WO2022091519A1 - 経路設定システム - Google Patents

経路設定システム Download PDF

Info

Publication number
WO2022091519A1
WO2022091519A1 PCT/JP2021/029081 JP2021029081W WO2022091519A1 WO 2022091519 A1 WO2022091519 A1 WO 2022091519A1 JP 2021029081 W JP2021029081 W JP 2021029081W WO 2022091519 A1 WO2022091519 A1 WO 2022091519A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
attachment
point
turning angle
specific portion
Prior art date
Application number
PCT/JP2021/029081
Other languages
English (en)
French (fr)
Inventor
将貴 秋山
隆行 土井
耕治 山下
Original Assignee
コベルコ建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コベルコ建機株式会社 filed Critical コベルコ建機株式会社
Priority to US18/248,404 priority Critical patent/US20230407594A1/en
Priority to EP21885641.7A priority patent/EP4212676A4/en
Priority to CN202180072135.7A priority patent/CN116419998A/zh
Publication of WO2022091519A1 publication Critical patent/WO2022091519A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2045Guiding machines along a predetermined path
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • E02F9/262Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/437Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like providing automatic sequences of movements, e.g. linear excavation, keeping dipper angle constant
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/205Remotely operated machines, e.g. unmanned vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)

Definitions

  • the present invention relates to a route setting system for setting a target route for an attachment of a work machine.
  • Patent Document 1 describes a technique for setting a target route of an attachment.
  • the target path of the attachment is set so that a specific part of the attachment (the cutting edge of the working machine) does not come into contact with an obstacle (current terrain).
  • the route setting system is used for a work machine having a lower traveling body, an upper swivel body, and an attachment, and sets a target route of an attachment specific part which is a specific part of the attachment.
  • the route setting system includes a three-dimensional information acquisition unit and a controller.
  • the upper swivel body is rotatably mounted on the lower traveling body around a swivel center axis extending in the vertical direction.
  • the attachment is attached to the upper swing body to perform work.
  • the three-dimensional information acquisition unit acquires three-dimensional information of an obstacle specific part, which is a specific part of an obstacle around the attachment.
  • FIG. 1 is a side view of a work machine and a route setting system according to an embodiment of the present invention.
  • FIG. 2 is a view of the work machine and the route setting system shown in FIG. 1 as viewed from above.
  • FIG. 3 is a block diagram of a route setting system according to an embodiment of the present invention.
  • FIG. 4 is a flowchart showing the operation of the route setting system according to the embodiment of the present invention.
  • FIG. 5 is a view of the route setting system and the avoidance route according to the embodiment of the present invention from above.
  • FIG. 6 is a side view of the avoidance route and the like shown in FIG.
  • FIG. 7 is a rear view of the avoidance route and the like shown in FIG. FIG.
  • the route setting system 1 according to each embodiment of the present invention will be described with reference to FIGS. 1 to 13.
  • the route setting system 1 is a system for setting the target route R of the attachment 15 of the work machine 10 shown in FIG.
  • the route setting system 1 includes an image pickup device 21 and a controller 30.
  • the lower traveling body 11 supports the upper turning body 13 so as to be able to turn.
  • the lower traveling body 11 causes the work machine 10 to travel.
  • the upper swivel body 13 is mounted on the lower traveling body 11 so as to be swivelable around a swivel center axis extending in the vertical direction.
  • the turning center axis of the upper turning body 13 with respect to the lower traveling body 11 is defined as the turning center axis 13a (see FIG. 2).
  • the center line extending in the front-rear direction (the direction will be described later), which is the center axis of the attachment 15, is defined as the center line 15l.
  • the turning center axis 13a is on the center line 15l when viewed from the vertical direction, but the turning center axis 13a may be located laterally displaced from the center line 15l.
  • the image pickup device 21 detects the three-dimensional information of the image pickup object, and more specifically, detects the three-dimensional information of the position and shape of the image pickup object.
  • the image pickup object of the image pickup apparatus 21 includes an obstacle identification site Oa (see FIG. 5, which will be described later) of the obstacle O around the attachment 15.
  • the image pickup object of the image pickup apparatus 21 may be, for example, a work object (for example, earth and sand) of the attachment 15, or an object other than the work object.
  • the image pickup object of the image pickup apparatus 21 may include the terrain around the attachment 15.
  • the image pickup apparatus 21 acquires an image (distance image) having distance information (depth information).
  • the image pickup apparatus 21 may detect the three-dimensional information of the image pickup object based on the distance image and the two-dimensional image.
  • Only one image pickup device 21 may be provided, or a plurality of image pickup devices 21 may be provided.
  • the image pickup apparatus 21 may be mounted on the work machine 10 or may be arranged outside the work machine 10 (for example, at the work site) (the same applies to the controller 30).
  • the image pickup device 21 is arranged outside the work machine 10 (not shown)
  • a position that cannot be detected when the image pickup device 21 is mounted only on the work machine 10 (for example, a portion behind the attachment 15) is located. It may be possible to detect it.
  • the route setting system 1 of the present embodiment can be applied even if the work machine 10 does not include the image pickup device 21.
  • the image pickup device 21 may be provided with a device for detecting three-dimensional information using a laser beam, and may be provided with, for example, LiDAR (Light Detection and Ringing or Laser Imaging Detection and Ranking), or TOF (Time Of Flyght). ) It may be equipped with a sensor.
  • the image pickup device 21 may include a device (for example, a millimeter wave radar) that detects three-dimensional information using radio waves.
  • the image pickup apparatus 21 may include a stereo camera. When the image pickup device 21 detects the three-dimensional information around the attachment 15 based on the three-dimensional information and the two-dimensional information, the image pickup device 21 includes a camera capable of detecting a two-dimensional image. You may.
  • the work machine 10 performs work involving the movement of the attachment 15.
  • the attachment 15 includes the attachment specific portion 15s.
  • the attachment specific portion 15s is, for example, the tip portion of the tip attachment 15c.
  • the attachment specific portion 15s may be a point or a range.
  • the movement of the attachment specific portion 15s is performed by at least one of the rotation of the upper swing body 13, the undulation of the boom 15a, the rotation of the arm 15b with respect to the boom 15a, and the rotation of the tip attachment 15c with respect to the arm 15b.
  • the attachment 15 performs an operation (lifting and turning) of lifting and turning the captured work object.
  • the attachment specific portion 15s moves from the position P1 to the position P3 via the position P2.
  • the position P1 is a position where the attachment 15 catches the work object (for example, a position where earth and sand are excavated).
  • the position P2 will be described later.
  • the position P3 is a position where the attachment 15 starts releasing the work object (for example, a soil discharge start position).
  • Example 1B The attachment 15 releases the work object (for example, excretes soil), and for example, loads the work object into the transport vehicle T. At this time, the tip attachment 15c shown in FIG. 1 rotates with respect to the arm 15b. As a result, the attachment specific portion 15s moves from the position P3 to the position P4.
  • the position P4 is a position where the attachment 15 completes the release of the work object (for example, the soil removal completion position).
  • the attachment 15 performs an operation (return turning) of returning from the position where the work object is released to the position where the work object is captured. At this time, as shown in FIG. 2, the attachment specific portion 15s moves from the position P4 to the position P6 via the position P5. The position P5 will be described later.
  • the position P6 is a position where the attachment 15 starts capturing the work object (for example, a position where the excavation of earth and sand starts).
  • Attachment 15 captures a work object (for example, excavating earth and sand). At this time, the tip attachment 15c shown in FIG. 1 rotates with respect to the arm 15b. As a result, the attachment specific portion 15s moves from the position P6 to the position P1.
  • a work object for example, excavating earth and sand
  • the controller 30 sets the route setting target area A and the other areas around the attachment 15, respectively.
  • the route setting target area A is an area (calculation target area) in which the route setting system 1 sets the target route R of the attachment specific portion 15s.
  • the route setting system 1 may set a route (out-of-area route) of the attachment specific portion 15s outside the route setting target area A.
  • the out-of-area route may be, for example, a route stored in advance in the controller 30.
  • the out-of-area route may be, for example, a route (teaching route) in which the movement route of the attachment 15 is stored in a storage unit such as a controller 30 when the operator operates the work machine 10 in advance to move the attachment 15. ..
  • the obstacle O is an object that may come into contact with the attachment 15 when the attachment 15 moves.
  • the obstacle O may be a terrain (mountain-shaped part, hole-shaped part, etc.).
  • the obstacle O may be a work object (for example, earth and sand, waste, etc.).
  • the obstacle O may be a terrain and a work object, for example, a sediment mountain, or a hole (deep digging) dug so as to be recessed with respect to the ground (see FIGS. 12 and 13).
  • the obstacle O may be an object that is neither a terrain nor a work object.
  • the target route R is a target movement route of the attachment specific portion 15s.
  • the controller 30 is a method of setting a target path R between the start point Rs and the end point Re depending on whether or not there is an obstacle specific portion Oa between the start point Rs and the end point Re of the target path R. change.
  • the start point Rs is a start point of movement when the attachment specific portion 15s is moved along the target path R.
  • the end point Re is the end point of movement when the attachment specific portion 15s is moved along the target path R.
  • Each of the start point Rs and the end point Re is three-dimensional information, and is coordinates indicating a three-dimensional position.
  • the controller 30 sets the start point Rs and the end point Re, respectively, according to the work of the work machine 10 (attachment 15) as shown in each of the above examples.
  • the target path R may be a part or the whole of the movement path of the attachment specific portion 15s when the work machine 10 performs the work.
  • the target path R may be a part of the path of the lift turn (see [Example 1A] above), and specifically, the path from the position P1 to the position P2. good.
  • the target path R may be a part of the return turn (see [Example 1C] above), and specifically, may be a path from the position P5 to the position P6.
  • the target path R may be the entire path of the lift turn (the path from the position P1 to the position P3).
  • the target path R may be the entire path of the return turn (the path from the position P4 to P6).
  • FIG. 4 is a flowchart showing the operation of the route setting system 1 according to the present embodiment.
  • FIG. 5 is a view of the route setting system 1 and the avoidance route R1 according to the present embodiment as viewed from above.
  • FIG. 6 is a side view of the avoidance path R1 and the like shown in FIG.
  • FIG. 7 is a view of the avoidance path R1 and the like shown in FIG. 5 as viewed from the rear.
  • FIG. 8 is a view of the route setting system 1 and the non-avoidance route R2 as viewed from above.
  • FIG. 9 is a view of the non-avoidance path R2 shown in FIG. 8 as viewed from the rear.
  • step S11 to S23 The setting of the target route R will be described based on the flowchart shown in FIG.
  • steps S11 to S23 Each step (steps S11 to S23) of the flowchart will be described with reference to FIG.
  • the series of processes (processes from the start to the end) shown in the figure are performed, for example, in each cycle (for example, every earth and sand excavation cycle) in which the attachment specific portion 15s shown in FIG. 5 is arranged at the start point Rs.
  • step S11 the image pickup apparatus 21 shown in FIG. 1 detects three-dimensional information around the attachment 15.
  • the three-dimensional information detected by the image pickup apparatus 21 is input to the controller 30.
  • the obstacle specific portion Oa may be a part of the obstacle O.
  • the obstacle specific portion Oa may be the top (highest position, apex) of the mountain-shaped obstacle O, and specifically, for example, the top of a sediment mountain.
  • the controller 30 determines whether or not there is an obstacle specific portion Oa between the start point Rs and the end point Re of the target path R shown in FIG. 5 (see step S21 (see FIG. 4) to be described later). )).
  • this determination is referred to as "determination of the presence or absence of obstacle O".
  • the presence or absence of the obstacle O may be determined based on the turning angle ⁇ , or may be made based on the position in the front-rear direction (front-back position, position in the depth direction when viewed from the upper turning body 13) (the position in the front-back direction). See variant embodiment 1 below).
  • the controller 30 determines the presence or absence of the obstacle O based on the turning angle ⁇ will be described.
  • the starting point turning angle ⁇ s is the turning angle ⁇ when the attachment specific portion 15s is arranged at the starting point Rs. More specifically, the starting point turning angle ⁇ s is a turning angle ⁇ when the starting point Rs is arranged on the center line 15l of the attachment 15 when viewed from above and below.
  • the starting point turning angle ⁇ s is acquired as follows.
  • the end point turning angle ⁇ e is the turning angle ⁇ when the attachment specific portion 15s is arranged at the end point Re.
  • the end point turning angle ⁇ e is a turning angle ⁇ when the end point Re is arranged on the center line 15l of the attachment 15 when viewed from the vertical direction.
  • the turning angle ⁇ detected by the turning angle detecting unit 19a is the ending point turning angle ⁇ e.
  • the end point turning angle ⁇ e may be acquired by the calculation of the controller 30 without actually arranging the attachment specific portion 15s at the position corresponding to the end point Re (for example, the point P2) (the above [Example 4B]. ]).
  • the obstacle turning angle ⁇ o is a turning angle ⁇ when the attachment specific portion 15s is placed at the position of the obstacle specific portion Oa.
  • the obstacle turning angle ⁇ o is a turning angle ⁇ when the obstacle specific portion Oa is arranged on the center line 15l of the attachment 15 when viewed from the vertical direction.
  • the turning angle ⁇ detected by the turning angle detecting unit 19a is defined as the obstacle turning angle ⁇ o. It may be (see [Example 4A] above). Further, the obstacle turning angle ⁇ o may be acquired by the calculation of the controller 30 without actually arranging the attachment specific portion 15s at the position corresponding to the obstacle specific portion Oa (see [Example 4B] above). ).
  • the controller 30 acquires judgment information (judgment information) for determining whether or not there is an obstacle specific portion Oa between the start point Rs and the end point Re of the target route R. Functions as a department.
  • step S21 the controller 30 determines the presence or absence of the obstacle O.
  • the positional relationship between the above points is simply indicated by an inequality sign. The same applies to the other steps described later.
  • the controller 30 determines that the obstacle specific portion Oa is between the start point Rs and the end point Re (YES in step S21)
  • the controller 30 sets the avoidance route R1 as the target route R (step S22).
  • the controller 30 “between the starting point Rs and the ending point Re”.
  • the controller 30 determines that there is no obstacle specific portion Oa between the start point Rs and the end point Re (NO in step S21)
  • the controller 30 sets the non-avoidance route R2 as the target route R. (Step S23).
  • the controller 30 when there is no obstacle turning angle ⁇ o between the starting point turning angle ⁇ s and the ending point turning angle ⁇ e (within the angle range B), the controller 30 “between the starting point Rs and the ending point Re”. It is determined that there is no obstacle specific portion Oa, and the non-avoidance route R2 is set as the target route R.
  • the turning direction when turning the attachment specific portion 15s around the turning center axis 13a from the starting point turning angle ⁇ s to the ending point turning angle ⁇ e is defined as the “target turning direction”.
  • the above “between the start point turning angle ⁇ s and the end point turning angle ⁇ e” is between the starting point turning angle ⁇ s and the ending point turning angle ⁇ e when the attachment specific portion 15s is rotated in the target turning direction. ..
  • the above "between the start point turning angle ⁇ s and the end point turning angle ⁇ e” is from the starting point turning angle ⁇ s to the ending point turning angle ⁇ e when the attachment specific portion 15s is rotated in the direction opposite to the target turning direction.
  • the angle range B is, for example, 180 ° or less.
  • step S22 the controller 30 sets the avoidance route R1 as the target route R.
  • the avoidance route R1 is a route in which the attachment specific portion 15s moves from the start point Rs to the end point Re while the attachment 15 performs an avoidance operation to avoid the obstacle O (see FIGS. 5 to 7).
  • the avoidance path R1 includes an avoidance operation path R1a, an avoidance position R1b, and a post-avoidance path R1c.
  • the avoidance operation may be an operation of avoiding an obstacle specific part Oa (for example, a point), and avoids a wider range than the obstacle specific part Oa (for example, a range including a peripheral part of the obstacle specific part Oa). It may be an operation or an operation that avoids the entire obstacle O.
  • an obstacle specific part Oa for example, a point
  • avoids a wider range than the obstacle specific part Oa for example, a range including a peripheral part of the obstacle specific part Oa
  • It may be an operation or an operation that avoids the entire obstacle O.
  • the attachment specific portion 15s may avoid the obstacle O, or a wider range of the attachment 15 than the attachment specific portion 15s may avoid the obstacle O.
  • the entire attachment 15 may avoid the obstacle O.
  • the controller 30 calculates the locus of the attachment 15 when the attachment 15 moves, based on the posture of the attachment 15 and the shape information of the attachment 15. For example, the controller 30 calculates an avoidance path R1 such that the entire attachment 15 avoids the obstacle O based on the locus of the attachment 15.
  • the avoidance operation is an operation in which the attachment 15 moves from a position above the start point Rs to a position higher than the obstacle specific part Oa until it exceeds the position of the obstacle specific part Oa (up to the avoidance position R1b). It may be (see FIG. 7).
  • the avoidance operation may be an operation in which the attachment 15 moves at a position higher than the obstacle specific portion Oa from the starting point turning angle ⁇ s shown in FIG. 5 until the obstacle turning angle ⁇ o is exceeded. Specifically, the attachment specific portion 15s moves upward from the starting point Rs to a position higher than the obstacle specific portion Oa (see FIG. 7). Then, the attachment specific portion 15s moves laterally from the position of the starting point turning angle ⁇ s until it exceeds the obstacle turning angle ⁇ o (up to the avoidance position R1b).
  • the avoidance operation may be an operation in which the attachment 15 moves to a position higher than the obstacle specific portion Oa from the start point front / rear position Xs (described later) to the obstacle front / rear position Xo (described later).
  • the avoidance operation may be any operation as long as the attachment 15 can avoid the obstacle O.
  • the avoidance operation may be an operation in which the attachment 15 moves along the surface of the obstacle O.
  • the avoidance route R1c is a route in which the attachment 15 moves from the position beyond the obstacle O (avoidance position R1b) toward the end point Re.
  • the post-avoidance route R1c may be a route in which the attachment specific portion 15s is orthogonal to the end point Re from the avoidance position R1b (see the description of the non-avoidance route R2 described later).
  • the avoidance route R1c may be a route in which the attachment specific portion 15s moves through a passing point set in advance in the controller 30.
  • the avoidance route R1c may be a route in which the attachment specific portion 15s moves along a route set in advance in the controller 30.
  • step S23 the controller 30 sets the non-avoidance route R2 as the target route R as shown in FIG.
  • the non-avoidance path R2 is a path in which the attachment specific portion 15s moves from the start point Rs to the end point Re without performing the avoidance operation by the attachment 15.
  • the non-avoidance route R2 is, for example, a route in which the attachment specific portion 15s goes straight from the start point Rs to the end point Re.
  • the non-avoidance path R2 may be the shortest path from the start point Rs to the end point Re (see FIG. 9), and may be specifically a linear route.
  • the non-avoidance route R2 may be a route in which the attachment specific portion 15s moves along a preset route.
  • the avoidance route R1 may be a route obtained by modifying a preset route (that is, a non-avoidance route R2).
  • the controller 30 outputs a command (inputs a command signal) to the drive control unit 17 (see FIG. 3) so as to move the attachment specific portion 15s along the set target path R.
  • a command inputs a command signal
  • the drive control unit 17 see FIG. 3
  • the route setting system 1 shown in FIG. 1 has the following effects.
  • the route setting system 1 is used for the work machine 10 and includes an image pickup device 21 and a controller 30.
  • the upper swivel body 13 of the work machine 10 is mounted on the lower traveling body 11 so as to be swivelable.
  • the attachment 15 is attached to the upper swivel body 13 to perform work.
  • the image pickup apparatus 21 acquires three-dimensional information of the obstacle specific portion Oa, which is a specific portion of the obstacle O around the attachment 15 shown in FIG.
  • the image pickup device 21 itself may have a function of specifying the obstacle specifying portion Oa and its position.
  • the controller 30 sets the target path R of the attachment specific portion 15s, which is a specific portion of the attachment 15, from the predetermined start point to the predetermined end point.
  • the controller 30 determines that there is an obstacle specific portion Oa between the start point Rs of the target route R and the end point Re of the target route R, the controller 30 sets the avoidance route R1 as the target route R.
  • the avoidance route R1 is a route in which the attachment specific portion 15s moves from the start point Rs to the end point Re while the attachment 15 performs an avoidance operation to avoid the obstacle O.
  • the controller 30 determines that there is no obstacle specific portion Oa between the start point Rs and the end point Re, the controller 30 sets the non-avoidance route R2 as the target route R.
  • the non-avoidance path R2 is a path in which the attachment specific portion 15s moves from the start point Rs to the end point Re without performing the avoidance operation by the attachment 15.
  • the controller 30 determines whether or not there is an obstacle specific portion Oa between the start point Rs and the end point Re shown in FIG.
  • the controller 30 sets the avoidance path R1 in which the attachment 15 performs the avoidance operation as the target path R. Therefore, it is possible to move the attachment specific portion 15s from the start point Rs to the end point Re while causing the attachment 15 to avoid the obstacle O.
  • the controller 30 sets the non-avoidance path R2 in which the attachment 15 does not perform the avoidance operation as the target path R. do.
  • the attachment specific portion 15s can be moved from the start point Rs to the end point Re without causing the attachment 15 to perform a useless avoidance operation. Therefore, the contact of the attachment 15 with the obstacle O can be suppressed, and the useless operation of the attachment 15 can be suppressed.
  • the turning angle ⁇ of the upper turning body 13 with respect to the lower traveling body 11 and the turning angle ⁇ when the attachment specific portion 15s is arranged at the starting point Rs is defined as the starting point turning angle ⁇ s. Will be done.
  • the turning angle ⁇ when the attachment specific portion 15s is arranged at the end point Re is defined as the end point turning angle ⁇ e.
  • the turning angle ⁇ when the attachment specific portion 15s is arranged at the position of the obstacle specific portion Oa is defined as the obstacle turning angle ⁇ o.
  • the controller 30 When the obstacle turning angle ⁇ o is between the starting point turning angle ⁇ s and the ending point turning angle ⁇ e (angle range B), the controller 30 has an obstacle specific portion Oa between the starting point Rs and the ending point Re. Judge that there is. As shown in FIG. 8, when there is no obstacle turning angle ⁇ o between the starting point turning angle ⁇ s and the ending point turning angle ⁇ e (angle range B), the controller 30 is between the starting point Rs and the ending point Re. It is determined that there is no obstacle specific part Oa in.
  • the controller 30 determines whether or not there is an obstacle specific portion Oa between the start point Rs and the end point Re (determination of the presence or absence of the obstacle O) based on the turning angle ⁇ . .. Therefore, as compared with the case where the presence or absence of the obstacle O is determined based on whether or not the obstacle specific portion Oa is located between the start point Rs and the end point Re in the three-dimensional space, for example, the controller 30 The calculation load can be suppressed.
  • the controller 30 sets the top of the mountain-shaped obstacle O to the obstacle specific portion Oa.
  • the controller 30 determines whether or not there is an obstacle specific portion Oa between the start point Rs and the end point Re (determination of the presence or absence of the obstacle O) in three dimensions on the top of the obstacle O. It is based on information, that is, three-dimensional information of points. Therefore, the calculation load of the controller 30 can be suppressed as compared with the case where the presence / absence of the obstacle O is determined based on the three-dimensional information of the entire obstacle O.
  • the avoidance operation is performed at a position higher than the obstacle specific portion Oa from the position above the start point Rs until the position of the obstacle specific portion Oa is exceeded (up to the avoidance position R1b) (FIG. 7). 5) is a moving operation.
  • the attachment 15 (see FIG. 5) can move from the start point Rs toward the end point Re while reliably avoiding the obstacle specific portion Oa.
  • the presence or absence of the obstacle O shown in FIG. 5 may be determined in various ways. For example, in the above embodiment, the presence / absence of the obstacle O is determined based on the turning angle ⁇ . On the other hand, in the modified embodiment 1, the presence / absence of the obstacle O is determined based on the position (front-back position) in the front-rear direction.
  • the differences between the modified embodiment 1 and the above-described embodiment will be described.
  • FIG. 10 is a flowchart showing the operation of the route setting system 1 of the present modified embodiment 1.
  • step S113 shown in FIG. 10 is performed.
  • the controller 30 shown in FIG. 5 acquires the start point front-rear position Xs, the end point front-rear position Xe, and the obstacle front-rear position Xo.
  • the start point front-rear position Xs is a position in the front-rear direction of the start point Rs (position in the front-rear direction of the upper swivel body 13).
  • the end point front-back position Xe is a position in the front-back direction of the end point Re.
  • the obstacle anterior-posterior position Xo is a position in the anteroposterior direction of the obstacle specific portion Oa.
  • the controller 30 when the obstacle front / rear position Xo is located between the start point front / rear position Xs and the end point front / rear position Xe (front / rear range C), the obstacle specific portion Oa is located between the start point Rs and the end point Re. Judge that there is. As shown in FIG. 8, the controller 30 is between the start point Rs and the end point Re when there is no obstacle front-rear position Xo between the start point front-rear position Xs and the end point front-rear position Xe (front-rear range C). It is determined that there is no obstacle specific part Oa in.
  • the position of the end point Re in the front-rear direction of the upper swivel body 13 is defined as the end point front-rear position Xe.
  • the position of the obstacle specific portion Oa in the front-rear direction of the upper swing body 13 is defined as the obstacle front-rear position Xo.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

アタッチメントの障害物への接触を抑制するとともに、アタッチメントの無駄な動作を抑制する。コントローラは、開始点と終了点との間に障害物特定部位があると判定した場合、目標経路として回避経路を設定する。回避経路は、障害物を回避する回避動作をアタッチメントが行いながら、開始点から終了点にアタッチメント特定部位が移動する経路である。コントローラは、開始点と終了点との間に障害物特定部位がないと判定した場合、目標経路として非回避経路を設定する。非回避経路は、回避動作をアタッチメントが行わずに、開始点から終了点にアタッチメント特定部位が移動する経路である。

Description

経路設定システム
 本発明は、作業機械のアタッチメントの目標経路を設定する経路設定システムに関する。
 例えば特許文献1などに、アタッチメントの目標経路を設定する技術が記載されている。同文献に記載の技術では、アタッチメントの特定部位(作業機の刃先)が障害物(現在の地形)に接触しないように、アタッチメントの目標経路が設定される。
特開2020-20153号公報
 同文献に記載の技術では、アタッチメントが障害物を回避する動作を行うような目標経路が設定される。具体的には、アタッチメントが、開始位置(現在位置)から、途中点を通り、終了位置(掘削開始位置)に至るように、目標経路が設定される。しかし、アタッチメントの位置や障害物の状態によっては、必ずしも障害物を回避する動作をアタッチメントが行う必要はない。このため、アタッチメントが無駄な動作を行うおそれがある。
 本発明の目的は、アタッチメントの障害物への接触を抑制できるとともに、アタッチメントの無駄な動作を抑制することができる、経路設定システムを提供することにある。
 本発明によって提供されるのは、経路設定システムである。当該経路設定システムは、下部走行体と、上部旋回体と、アタッチメントとを有する作業機械に用いられ、前記アタッチメントの特定の部位であるアタッチメント特定部位の目標経路を設定する。経路設定システムは、三次元情報取得部と、コントローラとを備える。前記上部旋回体は、上下方向に延びる旋回中心軸回りに前記下部走行体に旋回可能に搭載される。前記アタッチメントは、前記上部旋回体に取り付けられ、作業を行う。前記三次元情報取得部は、前記アタッチメントの周囲の障害物の特定の部位である障害物特定部位の三次元情報を取得する。前記コントローラは、所定の開始点から所定の終了点までの前記アタッチメント特定部位の目標経路を設定する。前記コントローラは、前記三次元情報取得部の取得結果に基づいて、前記目標経路の前記開始点と前記目標経路の前記終了点との間における前記障害物特定部位の有無を判定する。前記コントローラは、前記目標経路の開始点と前記目標経路の終了点との間に前記障害物特定部位があると判定した場合、前記目標経路として回避経路を設定し、前記開始点と前記終了点との間に前記障害物特定部位がないと判定した場合、前記目標経路として非回避経路を設定する。前記回避経路は、前記障害物を回避する回避動作を前記アタッチメントが行いながら、前記開始点から前記終了点に前記アタッチメント特定部位が移動する経路である。前記非回避経路は、前記回避動作を前記アタッチメントが行わずに、前記開始点から前記終了点に前記アタッチメント特定部位が移動する経路である。
図1は、本発明の一実施形態に係る作業機械および経路設定システムを横方向から見た図である。 図2は、図1に示す作業機械および経路設定システムを上方から見た図である。 図3は、本発明の一実施形態に係る経路設定システムのブロック図である。 図4は、本発明の一実施形態に係る経路設定システムの作動を示すフローチャートである。 図5は、本発明の一実施形態に係る経路設定システムおよび回避経路を上方から見た図である。 図6は、図5に示す回避経路などを横方向から見た図である。 図7は、図5に示す回避経路などを後方から見た図である。 図8は、図1に示す経路設定システムおよび非回避経路を上方から見た図である。 図9は、図8に示す非回避経路を後方から見た図である。 図10は、本発明の変形実施形態1の経路設定システムの作動を示すフローチャートである。 図11は、本発明の変形実施形態2の経路設定システムの作動を示すフローチャートである。 図12は、本発明の変形実施形態4の経路設定システムおよび目標経路などを上方から見た図である。 図13は、図12に示す目標経路などを後方から見た図である。
 図1~図13を参照して、本発明の各実施形態に係る経路設定システム1について説明する。
 図1は、本発明の一実施形態に係る作業機械10および経路設定システム1を横方向から見た図である。図2は、図1に示す作業機械10および経路設定システム1を上方から見た図である。図3は、本実施形態に係る経路設定システム1のブロック図である。
 経路設定システム1は、図1に示す作業機械10のアタッチメント15の目標経路Rを設定するシステムである。経路設定システム1は、撮像装置21と、コントローラ30と、を備える。
 作業機械10は、アタッチメント15を用いた作業を行う機械であり、例えば建設作業を行う建設機械であり、例えばショベルなどである。例えば、作業機械10は、作業対象物の捕捉(例えば土砂の掘削)、および、捕捉した作業対象物の解放(例えば排土)を行うことが可能である。上記の作業対象物は、土砂でもよく、石でもよく、廃棄物などでもよい。作業機械10は、例えば自動運転可能である。作業機械10は、下部走行体11と、上部旋回体13と、アタッチメント15と、駆動制御部17(図2参照)と、姿勢検出部19(図2参照)と、を備える。
 下部走行体11は、上部旋回体13を旋回可能に支持する。下部走行体11は、作業機械10を走行させる。上部旋回体13は、下部走行体11に上下方向に延びる旋回中心軸回りに旋回可能に搭載される。下部走行体11に対する上部旋回体13の旋回中心軸を、旋回中心軸13a(図2参照)と定義する。
 アタッチメント15は、上部旋回体13に取り付けられ、作業を行う。アタッチメント15は、ブーム15aと、アーム15bと、先端アタッチメント15cと、を備える。ブーム15aは、上部旋回体13に起伏可能(上下に回転可能)に取り付けられる。アーム15bは、ブーム15aの先端部に回転可能(押し引き可能)に取り付けられる。先端アタッチメント15cは、アタッチメント15の先端部に設けられ、アーム15bの先端部に回転可能に取り付けられる。先端アタッチメント15cは、例えば、作業対象物をすくうバケットでもよく、作業対象物を挟む装置(グラップルなど)でもよい。アタッチメント15の特定の部位を、アタッチメント特定部位15sと称する。図5に示すように、アタッチメント15の中心軸であって前後方向(方向については後述)に延びる中心線を、中心線15lとする。なお、図5に示す例では、上下方向から見たとき、旋回中心軸13aは中心線15l上にあるが、旋回中心軸13aは中心線15lから横方向にずれた位置にあってもよい。
 (作業機械10に関する方向など)
 図1に示すように、下部走行体11に対する上部旋回体13の旋回の中心軸(旋回中心軸13a)が延びる方向を、上下方向(Z)と定義する。上下方向において、下部走行体11から上部旋回体13に向かう方向を上方向(Z1)と定義し、その逆方向を下方向(Z2)と定義する。上下方向に直交する方向であって、上部旋回体13に対してアタッチメント15が突出する側を前後方向のうち前方向(X1)と定義し、その逆方向を前後方向のうち後方向(X2)と定義する。上下方向および前後方向のそれぞれに直交する方向を、横方向と定義する。
 駆動制御部17(図3参照)は、作業機械10を駆動させるアクチュエータを制御する。駆動制御部17は、下部走行体11に対して上部旋回体13を旋回させるモータ(図示なし)を制御する。駆動制御部17は、上部旋回体13に対してブーム15aを起伏させるシリンダ(図示なし)を制御する。駆動制御部17は、ブーム15aに対してアーム15bを回転させるシリンダを制御する。駆動制御部17は、アーム15bに対して先端アタッチメント15cを回転させるシリンダ(図示なし)を制御する。
 姿勢検出部19(図3参照)は、作業機械10の姿勢を検出するセンサである。姿勢検出部19は、例えば角度センサを備える。具体的には、図3に示すように、姿勢検出部19は、旋回角度検出部19aと、ブーム角度検出部19bと、アーム角度検出部19cと、先端アタッチメント角度検出部19dと、を備える。旋回角度検出部19aは、図5に示す下部走行体11に対する上部旋回体13の旋回角度θ(相対角度)を検出する。ブーム角度検出部19b(図3参照)は、図1に示す上部旋回体13に対するブーム15aの回転角度(起伏角度)を検出する。アーム角度検出部19c(図3参照)は、ブーム15aに対するアーム15bの回転角度を検出する。先端アタッチメント角度検出部19d(図3参照)は、アーム15bに対する先端アタッチメント15cの回転角度を検出する。
 撮像装置21は、撮像対象物の三次元情報を検出し、さらに詳しくは、撮像対象物の位置および形状の三次元の情報を検出する。撮像装置21の撮像対象物は、アタッチメント15の周囲の障害物Oの障害物特定部位Oa(図5参照、後述)を含む。撮像装置21の撮像対象物は、例えばアタッチメント15の作業対象物(例えば土砂など)でもよく、作業対象物以外の物でもよい。撮像装置21の撮像対象物は、アタッチメント15の周囲の地形を含んでもよい。撮像装置21は、距離の情報(奥行きの情報)を有する画像(距離画像)を取得する。撮像装置21は、距離画像と二次元画像とに基づいて、撮像対象物の三次元情報を検出してもよい。
 この撮像装置21は、1つのみ設けられてもよく、複数設けられてもよい。撮像装置21は、作業機械10に搭載されてもよく、作業機械10の外部(例えば作業現場)に配置されてもよい(コントローラ30についても同様)。撮像装置21が作業機械10の外部に配置される場合(図示なし)は、撮像装置21が作業機械10のみに搭載された場合には検出できない位置(例えばアタッチメント15の陰になる部分など)を検出できる場合がある。また、撮像装置21が作業機械10の外部に配置される場合は、作業機械10が撮像装置21を備えていなくても、本実施形態の経路設定システム1を適用することができる。
 この撮像装置21は、レーザー光を用いて三次元の情報を検出する装置を備えてもよく、例えばLiDAR(Light Detection and RangingまたはLaser Imaging Detection and Ranging)を備えてもよく、TOF(Time Of Flight)センサを備えてもよい。撮像装置21は、電波を用いて三次元の情報を検出する装置(例えばミリ波レーダなど)を備えてもよい。撮像装置21は、ステレオカメラを備えてもよい。撮像装置21が三次元の情報と二次元の情報とに基づいて、アタッチメント15の周囲の三次元情報を検出する場合などには、撮像装置21は、二次元の画像を検出可能なカメラを備えてもよい。
 コントローラ30は、信号の入出力、判定や算出などの演算、情報の記憶などを行う。具体的に、コントローラ30は、CPU(Central Processing Unit)、制御プログラムを記憶するROM(Read Only Memory)、CPUの作業領域として使用されるRAM(Random Access Memory)等から構成されている。コントローラ30には、姿勢検出部19(図3参照)の検出結果および撮像装置21の撮像情報がそれぞれ入力される。コントローラ30は、撮像装置21とともに、本発明の三次元情報取得部を構成する。三次元情報取得部は、アタッチメント15の周囲の障害物Oの特定の部位である障害物特定部位Oaの三次元情報を取得する。この際、コントローラ30は、撮像装置21の撮像情報から、前記障害物特定部位Oaを特定する。
 また、コントローラ30は、所定の開始点から所定の終了点までのアタッチメント特定部位15sの目標経路Rを設定(例えば生成)する。コントローラ30は、目標経路R以外のアタッチメント15の経路(例えばアタッチメント特定部位15sの経路)を設定してもよい。コントローラ30は、駆動制御部17(図3参照)を制御することで、作業機械10を自動的に動作させる。
 (作業機械10による作業の例)
 作業機械10は、アタッチメント15の移動を伴う作業を行う。アタッチメント15は、アタッチメント特定部位15sを含む。アタッチメント特定部位15sは、例えば、先端アタッチメント15cの先端部などである。アタッチメント特定部位15sは、点でもよく、範囲でもよい。アタッチメント特定部位15sの移動は、上部旋回体13の旋回、ブーム15aの起伏、ブーム15aに対するアーム15bの回転、およびアーム15bに対する先端アタッチメント15cの回転、の少なくともいずれかの作動により行われる。
 アタッチメント特定部位15sの移動経路の具体例は、次の通りである。
 [例1A]アタッチメント15は、捕捉した作業対象物を持ち上げて旋回させる作動(持ち上げ旋回)を行う。このとき、図2に示すように、アタッチメント特定部位15sは、位置P1から、位置P2を経由して、位置P3に移動する。位置P1は、アタッチメント15が作業対象物を捕捉した位置(例えば土砂を掘削した位置)である。位置P2については後述する。位置P3は、アタッチメント15が作業対象物の解放を開始する位置(例えば排土開始位置)である。
 [例1B]アタッチメント15は、作業対象物を解放(例えば排土)し、例えば、作業対象物を輸送車Tに積み込む。このとき、図1に示す先端アタッチメント15cが、アーム15bに対して回転する。この結果、アタッチメント特定部位15sは、位置P3から位置P4に移動する。位置P4は、アタッチメント15が作業対象物の解放を完了する位置(例えば排土完了位置)である。
 [例1C]アタッチメント15は、作業対象物を解放した位置から、作業対象物を捕捉する位置に戻る作動(復帰旋回)を行う。このとき、図2に示すように、アタッチメント特定部位15sは、位置P4から、位置P5を経由して、位置P6に移動する。なお、位置P5については後述する。位置P6は、アタッチメント15が作業対象物の捕捉を開始する位置(例えば土砂の掘削開始位置)である。
 [例1D]アタッチメント15は、作業対象物を捕捉(例えば土砂を掘削)する。このとき、図1に示す先端アタッチメント15cがアーム15bに対して回転する。この結果、アタッチメント特定部位15sは、位置P6から位置P1に移動する。
 図2に示すように、コントローラ30は、アタッチメント15の周囲に、経路設定対象エリアAと、それ以外の領域とをそれぞれ設定する。経路設定対象エリアAは、経路設定システム1が、アタッチメント特定部位15sの目標経路Rを設定する領域(演算対象エリア)である。経路設定システム1は、経路設定対象エリアAの外部でのアタッチメント特定部位15sの経路(エリア外経路)を、どのように設定してもよい。エリア外経路は、例えば、コントローラ30に予め記憶された経路でもよい。エリア外経路は、例えば、オペレータが事前に作業機械10を操作してアタッチメント15を移動させたときの、アタッチメント15の移動経路をコントローラ30などの記憶部に記憶させた経路(ティーチング経路)でもよい。
 作業現場ではアタッチメント15の周囲に障害物Oが存在する場合がある。障害物Oは、アタッチメント15が移動する際に、アタッチメント15に接触する可能性のある物である。障害物Oは、地形(山形状の部分、穴形状の部分など)でもよい。障害物Oは、作業対象物(例えば土砂、廃棄物など)でもよい。障害物Oは、地形かつ作業対象物でもよく、例えば土砂山でもよく、地面に対して凹むように掘られた穴(深堀り)でもよい(図12および図13参照)。障害物Oは、地形でもなく作業対象物でもない物でもよい。
 (目標経路Rの設定の概要)
 図5に示すように、目標経路Rは、アタッチメント特定部位15sの目標とする移動経路である。コントローラ30は、目標経路Rの開始点Rsと終了点Reとの間に障害物特定部位Oaがあるか否かに応じて、開始点Rsと終了点Reとの間の目標経路Rの設定方法を変える。開始点Rsは、目標経路Rに沿ってアタッチメント特定部位15sを移動させる際の移動の始点である。終了点Reは、目標経路Rに沿ってアタッチメント特定部位15sを移動させる際の移動の終点である。開始点Rsおよび終了点Reのそれぞれは、三次元情報であり、三次元の位置を示す座標である。コントローラ30は、前述の各例に示すような作業機械10(アタッチメント15)の作業に応じて開始点Rsおよび終了点Reをそれぞれ設定する。
 目標経路Rは、作業機械10が作業を行う際のアタッチメント特定部位15sの移動経路の一部でも全体でもよい。
 [例2A]例えば、図2に示すように、目標経路Rは、持ち上げ旋回(上記[例1A]参照)の経路の一部でもよく、具体的には、位置P1から位置P2までの経路でもよい。
 [例2B]例えば、目標経路Rは、復帰旋回(上記[例1C]参照)の経路の一部でもよく、具体的には、位置P5から位置P6までの経路でもよい。
 [例2C]目標経路Rは、持ち上げ旋回の経路の全体(位置P1から位置P3までの経路)でもよい。
 [例2D]目標経路Rは、復帰旋回の経路の全体(位置P4からP6までの経路)でもよい。
 (目標経路Rの設定の詳細)
 図4は、本実施形態に係る経路設定システム1の作動を示すフローチャートである。図5は、本実施形態に係る経路設定システム1および回避経路R1を上方から見た図である。図6は、図5に示す回避経路R1などを横方向から見た図である。図7は、図5に示す回避経路R1などを後方から見た図である。図8は、経路設定システム1および非回避経路R2を上方から見た図である。図9は、図8に示す非回避経路R2を後方から見た図である。
 目標経路Rの設定について、図4に示すフローチャートなどに基づいて説明する。フローチャートの各ステップ(ステップS11~S23)については、図4を参照して説明する。同図に記載の一連の処理(スタートからエンドまでの処理)は、例えば、図5に示すアタッチメント特定部位15sが開始点Rsに配置されるサイクル毎(例えば土砂の掘削サイクル毎)に行われる。
 ステップS11(図4参照)では、図1に示す撮像装置21が、アタッチメント15の周囲の三次元情報を検出する。撮像装置21が検出した三次元情報は、コントローラ30に入力される。
 ステップS12(図4参照)では、図5に示すコントローラ30が、アタッチメント15の周囲の三次元情報から、障害物Oを検出(抽出、算出、特定)する。コントローラ30は、障害物特定部位Oaの三次元情報を算出する。障害物特定部位Oaは、障害物Oの一部でもよく、障害物Oの全体でもよい。
 [例3A]図6に示すように、障害物特定部位Oaは、障害物Oの一部の点でもよい。例えば、障害物特定部位Oaは、山形状の障害物Oの頂上(最も高い位置、頂点)でもよく、具体的には例えば、土砂山の頂上でもよい。
 [例3B]障害物特定部位Oaは、障害物Oの一部の線状の部分でもよい。例えば、障害物特定部位Oaは、地面に形成された穴の縁でもよい(後述する変形実施形態4を参照)(図12および図13参照)。
 [例3C]障害物特定部位Oaは、障害物Oの面でもよい。具体的には例えば、障害物特定部位Oaは、土砂山を構成する面でもよく、穴を構成する面(内面)でもよい。
 [例3D]障害物特定部位Oaは、1か所(例えば1点)にのみ存在してもよく、複数か所に存在してもよい。以下では、主に、障害物特定部位Oaが土砂山の頂上の点である場合について説明する。
 (障害物Oの有無の判定方法)
 後述するように、コントローラ30は、図5に示す目標経路Rの開始点Rsと終了点Reとの間に障害物特定部位Oaがあるか否かを判定する(後述するステップS21(図4参照))。以下、この判定を「障害物Oの有無の判定」という。障害物Oの有無の判定は、旋回角度θに基づいて行われてもよく、前後方向における位置(前後位置、上部旋回体13から見て奥行方向における位置)に基づいて行われてもよい(後述する変形実施形態1を参照)。ここでは、コントローラ30が、障害物Oの有無の判定を旋回角度θに基づいて行う場合について説明する。
 ステップS13(図4参照)では、コントローラ30が、撮像装置24の撮像情報などに基づいて、開始点旋回角度θsと、終了点旋回角度θeと、障害物旋回角度θoと、を取得する。
 開始点旋回角度θsは、アタッチメント特定部位15sが開始点Rsに配置されるときの旋回角度θである。さらに詳しくは、開始点旋回角度θsは、上下方向から見たときに、アタッチメント15の中心線15l上に開始点Rsが配置されるときの旋回角度θである。
 例えば、開始点旋回角度θsは、次のように取得される。
 [例4A]開始点Rsに対応する位置(例えば点P1)にアタッチメント特定部位15sが実際に配置されたときに、旋回角度検出部19a(図3参照)によって検出された旋回角度θが、開始点旋回角度θsとされてもよい。この場合の具体例は、次の通りである。アタッチメント15による作業対象物を捕捉する作業が完了したとき、アタッチメント特定部位15sが、点P1に配置される。コントローラ30は、このときのアタッチメント特定部位15sの位置を、開始点Rsとする。そして、アタッチメント特定部位15sが点P1に配置されているときの旋回角度θが、旋回角度検出部19a(図3参照)によって検出される。コントローラ30は、検出された旋回角度θを、開始点旋回角度θsとする。
 [例4B]開始点Rsに対応する位置(例えば点P1)にアタッチメント特定部位15sが実際に配置されることなく、開始点旋回角度θsが取得されてもよい。具体的には、コントローラ30は、予め設定された開始点Rsの三次元情報に基づいて、アタッチメント特定部位15sが開始点Rsに配置されたと仮定したときの旋回角度θを算出し、算出された旋回角度θを開始点旋回角度θsとしてもよい。
 終了点旋回角度θeは、アタッチメント特定部位15sが終了点Reに配置されるときの旋回角度θである。詳しくは、終了点旋回角度θeは、上下方向から見たときに、アタッチメント15の中心線15l上に終了点Reが配置されるときの旋回角度θである。終了点Reに対応する位置(例えば点P2)にアタッチメント特定部位15sが実際に配置されたときに、旋回角度検出部19a(図3参照)によって検出された旋回角度θが、終了点旋回角度θeとされてもよい(上記[例4A]を参照)。また、終了点Reに対応する位置(例えば点P2)にアタッチメント特定部位15sが実際に配置されることなく、コントローラ30の演算により、終了点旋回角度θeが取得されてもよい(上記[例4B]を参照)。
 障害物旋回角度θoは、アタッチメント特定部位15sが障害物特定部位Oaの位置に配置されるときの旋回角度θである。詳しくは、障害物旋回角度θoは、上下方向から見たときに、アタッチメント15の中心線15l上に障害物特定部位Oaが配置されるときの旋回角度θである。障害物特定部位Oaに対応する位置にアタッチメント特定部位15sが実際に配置されたときに、旋回角度検出部19a(図3参照)によって検出された旋回角度θが、障害物旋回角度θoとされてもよい(上記[例4A]を参照)。また、障害物特定部位Oaに対応する位置にアタッチメント特定部位15sが実際に配置されることなく、コントローラ30の演算により、障害物旋回角度θoが取得されてもよい(上記[例4B]を参照)。
 以上のように、コントローラ30は、目標経路Rの開始点Rsと終了点Reとの間に障害物特定部位Oaがあるか否かを判定するための情報(判断情報)を取得する判断情報取得部として機能する。
 ステップS21(図4参照)では、コントローラ30が、障害物Oの有無の判定を行う。なお、図4では簡略的に上記の点同士の位置関係を不等号で示している。後記の他のステップにおいても同様である。コントローラ30は、開始点Rsと終了点Reとの間に障害物特定部位Oaがあると判定した場合(ステップS21でYES)、目標経路Rとして回避経路R1を設定する(ステップS22)。この例では、コントローラ30は、開始点旋回角度θsから終了点旋回角度θeまでの間(角度範囲B内)に障害物旋回角度θoがあるとき、「開始点Rsと終了点Reとの間に障害物特定部位Oaがある」と判定する。このように、コントローラ30は、前記三次元情報取得部の取得結果に基づいて、目標経路Rの開始点Rsと終了点Reとの間に障害物特定部位Oaがあるか否かを判定する判定部として機能する。
 図8に示すように、コントローラ30は、開始点Rsと終了点Reとの間に障害物特定部位Oaがないと判定した場合(ステップS21でNO)、目標経路Rとして非回避経路R2を設定する(ステップS23)。この例では、コントローラ30は、開始点旋回角度θsから終了点旋回角度θeまでの間(角度範囲B内)に障害物旋回角度θoがないとき、「開始点Rsと終了点Reとの間に障害物特定部位Oaがない」と判定し、目標経路Rとして非回避経路R2を設定する。
 なお、開始点旋回角度θsから終了点旋回角度θeまで、旋回中心軸13aを中心にアタッチメント特定部位15sを旋回させる際の旋回方向を、「目標旋回方向」とする。上記「開始点旋回角度θsから終了点旋回角度θeまでの間」は、アタッチメント特定部位15sを目標旋回方向に回転させたときの、開始点旋回角度θsから終了点旋回角度θeまでの間である。上記「開始点旋回角度θsから終了点旋回角度θeまでの間」は、アタッチメント特定部位15sを目標旋回方向とは逆向きに回転させたときの、開始点旋回角度θsから終了点旋回角度θeまでの間ではない。角度範囲Bは、例えば180°以下である。
 ステップS22(図4参照)では、図5に示すように、コントローラ30は、目標経路Rとして回避経路R1を設定する。回避経路R1は、障害物Oを回避する回避動作をアタッチメント15が行いながら(図5~図7参照)、開始点Rsから終了点Reにアタッチメント特定部位15sが移動する経路である。回避経路R1は、回避動作経路R1aと、回避位置R1bと、回避後経路R1cと、を含む。
 回避動作経路R1aは、回避経路R1のうち、アタッチメント15による回避動作が行われる部分であり、開始点Rsから回避位置R1bまでアタッチメント特定部位15sが移動する経路である。アタッチメント15の回避動作は、様々に行われ得る。
 [例6A]回避動作は、障害物特定部位Oa(例えば点)を回避する動作でもよく、障害物特定部位Oaよりも広い範囲(例えば障害物特定部位Oaの周辺部を含む範囲)を回避する動作でもよく、障害物O全体を回避する動作でもよい。
 [例6B]回避動作では、アタッチメント特定部位15sが障害物Oを回避してもよく、アタッチメント15のうちアタッチメント特定部位15sよりも広い範囲が障害物Oを回避してもよい。回避動作では、アタッチメント15の全体が障害物Oを回避してもよい。なお、コントローラ30は、アタッチメント15の姿勢とアタッチメント15の形状情報とに基づいて、アタッチメント15が移動するときのアタッチメント15の軌跡を算出する。例えば、コントローラ30は、このアタッチメント15の軌跡に基づいて、アタッチメント15の全体が障害物Oを回避するような回避経路R1を算出する。
 [例6C]回避動作は、開始点Rsの上方の位置から、障害物特定部位Oaの位置を超えるまで(回避位置R1bまで)、障害物特定部位Oaよりも高い位置をアタッチメント15が移動する動作でもよい(図7参照)。例えば、回避動作は、図5に示す開始点旋回角度θsから障害物旋回角度θoを超えるまで、障害物特定部位Oaよりも高い位置をアタッチメント15が移動する動作でもよい。具体的に、アタッチメント特定部位15sが、開始点Rsから上方に、障害物特定部位Oaよりも高い位置まで移動する(図7参照)。そして、アタッチメント特定部位15sが、開始点旋回角度θsの位置から、障害物旋回角度θoを超えるまで(回避位置R1bまで)、横方向に移動する。
 また、回避動作は、開始点前後位置Xs(後述)から障害物前後位置Xo(後述)を超えるまで、障害物特定部位Oaよりも高い位置をアタッチメント15が移動する動作でもよい。
 [例6D]なお、回避動作は、アタッチメント15が障害物Oを回避できれば、どのような動作でもよい。例えば、回避動作は、障害物Oの面に沿うようにアタッチメント15が移動する動作でもよい。
 回避後経路R1cは、アタッチメント15が、障害物Oを超えた位置(回避位置R1b)から、終了点Reに向かって移動する経路である。例えば、回避後経路R1cは、回避位置R1bから終了点Reにアタッチメント特定部位15sが直行する経路(後述する非回避経路R2の説明を参照)でもよい。回避後経路R1cは、予めコントローラ30に設定された通過点を通ってアタッチメント特定部位15sが移動する経路でもよい。回避後経路R1cは、予めコントローラ30に設定された経路に沿ってアタッチメント特定部位15sが移動する経路などでもよい。
 ステップS23(図4参照)では、コントローラ30は、図8に示すように、目標経路Rとして非回避経路R2を設定する。非回避経路R2は、回避動作をアタッチメント15が行わずに、開始点Rsから終了点Reにアタッチメント特定部位15sが移動する経路である。
 [例7A]非回避経路R2は、例えば、開始点Rsから終了点Reまでアタッチメント特定部位15sが直行する経路である。例えば、非回避経路R2は、開始点Rsから終了点Reまでの最短経路でもよく(図9参照)、具体的には直線的な経路でもよい。
 [例7B]例えば、非回避経路R2は、開始点Rsから終了点Reまでアタッチメント特定部位15sを移動させる際に、作業機械10の作動の効率が最も高くなる経路(具体的には消費エネルギーが最も小さくなる経路)でもよい。
 [例7C]非回避経路R2は、予め設定された経路に沿ってアタッチメント特定部位15sが移動する経路でもよい。この場合、回避経路R1は、予め設定された経路(すなわち非回避経路R2)を修正した経路でもよい。
 コントローラ30は、設定した目標経路Rに沿ってアタッチメント特定部位15sを移動させるように、駆動制御部17(図3参照)に指令を出力する(指令信号を入力する)。この結果、アタッチメント特定部位15sが目標経路Rに沿って移動するように、作業機械10が制御される。
 図1に示す経路設定システム1は、次のような効果を奏する。経路設定システム1は、作業機械10に用いられ、撮像装置21と、コントローラ30とを備える。作業機械10の上部旋回体13は、下部走行体11に旋回可能に搭載される。アタッチメント15は、上部旋回体13に取り付けられ、作業を行う。撮像装置21は、コントローラ30とともに、図5に示すアタッチメント15の周囲の障害物Oの特定の部位である障害物特定部位Oaの三次元情報を取得する。なお、撮像装置21自体が障害物特定部位Oaおよびその位置を特定する機能を有していてもよい。コントローラ30は、所定の開始点から所定の終了点までの、アタッチメント15の特定の部位であるアタッチメント特定部位15sの目標経路Rを設定する。
 コントローラ30は、目標経路Rの開始点Rsと目標経路Rの終了点Reとの間に障害物特定部位Oaがあると判定した場合、目標経路Rとして回避経路R1を設定する。回避経路R1は、障害物Oを回避する回避動作をアタッチメント15が行いながら、開始点Rsから終了点Reにアタッチメント特定部位15sが移動する経路である。
 図8に示すように、コントローラ30は、開始点Rsと終了点Reとの間に障害物特定部位Oaがないと判定した場合、目標経路Rとして非回避経路R2を設定する。非回避経路R2は、回避動作をアタッチメント15が行わずに、開始点Rsから終了点Reにアタッチメント特定部位15sが移動する経路である。
 本実施形態では、コントローラ30が、図5に示す開始点Rsと終了点Reとの間に障害物特定部位Oaがあるか否かを判定する。開始点Rsと終了点Reとの間に障害物特定部位Oaがある場合、コントローラ30は、アタッチメント15が回避動作を行う回避経路R1を、目標経路Rとして設定する。よって、アタッチメント15に障害物Oを回避させながら、開始点Rsから終了点Reまでアタッチメント特定部位15s移動させることができる。図8に示すように、開始点Rsと終了点Reとの間に障害物特定部位Oaがない場合、コントローラ30は、アタッチメント15が回避動作を行わない非回避経路R2を、目標経路Rとして設定する。よって、アタッチメント15に無駄な回避動作をさせることなく、開始点Rsから終了点Reにアタッチメント特定部位15sを移動させることができる。したがって、アタッチメント15の障害物Oへの接触を抑制できるとともに、アタッチメント15の無駄な動作を抑制することができる。
 図5に示すように、下部走行体11に対する上部旋回体13の旋回角度θであって、アタッチメント特定部位15sが開始点Rsに配置されるときの旋回角度θが、開始点旋回角度θsと定義される。アタッチメント特定部位15sが終了点Reに配置されるときの旋回角度θが、終了点旋回角度θeと定義される。アタッチメント特定部位15sが障害物特定部位Oaの位置に配置されるときの旋回角度θが、障害物旋回角度θoと定義される。
 コントローラ30は、開始点旋回角度θsから終了点旋回角度θeまでの間(角度範囲B)に障害物旋回角度θoがあるとき、開始点Rsと終了点Reとの間に障害物特定部位Oaがあると判定する。図8に示すように、コントローラ30は、開始点旋回角度θsから終了点旋回角度θeまでの間(角度範囲B)に障害物旋回角度θoがないとき、開始点Rsと終了点Reとの間に障害物特定部位Oaがないと判定する。
 上記の構成では、コントローラ30は、開始点Rsと終了点Reとの間に障害物特定部位Oaがあるか否かの判定(障害物Oの有無の判定)を、旋回角度θに基づいて行う。よって、例えば、三次元空間における開始点Rsと終了点Reとの間に障害物特定部位Oaがあるか否かに基づいて、障害物Oの有無の判定を行う場合などに比べ、コントローラ30の計算負荷を抑制することができる。
 図6に示すように、障害物Oが山形状の場合、コントローラ30(三次元情報取得部)は、山形状の障害物Oの頂上を障害物特定部位Oaに設定する。
 上記の構成では、コントローラ30は、開始点Rsと終了点Reとの間に障害物特定部位Oaがあるか否かの判定(障害物O有無の判定)を、障害物Oの頂上の三次元情報、すなわち点の三次元情報に基づいて行う。よって、障害物O全体の三次元情報に基づいて障害物O有無の判定を行う場合に比べ、コントローラ30の計算負荷を抑制することができる。
 図7に示すように、回避動作は、開始点Rsの上方の位置から障害物特定部位Oaの位置を超えるまで(回避位置R1bまで)、障害物特定部位Oaよりも高い位置をアタッチメント15(図5参照)が移動する動作である。
 上記の構成により、アタッチメント15(図5参照)が、障害物特定部位Oaを確実に回避しながら、開始点Rsから終了点Reに向かって移動することができる。
 (変形実施形態1)
 図5に示す障害物Oの有無の判定は、様々に行われてもよい。例えば、上記実施形態では、障害物Oの有無の判定は、旋回角度θに基づいて行われた。一方、変形実施形態1では、障害物Oの有無の判定は、前後方向における位置(前後位置)に基づいて行われる。以下、変形実施形態1について、上記実施形態との相違点を説明する。
 図10は、本変形実施形態1の経路設定システム1の作動を示すフローチャートである。図4に示すステップS13に変えて、変形実施形態1では、図10に示すステップS113が行われる。ステップS113では、図5に示すコントローラ30は、開始点前後位置Xsと、終了点前後位置Xeと、障害物前後位置Xoと、を取得する。開始点前後位置Xsは、開始点Rsの前後方向における位置(上部旋回体13の前後方向における位置)である。終了点前後位置Xeは、終了点Reの前後方向における位置である。障害物前後位置Xoは、障害物特定部位Oaの前後方向における位置である。
 図4に示すステップS21に変えて、変形実施形態1では、図10に示すステップS121が行われる。ステップS121では、図5に示すように、開始点前後位置Xsと終了点前後位置Xeとの間(前後範囲C)に障害物前後位置Xoがあるとき、コントローラ30は、「開始点Rsと終了点Reとの間に障害物特定部位Oaがある」と判定する。この場合(ステップS121(図10参照)でYES)、コントローラ30は、目標経路Rとして、回避経路R1を設定する(ステップS22(図10参照))。図8に示すように、開始点前後位置Xsと終了点前後位置Xeとの間(前後範囲C)に障害物前後位置Xoがないとき、コントローラ30は、「開始点Rsと終了点Reとの間に障害物特定部位Oaがない」と判定する。この場合(ステップS121(図10参照)でNO)、コントローラ30は、目標経路Rとして、非回避経路R2を設定する(ステップS23(図10参照))。
 変形実施形態1による効果は、次の通りである。図5に示すように、上部旋回体13の前後方向における開始点Rsの位置を、開始点前後位置Xsと定義する。上部旋回体13の前後方向における終了点Reの位置を、終了点前後位置Xeと定義する。上部旋回体13の前後方向における障害物特定部位Oaの位置を、障害物前後位置Xoと定義する。
 コントローラ30は、開始点前後位置Xsと終了点前後位置Xeとの間(前後範囲C)に障害物前後位置Xoがあるとき、開始点Rsと終了点Reとの間に障害物特定部位Oaがあると判定する。図8に示すように、コントローラ30は、開始点前後位置Xsと終了点前後位置Xeとの間(前後範囲C)に障害物前後位置Xoがないとき、開始点Rsと終了点Reとの間に障害物特定部位Oaがないと判定する。
 上記の構成では、開始点Rsと終了点Reとの間(前後範囲C)に障害物特定部位Oaがあるか否かの判定(障害物Oの有無の判定)が、前後方向における位置(前後位置)に基づいて行われる。よって、例えば、三次元空間における開始点Rsと終了点Reとの間に障害物特定部位Oaがあるか否かに基づいて、障害物Oの有無の判定が行われる場合などに比べ、コントローラ30の計算負荷を抑制することができる。
 (変形実施形態2)
 図5に示す障害物Oの有無の判定は、上記実施形態では旋回角度θに基づいて行われ、上記変形実施形態1では前後方向における位置に基づいて行われた。一方、変形実施形態2では、障害物Oの有無の判定は、旋回角度θおよび前後方向Xにおける位置のそれぞれに基づいて行われる。以下、変形実施形態2について、上記実施形態との相違点を説明する。
 図11は、本変形実施形態2の経路設定システム1の作動を示すフローチャートである。コントローラ30は、図11に示すように、ステップS13(図4参照)と、ステップS113(図10参照)と、を行う。
 ステップS221aでは、図5に示すコントローラ30は、開始点旋回角度θsから終了点旋回角度θeまでの間(角度範囲B)に障害物旋回角度θoがあるか否かを判定する。また、ステップS221b(図11参照)では、コントローラ30は、開始点前後位置Xsと終了点前後位置Xeとの間(前後範囲C)に障害物前後位置Xoが有るか否かを判定する。
 コントローラ30は、角度範囲Bに障害物旋回角度θoがあるとき、および、前後範囲Cに障害物前後位置Xoがあるとき、の少なくともいずれかのとき、「開始点Rsと終了点Reとの間に障害物特定部位Oaがある」と判定する。具体的には、図11に示すように、ステップS221aでYES、および、ステップS221bでYES、の少なくともいずれかの場合、図5に示すコントローラ30は、「開始点Rsと終了点Reとの間に障害物特定部位Oaがある」と判定する。この場合、コントローラ30は、目標経路Rとして回避経路R1を設定する(ステップS22(図11参照))。
 図8に示すように、コントローラ30は、角度範囲Bに障害物旋回角度θoがないとき、かつ、前後範囲Cに障害物前後位置Xoがないとき、「開始点Rsと終了点Reとの間に障害物特定部位Oaがない」と判定する。具体的には、図11に示すように、ステップS221aでNO、かつ、ステップS221bでNOの場合、図8に示すコントローラ30は、開始点Rsと終了点Reとの間に障害物特定部位Oaがないと判定する。この場合、コントローラ30は、目標経路Rとして非回避経路R2を設定する(ステップS23(図11参照))。
 変形実施形態2による効果は、次の通りである。図5に示すように、下部走行体11に対する上部旋回体13の旋回角度θであって、アタッチメント特定部位15sが開始点Rsに配置されるときの旋回角度θを、開始点旋回角度θsと定義する。アタッチメント特定部位15sが終了点Reに配置されるときの旋回角度θを、終了点旋回角度θeと定義する。アタッチメント特定部位15sが障害物特定部位Oaの位置に配置されるときの旋回角度θを、障害物旋回角度θoと定義する。上部旋回体13の前後方向における開始点Rsの位置を、開始点前後位置Xsとする。上部旋回体13の前後方向における終了点Reの位置を、終了点前後位置Xeとする。上部旋回体13の前後方向における障害物特定部位Oaの位置を、障害物前後位置Xoとする。
 コントローラ30は、角度範囲Bに障害物旋回角度θoがあるとき、および、前後範囲Cに障害物前後位置Xoがあるとき、の少なくともいずれかのとき、開始点Rsと終了点Reとの間に障害物特定部位Oaがあると判定する。コントローラ30は、角度範囲Bに障害物旋回角度θoがなく、かつ、前後範囲Cに障害物前後位置Xoがないとき、開始点Rsと終了点Reとの間に障害物特定部位Oaがないと判定する。角度範囲Bは、開始点旋回角度θsから終了点旋回角度θeまでの間である。前後範囲Cは、開始点前後位置Xsと終了点前後位置Xeとの間である。
 上記の構成により、角度範囲Bに障害物旋回角度θoがあるとき、および、前後範囲Cに障害物前後位置Xoがあるとき、の少なくともいずれかのとき、目標経路Rとして回避経路R1が設定される。よって、旋回角度θおよび前後方向の一方のみに基づいて、障害物Oの有無の判定が行われる場合に比べ、目標経路Rとして回避経路R1が設定されやすい。よって、アタッチメント15の障害物Oへの接触をより抑制することができる。
 (変形実施形態3)
 図5に示すように、コントローラ30は、角度範囲Bに障害物旋回角度θoがあるとき、かつ、前後範囲Cに障害物前後位置Xoがあるとき、「開始点Rsと終了点Reとの間に障害物特定部位Oaがある」と判定してもよい。図8に示すように、コントローラ30は、角度範囲Bに障害物旋回角度θoがないとき、および、前後範囲Cに障害物前後位置Xoがないとき、の少なくともいずれかのとき、「開始点Rsと終了点Reとの間に障害物特定部位Oaがない」と判定してもよい。この場合、旋回角度θおよび前後方向Xの一方のみに基づいて、障害物Oの有無の判定が行われる場合に比べ、目標経路Rとして非回避経路R2が設定されやすい。よって、アタッチメント15が無駄な回避動作を行うことを、より抑制することができる。
 (変形実施形態4)
 図5に示す例では、障害物特定部位Oaは、山形状の障害物Oの頂上(点)であった。図12は、本変形実施形態4の経路設定システム1および目標経路Rなどを上方から見た図である。図13は、図12に示す目標経路Rなどを後方から見た図である。変形実施形態4では、図12に示す障害物Oは、地面に形成された穴である(図13参照)。この場合、コントローラ30は、穴の縁(地面と穴との境界の線状部分)を障害物特定部位Oaに設定する。障害物特定部位Oaが線状部分の場合、障害物旋回角度θoは、範囲を有する(障害物前後位置Xo(図5参照)も同様)。また、ステップS21(図4参照)では、コントローラ30は、範囲を有する障害物旋回角度θoの少なくとも一部が角度範囲B内にあるか否かを判定する。ステップS121(図10参照)では、コントローラ30は、範囲を有する障害物前後位置Xo(図5参照)の少なくとも一部が前後範囲C内にあるか否かを判定する。
 図12に示すように、障害物特定部位Oaは、地面に形成された穴の縁である(図13参照)。
 上記の構成では、コントローラ30は、開始点Rsと終了点Reとの間に障害物特定部位Oaがあるか否かの判定(障害物O有無の判定)を、穴である障害物Oの縁の三次元情報、すなわち線状部分の三次元情報に基づいて行う。よって、障害物O全体の三次元情報に基づいて障害物O有無の判定が行われる場合などに比べ、コントローラ30の計算負荷を低減することができる。
 (他の変形実施形態)
 上記実施形態および変形実施形態は、さらに様々に変形されてもよい。例えば、互いに異なる実施形態や変形実施形態の構成要素どうしが組み合わされてもよい。例えば、各構成要素の配置や形状が変更されてもよい。例えば、図3に示す各構成要素の接続は変更されてもよい。例えば、図4、図10、図11に示すフローチャートのステップの順序が変更されてもよい。例えば、構成要素の数が変更されてもよく、構成要素の一部が設けられなくてもよい。例えば、互いに異なる複数の部材や部分として説明したものが、一つの部材や部分とされてもよい。例えば、一つの部材や部分として説明したものが、互いに異なる複数の部材や部分に分けて設けられてもよい。
 例えば、上記実施形態では、図5などに示す障害物Oの頂点や縁が、障害物特定部位Oaとされた(図5、図12参照)。一方、障害物Oの形状の全体または略全体が、障害物特定部位Oaとされてもよい。上記実施形態では、コントローラ30は、障害物Oの有無の判定を、旋回角度θや前後方向における位置に基づいて行った。一方、コントローラ30は、障害物Oの有無の判定を、三次元の位置に基づいて行ってもよい。具体的には例えば、開始点Rsと終了点Reとを結ぶ線分の三次元の位置情報と、障害物Oの三次元の位置および形状と、が重なるか否かに基づいて、障害物Oの有無の判定が行われてもよい。また、開始点Rsから終了点Reまで非回避経路R2(図8参照)で移動したと仮定したときのアタッチメント15の三次元の軌跡と、障害物Oの三次元の位置および形状と、が重なるか否かに基づいて、障害物Oの有無の判定が行われてもよい。
 本発明によって提供されるのは、下部走行体と、前記下部走行体に上下方向に延びる旋回中心軸回りに旋回可能に搭載される上部旋回体と、前記上部旋回体に取り付けられ作業を行うアタッチメントとを有する作業機械に用いられ、前記アタッチメントの特定の部位であるアタッチメント特定部位の目標経路を設定する経路設定システムである。当該経路設定システムは、前記アタッチメントの周囲の障害物の特定の部位である障害物特定部位の三次元情報を取得する三次元情報取得部と、所定の開始点から所定の終了点までの前記アタッチメント特定部位の目標経路を設定するコントローラと、を備える。前記コントローラは、前記三次元情報取得部の取得結果に基づいて、前記目標経路の前記開始点と前記目標経路の前記終了点との間における前記障害物特定部位の有無を判定し、前記コントローラは、前記目標経路の前記開始点と前記目標経路の前記終了点との間に前記障害物特定部位があると判定した場合、前記目標経路として回避経路を設定し、前記開始点と前記終了点との間に前記障害物特定部位がないと判定した場合、前記目標経路として非回避経路を設定し、前記回避経路は、前記障害物を回避する回避動作を前記アタッチメントが行いながら、前記開始点から前記終了点に前記アタッチメント特定部位が移動する経路であり、前記非回避経路は、前記回避動作を前記アタッチメントが行わずに、前記開始点から前記終了点に前記アタッチメント特定部位が移動する経路である。
 上記の構成において、前記コントローラは、開始点旋回角度から終了点旋回角度までの間に障害物旋回角度があるとき、前記開始点と前記終了点との間に前記障害物特定部位があると判定し、前記開始点旋回角度から前記終了点旋回角度までの間に前記障害物旋回角度がないとき、前記開始点と前記終了点との間に前記障害物特定部位がないと判定し、前記開始点旋回角度は、前記アタッチメント特定部位が前記開始点に配置されるときの前記下部走行体に対する前記上部旋回体の旋回角度であり、前記終了点旋回角度は、前記アタッチメント特定部位が前記終了点に配置されるときの前記下部走行体に対する前記上部旋回体の旋回角度であり、前記障害物旋回角度は、前記アタッチメント特定部位が前記障害物特定部位の位置に配置されるときの前記下部走行体に対する前記上部旋回体の旋回角度であるものでもよい。
 上記の構成において、前記コントローラは、前記開始点前後位置と前記終了点前後位置との間に前記障害物前後位置があるとき、前記開始点と前記終了点との間に前記障害物特定部位があると判定し、前記開始点前後位置と前記終了点前後位置との間に前記障害物前後位置がないとき、前記開始点と前記終了点との間に前記障害物特定部位がないと判定し、前記開始点前後位置は、前記上部旋回体の前後方向における前記開始点の位置であり、前記終了点前後位置は、前記上部旋回体の前後方向における前記終了点の位置であり、前記障害物前後位置は、前記上部旋回体の前後方向における前記障害物特定部位の位置であるものでもよい。
 上記の構成において、前記コントローラは、開始点旋回角度から終了点旋回角度までの間に障害物旋回角度があるとき、および、開始点前後位置と終了点前後位置との間に障害物前後位置があるとき、の少なくともいずれかのとき、前記開始点と前記終了点との間に前記障害物特定部位があると判定し、前記開始点旋回角度から前記終了点旋回角度までの間に前記障害物旋回角度がなく、かつ、前記開始点前後位置と前記終了点前後位置との間に前記障害物前後位置がないとき、前記開始点と前記終了点との間に前記障害物特定部位がないと判定し、前記開始点旋回角度は、前記アタッチメント特定部位が前記開始点に配置されるときの前記下部走行体に対する前記上部旋回体の旋回角度であり、前記終了点旋回角度は、前記アタッチメント特定部位が前記終了点に配置されるときの前記下部走行体に対する前記上部旋回体の旋回角度であり、前記障害物旋回角度は、前記アタッチメント特定部位が前記障害物特定部位の位置に配置されるときの前記下部走行体に対する前記上部旋回体の旋回角度であり、前記開始点前後位置は、前記上部旋回体の前後方向における前記開始点の位置であり、前記終了点前後位置は、前記上部旋回体の前後方向における前記終了点の位置であり、前記障害物前後位置は、前記上部旋回体の前後方向における前記障害物特定部位の位置であるものでもよい。
 上記の構成において、前記障害物が山形状の場合、前記三次元情報取得部は、前記障害物の頂上を前記障害物特定部位に設定するものでもよい。
 上記の構成において、前記障害物が地面に形成された穴の場合、前記三次元情報取得部は、前記穴の縁を前記障害物特定部位に設定するものでもよい。
 上記の構成において、前記回避動作は、前記開始点の上方の位置から前記障害物特定部位に対応する位置を超えるまで、前記障害物特定部位よりも高い位置を前記アタッチメントが移動する動作であってもよい。
 

 

Claims (7)

  1.  下部走行体と、前記下部走行体に上下方向に延びる旋回中心軸回りに旋回可能に搭載される上部旋回体と、前記上部旋回体に取り付けられ作業を行うアタッチメントとを有する作業機械に用いられ、前記アタッチメントの特定の部位であるアタッチメント特定部位の目標経路を設定する経路設定システムであって、
     前記アタッチメントの周囲の障害物の特定の部位である障害物特定部位の三次元情報を取得する三次元情報取得部と、
     所定の開始点から所定の終了点までの前記アタッチメント特定部位の目標経路を設定するコントローラと、
     を備え、 前記コントローラは、前記三次元情報取得部の取得結果に基づいて、前記目標経路の前記開始点と前記目標経路の前記終了点との間における前記障害物特定部位の有無を判定し、
     前記コントローラは、前記目標経路の前記開始点と前記目標経路の前記終了点との間に前記障害物特定部位があると判定した場合、前記目標経路として回避経路を設定し、前記開始点と前記終了点との間に前記障害物特定部位がないと判定した場合、前記目標経路として非回避経路を設定し、
     前記回避経路は、前記障害物を回避する回避動作を前記アタッチメントが行いながら、前記開始点から前記終了点に前記アタッチメント特定部位が移動する経路であり、
     前記非回避経路は、前記回避動作を前記アタッチメントが行わずに、前記開始点から前記終了点に前記アタッチメント特定部位が移動する経路である、
     経路設定システム。
  2.  請求項1に記載の経路設定システムであって、
     前記コントローラは、開始点旋回角度から終了点旋回角度までの間に障害物旋回角度があるとき、前記開始点と前記終了点との間に前記障害物特定部位があると判定し、前記開始点旋回角度から前記終了点旋回角度までの間に前記障害物旋回角度がないとき、前記開始点と前記終了点との間に前記障害物特定部位がないと判定し、
     前記開始点旋回角度は、前記アタッチメント特定部位が前記開始点に配置されるときの前記下部走行体に対する前記上部旋回体の旋回角度であり、
     前記終了点旋回角度は、前記アタッチメント特定部位が前記終了点に配置されるときの前記下部走行体に対する前記上部旋回体の旋回角度であり、
     前記障害物旋回角度は、前記アタッチメント特定部位が前記障害物特定部位の位置に配置されるときの前記下部走行体に対する前記上部旋回体の旋回角度である、
     経路設定システム。
  3.  請求項1に記載の経路設定システムであって、
     前記コントローラは、開始点前後位置と終了点前後位置との間に障害物前後位置があるとき、前記開始点と前記終了点との間に前記障害物特定部位があると判定し、前記開始点前後位置と前記終了点前後位置との間に前記障害物前後位置がないとき、前記開始点と前記終了点との間に前記障害物特定部位がないと判定し、
     前記開始点前後位置は、前記上部旋回体の前後方向における前記開始点の位置であり、
     前記終了点前後位置は、前記上部旋回体の前後方向における前記終了点の位置であり、
     前記障害物前後位置は、前記上部旋回体の前後方向における前記障害物特定部位の位置である、
     経路設定システム。
  4.  請求項1に記載の経路設定システムであって、
     前記コントローラは、開始点旋回角度から終了点旋回角度までの間に障害物旋回角度があるとき、および、開始点前後位置と終了点前後位置との間に障害物前後位置があるとき、の少なくともいずれかのとき、前記開始点と前記終了点との間に前記障害物特定部位があると判定し、
    前記開始点旋回角度から前記終了点旋回角度までの間に前記障害物旋回角度がなく、かつ、前記開始点前後位置と前記終了点前後位置との間に前記障害物前後位置がないとき、前記開始点と前記終了点との間に前記障害物特定部位がないと判定し、
     前記開始点旋回角度は、前記アタッチメント特定部位が前記開始点に配置されるときの前記下部走行体に対する前記上部旋回体の旋回角度であり、
     前記終了点旋回角度は、前記アタッチメント特定部位が前記終了点に配置されるときの前記下部走行体に対する前記上部旋回体の旋回角度であり、
     前記障害物旋回角度は、前記アタッチメント特定部位が前記障害物特定部位の位置に配置されるときの前記下部走行体に対する前記上部旋回体の旋回角度であり、
     前記開始点前後位置は、前記上部旋回体の前後方向における前記開始点の位置であり、
     前記終了点前後位置は、前記上部旋回体の前後方向における前記終了点の位置であり、
     前記障害物前後位置は、前記上部旋回体の前後方向における前記障害物特定部位の位置である、
     経路設定システム。
  5.  請求項1~4のいずれか1項に記載の経路設定システムであって、
     前記障害物が山形状の場合、前記三次元情報取得部は、前記障害物の頂上を前記障害物特定部位に設定する、
     経路設定システム。
  6.  請求項1~4のいずれか1項に記載の経路設定システムであって、
     前記障害物が地面に形成された穴の場合、前記三次元情報取得部は、
     前記穴の縁を前記障害物特定部位に設定する、
     経路設定システム。
  7.  請求項1~6のいずれか1項に記載の経路設定システムであって、
     前記回避動作は、前記開始点の上方の位置から前記障害物特定部位に対応する位置を超えるまで、前記障害物特定部位よりも高い位置を前記アタッチメントが移動する動作である、
     経路設定システム。

     
PCT/JP2021/029081 2020-10-28 2021-08-05 経路設定システム WO2022091519A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/248,404 US20230407594A1 (en) 2020-10-28 2021-08-05 Route setting system
EP21885641.7A EP4212676A4 (en) 2020-10-28 2021-08-05 ROUTE SETTING SYSTEM
CN202180072135.7A CN116419998A (zh) 2020-10-28 2021-08-05 路径设定系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020180781A JP7491185B2 (ja) 2020-10-28 2020-10-28 経路設定システム
JP2020-180781 2020-10-28

Publications (1)

Publication Number Publication Date
WO2022091519A1 true WO2022091519A1 (ja) 2022-05-05

Family

ID=81382240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029081 WO2022091519A1 (ja) 2020-10-28 2021-08-05 経路設定システム

Country Status (5)

Country Link
US (1) US20230407594A1 (ja)
EP (1) EP4212676A4 (ja)
JP (1) JP7491185B2 (ja)
CN (1) CN116419998A (ja)
WO (1) WO2022091519A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311692A (ja) * 1991-09-06 1993-11-22 Yotaro Hatamura パワーショベル
JP2016089389A (ja) * 2014-10-30 2016-05-23 日立建機株式会社 作業機械の旋回支援装置
JP2020020153A (ja) 2018-07-31 2020-02-06 株式会社小松製作所 作業機械
JP2020169515A (ja) * 2019-04-04 2020-10-15 日立建機株式会社 油圧ショベル

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2469708B1 (en) 2010-12-21 2013-11-27 Harman Becker Automotive Systems GmbH Amplifier current consumption control
JP6270029B2 (ja) * 2011-05-26 2018-01-31 住友重機械工業株式会社 電動式旋回装置を備えたショベル及びその制御方法
CA3050718C (en) * 2017-01-23 2021-04-27 Built Robotics Inc. Excavating earth from a dig site using an excavation vehicle
JP6819462B2 (ja) * 2017-05-30 2021-01-27 コベルコ建機株式会社 作業機械

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311692A (ja) * 1991-09-06 1993-11-22 Yotaro Hatamura パワーショベル
JP2016089389A (ja) * 2014-10-30 2016-05-23 日立建機株式会社 作業機械の旋回支援装置
JP2020020153A (ja) 2018-07-31 2020-02-06 株式会社小松製作所 作業機械
JP2020169515A (ja) * 2019-04-04 2020-10-15 日立建機株式会社 油圧ショベル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4212676A4

Also Published As

Publication number Publication date
JP7491185B2 (ja) 2024-05-28
US20230407594A1 (en) 2023-12-21
CN116419998A (zh) 2023-07-11
EP4212676A1 (en) 2023-07-19
EP4212676A4 (en) 2024-03-20
JP2022071693A (ja) 2022-05-16

Similar Documents

Publication Publication Date Title
AU2017218993B2 (en) Control system for a machine
KR102601073B1 (ko) 작업 기계
US20220170242A1 (en) System and method for detecting objects within a working area
WO2022030289A1 (ja) 掘削情報処理装置、作業機械、掘削支援装置および掘削情報処理方法
CN109811821A (zh) 液压锤
JP7147389B2 (ja) 作業機械
US10883256B2 (en) Object responsive control system for a work machine
WO2021059730A1 (ja) 動作教示システム
WO2022091519A1 (ja) 経路設定システム
EP3825477B1 (en) Environment cognition system for construction machinery
WO2022064813A1 (ja) 作業エリア設定システム、および作業対象物検出システム
WO2022215414A1 (ja) 掘削システム
JP2020183612A (ja) 作業機械
WO2023074176A1 (ja) 作業機械
WO2023053992A1 (ja) 作業機械
WO2023149307A1 (ja) 作業機械のための自動運転システム、作業機械、および自動運転プログラム
JP2023141847A (ja) 死角検出システム
JP2022160278A (ja) 作業システム
WO2022070852A1 (ja) 掘削位置決定システム、掘削制御システムおよび作業機械
WO2023149309A1 (ja) 作業機械のための自動運転システム、作業機械、および自動運転プログラム
KR20210061004A (ko) 건설기계의 주변 환경 인지 시스템
GB2332415A (en) Plural terrain scanning sensor arrangement for an earth working machine
JP2023074395A (ja) 作業システム
CN117980566A (zh) 工程机械
JP2023049804A (ja) 軌道生成システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885641

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021885641

Country of ref document: EP

Effective date: 20230414

NENP Non-entry into the national phase

Ref country code: DE