方及び後方の他方を通過する範囲と判定する通過判定部と、
     を備える、情報処理装置。
  12.  第1計算式に基づいて、第1船舶の位置及び速度を表す第1船舶データから、前記第1船舶が現在位置で任意の方向に変針して航行すると仮定したときの、各方向における第1時間経過後の前記第1船舶の予測位置を推定すること、
     第2計算式に基づいて、第2船舶の位置及び速度を表す第2船舶データから、前記第2船舶の予測針路及び前記予測針路に含まれる第2時間経過後の前記第2船舶の予測位置を推定すること、及び、
     前記第2船舶の予測針路のうちの、前記第1時間と前記第2時間とが等しいときの前記第1船舶の予測位置と前記第2船舶の予測位置とが一致する一致点よりも前記第2船舶の現在位置に近い側を、前記第1船舶が前記第2船舶の前方及び後方の一方を通過する範囲と判定し、前記一致点よりも前記第2船舶の現在位置から遠い側を、前記第1船舶が前記第2船舶の前方及び後方の他方を通過する範囲と判定すること、
     をコンピュータに実行させるためのプログラム。 
PCT/JP2022/007554 2021-04-28 2022-02-24 船舶監視システム、船舶監視方法、情報処理装置、及びプログラム WO2022230332A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023517090A JPWO2022230332A1 (ja) 2021-04-28 2022-02-24
EP22795255.3A EP4332942A1 (en) 2021-04-28 2022-02-24 Ship monitoring system, ship monitoring method, information processing device, and program
CN202280031165.8A CN117337453A (zh) 2021-04-28 2022-02-24 船舶监视系统、船舶监视方法、信息处理装置以及程序
US18/383,974 US20240053150A1 (en) 2021-04-28 2023-10-26 Ship monitoring system, and ship monitoring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-075837 2021-04-28
JP2021075837 2021-04-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/383,974 Continuation-In-Part US20240053150A1 (en) 2021-04-28 2023-10-26 Ship monitoring system, and ship monitoring method

Publications (1)

Publication Number Publication Date
WO2022230332A1 true WO2022230332A1 (ja) 2022-11-03

Family

ID=83846912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007554 WO2022230332A1 (ja) 2021-04-28 2022-02-24 船舶監視システム、船舶監視方法、情報処理装置、及びプログラム

Country Status (5)

Country Link
US (1) US20240053150A1 (ja)
EP (1) EP4332942A1 (ja)
JP (1) JPWO2022230332A1 (ja)
CN (1) CN117337453A (ja)
WO (1) WO2022230332A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115830911A (zh) * 2022-11-17 2023-03-21 中远海运散货运输有限公司 一种应用于pays服务的航行中船舶船位的判定方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120265380A1 (en) * 2011-04-13 2012-10-18 California Institute Of Technology Target Trailing with Safe Navigation with colregs for Maritime Autonomous Surface Vehicles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120265380A1 (en) * 2011-04-13 2012-10-18 California Institute Of Technology Target Trailing with Safe Navigation with colregs for Maritime Autonomous Surface Vehicles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IMAZU, HAYAMAFUKUTO, JUNJINUMANO, MASAYOSHI: "Obstacle Zone by Targets and Its Expression", THE JOURNAL OF JAPAN INSTITUTE OF NAVIGATION, vol. 107, 2002, pages 191 - 197

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115830911A (zh) * 2022-11-17 2023-03-21 中远海运散货运输有限公司 一种应用于pays服务的航行中船舶船位的判定方法

Also Published As

Publication number Publication date
EP4332942A1 (en) 2024-03-06
JPWO2022230332A1 (ja) 2022-11-03
US20240053150A1 (en) 2024-02-15
CN117337453A (zh) 2024-01-02

Similar Documents

Publication Publication Date Title
EP3123197B1 (en) Methods and apparatus for determining angle of arrival (aoa) in a radar warning receiver
US20170052029A1 (en) Ship display device
EP2082259B1 (en) Methods and apparatus for providing target altitude estimation in a two dimensional radar system
US8319679B2 (en) Systems and methods for predicting locations of weather relative to an aircraft
EP4234385A1 (en) Ship monitoring system, ship monitoring method, information processing device, and program
WO2022230332A1 (ja) 船舶監視システム、船舶監視方法、情報処理装置、及びプログラム
US8831906B1 (en) Technique for determining closest point of approach
JP2021197043A (ja) 船舶用物標検出システム、船舶用物標検出方法、信頼度推定装置、及びプログラム
US20230260406A1 (en) Ship monitoring system, ship monitoring method, and information processing device
WO2022091677A1 (ja) 船舶監視システム、船舶監視方法、情報処理装置、及びプログラム
JP2022170010A (ja) 船舶監視システム、船舶監視方法、情報処理装置、及びプログラム
US20240109626A1 (en) Ship monitoring system, ship monitoring method, and information processor
WO2022239401A1 (ja) 船舶監視システム、船舶監視方法、情報処理装置、及びプログラム
KR100760979B1 (ko) 선박의 위치감지 시스템 및 그 방법
WO2022249632A1 (ja) 船舶監視装置、船舶監視方法、及びプログラム
JP2022170012A (ja) 船舶監視システム、船舶監視方法、情報処理装置、及びプログラム
WO2022234712A1 (ja) 船舶監視システム、船舶監視方法、情報処理装置、及びプログラム
EP4253219A1 (en) Ship monitoring system, ship monitoring method, information processing device, and program
WO2023074014A1 (ja) 船舶監視装置、船舶監視方法、及びプログラム
WO2024180877A1 (ja) 航行支援装置、航行支援方法、及びプログラム
WO2022102323A1 (ja) 船舶監視システム、船舶監視方法、情報処理装置、及びプログラム
JP2022170015A (ja) 操船支援システム、操船支援方法、情報処理装置、及びプログラム
JP3039477B2 (ja) 目標速度算出方式
SU691038A1 (ru) Система управлени навигацией и судовождением судна

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795255

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023517090

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280031165.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022795255

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022795255

Country of ref document: EP

Effective date: 20231128