WO2022089623A1 - 一种热塑性复合材料及其制备方法和应用 - Google Patents

一种热塑性复合材料及其制备方法和应用 Download PDF

Info

Publication number
WO2022089623A1
WO2022089623A1 PCT/CN2021/127770 CN2021127770W WO2022089623A1 WO 2022089623 A1 WO2022089623 A1 WO 2022089623A1 CN 2021127770 W CN2021127770 W CN 2021127770W WO 2022089623 A1 WO2022089623 A1 WO 2022089623A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
thermoplastic resin
10min
fiber
Prior art date
Application number
PCT/CN2021/127770
Other languages
English (en)
French (fr)
Inventor
高达利
李长金
张师军
徐凯
康鹏
张琦
尹华
吕明福
孔德辉
辛琦
蔡涛
董穆
邵静波
施红伟
孙昌辉
白弈青
谭以纲
李光
高晓勇
和金琦
李梅杰
徐萌
侴白舸
吕芸
任月明
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司北京化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011193483.3A external-priority patent/CN114434671A/zh
Priority claimed from CN202011191450.5A external-priority patent/CN114434670B/zh
Priority claimed from CN202011199839.4A external-priority patent/CN114434672A/zh
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司北京化工研究院 filed Critical 中国石油化工股份有限公司
Priority to US18/250,234 priority Critical patent/US20230415430A1/en
Priority to JP2023525054A priority patent/JP2023549063A/ja
Priority to KR1020237016491A priority patent/KR20230095992A/ko
Priority to EP21885349.7A priority patent/EP4238744A1/en
Publication of WO2022089623A1 publication Critical patent/WO2022089623A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/465Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating by melting a solid material, e.g. sheets, powders of fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • B29B15/122Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/545Perforating, cutting or machining during or after moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0872Prepregs

Definitions

  • the invention belongs to the field of polymer composite materials, and in particular relates to a thermoplastic composite material and a preparation method and application thereof.
  • Long-fiber-reinforced thermoplastic composites are a common thermoplastic composite material and are one of the fastest growing materials in the composites market today. As semi-structural materials and structural materials, the development target of long fiber reinforced thermoplastic composites is in various fields of industry and civil use, including automobiles, equipment, entertainment, food processing, communications, electronic appliances, power tools, gardening and other fields.
  • the fiber length of the long fiber reinforced thermoplastic material is equal to the particle length, the fiber orientation is highly consistent, and it has the characteristics of low density, easy molding, high specific strength, high modulus, good fatigue resistance and no water absorption.
  • the material has the advantages of good dimensional stability, excellent impact resistance, chemical stability (salt resistance, oil resistance, fuel resistance, etc.) and recyclability. It can be injection molded on ordinary injection molding machines or compression molded, making it an ideal candidate for metal replacement materials.
  • the application amount of automotive materials accounts for as high as 80%-90%.
  • the present invention provides a thermoplastic composite material and a preparation method and application thereof.
  • the thermoplastic composite material of the present invention is designed based on a multi-component material system, which can achieve synergistic performance among the components. Effect. Further, the thermoplastic composite material of the present invention can also greatly improve the fluidity of the fibers in the resin melt, the surface properties of the composite material are greatly improved, and the application range is expanded.
  • a first aspect of the present invention provides a thermoplastic composite material, comprising an inner layer material and at least one layer of outer layer material, the inner layer material is a core layer comprising fiber bundles, a first thermoplastic resin and a first auxiliary agent, the At least one outer layer of material wraps the core layer and is a resin layer comprising a second thermoplastic resin and an optional second adjuvant, wherein the fiber bundles extend continuously from one end of the core layer to an opposite end thereof.
  • one end and/or “opposite end” are generally relative to the longitudinal direction of the thermoplastic composite.
  • the continuous fiber bundle is impregnated with a first component including a first thermoplastic resin and a first auxiliary agent to form a core layer, and the outer side of the core layer is uniformly coated including a second thermoplastic resin and an optional second The second component of the auxiliary agent, thereby forming a thermoplastic composite material with continuous fiber reinforced resin as the core layer (inner layer material) and the resin layer wrapped on the outside of the core layer as the outer layer material, by adjusting the inner layer of the core layer.
  • the properties and functions of the first thermoplastic resin and the second thermoplastic resin in the resin layer can make the thermoplastic composite material have different properties and functions.
  • the outer layer material may substantially continuously cover the inner layer material (core layer).
  • the outer layer material covers at least 80% of the inner layer material (core layer), for example, 80-99%, 85-95% The inner layer material (core layer).
  • the thermoplastic composite material may be in the shape of a strip, a rod or a pellet.
  • the thermoplastic composite material of the present invention can also be in other shapes, such as continuous filaments.
  • the strip-shaped, rod-shaped or granular thermoplastic composite material can be cut from the continuous filament-shaped thermoplastic composite material.
  • the thermoplastic composite material is in the form of strips, rods or pellets.
  • the length (longitudinal dimension) of the strip, rod or pellet thermoplastic composite may be 5-30 mm, preferably 5-25 mm, more preferably 6-15 mm.
  • the thermoplastic composite may also have relatively small length dimensions.
  • the thermoplastic composite material is in granular form, and the particle size (length) of the granular thermoplastic composite material can also be 2-5 mm, preferably 3-4 mm.
  • the present invention has no special requirements on the cross-sectional shape of the thermoplastic composite material.
  • the cross-section of the particulate or rod-shaped thermoplastic composite is circular or quasi-circular.
  • the cross-section of the pellet or strip thermoplastic composite may be rectangular or square.
  • the amount of the first thermoplastic resin is 1-90 parts by weight, and the amount of the fiber bundle is 10-110 parts by weight.
  • the amount of the first thermoplastic resin may be 1 part by weight, 10 parts by weight, 20 parts by weight, 25 parts by weight, 30 parts by weight, 40 parts by weight, 45 parts by weight parts by weight, 50 parts by weight, 55 parts by weight, 60 parts by weight, 70 parts by weight, 80 parts by weight, 90 parts by weight, or a range consisting of; and in some embodiments, the amount of the fiber bundle may be 1 parts by weight, 10 parts by weight, 20 parts by weight, 25 parts by weight, 30 parts by weight, 40 parts by weight, 50 parts by weight, 60 parts by weight, 70 parts by weight, 80 parts by weight, 90 parts by weight, 100 parts by weight, 110 parts by weight or a range consisting of them.
  • the amount of the first thermoplastic resin may be 20-70 parts by weight, preferably 20-55 parts by weight, more preferably 24-45 parts by weight; and/ Or the amount of the fiber bundles may be 20-110 parts by weight, more preferably 25-110 parts by weight.
  • the amount of the second thermoplastic resin is 1-110 parts by weight.
  • the amount of the second thermoplastic resin may be 1 part by weight, 10 parts by weight, 20 parts by weight, 30 parts by weight, 40 parts by weight, 45 parts by weight, 50 parts by weight parts by weight, 60 parts by weight, 65 parts by weight, 70 parts by weight, 75 parts by weight, 80 parts by weight, 85 parts by weight, 90 parts by weight, 95 parts by weight, 100 parts by weight, 105 parts by weight, 110 parts by weight or composed thereof range.
  • the amount of the second thermoplastic resin may be 10-99 parts by weight, more preferably 10-90 parts by weight, preferably 40-90 parts by weight.
  • the amount of the first thermoplastic resin is 1-90 parts by weight, preferably 20-70 parts by weight, more preferably 20 parts by weight -55 parts by weight, more preferably 24-45 parts by weight; and/or the amount of the fiber bundles is 10-99 parts by weight, preferably 20-80 parts by weight, more preferably 25-50 parts by weight.
  • the amount of the first thermoplastic resin is 50-70 parts by weight, more preferably 50-60 parts by weight; and/ Or the amount of the fiber bundles is 90-110 parts by weight, preferably 100-110 parts by weight; and/or in the outer layer material, the amount of the second thermoplastic resin is 90-110 parts by weight, more preferably It is 95-105 parts by weight.
  • the weight ratio of the fiber bundles to the first thermoplastic resin is 0.25-6:1.
  • the weight ratio of the fiber bundle to the first thermoplastic resin is 0.25:1, 0.3:1, 0.35:1, 0.4:1, 0.45:1, 0.5:1, 0.55: 1, 0.6:1, 0.65:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 1.2:1, 1.5:1, 1.7:1, 1.8:1, 1.9:1, 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 4.5:1, 5:1, 6:1, or a range consisting of them.
  • the weight ratio of the fiber bundles to the first thermoplastic resin may be 0.35-4.5:1, preferably 0.43-4.5:1.
  • the amount of the first adjuvant and the second adjuvant is not limited, so as to realize the effect of the related adjuvant.
  • the number of layers of the outer layer material is not limited, and the outer layer material may be one or more layers.
  • the multi-layer outer layer material may be formed of one outer layer material, or may be formed of multiple outer layer materials.
  • the first thermoplastic resin and the second thermoplastic resin are the same or different, each independently selected from polypropylene, polyethylene, polystyrene, polyvinyl chloride, Polyacrylonitrile-butadiene-styrene copolymer, polyacrylonitrile-styrene copolymer, polyoxymethylene, polyamide, polyethylene terephthalate, polybutylene terephthalate, polymethyl At least one of methyl methacrylate, polycarbonate, polyphenylene ether, polyurethane, polyether ether ketone and polyphenylene sulfide and their alloy polymers.
  • the first thermoplastic resin and the second thermoplastic resin are each independently selected from polypropylene, polyethylene, polyamide (also known as nylon), polyterephthalene At least one of ethylene formate (PET), polybutylene terephthalate (PBT), polyphenylene sulfide, polyurethane, and polyether ether ketone (PEEK).
  • the first thermoplastic resin and the second thermoplastic resin are each independently selected from the group consisting of homopolypropylene, copolypropylene, homopolypropylene and copolypropylene At least one of a mixture, nylon 6 (PA6), nylon 66 (PA66), a mixture of nylon 6 and nylon 66.
  • the first thermoplastic resin and the second thermoplastic resin may also be selected from thermoplastic polyurethane elastomer (TPU) and/or high temperature nylon (PPA).
  • TPU thermoplastic polyurethane elastomer
  • PPA high temperature nylon
  • the melt flow rate of the first thermoplastic resin at 230° C. and a load of 2.16 kg is 60-8000 g/10 min.
  • the melt flow rate of the first thermoplastic resin at 230°C and a load of 2.16kg may be 60g/10min, 100g/10min, 200g/10min, 450g/10min, 500g/10min, 1000g/10min, 1500g/10min, 2000g/10min, 3000g/10min, 4000g/10min, 5000g/10min, 6000g/10min, 7000g/10min, 7500g/10min, 8000g/10min or a range consisting of them.
  • the melt flow rate of the first thermoplastic resin at 230°C and a load of 2.16kg may be 100-8000g/10min, preferably 1000-7500g/10min, more preferably 1900- 7500g/10min.
  • the melt flow rate of the second thermoplastic resin at 230° C. and a load of 2.16 kg is 0.1-8000 g/10min.
  • the melt flow rate of the second thermoplastic resin at 230°C and a load of 2.16kg may be 0.1g/10min, 1g/10min, 1.5g/10min, 3g/10min, 10g/10min, 20g/ 10min, 30g/10min, 40g/10min, 45g/10min, 50g/10min, 55g/10min, 60g/10min, 70g/10min, 80g/10min, 90g/10min, 100g/10min, 450g/10min, 500g/10min, 800g/10min, 1000g/10min, 1500g/10min, 1900g/10min, 2500g/10min, 3000g/10min, 4000g/10min, 5000g/10min, 6000g/10min, 7000g/10min, 8000g/10min or a range consisting of them.
  • the melt flow rate of the second thermoplastic resin at 230°C and a load of 2.16kg may be 3-55g/10min or 450-8000g/10min, preferably 3-45g/10min or 1900-8000g/10min.
  • melt flow rates of the first thermoplastic resin and the second thermoplastic resin are not particular, and the first thermoplastic resin and the second thermoplastic resin may be selected according to desired properties Melt flow rate of thermoplastic resins.
  • the parameters eg, melt flow rate
  • the melt flow rate of the first thermoplastic resin is higher than the melt flow rate of the second thermoplastic resin, thereby enabling the thermoplastic composite material to have improved mechanical properties; conversely, the melt flow rate of the second thermoplastic resin
  • the volume flow rate is higher than the melt flow rate of the first thermoplastic resin, which can result in improved gloss of the thermoplastic composite.
  • the melt flow rate of the first thermoplastic resin at 230°C and a load of 2.16kg is 60-450g/10min, for example, 60-200g/ For 10 min
  • the melt flow rate of the second thermoplastic resin at 230° C. and a load of 2.16 kg is 3-55 g/10 min or 450-8000 g/10 min.
  • the melt flow rate of the first thermoplastic resin at 230°C and a load of 2.16kg is 60-450 g/10min
  • the second thermoplastic resin at 230°C and a load of 2.16kg The melt flow rate under the conditions is 800-8000g/10min.
  • the melt flow rate of the first thermoplastic resin at 230° C. and a load of 2.16kg is above 450g/10min, especially above 450g/10min
  • the melt flow rate of the second thermoplastic resin at 230°C and a load of 2.16kg is less than 100g/10min, preferably 1.5-55g/10min, more preferably 3-50g/10min.
  • the weight ratio of the second thermoplastic resin to the first thermoplastic resin is 0.05-12.5:1.
  • the weight ratio of the second thermoplastic resin to the first thermoplastic resin may be 0.05:1, 0.1:1, 0.14:1, 0.15:1, 0.18:1, 0.2:1, 0.25:1, 0.3: 1, 0.5:1, 0.8:1, 1:1, 1.2:1, 1.3:1, 1.4:1, 1.7:1, 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 5:1, 8:1, 10:1, 12.5:1, or a range consisting of them.
  • the weight ratio of the second thermoplastic resin to the first thermoplastic resin may be 0.1-4:1, preferably 0.14-3.5:1.
  • thermoplastic composite material of the present invention when the melt flow rate of the second thermoplastic resin is 800-8000g/10min under the condition of 230°C and a load of 2.16kg, the second thermoplastic resin
  • the weight ratio of resin to first thermoplastic resin is less than 0.25:1, preferably less than 0.18:1, more preferably less than 0.15:1.
  • thermoplastic composite material of the present invention when the first thermoplastic resin and the second thermoplastic resin are selected from at least one of nylon 6, nylon 66, a mixture of nylon 6 and nylon 66, The selected nylon 6 and nylon 66 have a viscosity of 1.8-3.5.
  • the viscosity of nylon in the present invention is the relative viscosity measured according to the Engler viscosity measurement method GB/T266-88.
  • the first thermoplastic resin and the second thermoplastic resin can be self-made or commercially available.
  • polypropylene resin with trade name PPB-M100-GH from Sinopec Yangzi Petrochemical Company polypropylene resin from Sinopec East China Branch with trade mark M60RHC can be used, , Nylon 6 with the grade of PA6-BL3200H as the first thermoplastic resin.
  • the polypropylene resin of the trade name PPB-M100-GH purchased from Sinopec Yangzi Petrochemical Company
  • the polypropylene resin of the trade name PPH-T03 purchased from the Maoming Branch of Sinopec Corp.
  • Polypropylene resin of M50RH polypropylene resin of K8303 from Yanshan Petrochemical Company
  • polypropylene resin of PF1500 from Hunan Shengjin New Material Co., Ltd.
  • Sinopec Huajiazhuang Refining and Chemical Company the trade mark is PPH-Y450 polypropylene resin
  • nylon 6 with trade mark PA6-BL3200H purchased from Baling Branch of Sinopec is used as the second thermoplastic resin.
  • the fiber bundles are selected from at least one of glass fibers, carbon fibers, basalt fibers, aramid fibers, stainless steel fibers, synthetic resin fibers, and mineral fibers.
  • the glass fibers are continuous glass fibers and/or fixed-length glass fibers.
  • Fiber bundles suitable for use in the present invention can be alkali-free glass fibers purchased from Owens Corning (Shanghai) Glass Fiber Co., Ltd. with the trade name SE4805, and alkali-free glass fibers with the trade name ER4301H from Chongqing International Composite Materials Co., Ltd. Glass fiber, carbon fiber with the brand name of T700SC purchased from Toray Company, Japan, basalt fiber purchased from Mudanjiang Jinshi Basalt Fiber Co., Ltd.
  • the core layer and the resin layer are sequentially arranged from the inside to the outside; the fiber bundles are oriented along the longitudinal direction of the thermoplastic composite material.
  • the length of the fiber bundle in the present invention is substantially the same as the length (longitudinal dimension) of the thermoplastic composite material, whereby the fiber bundle extends continuously from one end in the longitudinal direction of the core layer to the opposite end in the longitudinal direction .
  • the fiber bundles may be dispersed.
  • a dispersion treatment method is known in the art, and is not particularly limited in the present invention.
  • the inner layer material is free of short fibers, especially non-oriented short fibers.
  • the inner layer material consists of fiber bundles, a first thermoplastic resin and a first auxiliary agent.
  • the outer layer material is free of fibers.
  • the outer layer material consists of a second thermoplastic resin or consists of a second thermoplastic resin and a second adjuvant.
  • the outer layer material contains fibers, such as short fibers.
  • the weight ratio of the fibers to the second thermoplastic resin is 1-50:100, preferably 5-50:100, more preferably 20-45: 100.
  • the first adjuvant and the second adjuvant each independently include At least one of 0.5-15 parts by weight of a compatibilizer, 0.05-3 parts by weight of an antioxidant, and 0.05-2.5 parts by weight of a lubricant.
  • the first adjuvant and the second adjuvant each independently comprise 1-15 parts by weight, preferably 1-6 parts by weight, more preferably 3-6 parts by weight of a compatibilizer, 0.1-1 parts by weight, preferably 0.1-0.5 parts by weight of at least one of antioxidants and 0.5-2.5 parts by weight of lubricants.
  • the compatibilizer is selected from at least one of the graft-modified polymers of polar monomers.
  • the polar monomer is selected from at least one of maleic anhydride, maleic anhydride derivatives, acrylic acid and acrylate derivatives.
  • the polymer is selected from at least one of polyethylene, polypropylene, ethylene- ⁇ -olefin copolymer and propylene- ⁇ -olefin ( ⁇ -olefin other than propylene) copolymer.
  • maleic anhydride-grafted polypropylene with the trade name of BONDYRAM 1001, which is purchased from Pulilang Plastics Industry Co., Ltd.
  • the antioxidant is selected from tetrakis[beta-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid]pentaerythritol ester (antioxidant) 1010), tri[2,4-di-tert-butylphenyl] phosphite (antioxidant 168), n-octadecyl ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl) propionic acid Alcohol Esters (Antioxidant 1076), 2,2'-methylenebis(4-methyl-6-tert-butylphenol) (Antioxidant 2246), 1,1,3-Tris(2-methyl) -At least one of 4-hydroxy-5-tert-butylphenyl)butane (antioxidant CA) and bis(2,4-di-tert-butylphenol) pentaerythritol diphosphite (
  • antioxidant 1010 and/or antioxidant 168 purchased from BASF can be used as the antioxidant.
  • the lubricant is selected from the group consisting of ethylene bis-stearamide, calcium stearate, polyethylene wax, pentaerythritol stearate, silicone, polyethylene glycol and containing At least one of fluororesins.
  • thermoplastic composite material of the present invention the oxidized polyethylene wax of XH-201, which is purchased from Xianghe Paint Group, can be used as the lubricant.
  • the first adjuvant may further include at least one of a slip agent, an antistatic agent and a plasticizer
  • the second adjuvant may further include a slip agent , at least one of antistatic agent, plasticizer, nucleating agent, light stabilizer, intumescent flame retardant, heat stabilizer, color masterbatch, antistatic agent, electrical insulation modifier and filler, and does not
  • a slip agent at least one of antistatic agent, plasticizer, nucleating agent, light stabilizer, intumescent flame retardant, heat stabilizer, color masterbatch, antistatic agent, electrical insulation modifier and filler, and does not
  • the specific types and dosages of the several adjuvants are limited, and there can be a wide selection range.
  • the intumescent flame retardant may be a compound flame retardant, including ammonium polyphosphate (APP), pentaerythritol (PER), melamine cyanurate (MCA) , optional nano-silicone rubber and optional organic montmorillonite (MMT).
  • APP ammonium polyphosphate
  • PER pentaerythritol
  • MCA melamine cyanurate
  • MMT organic montmorillonite
  • the polymerization degree of the ammonium polyphosphate is greater than 1000, the P 2 O 5 content is greater than 71% by weight, the density is 1.9 g/cm 3 , and the average particle size is 15um.
  • the pentaerythritol can be commercially available general pentaerythritol.
  • the melamine cyanurate can be selected from commercially available general-purpose melamine cyanurate.
  • the nano powder silicone rubber can be fully vulcanized powder silicone rubber VP-601.
  • Such fully vulcanized powdered silicone rubber VP-601 is described in Chinese Patent ZL01801656.1, the content of which is incorporated herein by reference to the extent that it is consistent with the present invention.
  • the particle size of the organic montmorillonite is 100-300 nm.
  • thermoplastic composite material of the present invention among the intumescent flame retardants, ammonium polyphosphate (APP), pentaerythritol (PER), melamine cyanurate (MCA), nano-powder silicone rubber and organic
  • APP ammonium polyphosphate
  • PER pentaerythritol
  • MCA melamine cyanurate
  • nano-powder silicone rubber organic
  • the weight ratio of montmorillonite is (3-8):(1-3):(1-5):(0-0.5):(0-0.5), preferably (3-4):(1-2) :(1-3):(0.05-0.3):(0.05-0.3).
  • the amount of the intumescent flame retardant auxiliary is 30-50 parts by weight, preferably 30-45 parts by weight, more preferably 32-38 parts by weight.
  • each of the first auxiliary agent and the second auxiliary agent is based on 100 parts by weight of the first thermoplastic resin and the second thermoplastic resin. Independently include 2-30 parts by weight of electrical insulation modifier, preferably each independently include 5-25 parts by weight of electrical insulation modifier.
  • the electrical insulation modifier may be an alkyl and/or alkoxy graft modified polypropylene material.
  • the graft-modified polypropylene material includes structural units derived from copolymerized polypropylene and structural units derived from acrylate-based monomers and optional acrylic-based monomers. Based on the weight of the graft-modified polypropylene material, the content of the graft-modified polypropylene material derived from acrylic monomers and optional acrylic monomers and in the graft state of structural units is 0.3 -7% by weight, preferably 0.8-5% by weight.
  • the graft-modified polypropylene material has at least one of the following characteristics: the melt flow rate at 230° C. under a load of 2.16kg is 0.01-30g/10min, preferably 0.05-20g/10min, more preferably 0.1 -10g/10min, more preferably 0.2-8g/10min.
  • the acrylate-based monomer is selected from at least one of the monomers having the structure shown in formula I;
  • R 1 , R 2 , R 3 are each independently selected from H, C 1 -C 6 straight chain alkyl, C 3 -C 6 branched chain alkyl;
  • R 4 is selected from substituted or unsubstituted following groups Group: C 1 -C 20 straight chain alkyl, C 3 -C 20 branched chain alkyl, C 3 -C 12 cycloalkyl, C 3 -C 12 epoxy alkyl, C 3 -C 12 epoxy alkyl , the substituted group is selected from at least one of halogen, amino and hydroxyl.
  • the acrylate monomer is selected from methyl (meth)acrylate, sec-butyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, (meth)acrylate Isobutyl acrylate, tert-butyl (meth)acrylate, isooctyl (meth)acrylate, dodecyl (meth)acrylate, cocoate (meth)acrylate, ten (meth)acrylate At least one of octaalkyl ester, dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylate and glycidyl (meth)acrylate kind.
  • the acrylic monomer is selected from at least one of the monomers having the structure shown in formula II;
  • R 1 , R 2 , and R 3 are each independently selected from H, C 1 -C 6 straight-chain alkyl, and C 3 -C 6 branched-chain alkyl.
  • the acrylic monomer is selected from at least one of acrylic acid, methacrylic acid and 2-ethylacrylic acid.
  • the molar ratio of the structural unit derived from the acrylate monomer to the structural unit derived from the acrylic monomer is 1:0-2, preferably 1:0.125-1.
  • the modified material of the polypropylene grafted heterocycle is polypropylene-g-glycidyl methacrylate, 230° C., and the melt flow rate under a load of 2.16kg is 2-8g/10min, and the The content of dendritic structural units is 1-8%.
  • the electrical insulation modifier is an aromatic olefin graft-modified polypropylene material.
  • the aromatic olefin graft-modified polypropylene material includes structural units derived from copolymerized polypropylene and structural units derived from styrene monomers; based on the weight of the aromatic olefin graft-modified polypropylene material, the aromatic olefin
  • the content of the structural units in the grafted state derived from the styrene monomer in the graft-modified polypropylene material is 0.5-14% by weight, preferably 1-7.5% by weight, more preferably 1.5-5% by weight.
  • the melt flow rate of the aromatic olefin graft-modified polypropylene material at 230° C. under a load of 2.16kg is 0.01-30g/10min, preferably 0.05-20g/10min, more preferably 0.1-10g/10min, more preferably 0.2-8g/10min;
  • the styrene-based monomer is selected from at least one of the monomer having the structure shown in formula III, the monomer having the structure shown in formula IV and the monomer having the structure shown in formula V;
  • R 1 , R 2 , R 3 are each independently selected from H, substituted or unsubstituted C 1 -C 6 alkyl;
  • R 4 -R 8 are each independently selected from H, halogen, hydroxyl, amino , phosphoric acid group, sulfonic acid group, substituted or unsubstituted C 1 -C 12 alkyl, substituted or unsubstituted C 3 -C 12 cycloalkyl, substituted or unsubstituted C 1 -C 12 alkoxy group, substituted or unsubstituted C 1 -C 12 ester group, substituted or unsubstituted C 1 -C 12 amine group, the substituted group is selected from halogen, hydroxyl, amino, phosphoric acid group, sulfonic acid group , C 1 -C 12 alkyl group, C 3 -C 12 cycloalkyl group, C 1 -C 12 alkoxy group, C 1 -C 12 ester group,
  • R 1 , R 2 , R 3 are each independently selected from H, substituted or unsubstituted C 1 -C 3 alkyl
  • R 4 -R 8 are each independently selected from H, halogen, hydroxyl, amino, Substituted or unsubstituted C 1 -C 6 alkyl, substituted or unsubstituted C 1 -C 6 alkoxy.
  • R 1 , R 2 , R 3 are each independently selected from H, substituted or unsubstituted C 1 -C 6 alkyl;
  • R 4 -R 10 are each independently selected from H, halogen, hydroxyl, amino , phosphoric acid group, sulfonic acid group, substituted or unsubstituted C 1 -C 12 alkyl, substituted or unsubstituted C 3 -C 12 cycloalkyl, substituted or unsubstituted C 1 -C 12 alkoxy group, substituted or unsubstituted C 1 -C 12 ester group, substituted or unsubstituted C 1 -C 12 amine group, the substituted group is selected from halogen, hydroxyl, amino, phosphoric acid group, sulfonic acid group , C 1 -C 12 alkyl group, C 3 -C 12 cycloalkyl group, C 1 -C 12 alkoxy group, C 1 -C 12 ester group,
  • R 1 , R 2 , R 3 are each independently selected from H, substituted or unsubstituted C 1 -C 3 alkyl
  • R 4 -R 10 are each independently selected from H, halogen, hydroxyl, amino
  • R 1 ', R 2 ', R 3 ' are each independently selected from H, substituted or unsubstituted C 1 -C 6 alkyl;
  • R 4 '-R 10 ' are each independently selected from H, Halogen, hydroxyl, amino, phosphoric acid, sulfonic acid, substituted or unsubstituted C 1 -C 12 alkyl, substituted or unsubstituted C 3 -C 12 cycloalkyl, substituted or unsubstituted C 1 - C 12 alkoxy group, substituted or unsubstituted C 1 -C 12 ester group, substituted or unsubstituted C 1 -C 12 amine group, the substituted group is selected from halogen, hydroxyl, amino, phosphoric acid group, sulfonic acid group, C 1 -C 12 alkyl group, C 3 -C 12 cycloalkyl group, C 1 -C 12 alkoxy group, C 1 -C 12 ester
  • R 1 ', R 2 ', R 3 ' are each independently selected from H, substituted or unsubstituted C 1 -C 3 alkyl
  • R 4 '-R 10 ' are each independently selected from H, halogen , hydroxyl, amino, substituted or unsubstituted C 1 -C 6 alkyl, substituted or unsubstituted C 1 -C 6 alkoxy, the substituted group is selected from halogen, hydroxyl, amino, C 1 -C 6 alkyl, C 1 -C 6 alkoxy;
  • the styrene-based monomer is selected from styrene, ⁇ -methylstyrene, 1-vinylnaphthalene, 2-vinylnaphthalene, mono- or poly-substituted styrene, mono- or poly-substituted ⁇ - at least one of methyl styrene, mono- or poly-substituted 1-vinyl naphthalene and mono- or poly-substituted 2-vinyl naphthalene;
  • the substituted group is preferably selected from halogen, hydroxyl, amino, Phosphoric acid group, sulfonic acid group, C 1 -C 8 straight-chain alkyl, C 3 -C 8 branched or cycloalkyl, C 1 -C 6 straight-chain alkoxy, C 3 -C 8 branched alkoxy or cyclic alkoxy, C 1 -C 8 straight chain ester group, C 3 -C
  • the styrene-based monomer is selected from at least one of styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene and 4-methylstyrene.
  • the modified material of the polypropylene grafted heterocycle is polypropylene-g-styrene, 230 ° C, the melt flow rate under the load of 2.16kg is 2-8g/10min, in the grafted state The content of structural units is 1-8%.
  • the electrical insulation modifier is a silane-modified polypropylene graft.
  • the graft includes a structural unit derived from the copolymerized polypropylene and a structural unit derived from an alkenyl-containing silane-based monomer; based on the weight of the silane-modified polypropylene graft, the silane-modified polymer
  • the content of the structural unit in the graft state derived from the alkenyl group-containing silane-based monomer in the propylene graft is 0.2-6% by weight, preferably 0.2-2.5% by weight.
  • the copolymerized polypropylene has the following characteristics: the comonomer content is 0.5-40 mol%, preferably 0.5-30 mol%; the xylene soluble content is 2-80 wt%; the soluble comonomer content is 10- 70% by weight; the intrinsic viscosity ratio of soluble matter to polypropylene is 0.3-5.
  • silane-modified polypropylene graft wherein the silane-modified polypropylene graft has at least one of the following characteristics: a melt flow rate of 0.01 at 230° C. under a load of 2.16 kg -30g/10min, preferably 0.05-20g/10min, more preferably 0.1-10g/10min, more preferably 0.2-8g/10min;
  • silane-modified polypropylene graft wherein the alkenyl-containing silane-based monomer is selected from at least one of the monomers having the structure represented by formula VI,
  • R 1 is a C 2 -C 12 alkenyl group, preferably a monounsaturated alkenyl group
  • R 2 , R 3 and R 4 are each independently selected from substituted or unsubstituted C 1 -C 12 linear alkyl groups , substituted or unsubstituted C 3 -C 12 branched alkyl, substituted or unsubstituted C 1 -C 12 alkoxy, substituted or unsubstituted C 1 -C 12 acyloxy;
  • R 1 is a C 2 -C 6 alkenyl group, preferably a monounsaturated alkenyl group
  • R 2 , R 3 , R 4 are each independently selected from substituted or unsubstituted C 1 -C 6 straight-chain alkyl, substituted or unsubstituted C 3 -C 6 branched chain alkyl, substituted or unsubstituted C 1 -C 6 alkoxy, substituted or unsubstituted
  • the alkenyl-containing silane-based monomer is selected from vinyltriethoxysilane, vinyltrimethoxysilane, vinyltriisopropoxysilane, vinyltri-tert-butoxysilane, vinyl triacetoxysilane, methylvinyldimethoxysilane, ethylvinyldiethoxysilane, allyltriethoxysilane, allyltrimethoxysilane, allyltriisopropyl Oxysilane, vinyl tris ( ⁇ -methoxyethoxy) silane, allyl tris ( ⁇ -methoxyethoxy) silane, allyl tri-tert-butoxy silane, allyl triacetoxy At least one of silane, methallyldimethoxysilane, and ethylallyldiethoxysilane.
  • the first adjuvant and the second adjuvant each independently comprise 2-30 parts by weight of an electrical insulation modifier, preferably each independently comprises 5-25 parts by weight Electrical insulation modifier.
  • the electrical insulation modified material is prepared according to CN202011190993.5.
  • the electrical insulation modifier is a polypropylene graft having acid anhydride groups, including structural units derived from copolymerized polypropylene, Structural units and structural units derived from alkenyl-containing polymeric monomers; based on the weight of anhydride group-containing polypropylene grafts derived from maleic anhydride monolayers
  • the content of the monomer and the structural unit in the grafted state containing the ethylenic polymerized monomer is 0.1-5% by weight, preferably 0.4-3% by weight; and the acid anhydride group-containing polypropylene graft is derived from
  • the molar ratio of the structural unit of the maleic anhydride monomer to the structural unit derived from the alkenyl group-containing polymerized monomer is 1:1-20, preferably 1:1-10.
  • the polypropylene graft containing acid anhydride groups has at least one of the following characteristics: the melt flow rate at 230° C. under a load of 2.16kg is 0.01-30g/10min, preferably 0.05-20g/10min, and further Preferably it is 0.1-10g/10min, more preferably 0.2-8g/10min;
  • the polypropylene graft containing acid anhydride group wherein the comonomer of the copolymerized polypropylene is selected from at least one of C 2 -C 8 ⁇ -olefins other than propylene; preferably, the The comonomer of the copolymerized polypropylene is selected from at least one of ethylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene and 1-octene more preferably, the comonomer of the copolymerized polypropylene is ethylene and/or 1-butene; further preferably, the copolymerized polypropylene consists of propylene and ethylene.
  • R 1 , R 2 , R 3 are each independently selected from H, substituted or unsubstituted alkyl;
  • R 4 is selected from substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted Unsubstituted aryl group, substituted or unsubstituted ester group, substituted or unsubstituted carboxyl group, substituted or unsubstituted cycloalkyl or heterocyclic group, cyano group;
  • R 1 , R 2 , R 3 are each independently selected from H, substituted or unsubstituted C 1 -C 6 alkyl, more preferably, R 1 , R 2 , R 3 are each independently selected from H, substituted or unsubstituted C 1 -C 3 alkyl; preferably, R 4 is selected from substituted or unsubstituted C 1 -C 20 alkyl, substituted or unsubstituted C 1 -C 20 alkoxy, substituted or unsubstituted C 6 -C 20 aryl, substituted or unsubstituted C 1 -C 20 ester, substituted or unsubstituted C 1 -C 20 carboxyl, substituted or unsubstituted C 3 -C 20 cycloalkyl or heterocycle group, cyano group, the substituted group is halogen, hydroxyl, amino, C 1 -C 6 alkyl, C 3 -C 6 cycloalkyl; further preferably,
  • R 1 , R 2 , R 3 are each independently selected from H, substituted or unsubstituted C 1- C 6 alkyl;
  • R 4 is selected from a group represented by formula VIII, a group represented by formula IX, a group represented by formula X, a group represented by formula XI, a combination of a group represented by formula XI and a group represented by formula XII, a heterocyclic ring group;
  • R 4 -R 8 are each independently selected from H, halogen, hydroxyl, amino, phosphoric acid group, sulfonic acid group, substituted or unsubstituted C 1 -C 12 alkyl, substituted or unsubstituted C 3 -C 12 cycloalkyl, substituted or unsubstituted C 1 -C 12 alkoxy, substituted or unsubstituted C 1 -C 12 ester group, substituted or unsubstituted C 1 -C 12 amine group , the substituted group is selected from halogen, hydroxyl, amino, phosphoric acid group, sulfonic acid group, C 1 -C 12 alkyl group, C 3 -C 12 cycloalkyl group, C 1 -C 12 alkoxy group , C 1 -C 12 ester group, C 1 -C 12 amine group; preferably, R 4 -R 8 are each independently selected from H, halogen, hydroxyl, amino, substitute
  • R 4 -R 10 are each independently selected from H, halogen, hydroxyl, amino, phosphoric acid group, sulfonic acid group, substituted or unsubstituted C 1 -C 12 alkyl, substituted or unsubstituted C 3 -C 12 cycloalkyl, substituted or unsubstituted C 1 -C 12 alkoxy, substituted or unsubstituted C 1 -C 12 ester group, substituted or unsubstituted C 1 -C 12 amine group , the substituted group is selected from halogen, hydroxyl, amino, phosphoric acid group, sulfonic acid group, C 1 -C 12 alkyl group, C 3 -C 12 cycloalkyl group, C 1 -C 12 alkoxy group , C 1 -C 12 ester group, C 1 -C 12 amine group; preferably, R 4 -R 10 are each independently selected from H, halogen, hydroxyl, amino,
  • R 4 '-R 10 ' are each independently selected from H, halogen, hydroxyl, amino, phosphoric acid, sulfonic acid, substituted or unsubstituted C 1 -C 12 alkyl, substituted or unsubstituted C 3 -C 12 cycloalkyl, substituted or unsubstituted C 1 -C 12 alkoxy, substituted or unsubstituted C 1 -C 12 ester group, substituted or unsubstituted C 1 -C 12 Amine group, the substituted group is selected from halogen, hydroxyl, amino, phosphoric acid group, sulfonic acid group, C 1 -C 12 alkyl, C 3 -C 12 cycloalkyl, C 1 -C 12 alkane Oxy group, C 1- C 12 ester group, C 1 -C 12 amine group; preferably, R 4 '-R 10 ' are each independently selected from H, halogen, hydroxyl, amino,
  • Rm is selected from substituted or unsubstituted following groups: C 1 -C 20 straight chain alkyl, C 3 -C 20 branched chain alkyl, C 3 -C 12 cycloalkyl, C 3 -C 12 alkylene oxide, C3 - C12 alkylene oxide, the substituted group is selected from at least one of halogen, amino and hydroxyl.
  • the polypropylene graft containing acid anhydride group wherein the alkenyl group-containing polymerized monomer is selected from vinyl acetate, styrene, ⁇ -methylstyrene, (meth)acrylate, vinyl alkane at least one of base ether, vinylpyrrolidone, vinylpyridine, vinylimidazole and acrylonitrile; the (meth)acrylate is preferably methyl (meth)acrylate, ethyl (meth)acrylate and ( At least one of glycidyl meth)acrylate; preferably, the alkenyl-containing polymerized monomer is selected from vinyl acetate, styrene, ⁇ -methylstyrene; further preferably, the alkenyl-containing polymerized monomer The monomer is styrene.
  • the polypropylene graft containing an acid anhydride group wherein, in the polypropylene graft containing an acid anhydride group, the structural unit derived from the acid anhydride monomer and the structural unit derived from the alkenyl group-containing polymerized monomer are the same.
  • the molar ratio is 1:1-20, preferably 1:1-10.
  • the polypropylene graft containing acid anhydride group wherein the acid anhydride is selected from acid anhydrides with at least one olefin unsaturation; preferably, the acid anhydride is selected from maleic anhydride and/or itaconic anhydride; further Preferably, the acid anhydride is maleic anhydride.
  • the modified material of the polypropylene grafted heterocycle is polypropylene-g-styrene/maleic anhydride, melt flow at 230° C. under a load of 2.16kg The rate is 2-8 g/10min, and the content of the structural unit in the grafted state is 1-8%.
  • the electrical insulation modifier is a polypropylene grafted heterocyclic modified material.
  • the polypropylene grafted heterocycle modified material includes structural units derived from copolymerized polypropylene and structural units derived from alkenyl-containing heterocyclic monomers; the weight of the polypropylene grafted heterocycle modified material is Benchmark, the content of structural units in the grafted state derived from alkenyl-containing heterocyclic monomers in the modified polypropylene grafted heterocycle material is 0.5-6 wt %, preferably 0.5-4 wt %
  • the copolymerized polypropylene has the following characteristics: the content of comonomer is 0.5-40 mol%, preferably 0.5-30 mol%, more preferably 4-25 mol%; the content of xylene solubles is 2-80 wt%; The content of comonomer in the material is 10-70% by weight; the intrinsic viscosity ratio of soluble matter to
  • the melt flow rate of the polypropylene grafted heterocycle modified material at 230° C. under a load of 2.16kg is 0.01-30g/10min, preferably 0.05-20g/10min, more preferably 0.1-10g/10min, more preferably Preferably it is 0.2-8g/10min;
  • the alkenyl-containing heterocyclic monomer can be any alkenyl-containing heterocyclic compound that can be polymerized by free radicals, and can be selected from imidazoles containing alkenyl substituents, pyrazoles containing alkenyl substituents, Carbazole with alkenyl substituent, pyrrolidone with alkenyl substituent, pyridine or pyridine salt with alkenyl substituent, piperidine with alkenyl substituent, caprolactam with alkenyl substituent, alkenyl substituent at least one of pyrazine, thiazole containing alkenyl substituent, purine containing alkenyl substituent, morpholine containing alkenyl substituent and oxazoline containing alkenyl substituent.
  • the alkenyl-containing heterocyclic monomer is a monoalkenyl-containing heterocyclic monomer.
  • the alkenyl-containing heterocyclic monomer can be selected from: 1-vinylimidazole, 2-methyl-1-vinylimidazole, N-allylimidazole, 1-vinylpyrazole, 3 -Methyl-1-vinylpyrazole, vinylcarbazole, N-vinylpyrrolidone, 2-vinylpyridine, 3-vinylpyridine, 4-vinylpyridine, 2-methyl-5-vinylpyridine , vinylpyridine N oxide, vinylpyridine salt, vinylpiperidine, N-vinylcaprolactam, 2-vinylpyrazine, N-vinylpiperazine, 4-methyl-5-vinylthiazole, N - at least one of vinylpurine, vinylmorpholine and vinyloxazoline.
  • a second aspect of the present invention provides a method for preparing a thermoplastic composite material, the method comprising the following steps:
  • Step A the first thermoplastic resin and the first auxiliary are mixed and melted to obtain the first component melt;
  • Step B performing a first impregnation treatment on the continuous fiber bundle and the first component melt to form a filamentous core layer product
  • Step C the second thermoplastic resin and the optional second auxiliary agent are mixed and melted to obtain the second component melt;
  • Step D performing a second impregnation treatment on the filamentous core layer product and the second component melt to form a resin layer continuously wrapping the core layer.
  • the preparation method can be continuously performed online to obtain continuous filamentary products, which can be directly stored and used, or can be cut into strips with a certain length. , rod or granular products.
  • the mixing conditions in step A include: the temperature is 40-60° C., and the time is 0.5-20 min, preferably 1-10 min, more preferably 3-5 min.
  • the melting temperature in step A is 200-380°C.
  • the melting time can have a wide selection range, so that the first thermoplastic resin and the first auxiliary agent can be sufficiently melted to obtain a melt.
  • the continuous fibers are further subjected to dispersion treatment and preheating treatment.
  • the heat treatment temperature is preferably 80-250°C.
  • the dispersion treatment process in the present invention adopts the conventional fiber dispersion treatment process in the art.
  • the mixing conditions in step C include: a temperature of 40-60° C. and a time of 0.5-20 min, preferably 1-10 min, more preferably 3-5 min.
  • the melting temperature in step C is 200-380°C.
  • the melting time may have a wide selection range, so as to fully melt the second thermoplastic resin and the optional second auxiliary agent.
  • the first dipping treatment in step B may be performed in a first dipping mold, the first dipping mold is an adjustable dipping mold, and the first dipping mold includes A fiber inlet, a fiber outlet and a melt flow channel, and at least one first godet is arranged in the cavity of the first dipping mold; the first godet can move between the fiber inlet and the fiber outlet ; and/or, the first godet is movable in a direction perpendicular to the line connecting the fiber inlet and the fiber outlet.
  • the first dipping treatment in step B may be performed in a second dipping mold, the second dipping mold is a combined dipping mold, and the second dipping mold includes The first module, the middle module and the second module are connected in sequence, the first module is provided with a fiber inlet and a first module flow channel, the second module is provided with a fiber outlet and a second module flow channel, the The intermediate module is provided with an intermediate module flow channel; after the first module, the intermediate module and the second module are connected in sequence, the first module flow channel, the intermediate module flow channel and the second module flow channel are connected to form Combined flow channel for passing fibers.
  • the first impregnation treatment in step B may also be performed in a third impregnation mold, the third impregnation mold is a strong turbulent impregnation mold, and the third impregnation mold
  • the mold includes a fiber inlet channel, an impregnation outlet, and a melt slot flow channel, and the fiber inlet channel, the impregnation outlet, and the melt slot flow channel are all communicated with the cavity inside the third impregnation mold; wherein, the third impregnation mold A second godet roll is arranged in the cavity of the dipping die, and the second godet roll includes at least one active godet roll, and the active godet roll is driven to rotate by a driving device.
  • the first, second and third dipping moulds used in the present invention are described in Chinese Patent Applications CN 202011193483.3, 202011191450.5 and 202011199839.4, the entire contents of which are hereby incorporated by reference to the extent consistent with the present invention middle.
  • first dipping mold, second dipping mold and third dipping mold of the present invention can be applied to any existing thermoplastic composite material manufacturing system and preparation technology, especially can be applied to any existing thermoplastic composite material.
  • Manufacturing Systems and Preparation Techniques for Continuous Fiber Reinforced Thermoplastic Composites are examples of manufacturing Systems and Preparation Techniques for Continuous Fiber Reinforced Thermoplastic Composites.
  • the second dipping treatment in step D may be performed in a forming mold.
  • the forming die is composed of a core, a jacket, and a jacket mouth template.
  • the core is located inside the casing and forms a cavity with the casing, and the resin melt can enter the cavity from the bottom or the top or both sides of the casing.
  • the core can move back and forth in the outer casing, and the pressure of the melt in the cavity is determined by adjusting the size of the cavity space formed. The pressure of the melt in the cavity can also be adjusted by the angle between the core and the jacket.
  • the working principle of the forming mold is as follows: after passing through the impregnating mold, a material strip of the inner layer of impregnating material is formed, which is guided through the hole in the middle of the core, and then realized in the cavity formed by the core and the outer jacket, which is filled with mixed melt. The molding of the composite structure of the inner and outer layers is finally exported through the outer shell template.
  • the method further includes, drawing, drawing, cooling, drying and pelletizing the obtained thermoplastic composite material.
  • the process conditions of pulling out, drawing, cooling, drying, and dicing are not particularly limited, and are all within a wide selection range, in order to obtain thermoplastic composite materials that can meet the needs of different specifications.
  • the amount of the first thermoplastic resin is 1-90 parts by weight, and the amount of the fiber bundle is 10-110 parts by weight.
  • the amount of the first thermoplastic resin may be 1 part by weight, 10 parts by weight, 20 parts by weight, 25 parts by weight, 30 parts by weight, 40 parts by weight, 45 parts by weight parts by weight, 50 parts by weight, 55 parts by weight, 60 parts by weight, 70 parts by weight, 80 parts by weight, 90 parts by weight, or a range consisting of; and in some embodiments, the amount of the fiber bundle may be 1 parts by weight, 10 parts by weight, 20 parts by weight, 25 parts by weight, 30 parts by weight, 40 parts by weight, 50 parts by weight, 60 parts by weight, 70 parts by weight, 80 parts by weight, 90 parts by weight, 100 parts by weight, 110 parts by weight or a range consisting of them.
  • the amount of the first thermoplastic resin may be 20-70 parts by weight, preferably 20-55 parts by weight, more preferably 24-45 parts by weight; and/or The amount of the fiber bundles may be 20-110 parts by weight, preferably 25-110 parts by weight.
  • the amount of the second thermoplastic resin is 1-110 parts by weight.
  • the amount of the second thermoplastic resin may be 1 part by weight, 10 parts by weight, 20 parts by weight, 30 parts by weight, 40 parts by weight, 45 parts by weight, 50 parts by weight parts by weight, 60 parts by weight, 65 parts by weight, 70 parts by weight, 75 parts by weight, 80 parts by weight, 85 parts by weight, 90 parts by weight, 95 parts by weight, 100 parts by weight, 105 parts by weight, 110 parts by weight or composed thereof range.
  • the amount of the second thermoplastic resin may be 10-90 parts by weight, preferably 40-90 parts by weight.
  • the amount of the first thermoplastic resin is 1-90 parts by weight, preferably 20-70 parts by weight, more preferably 20-55 parts by weight, It is further preferably 24-45 parts by weight; and/or the amount of the fiber bundles is 10-99 parts by weight, preferably 20-80 parts by weight, more preferably 25-50 parts by weight.
  • the amount of the first thermoplastic resin is 50-70 parts by weight, more preferably 50-60 parts by weight; and/or The amount of the fiber bundles is 90-110 parts by weight, preferably 100-110 parts by weight; and/or in the outer layer material, the amount of the second thermoplastic resin is 90-110 parts by weight, more preferably 95-105 parts by weight.
  • the weight ratio of the fibers to the first thermoplastic resin is 0.25-6:1.
  • the weight ratio of the fiber bundle to the first thermoplastic resin is 0.25:1, 0.3:1, 0.35:1, 0.4:1, 0.45:1, 0.5:1, 0.55: 1, 0.6:1, 0.65:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 1.2:1, 1.5:1, 1.7:1, 1.8:1, 1.9:1, 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 4.5:1, 5:1, 6:1, or a range consisting of them.
  • the weight ratio of the fiber bundles to the first thermoplastic resin may be 0.35-4.5:1, preferably 0.43-4.5:1.
  • the number of layers of the outer layer material is not limited, and the outer layer material may be one or more layers.
  • the multi-layer outer layer material may be formed of one outer layer material, or may be formed of multiple outer layer materials.
  • the first thermoplastic resin and the second thermoplastic resin are the same or different, and are independently selected from polypropylene, polyethylene, polystyrene, polyvinyl chloride, polystyrene Acrylonitrile-butadiene-styrene copolymer, polyacrylonitrile-styrene copolymer, polyoxymethylene, polyamide, polyethylene terephthalate, polybutylene terephthalate, polymethyl At least one of methyl acrylate, polycarbonate, polyphenylene ether, polyurethane, polyether ether ketone and polyphenylene sulfide and their alloy polymers.
  • the first thermoplastic resin and the second thermoplastic resin are each independently selected from polypropylene, polyethylene, polyamide (also known as nylon), polyethylene terephthalate At least one of alcohol ester (PET), polybutylene terephthalate (PBT), polyphenylene sulfide, polyurethane and polyether ether ketone (PEEK).
  • PET alcohol ester
  • PBT polybutylene terephthalate
  • PEEK polyphenylene sulfide
  • PEEK polyether ether ketone
  • the first thermoplastic resin and the second thermoplastic resin are each independently selected from homopolypropylene, copolymerized polypropylene, a mixture of homopolypropylene and copolymerized polypropylene, nylon At least one of nylon 6 (PA6), nylon 66 (PA66), a mixture of nylon 6 and nylon 66.
  • the first thermoplastic resin and the second thermoplastic resin may also be selected from thermoplastic polyurethane elastomer (TPU) and/or high temperature nylon (PPA).
  • TPU thermoplastic polyurethane elastomer
  • PPA high temperature nylon
  • the melt flow rate of the first thermoplastic resin at 230° C. and a load of 2.16 kg is 60-8000 g/10min.
  • the melt flow rate of the first thermoplastic resin at 230°C and a load of 2.16kg may be 60g/10min, 100g/10min, 200g/10min, 450g/10min, 500g/10min, 1000g/10min, 1500g/10min, 2000g/10min, 3000g/10min, 4000g/10min, 5000g/10min, 6000g/10min, 7000g/10min, 7500g/10min, 8000g/10min or a range consisting of them.
  • the melt flow rate of the first thermoplastic resin at 230°C and a load of 2.16kg may be 100-8000g/10min, preferably 1000-7500g/10min, more preferably 1900- 7500g/10min.
  • the melt flow rate of the second thermoplastic resin at 230° C. and a load of 2.16 kg is 0.1-8000 g/10min.
  • the melt flow rate of the second thermoplastic resin at 230°C and a load of 2.16kg may be 0.1g/10min, 1g/10min, 1.5g/10min, 3g/10min, 10g/10min, 20g/ 10min, 30g/10min, 40g/10min, 45g/10min, 50g/10min, 55g/10min, 60g/10min, 70g/10min, 80g/10min, 90g/10min, 100g/10min, 450g/10min, 500g/10min, 800g/10min, 1000g/10min, 1500g/10min, 1900g/10min, 2500g/10min, 3000g/10min, 4000g/10min, 5000g/10min, 6000g/10min, 7000g/10min, 8000g/10min or a range consisting of them.
  • the melt flow rate of the second thermoplastic resin at 230°C and a load of 2.16kg may be 3-55g/10min or 450-8000g/10min, preferably 3-45g/10min or 1900-8000g/10min.
  • the melt flow rates of the first thermoplastic resin and the second thermoplastic resin are not particularly limited, and the first thermoplastic resin and the second thermoplastic resin may be selected according to desired properties.
  • the melt flow rate of the two thermoplastic resins are selected according to desired properties.
  • the inventors of the present application found that, according to the preparation conditions (eg, melt flow rate) of the present invention, a thermoplastic composite material with high surface quality properties and comprehensive properties can be prepared.
  • the melt flow rate of the first thermoplastic resin is higher than the melt flow rate of the second thermoplastic resin, thereby enabling the thermoplastic composite material to have improved mechanical properties; conversely, the melt flow rate of the second thermoplastic resin
  • the volume flow rate is higher than the melt flow rate of the first thermoplastic resin, which can result in improved gloss of the thermoplastic composite.
  • the melt flow rate of the first thermoplastic resin at 230° C. and a load of 2.16kg is 60-450g/10min, for example, 60-200g/10min
  • the melt flow rate of the second thermoplastic resin at 230° C. and a load of 2.16kg is 3-55g/10min or 450-8000g/10min.
  • the melt flow rate of the first thermoplastic resin at 230°C and a load of 2.16kg is 60-450 g/10min
  • the second thermoplastic resin at 230°C and a load of 2.16kg The melt flow rate under the conditions is 800-8000g/10min.
  • the melt flow rate of the first thermoplastic resin at 230° C. and a load of 2.16kg is above 450g/10min, especially above 450g/10min,
  • the melt flow rate of the second thermoplastic resin at 230°C and a load of 2.16kg is less than 100g/10min, preferably 1.5-55g/10min, more preferably 3-50g/10min.
  • the weight ratio of the second thermoplastic resin to the first thermoplastic resin is 0.05-12.5:1.
  • the weight ratio of the second thermoplastic resin to the first thermoplastic resin may be 0.05:1, 0.1:1, 0.14:1, 0.15:1, 0.18:1, 0.2:1, 0.25:1, 0.3: 1, 0.5:1, 0.8:1, 1:1, 1.2:1, 1.3:1, 1.4:1, 1.7:1, 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 5:1, 8:1, 10:1, 12.5:1, or a range consisting of them.
  • the weight ratio of the second thermoplastic resin to the first thermoplastic resin may be 0.14-4:1, preferably 0.14-3.5:1.
  • the second thermoplastic resin when the melt flow rate of the second thermoplastic resin is 800-8000 g/10min at 230° C. and a load of 2.16 kg, the second thermoplastic resin is The weight ratio to the first thermoplastic resin is less than 0.25:1, preferably less than 0.18:1, more preferably less than 0.15:1.
  • the first thermoplastic resin and the second thermoplastic resin are selected from at least one of nylon 6, nylon 66, a mixture of nylon 6 and nylon 66, the Nylon 6 and Nylon 66 were selected to have a viscosity of 1.8-3.5.
  • the first thermoplastic resin and the second thermoplastic resin can be self-made or commercially available.
  • polypropylene resin with trade name PPB-M100-GH from Sinopec Yangzi Petrochemical Company polypropylene resin from Sinopec East China Branch with trade mark M60RHC can be used, , Nylon 6 with the grade of PA6-BL3200H as the first thermoplastic resin.
  • the polypropylene resin of the trade name PPB-M100-GH purchased from Sinopec Yangzi Petrochemical Company
  • the polypropylene resin of the trade name PPH-T03 purchased from the Maoming Branch of Sinopec Corp.
  • Polypropylene resin of M50RH polypropylene resin of K8303 from Yanshan Petrochemical Company
  • polypropylene resin of PF1500 from Hunan Shengjin New Material Co., Ltd.
  • Sinopec Huajiazhuang Refining and Chemical Company the trade mark is PPH-Y450 polypropylene resin
  • nylon 6 with trade mark PA6-BL3200H purchased from Baling Branch of Sinopec is used as the second thermoplastic resin.
  • the fiber bundle is selected from at least one of glass fiber, carbon fiber, basalt fiber, aramid fiber, stainless steel fiber, synthetic resin fiber and mineral fiber.
  • the glass fibers are continuous glass fibers and/or fixed-length glass fibers.
  • the first auxiliary agent and the second auxiliary agent each independently include 0.5 - At least one of 15 parts by weight of a compatibilizer, 0.05-3 parts by weight of an antioxidant, and 0.05-2.5 parts by weight of a lubricant.
  • the first adjuvant and the second adjuvant each independently comprise 1-15 parts by weight, preferably 1-6 parts by weight, more preferably 3-6 parts by weight of a compatibilizer, 0.1-1 part by weight , preferably at least one of 0.1-0.5 parts by weight of antioxidants and 0.5-2.5 parts by weight of lubricants.
  • the compatibilizer is selected from at least one of the graft-modified polymers of polar monomers.
  • the polar monomer is selected from at least one of maleic anhydride, maleic anhydride derivatives, acrylic acid and acrylate derivatives.
  • the polymer is selected from at least one of polyethylene, polypropylene, ethylene- ⁇ -olefin copolymers, and propylene- ⁇ -olefins ( ⁇ -olefins other than propylene).
  • the lubricant is selected from the group consisting of ethylene bis-stearamide, calcium stearate, polyethylene wax, pentaerythritol stearate, silicone, polyethylene glycol and fluorine-containing at least one of resins.
  • the first adjuvant may further include at least one of a slip agent, an antistatic agent and a plasticizer
  • the second adjuvant may further include a slip agent, an antistatic agent
  • At least one of additives, plasticizers, nucleating agents, light stabilizers, intumescent flame retardants, heat stabilizers, color masterbatches, antistatic agents and fillers, and the specific types of these additives are not limited and dosage, the dosage can be selected from a wide range.
  • the preparation method of the present invention is performed in a thermoplastic composite material manufacturing system as shown in FIG. 2 or FIG. 3 , and the specific structure and connection mode of the thermoplastic composite material manufacturing system are performed in the detailed description section. describe.
  • the third aspect of the present invention provides the application of the above thermoplastic composite material and the thermoplastic composite material prepared by the above preparation method in the fields of automobile industry, machinery manufacturing, electronic appliances, chemical environment protection, aerospace communication and construction industry, preferably The application in large-scale automobile parts and/or high-precision electronic and electrical components, more preferably in the application of automobile front-end modules and/or full-plastic tailgate inner panels. But not limited to this.
  • thermoplastic composite material prepared by the present invention has a core layer and an outer layer composite structure, and the composite system design based on the multiple materials can realize the performance synergy effect between the different components between the inner layer material and the outer layer material, which can effectively Improve the processability of thermoplastic composites and the lubricity between the fiber and the resin matrix during injection molding, and improve the fluidity of the fiber in the resin matrix melt, thereby improving the bonding state between the two and reducing the amount of friction between the two. It can improve the fluidity of the entire material system, so that the comprehensive properties and surface quality of the thermoplastic composite materials prepared have been greatly improved, while reducing the requirements of the injection molding process, expanding the thermoplastic composite materials.
  • the scope of application has broad application prospects and economic significance.
  • thermoplastic composite material of the present invention has the advantages of low cost, short injection molding cycle, high dimensional stability of the product, high material strength, no need for secondary mixing during use, and can be added to the first component and/or the second component. , In particular, adding functional materials to the second component (resin layer) has wide applicability. Further, the outer layer material of the thermoplastic composite material of the present invention can be free of fibers, has the advantages of good surface quality and performance, no floating fibers on the surface, and improved gloss.
  • thermoplastic composite material 1 is a schematic structural diagram of a thermoplastic composite material according to an embodiment of the present invention
  • thermoplastic composite material manufacturing system in an embodiment of the present invention
  • thermoplastic composite material manufacturing system in another embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a first dipping mold in an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a second dipping mold in an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a third dipping mold in an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a second dipping process in an embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of a molding die used in a second dipping process according to an embodiment of the present invention.
  • Fiber frame and fiber guide device 2. Fiber pretreatment device; 3. First dipping mold; 4. Melting and plasticizing feeding device; 5. Forming mold; 6. Cooling water tank; 7. Dryer; 8. Traction machine; 9. Pelletizer; 10. Collection box;
  • A300 first dip die head; A1, fiber inlet; A2, second chute; A3, melt flow channel; A4, first chute; A5, upper die cover; A6, fiber outlet; A7, dip die body; A8, the first godet;
  • B300 second dip die head; B1, fiber inlet; B2, melt flow channel; B3, first module; B31, first module flow channel; B4, combined flow channel; B5, standardized joint; B6, intermediate module ;B61, middle module flow channel; B7, second module; B71, second module flow channel; B8, fiber outlet;
  • C300 the third dipping die head; C1, the melt slotted flow channel; C2, the outer body of the dipping die; C3, the fiber inlet channel; C4, the active godet; C5, the driven godet; C6, the dipping outlet;
  • Test method of the present invention and equipment used in the test are as follows:
  • the sources of some reagents used in the present invention are:
  • SE4805 an alkali-free glass fiber, with a diameter of 17 ⁇ m and a linear density of 2400 tex, produced by Owens Corning (Shanghai) Glass Fiber Co., Ltd.
  • T700SC carbon fiber, tow 1200-50C, produced by Toray Corporation of Japan.
  • Basalt fiber single fiber diameter of 12 ⁇ m, produced by Mudanjiang Jinshi Basalt Fiber Co., Ltd.
  • the grade of PP-g-MAH is BONDYRAM 1001, produced by Pulilang Plastic Industry Co., Ltd.
  • Antioxidant 168 produced by BASF.
  • Figure 1 shows the structure of the thermoplastic composite of the present invention.
  • the cross section of the thermoplastic composite material of the present invention is circular, and includes a core layer 0-1 and a resin layer 0-3 sequentially from the inside to the outside, and fibers oriented in the longitudinal direction are distributed in the core layer 0-1.
  • Bundles 0-2, and fiber bundles 0-2 are uniformly dispersed in the core layer 0-1.
  • the manufacturing system of the present invention includes a fiber frame and a fiber guiding device 1 , a fiber pretreatment device 2 , a first dipping mold 3 , a melt-plasticizing feeding device 4 , a forming mold 5 , a fiber frame and a fiber guiding device 1 connected in sequence.
  • Cooling water tank 6, dryer 7, tractor 8, pelletizer 9, collection box 10 and electric control system (not shown in the figure).
  • the forming die 5 is used for forming the composite material of the inner and outer layers, and its structure is shown in FIG. 8 .
  • the first impregnation die 3 is used for the impregnation of the fibers with the resin melt.
  • the first dipping die is a dipping device with adjustable godet position, including a first dipping die A300, which includes a dipping die body A7 , fiber inlet A1, fiber outlet A6 and melt flow channel A3. At least one first godet A8 is arranged in the cavity, wherein the first godet A8 can move between the fiber inlet A1 and the fiber outlet A6, or the first godet A8 can be perpendicular to the fiber inlet A1.
  • the first godet A8 can move between the fiber inlet A1 and the fiber outlet A6 and also along the direction perpendicular to the connection line of the fiber inlet A1 and the fiber outlet A6 move.
  • the first dipping die A300 is provided with a plurality of first godet rolls A8, and the axial direction of each first godet A8 is the first dipping die die.
  • the axial direction of the first godet roll A8 may also be the length direction of the first dipping die head A300, and in this case, each first godet roll A8 can be along the width of the first dipping die head A300.
  • the direction of movement can also be moved along the height direction of the first dipping die head A300, thereby changing the position of the first godet roll A8 in the first dipping die head A300.
  • the position (horizontal position, longitudinal position, etc.) in the die head A300 of a dipping mold can change the walking path of the fiber in the mold cavity, so that when the required impregnation conditions of the fiber change, there is no need to replace a new mold and only need to adjust
  • the position of the first godet roll A8 in the first dipping die head A300 is sufficient, thereby improving the production efficiency and the continuity of production.
  • the number of the first dipping die A300 can be reduced, and the production cost can be saved.
  • the inventive concept of the present invention is to achieve the purpose of adjusting the position of the first godet roll A8 by grooving the inner wall of the cavity of the first dipping die head A300.
  • a first chute A4 is provided on the first inner wall of the first dipping die head A300.
  • the first chute A4 extends between the fiber inlet A1 and the fiber outlet A6 (ie, the X-axis direction shown in FIG. 4 ).
  • the wire roll A8 moves along the first chute A4 to change its horizontal position within the first dip die head A300.
  • a second chute A2 is also provided on the first inner wall of the first dipping die head A300, and the second chute extends in a direction perpendicular to the first chute A4 (that is, the Y-axis direction shown in FIG. 4 ), The first godet A8 moves along the second chute A2 to change its vertical position within the die.
  • first chute A4 and the second chute A2 may be communicated. Thereby, the first godet A8 can be moved arbitrarily in the longitudinal direction or the transverse direction, so that the position thereof can be changed.
  • the cross-sections of the first chute A4 and the second chute A2 may be trapezoidal, circular, arcuate, or rectangular, which are not limited in the present invention.
  • Both ends of the first godet A8 are provided with adjustment devices (not shown in the figure), and the adjustment devices are used to adjust the axial length of the first godet A8, wherein the minimum axial length of the first godet A8 The length is smaller than the distance between the first inner wall and the second inner wall, and the maximum axial length of the first godet A8 is greater than the distance between the first inner wall and the second inner wall.
  • the second dipping die is a combined dipping die, including a second dipping die head B300, and the second dipping die head B300 includes first modules connected in sequence B3, the middle module B6 and the second module B7.
  • the first module B3 is provided with a fiber inlet B1 and a first module flow channel B31
  • the second module B7 is provided with a fiber outlet B8 and a second module flow channel B71
  • an intermediate module B6 is provided with an intermediate module flow channel B61.
  • the first module flow channel B31, the intermediate module flow channel B61 and the second module flow channel B71 are connected to form a combined flow channel for the fibers to pass through B4, wherein the number of intermediate modules B6 is at least one. That is, the first module B3 is the head module, the second module B7 is the tail module, and there are one or more intermediate modules B6 therebetween. It should be noted that these intermediate modules B6 are also connected in sequence.
  • the number of the intermediate modules B6 can be increased or decreased as required, so that when the required conditions for dipping change, different intermediate modules B6 can be selected to be combined to form a combined second dipping die head B300. Improve the continuity of production and production efficiency, and save the cost of additional mold opening.
  • the shape parameters (such as curvature, etc.) of the formed combined flow channel B4 can be changed, so that the flow paths of the fibers and the melt can be changed, and the fibers can be changed in different molds.
  • the impregnation angle and fiber tension in the station ultimately achieve the purpose of adjusting and optimizing the entire impregnation process of the fiber, and improve the adaptability of the second impregnation die B300 to different resin matrices and fibers.
  • the first module B3, the middle module B6 and the second module B7 are put into the mold frame, and they are in close contact with each other through the restraint of the mold frame, so as to ensure the tightness of the formed combined flow channel B4.
  • FIG. 5 an embodiment with 2 intermediate modules B6 is shown.
  • the downstream end of the first module flow channel B31 is connected to the upstream end of one of the intermediate module flow channels B61, the two intermediate module flow channels B61 are connected to each other, and the other intermediate module flow channel B61
  • the downstream section of B is connected to the upstream end of the second intermediate module flow channel B71, thereby forming a combined flow channel B4 extending from the fiber inlet B1 to the fiber outlet B8.
  • the downstream end of the first module flow channel B31, the upstream end of the second module flow channel B71, and both ends of the intermediate module flow channel B61 are all located in the same plane, and are configured with standardized joints B5.
  • the connections between the first module flow channel B31, the intermediate module flow channel B61 and the second module B71 are connected through the standardized joint B5. Since the standardized joints B5 are all located in the same plane, and the shape and size of the standardized joints B5 are the same, the combined connection between different modules is facilitated.
  • the third dipping mold is a strong turbulent dipping mold, including a third dipping mold die C300, and the third dipping mold die C300 includes a dipping mold outer body C2, A fiber inlet channel C3, an impregnation outlet C6 and a melt slotted runner C1 are provided on the dipping outer body C2.
  • the fiber inlet channel C3, the dipping outlet C6 and the melt slotted runner C1 are all connected with the cavity inside the dipping outer body C2. connected.
  • a second godet roller is arranged in the cavity of the dipping mold outer body C2, and the second godet roller includes at least one active godet roller C4, which is driven to rotate by a driving device (not shown in the figure). . Since the rotation of the active godet C4 is driven by the driving device, not driven by the pulling of the fiber, when the fiber passes through the active godet C4, the actively rotating active godet C4 helps to reduce the pulling of the fiber. The tension and the friction between the fiber and the active godet roller C4 can reduce the amount of fiber breakage, ensure the integrity of the fiber, and avoid the fiber being broken, thereby improving the mechanical properties of the material.
  • the second godet further comprises at least one driven godet C5, and the driven godet C5 is driven by the fibers passing through the driving godet C4; or the driven godet C5 passes through the driving godet C4 Belt mechanism, gear mechanism or chain mechanism are connected.
  • the driven godet C5 passes through the driving godet C4 Belt mechanism, gear mechanism or chain mechanism are connected.
  • FIG. 6 an example is shown with one driving godet C4 and 2 driven godets C5, wherein the 2 driven godets C5 are arranged one above the other to extend the length of the fiber passing therethrough. Impregnation path.
  • the heights of the driving godet C4 and the driven godet C5 in the mold cavity may be the same or different.
  • the driving device may be a device that can drive the active godet C4 to rotate, such as a motor, a hydraulic mechanism or a reduction box.
  • the melt-plasticizing feeding device 4 is composed of a twin-screw extruder, which is used for melting and plasticizing materials.
  • the twin-screw extruder is a co-rotating twin-screw extruder, the screw diameter is 25mm-95mm, and the length-diameter ratio is 36:1-65:1.
  • the melting and plasticizing feeding device 4 is composed of an extruder 4, the melt melted and plasticized in the extruder is divided by a melt distributor, and then enters the dipping mold and the forming mold respectively, and the melt is used Flow control valves control the respective flow rates.
  • the melt-plasticizing feeding device 4 when the melt-plasticizing feeding device 4 is composed of two extruders 4-1 and 4-2, the respective melt-plasticizing machines are respectively melt-plasticized by the extruder I 4-1 and the extruder II 4-2.
  • the melted melt enters the dipping and forming dies.
  • the melt-plasticizing feeding device consists of two extruders, namely, extruder I 4-1 and extruder II 4-2, through which extruder I 4-1 and extruder II are passed.
  • 4-2 Enter the melted and plasticized melts into the first dipping die 3 and the forming die 5 respectively.
  • Extruder I 4-1 and Extruder II 4-2 can be fed with the same or different materials, so composite materials with the same or different materials for the inner and outer layers can be prepared.
  • the fiber pretreatment device 2 is composed of a combination of a tension roller and a hot drying tunnel. This combination makes the tension of the fibers when they enter the hot drying tunnel to be released to a certain extent, so as to adapt to fibers of different strengths and avoid their own low strength. The fibers are broken before entering the impregnation die.
  • the surface of the tension roller in the fiber pretreatment device 2 needs to be treated with ceramic plating to improve the surface roughness and reduce the friction to the fiber.
  • the fiber frame and the fiber guide device 1 are used for fiber lead-out and untwisting.
  • the device is equipped with an automatic control untwisting device, which is linked with the tractor 8 and is electrically connected to the electric control system (eg PLC control device).
  • the electric control system eg PLC control device
  • the cooling water tank 6 , the dryer 7 , the tractor 8 , the pelletizer 9 , and the collection box 10 are conventional equipment or devices known to those skilled in the art, and will not be repeated here.
  • FIG. 7 shows a schematic diagram of the second dipping process using a molding die
  • FIG. 8 shows a cross-sectional view of the molding die used in the second dipping process.
  • the forming die 5 is composed of a core portion 5-1, a jacket 5-2, and a jacket mouth template 5-3.
  • the core 5-1 is located inside the outer casing 5-2, and forms a cavity with the outer casing 5-2, and the resin melt can enter the cavity from the bottom or the top or both sides of the outer casing 5-2.
  • the core 5-1 can move back and forth in the outer casing 5-2, and the pressure of the melt in the cavity is determined by adjusting the size of the cavity space formed. The pressure of the melt in the cavity can also be adjusted by the angle between the core 5-1 and the outer casing 5-2.
  • the working principle of the forming mold 5 is: after passing through the impregnating mold 3, a strip of the inner layer of impregnating material is formed, which is guided through the hole in the middle of the core part 5-1, and then is formed between the core part 5-1 and the outer layer 5-2.
  • the formed cavity filled with the mixed melt realizes the forming of the composite structure of the inner and outer layer materials, and is finally exported through the outer casing template 5-3.
  • the strip 5-4 is processed into the cavity formed by the core (not shown) and the jacket 5-2 filled with the melt of the second component, wherein the melt of the second component flows from the second component. Resin inlets 5-5 are fed into the cavity.
  • the manufacturing system shown in FIG. 3 is used to prepare thermoplastic composite materials, wherein the first dipping process adopts the first dipping mold shown in FIG. 4 , and the second dipping process adopts the molding shown in FIG. 8 . mold.
  • the inner layer material enters the molding die under the action of the tractor, and is guided through the hole in the middle of the core, and in the cavity formed by the core and the outer jacket filled with the second component melt, the inner and outer layers are realized.
  • the molding of the layered material composite structure is finally exported through the mold outlet.
  • the inner layer material enters the molding die under the action of the tractor, and is guided through the hole in the middle of the core, and in the cavity formed by the core and the outer jacket filled with the second component melt, the inner and outer layers are realized.
  • the molding of the layered material composite structure is finally exported through the mold outlet.
  • the inner layer material enters the molding die under the action of the tractor, and is guided through the hole in the middle of the core, and in the cavity formed by the core and the outer jacket filled with the second component melt, the inner and outer layers are realized.
  • the molding of the layered material composite structure is finally exported through the mold outlet.
  • the inner layer material enters the molding die under the action of the tractor, and is guided through the hole in the middle of the core, and in the cavity formed by the core and the outer jacket filled with the second component melt, the inner and outer layers are realized.
  • the molding of the layered material composite structure is finally exported through the mold outlet.
  • the inner layer material enters the molding die under the action of the tractor, and is guided through the hole in the middle of the core, and in the cavity formed by the core and the outer jacket filled with the second component melt, the inner and outer layers are realized.
  • the molding of the layered material composite structure is finally exported through the mold outlet.
  • the inner layer material enters the molding die under the action of the tractor, and is guided through the hole in the middle of the core, and in the cavity formed by the core and the outer jacket filled with the second component melt, the inner and outer layers are realized.
  • the molding of the layered material composite structure is finally exported through the mold outlet.
  • the continuous basalt fiber enters the first dipping die under the action of the tractor, where it is infiltrated and dispersed with the first component melt to form a strip, which is used as the inner layer material.
  • the inner layer material enters the molding die under the action of the tractor, and is guided through the hole in the middle of the core, and in the cavity formed by the core and the outer jacket filled with the second component melt, the inner and outer layers are realized.
  • the molding of the layered material composite structure is finally exported through the mold outlet.
  • the continuous carbon fiber enters the first impregnation mold under the action of the tractor, where it is infiltrated and dispersed with the first component melt to form a strip, which is used as the inner layer material.
  • the inner layer material enters the molding die under the action of the tractor, and is guided through the hole in the middle of the core, and in the cavity formed by the core and the outer jacket filled with the second component melt, the inner and outer layers are realized.
  • the molding of the layered material composite structure is finally exported through the mold outlet.
  • step (1) 70 parts by weight of PPB-M100-GH are weighed, and 85 parts by weight of PPH-Y450 are weighed in step (3).
  • step (3) 85 parts by weight of PPH-Y450 are weighed in step (3).
  • Table 1 The properties of the prepared composites were tested, and the test results are shown in Table 1.
  • the preparation process is the same as that of Example 1, except that 45 parts by weight of PPB-M100-GH are weighed in step (1), and 65 parts by weight of PPH-Y450 are weighed in step (3).
  • the properties of the prepared composites were tested, and the test results are shown in Table 1.
  • step (1) weigh 25 parts by weight of PPB-M100-GH, and in step (3), take 45 parts by weight of PPH-Y450.
  • step (3) take 45 parts by weight of PPH-Y450.
  • step (1) 55 parts by weight of PPB-M100-GH are weighed, and 70 parts by weight of PPH-Y450 are weighed in step (3).
  • step (3) The properties of the prepared composites were tested, and the test results are shown in Table 1.
  • the inner layer material enters the molding die under the action of the tractor, and is guided through the hole in the middle of the core, and in the cavity formed by the core and the outer jacket filled with the second component melt, the inner and outer layers are realized.
  • the molding of the layered material composite structure is finally exported through the mold outlet.
  • step (1) in step (1) and step (3), 5 parts by weight of polypropylene-g-glycidyl methacrylate are respectively added, and the test results are shown in Table 1.
  • step (1) in step (1) and step (3), 5 parts by weight of polypropylene-g-styrene/maleic anhydride are respectively added, and the test results are shown in Table 1.
  • step (1) in step (1) and step (3), 5 parts by weight of polypropylene-g-vinylimidazole are respectively added, and the test results are shown in Table 1.
  • (1) take by weighing dry 57 parts by weight of PPB-M100-GH, 3 parts by weight of BONDYRAM 1001, 0.1 part by weight of antioxidant 1010, 0.5 part by weight of XH-201, in a high-speed mixer, stir 3min at 50 ° C to obtain The melt is fed into the impregnation mold.
  • SE4805 enters the dipping mold under the action of the tractor, where it is infiltrated and dispersed with the melt, and the content of SE4805 in the composite material is adjusted by selecting the size of the template of the sizing die of the dipping mold, and the content of SE4805 is controlled to be 22 wt. %, adjust the cutter rotation speed of the pelletizer so that the pelletizing length of the prepared polypropylene composite material is controlled to be 12 mm.
  • the inner layer material is added to the No. 1 extruder, the outer layer material is added to the No. 2 extruder, and the two extruders extrude the raw materials at the same time. Extruded through a die head to obtain a continuous filament with an inner layer containing a short glass fiber resin layer and an outer layer containing a short glass fiber resin layer, and the raw material of the comparative example is obtained after dicing.
  • the performance test is shown in Table 1.
  • D1 and D2 in Table 1 are Comparative Example 1 and Comparative Example 2, respectively, and S1-S18 are Example 1-Example 18, respectively.
  • the preparation method proposed by the present invention is not only suitable for long glass fiber reinforced polypropylene composite materials, but also suitable for continuous glass fiber reinforced PA6, continuous basalt fiber reinforced polypropylene, continuous carbon fiber reinforced PA6 Preparation of composite materials.
  • the prepared composite material can have an ideal surface gloss.
  • the preparation method of the invention is simple to operate, can realize on-line continuous production, can ensure high production capacity and low energy consumption, and is suitable for industrial production and application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Textile Engineering (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种热塑性复合材料及其制备方法和应用。所述热塑性复合材料包括内层材料和至少一层外层材料,所述内层材料为包括纤维束、第一热塑性树脂和第一助剂的芯层,所述至少一层外层材料包裹所述芯层并且为包括第二热塑性树脂和任选的第二助剂的树脂层,其中,所述纤维束从所述芯层的一端连续延伸至其相对端。本发明的热塑性复合材料具有内层和外层复合结构,能够有效改善热塑性复合材料的加工性能和注塑成型时纤维与树脂基体之间的润滑性,并提升纤维在树脂基体熔体中的流动性,使得所制备得到的热塑性复合材料的综合性能和表面质量都得到了很大的提高,同时降低了注塑成型工艺的要求,扩展了热塑性复合材料的应用范围。

Description

一种热塑性复合材料及其制备方法和应用
本申请要求享有2020年10月30日提交的以下专利申请的优先权:
1.名称为“一种热塑性复合材料及其制备方法和应用”,申请号为CN 202011192228.7的中国专利申请;
2.名称为“浸渍模具、浸渍方法及包括浸渍模具的制造系统”,申请号为CN 202011193483.3的中国专利申请;
3.名称为“浸渍模具、浸渍方法及包括浸渍模具的制造系统”,申请号为CN 202011191450.5的中国专利申请;
4.名称为“浸渍模具、浸渍方法及包括浸渍模具的制造系统”,申请号为CN 202011199839.4的中国专利申请;
其内容以与本发明一致的程度通过引用并入本文中。
技术领域
本发明属于高分子复合材料领域,具体涉及一种热塑性复合材料及其制备方法和应用。
背景技术
长纤维增强热塑性复合材料是一种常见的热塑性复合材料,其是当今复合材料市场中发展最快的材料之一。作为半结构材料和结构材料,长纤维增强热塑性复合材料的开发目标是工业和民用的各个领域,包括汽车、器械、娱乐、食品加工、通讯、电子电器、电动工具、园艺等领域。
长纤维增强热塑性材料的纤维长度等同于粒子长度,纤维取向高度一致,具备低密度、易成型、高比强度、模量高、耐疲劳性能好和不吸水等特性。此外,该材料具有良好的尺寸稳定性、优良的耐冲击性、化学稳定性(耐盐、耐油、耐燃料等)及可循环利用的优点,尤其适合使用在高低温交变频繁的场合,其可在普通注塑机上注塑成型,也可模压成型,是金属替代材料的理想候选者。在长纤维增强热塑性复合材料的总用量中,汽车材料的应用量占比高达80%-90%。
但是,随着长纤维增强热塑性复合材料技术水平的不断提升和应用案例的不断扩展,以及人们对健康、安全、环保意识的进一步提高和汽车化进程的不断推进,对材料的性能也提 出了更多更高的要求。除了要求材料要具备优异的机械性能、功能化等要求外,又要兼顾加工性能以及成型后零部件的性能要求。比如,对于汽车大型复杂零部件、高精密电子电器元件,就要求制备材料具备高流动、易成型、尺寸稳定性高、高表面质量和加工成型要求。
对于上述的问题,现有技术还远远满足不了实际应用的需求。
发明内容
针对现有技术存在的上述问题,本发明提供了一种热塑性复合材料及其制备方法和应用,本发明的热塑性复合材料基于多组分材料体系设计,能够使得各组分之间达到性能协同的效果。进一步地,本发明的热塑性复合材料还可以大大提高纤维在树脂熔体中的流动性,复合材料的表面性能得到了很大的提升,拓展了应用范围。
本发明第一方面提供了一种热塑性复合材料,包括内层材料和至少一层外层材料,所述内层材料为包括纤维束、第一热塑性树脂和第一助剂的芯层,所述至少一层外层材料包裹所述芯层并且为包括第二热塑性树脂和任选的第二助剂的树脂层,其中,所述纤维束从所述芯层的一端连续延伸至其相对端。
本发明中,术语“一端”和/或“相对端”通常是相对于热塑性复合材料的纵向而言的。
本申请发明人发现,采用包括第一热塑性树脂和第一助剂的第一组分浸渍连续纤维束以形成芯层,并在芯层外侧均匀包覆包括第二热塑性树脂和任选的第二助剂的第二组分,由此形成以连续纤维增强树脂为芯层(内层材料),以包裹在芯层外侧的树脂层为外层材料的热塑性复合材料,通过调节所述芯层中第一热塑性树脂和所述树脂层中第二热塑性树脂的性能和功能,可以使所述热塑性复合材料具有不同的性能和功能。
根据本发明所述的热塑性复合材料的一些实施方式,外层材料(树脂层)可以基本上连续包覆所述内层材料(芯层)。虽然不是优选的,但是本发明的热塑性复合材料中,外层材料(树脂层)至少80%包覆所述内层材料(芯层),例如,80-99%,85-95%包覆所述内层材料(芯层)。
根据本发明所述的热塑性复合材料的一些实施方式,所述热塑性复合材料可以为条状、棒状或颗粒状。当然,本发明的热塑性复合材料也可以是其他形状,例如连续丝状。本发明中,条状、棒状或颗粒状热塑性复合材料可以由连续丝状热塑性复合材料裁切而成。
在一些实施方式中,所述热塑性复合材料为条状、棒状或颗粒状。条状、棒状或颗粒状热塑性复合材料的长度(纵向尺寸)可以为5-30mm,优选为5-25mm,更优选为6-15mm。
在另一些实施方式中,虽不是优选的,所述热塑性复合材料也可以具有相对较小的长度尺寸。例如,所述热塑性复合材料为颗粒状,颗粒状热塑性复合材料的粒径(长度)还可以为2-5mm,优选为3-4mm。
根据本发明所述的热塑性复合材料的一些实施方式,本发明对热塑性复合材料的横截面形状没有特殊要求。在一些实施方式中,颗粒状或棒状热塑性复合材料的横截面为圆形或类圆形。在另一些实施方式中,颗粒状或条状热塑性复合材料的横截面可以为长方形或正方形。
根据本发明所述的热塑性复合材料的一些实施方式,在所述内层材料中,所述第一热塑性树脂的量为1-90重量份,所述纤维束的量为10-110重量份。
在一些具体实施方式中,在所述内层材料中,所述第一热塑性树脂的量可以为1重量份、10重量份、20重量份、25重量份、30重量份、40重量份、45重量份、50重量份、55重量份、60重量份、70重量份、80重量份、90重量份或由其组成的范围;以及在一些具体实施方式中,所述纤维束的量可以为1重量份、10重量份、20重量份、25重量份、30重量份、40重量份、50重量份、60重量份、70重量份、80重量份、90重量份、100重量份、110重量份或由其组成的范围。
在一些优选实施方式中,在所述内层材料中,所述第一热塑性树脂的量可以为20-70重量份,优选为20-55重量份,更优选为24-45重量份;和/或所述纤维束的量可以为20-110重量份,更优选为25-110重量份。
根据本发明所述的热塑性复合材料的一些实施方式,在所述外层材料中,所述第二热塑性树脂的量为1-110重量份。
在一些具体实施方式中,在所述外层材料中,所述第二热塑性树脂的量可以为1重量份、10重量份、20重量份、30重量份、40重量份、45重量份、50重量份、60重量份、65重量份、70重量份、75重量份、80重量份、85重量份、90重量份、95重量份、100重量份、105重量份、110重量份或由其组成的范围。
在一些优选实施方式中,在所述外层材料中,所述第二热塑性树脂的量可以为10-99重量份,更优选为10-90重量份,优选为40-90重量份。
根据本发明所述的热塑性复合材料的一些具体实施方式,在所述内层材料中,所述第一热塑性树脂的量为1-90重量份,优选为20-70重量份,更优选为20-55重量份,进一步优选为24-45重量份;和/或所述纤维束的量为10-99重量份,优选为20-80重量份,更优选为25-50重量份。
根据本发明所述的热塑性复合材料的另一些具体实施方式,在所述内层材料中,所述第一热塑性树脂的量为50-70重量份,进一步优选为50-60重量份;和/或所述纤维束的量为90-110重量份,优选为100-110重量份;和/或在所述外层材料中,所述第二热塑性树脂的量为90-110重量份,进一步优选为95-105重量份。
根据本发明所述的热塑性复合材料的一些实施方式,所述内层材料中,所述纤维束与所述第一热塑性树脂的重量比为0.25-6:1。例如,所述内层材料中,所述纤维束与所述第一热 塑性树脂的重量比为0.25:1、0.3:1、0.35:1、0.4:1、0.45:1、0.5:1、0.55:1、0.6:1、0.65:1、0.7:1、0.8:1、0.9:1、1:1、1.2:1、1.5:1、1.7:1、1.8:1、1.9:1、2:1、2.5:1、3:1、3.5:1、4:1、4.5:1、5:1、6:1或由其组成的范围。
在一些优选实施方式中,所述内层材料中,所述纤维束与所述第一热塑性树脂的重量比可以为0.35-4.5:1,优选为0.43-4.5:1。
本发明中并限制第一助剂和第二助剂的用量,以能实现相关助剂的作用为目的。
在本发明的不同实施方式中,并不限定外层材料的层数,该外层材料可为一层或多层。当外层材料为多层时,多层外层材料可采用一种外层材料形成,也可由多种外层材料形成。
根据本发明所述的热塑性复合材料的一些实施方式,所述第一热塑性树脂和所述第二热塑性树脂相同或不同,各自独立地选自聚丙烯、聚乙烯、聚苯乙烯、聚氯乙烯、聚丙烯腈-丁二烯-苯乙烯共聚物、聚丙烯腈-苯乙烯共聚物、聚甲醛、聚酰胺、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚甲基丙烯酸甲酯、聚碳酸酯、聚苯醚、聚氨酯、聚醚醚酮和聚苯硫醚以及它们的合金聚合物中的至少一种。
根据本发明所述的热塑性复合材料的优选实施方式,所述第一热塑性树脂和所述第二热塑性树脂各自独立地选自聚丙烯、聚乙烯、聚酰胺(又称尼龙)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯硫醚、聚氨酯和聚醚醚酮(PEEK)中的至少一种。
根据本发明所述的热塑性复合材料的优选实施方式,所述第一热塑性树脂和所述第二热塑性树脂各自独立地选自均聚聚丙烯、共聚聚丙烯、均聚聚丙烯和共聚聚丙烯的混合物、尼龙6(PA6)、尼龙66(PA66)、尼龙6和尼龙66的混合物中的至少一种。
根据本发明所述的热塑性复合材料的其它实施方式,所述第一热塑性树脂和所述第二热塑性树脂还可以选自热塑性聚氨酯弹性体(TPU)和/或高温尼龙(PPA)。
根据本发明所述的热塑性复合材料的一些实施方式,所述第一热塑性树脂在230℃和负载为2.16kg的条件下的熔体流动速率为60-8000g/10min。例如,所述第一热塑性树脂在230℃和负载为2.16kg的条件下的熔体流动速率可以为60g/10min、100g/10min、200g/10min、450g/10min、500g/10min、1000g/10min、1500g/10min、2000g/10min、3000g/10min、4000g/10min、5000g/10min、6000g/10min、7000g/10min、7500g/10min、8000g/10min或由其组成的范围。
在一些优选实施方式中,所述第一热塑性树脂在230℃和负载为2.16kg的条件下的熔体流动速率可以为100-8000g/10min,优选为1000-7500g/10min,更优选为1900-7500g/10min。
根据本发明所述的热塑性复合材料的一些实施方式,所述第二热塑性树脂在230℃和负载为2.16kg的条件下的熔体流动速率为0.1-8000g/10min。例如,所述第二热塑性树脂在230℃和负载为2.16kg的条件下的熔体流动速率可以为0.1g/10min、1g/10min、1.5g/10min、3g/10min、10g/10min、20g/10min、30g/10min、40g/10min、45g/10min、50g/10min、55g/10min、 60g/10min、70g/10min、80g/10min、90g/10min、100g/10min、450g/10min、500g/10min、800g/10min、1000g/10min、1500g/10min、1900g/10min、2500g/10min、3000g/10min、4000g/10min、5000g/10min、6000g/10min、7000g/10min、8000g/10min或由其组成的范围。
在一些优选实施方式中,所述第二热塑性树脂在230℃和负载为2.16kg的条件下的熔体流动速率可以为3-55g/10min或450-8000g/10min,优选为3-45g/10min或1900-8000g/10min。
在本发明的不同实施方式中,并不特别所述第一热塑性树脂和所述第二热塑性树脂的熔体流动速率,可以根据所期望的性能来选择所述第一热塑性树脂和所述第二热塑性树脂的熔体流动速率。
特别地,本申请发明人发现,根据本发明的参数(例如,熔体流动速率)能够制备得到表面质量性能和综合性能都较高的热塑性复合材料。例如,所述第一热塑性树脂的熔体流动速率高于所述第二热塑性树脂的熔体流动速率,由此可以使得热塑性复合材料具有改进的力学性能;反之,所述第二热塑性树脂的熔体流动速率高于所述第一热塑性树脂的熔体流动速率,可以使得热塑性复合材料具有改进的光泽度。
根据本发明所述的热塑性复合材料的一些优选实施方式,所述第一热塑性树脂在230℃和负载为2.16kg的条件下的熔体流动速率为60-450g/10min,例如,60-200g/10min,所述第二热塑性树脂在230℃和负载为2.16kg的条件下的熔体流动速率为3-55g/10min或450-8000g/10min。在一些具体实施方式中,所述第一热塑性树脂在230℃和负载为2.16kg的条件下的熔体流动速率为60-450g/10min,所述第二热塑性树脂在230℃和负载为2.16kg的条件下的熔体流动速率为800-8000g/10min。
根据本发明所述的热塑性复合材料的另一些优选实施方式,所述第一热塑性树脂在230℃和负载为2.16kg的条件下的熔体流动速率在450g/10min以上,特别是大于450g/10min,所述第二热塑性树脂在230℃和负载为2.16kg的条件下的熔体流动速率小于100g/10min,优选为1.5-55g/10min,更优选为3-50g/10min。
根据本发明所述的热塑性复合材料的一些实施方式,所述第二热塑性树脂与所述第一热塑性树脂的重量比为0.05-12.5:1。例如,所述第二热塑性树脂与所述第一热塑性树脂的重量比可以为0.05:1、0.1:1、0.14:1、0.15:1、0.18:1、0.2:1、0.25:1、0.3:1、0.5:1、0.8:1、1:1、1.2:1、1.3:1、1.4:1、1.7:1、2:1、2.5:1、3:1、3.5:1、4:1、5:1、8:1、10:1、12.5:1或由其组成的范围。
在一些优选实施方式中,所述第二热塑性树脂与所述第一热塑性树脂的重量比可以为0.1-4:1,优选为0.14-3.5:1。
根据本发明所述的热塑性复合材料的优选实施方式,当所述第二热塑性树脂在230℃和负载为2.16kg的条件下的熔体流动速率为800-8000g/10min时,所述第二热塑性树脂与第一热塑性树脂的重量比小于0.25:1,优选小于0.18:1,更优选小于0.15:1。
根据本发明所述的热塑性复合材料的一些实施方式,当所述第一热塑性树脂和所述第二热塑性树脂选自尼龙6、尼龙66、尼龙6和尼龙66的混合物中的至少一种时,所选择的尼龙6和尼龙66的粘度为1.8-3.5。其中,本发明中尼龙的粘度为根据恩氏粘度测定法GB/T266-88测定的相对粘度。
根据本发明所述的热塑性复合材料的具体实施方式,所述第一热塑性树脂和所述第二热塑性树脂可以自制,也可以商购得到。
例如,可以采用购自中国石化扬子石化公司的、牌号为PPB-M100-GH的聚丙烯树脂,购自中石化华东分公司的、牌号为M60RHC的聚丙烯树脂,购自中国石化巴陵分公司的、牌号为PA6-BL3200H的尼龙6作为所述第一热塑性树脂。
例如,可以采用购自中国石化扬子石化公司的、牌号为PPB-M100-GH,购自中国石化茂名分公司的、牌号为PPH-T03的聚丙烯树脂,购自中国石化华东分公司的、牌号为M50RH的聚丙烯树脂、购自燕山石化公司的、牌号为K8303的聚丙烯树脂,购自湖南盛锦新材料有限公司的、牌号为PF1500的聚丙烯树脂,或购自中国石化石家庄炼化分公司的、牌号为PPH-Y450聚丙烯树脂,购自中国石化巴陵分公司的牌号为PA6-BL3200H的尼龙6作为所述第二热塑性树脂。
根据本发明所述的热塑性复合材料的一些实施方式,所述纤维束选自玻璃纤维、碳纤维、玄武岩纤维、芳香族聚酰胺纤维、不锈钢纤维、合成树脂纤维和矿物纤维中的至少一种。
根据本发明所述的热塑性复合材料的优选实施方式,所述玻璃纤维为连续玻璃纤维和/或定长玻璃纤维。
适合用于本发明的纤维束可以是购自欧文斯科宁(上海)玻璃纤维有限公司的、牌号为SE4805的无碱玻璃纤维,购自重庆国际复合材料股份有限公司的、牌号为ER4301H无碱玻璃纤维,购自日本东丽公司的、牌号为T700SC的碳纤维,购自牡丹江金石玄武岩纤维有限公司的玄武岩纤维。
根据本发明所述的热塑性复合材料的一些实施方式,在所述热塑性复合材料的横向截面上,从内向外依次为芯层和树脂层;所述纤维束沿所述热塑性复合材料的纵向取向。优选地,本发明中所述纤维束的长度与所述热塑性复合材料的长度(纵向尺寸)基本相同,由此,所述纤维束从所述芯层纵向上的一端连续延伸至纵向上相对端。
在一些优选实施方式中,所述纤维束可以经分散处理。这样的分散处理方法在本领域中是已知的,本发明对其没有特殊限定。
根据本发明所述的热塑性复合材料的一些实施方式,所述内层材料不含短纤维,特别是不含非取向的短纤维。
在一些具体实施方式中,所述内层材料由纤维束、第一热塑性树脂和第一助剂组成。
根据本发明所述的热塑性复合材料的一些实施方式,所述外层材料不含纤维。在一些优选实施方式中,所述外层材料由第二热塑性树脂组成或由第二热塑性树脂和第二助剂组成。
根据本发明所述的热塑性复合材料的另一些实施方式,所述外层材料含有纤维,例如短纤维。
在一些具体实施方案中,在所述外层材料中,所述纤维与所述第二热塑性树脂的重量比为1-50:100,优选为5-50:100,更优选为20-45:100。
根据本发明所述的热塑性复合材料的一些实施方式,分别以所述第一热塑性树脂和所述第二热塑性树脂质量为100重量份,所述第一助剂和第二助剂各自独立地包括0.5-15重量份的相容剂、0.05-3重量份的抗氧剂和0.05-2.5重量份的润滑剂中的至少一种。优选地,所述第一助剂和所述第二助剂各自独立地包括1-15重量份,优选地1-6重量份,更优选地3-6重量份的相容剂,0.1-1重量份,优选地0.1-0.5重量份的抗氧剂和0.5-2.5重量份的润滑剂中的至少一种。
根据本发明所述的热塑性复合材料的一些实施方式,所述相容剂选自极性单体接枝改性聚合物中的至少一种。优选地,所述极性单体选自马来酸酐、马来酸酐衍生物、丙烯酸和丙烯酸酯类衍生物中的至少一种。优选地,所述聚合物选自聚乙烯、聚丙烯、乙烯-α-烯烃共聚物和丙烯-α-烯烃(除丙烯之外的α-烯烃)共聚物中的至少一种。
根据本发明所述的热塑性复合材料的具体实施方式,可以采用购自普利朗塑料工业有限公司的、牌号为BONDYRAM 1001的马来酸酐接枝聚丙烯(PP-g-MAH),购自上海日之升科技有限公司牌号为CMG9805的马来酸酐接枝乙烯-辛烯共聚物(POE-g-MAH),购自南京曙光化工集团有限公司的、牌号为NDZ12的钛酸酯偶联剂,或购自南京优普化工有限公司的、牌号为XHY-501的铝酸酯偶联剂作为所述相容剂。
根据本发明所述的热塑性复合材料的一些实施方式,所述抗氧剂选自四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯(抗氧剂1010)、三[2,4-二叔丁基苯基]亚磷酸酯(抗氧剂168)、β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳醇酯(抗氧剂1076)、2,2'-亚甲基双(4-甲基-6-叔丁基苯酚)(抗氧剂2246)、1,1,3-三(2-甲基-4-羟基-5-叔丁基苯基)丁烷(抗氧剂CA)和双(2,4-二叔丁基苯酚)季戊四醇二亚磷酸酯(抗氧剂626)中的至少一种。
根据本发明所述的热塑性复合材料的具体实施方式,可以采用购自巴斯夫公司的抗氧剂1010和/或抗氧剂168作为所述抗氧剂。
根据本发明所述的热塑性复合材料的一些实施方式,所述润滑剂选自乙撑双硬脂酰胺、硬脂酸钙、聚乙烯蜡、季戊四醇硬脂酸酯、硅酮、聚乙二醇和含氟树脂中的至少一种。
根据本发明所述的热塑性复合材料的具体实施方式,可以采用购自祥和涂料集团的、牌号为XH-201的氧化聚乙烯蜡作为所述润滑剂。
在本发明的不同实施方式中,所述第一助剂还可以包括爽滑剂、抗静电剂和增塑剂中的至少一种,和/或所述第二助剂还可以包括爽滑剂、抗静电剂、增塑剂、成核剂、光稳定剂、膨胀阻燃剂、热稳定剂、色母、抗静电剂、电绝缘改性剂和填充剂中的至少一种,且并不限定该几种助剂的具体种类和用量,均可以具有较宽的选择范围。
根据本发明所述的热塑性复合材料的具体实施方式,所述膨胀阻燃剂可以为复配型阻燃剂,包括聚磷酸铵(APP)、季戊四醇(PER)、三聚氰胺氰尿酸盐(MCA)、任选的纳米硅橡胶和任选的有机蒙脱土(MMT)。
本发明中,所述聚磷酸铵的聚合度大于1000,P 2O 5含量大于71重量%,密度为1.9g/cm 3,平均粒径为15um。
本发明中,所述季戊四醇可以为市售通用的季戊四醇。
本发明中,所述三聚氰胺氰尿酸盐可以选用市售通用的三聚氰胺氰尿酸盐。
本发明中,所述纳米粉末硅橡胶可以为全硫化粉末硅橡胶VP-601。这样的全硫化粉末硅橡胶VP-601描述于中国专利ZL01801656.1,其内容以与本发明一致的程度通过引用并入本文中。
本发明中,所述有机蒙脱土的粒径为100-300nm。
根据本发明所述的热塑性复合材料的一些具体实施方式,所述膨胀阻燃剂中,聚磷酸铵(APP)、季戊四醇(PER)、三聚氰胺氰尿酸盐(MCA)、纳米粉末硅橡胶和有机蒙脱土的重量比为(3-8):(1-3):(1-5):(0-0.5):(0-0.5),优选为(3-4):(1-2):(1-3):(0.05-0.3):(0.05-0.3)。
使用时,以所述第二热塑性树脂质量为100重量份计,所述膨胀阻燃助剂的量为30-50重量份,优选为30-45重量份,更优选为32-38重量份。
根据本发明所述的热塑性复合材料的一些实施方式,分别以所述第一热塑性树脂和所述第二热塑性树脂质量为100重量份计,所述第一助剂和所述第二助剂各自独立地包括2-30重量份电绝缘改性剂,优选地各自独立包括5-25重量份电绝缘改性剂。
根据本发明所述的热塑性复合材料的一些实施方式,所述电绝缘改性剂可以为烷基和/或烷氧基接枝改性聚丙烯材料。该接枝改性聚丙烯材料包括衍生自共聚聚丙烯的结构单元和衍生自丙烯酸酯类单体以及任选的丙烯酸类单体的结构单元。以接枝改性聚丙烯材料的重量为基准,所述接枝改性聚丙烯材料中衍生自丙烯酸酯类单体以及任选的丙烯酸类单体且处于接枝态的结构单元的含量为0.3-7重量%,优选为0.8-5重量%。
所述接枝改性聚丙烯材料具有以下特征中的至少一种:在230℃,2.16kg载荷下的熔体流动速率为0.01-30g/10min,优选为0.05-20g/10min,进一步优选为0.1-10g/10min,更优选为0.2-8g/10min。
在一些具体实施方式中,所述丙烯酸酯类单体选自具有式I所示结构的单体中的至少一 种;
Figure PCTCN2021127770-appb-000001
式I中,R 1、R 2、R 3各自独立地选自H、C 1-C 6直链烷基、C 3-C 6支链烷基;R 4选自取代或未取代的以下基团:C 1-C 20直链烷基、C 3-C 20支链烷基、C 3-C 12环烷基、C 3-C 12环氧烷基、C 3-C 12环氧烷基,所述取代的基团选自卤素、氨基和羟基中的至少一种。
优选地,所述丙烯酸酯类单体选自(甲基)丙烯酸甲酯、(甲基)丙烯酸仲丁酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸异丁酯、(甲基)丙烯酸叔丁酯、(甲基)丙烯酸异辛酯、(甲基)丙烯酸十二烷基酯、(甲基)丙烯酸椰子油酸酯、(甲基)丙烯酸十八烷基酯、(甲基)丙烯酸二甲氨基乙酯、(甲基)丙烯酸二乙氨基乙酯、(甲基)丙烯酸二甲氨基丙酯和(甲基)丙烯酸缩水甘油酯中的至少一种。
所述的接枝改性聚丙烯材料中,所述丙烯酸类单体选自具有式II所示结构的单体中的至少一种;
Figure PCTCN2021127770-appb-000002
式II中,R 1、R 2、R 3各自独立地选自H、C 1-C 6直链烷基、C 3-C 6支链烷基。
优选地,所述丙烯酸类单体选自丙烯酸、甲基丙烯酸和2-乙基丙烯酸中的至少一种。
所述的接枝改性聚丙烯材料中,衍生自丙烯酸酯类单体的结构单元与衍生自丙烯酸类单体的结构单元的摩尔比为1:0-2,优选为1:0.125-1。
在具体实施方式,所述聚丙烯接枝杂环的改性材料为聚丙烯-g-甲基丙烯酸缩水甘油酯,230℃,2.16kg载荷下的熔体流动速率2-8g/10min,处于接枝态的结构单元的含量为1-8%。
根据本发明所述的热塑性复合材料的另一些实施方式,所述电绝缘改性剂为芳香烯烃接枝改性聚丙烯材料。该芳香烯烃接枝改性聚丙烯材料包括衍生自共聚聚丙烯的结构单元和衍生自苯乙烯类单体的结构单元;以芳香烯烃接枝改性聚丙烯材料的重量为基准,所述芳香烯烃接枝改性聚丙烯材料中衍生自苯乙烯类单体且处于接枝态的结构单元的含量为0.5-14重量%,优选为1-7.5重量%,更优选为1.5-5重量%。
所述芳香烯烃接枝改性聚丙烯材料在230℃,2.16kg载荷下的熔体流动速率为0.01-30g/10min,优选为0.05-20g/10min,进一步优选为0.1-10g/10min,更优选为0.2-8g/10min;
所述苯乙烯类单体选自具有式III所示结构的单体、具有式IV所示结构的单体和具有式V所示结构的单体中的至少一种;
Figure PCTCN2021127770-appb-000003
式III中,R 1、R 2、R 3各自独立地选自H、取代或未取代的C 1-C 6的烷基;R 4-R 8各自独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基。优选地,R 1、R 2、R 3各自独立地选自H、取代或未取代的C 1-C 3的烷基,R 4-R 8各自独立地选自H、卤素、羟基、氨基、取代或未取代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷氧基。
Figure PCTCN2021127770-appb-000004
式IV中,R 1、R 2、R 3各自独立地选自H、取代或未取代的C 1-C 6的烷基;R 4-R 10各自独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基。优选地,R 1、R 2、R 3各自独立地选自H、取代或未取代的C 1-C 3的烷基,R 4-R 10各自独立地选自H、卤素、羟基、氨基、取代或未取代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷氧基,所述取代的基团选自卤素、羟基、氨基、C 1-C 6的烷基、C 1-C 6的烷氧基。
Figure PCTCN2021127770-appb-000005
式V中,R 1’、R 2’、R 3’各自独立地选自H、取代或未取代的C 1-C 6的烷基;R 4’-R 10’各自独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基。优选地,R 1’、R 2’、R 3’各自独立地选自H、取代或未取代的C 1-C 3的烷基,R 4’-R 10’各自独立地选自H、卤素、羟基、氨基、取代或未取代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷氧基,所述取代的基团选自卤素、羟基、氨基、C 1-C 6的烷基、C 1-C 6的烷氧基;
优选地,所述苯乙烯类单体选自苯乙烯、α-甲基苯乙烯、1-乙烯基萘、2-乙烯基萘、单取代或多取代的苯乙烯,单取代或多取代的α-甲基苯乙烯、单取代或多取代的1-乙烯基萘和单取代或多取代的2-乙烯基萘中的至少一种;所述取代的基团优选选自卤素,羟基,氨基,磷酸基,磺酸基,C 1-C 8的直链烷基、C 3-C 8的支链烷基或环烷基、C 1-C 6的直链烷氧基,C 3-C 8的支链烷氧基或环状烷氧基、C 1-C 8的直链酯基、C 3-C 8的支链酯基或环状酯基、C 1-C 8的直链胺基以及C 3-C 8的支链胺基或环状胺基中的至少一种。
更优选地,所述苯乙烯类单体选自苯乙烯、α-甲基苯乙烯、2-甲基苯乙烯、3-甲基苯乙烯和4-甲基苯乙烯中的至少一种。
在一些具体实施方式,所述聚丙烯接枝杂环的改性材料为聚丙烯-g-苯乙烯,230℃,2.16kg载荷下的熔体流动速率2-8g/10min,处于接枝态的结构单元的含量为1-8%。
根据本发明所述的热塑性复合材料的又一些实施方式,所述电绝缘改性剂为硅烷改性的聚丙烯接枝物。该接枝物包括衍生自共聚聚丙烯的结构单元和衍生自含烯基的硅烷类单体的结构单元;以硅烷改性的聚丙烯接枝物的重量为基准,所述硅烷改性的聚丙烯接枝物中衍生自含烯基的硅烷类单体且处于接枝态的结构单元的含量为0.2-6重量%,优选为0.2-2.5重量%。
所述共聚聚丙烯具有以下特征:共聚单体含量为0.5-40mol%,优选为0.5-30mol%;二甲苯可溶物含量为2-80重量%;可溶物中共聚单体含量为10-70重量%;可溶物与聚丙烯的 特性粘数比为0.3-5。
所述的硅烷改性的聚丙烯接枝物,其中,所述硅烷改性的聚丙烯接枝物具有以下特征中的至少一种:在230℃,2.16kg载荷下的熔体流动速率为0.01-30g/10min,优选为0.05-20g/10min,进一步优选为0.1-10g/10min,更优选为0.2-8g/10min;
所述的硅烷改性的聚丙烯接枝物,其中,所述含烯基的硅烷类单体选自具有式VI所示结构的单体中的至少一种,
Figure PCTCN2021127770-appb-000006
其中,R 1为C 2-C 12的烯基,优选为单不饱和烯基;R 2、R 3、R 4各自独立地选自取代或未取代的C 1-C 12的直链烷基、取代或未取代的C 3-C 12的支链烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酰氧基;优选地,R 1为C 2-C 6的烯基,优选为单不饱和烯基;R 2、R 3、R 4各自独立地选自取代或未取代的C 1-C 6的直链烷基、取代或未取代的C 3-C 6的支链烷基、取代或未取代的C 1-C 6的烷氧基、取代或未取代的C 1-C 6的酰氧基;
更优选地,所述含烯基的硅烷类单体选自乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三异丙氧基硅烷、乙烯基三叔丁氧基硅烷、乙烯基三乙酰氧基硅烷、甲基乙烯基二甲氧基硅烷、乙基乙烯基二乙氧基硅烷、烯丙基三乙氧基硅烷、烯丙基三甲氧基硅烷、烯丙基三异丙氧基硅烷、乙烯基三(β-甲氧乙氧基)硅烷、烯丙基三(β-甲氧乙氧基)硅烷、烯丙基三叔丁氧基硅烷、烯丙基三乙酰氧基硅烷、甲基烯丙基二甲氧基硅烷和乙基烯丙基二乙氧基硅烷中的至少一种。
根据本发明所述的热塑性复合材料的一些实施方式,所述第一助剂和第二助剂各自独立地包括2-30重量份的电绝缘改性剂,优选的各自独立包括5-25份电绝缘改性剂。该电绝缘改性材料按照CN202011190993.5制备。
根据本发明所述的热塑性复合材料的一些实施方式,所述电绝缘改性剂为有酸酐基团的聚丙烯接枝物包括衍生自共聚聚丙烯的结构单元、衍生自马来酸酐单体的结构单元和衍生自含烯基聚合单体的结构单元;以含有酸酐基团的聚丙烯接枝物的重量为基准,所述含有酸酐基团的聚丙烯接枝物中衍生自马来酸酐单体和含烯基聚合单体且处于接枝态的结构单元的含量为0.1-5重量%,优选为0.4-3重量%;并且,所述含有酸酐基团的聚丙烯接枝物中衍生自马来酸酐单体的结构单元与衍生自含烯基聚合单体的结构单元的摩尔比为1:1-20,优选为1:1-10。
所述含有酸酐基团的聚丙烯接枝物具有以下特征中的至少一种:在230℃,2.16kg载荷下的熔体流动速率为0.01-30g/10min,优选为0.05-20g/10min,进一步优选为0.1-10g/10min,更优选为0.2-8g/10min;
所述的含有酸酐基团的聚丙烯接枝物,其中,所述共聚聚丙烯的共聚单体选自除丙烯外的C 2-C 8的α-烯烃中的至少一种;优选地,所述共聚聚丙烯的共聚单体选自乙烯、1-丁烯、1-戊烯、4-甲基-1-戊烯、1-己烯、1-庚烯和1-辛烯中的至少一种;进一步优选地,所述共聚聚丙烯的共聚单体为乙烯和/或1-丁烯;进一步优选地,所述共聚聚丙烯由丙烯和乙烯组成。
所述的含有酸酐基团的聚丙烯接枝物,其中,所述含烯基聚合单体选自具有式VII所示结构的单体中的至少一种,
Figure PCTCN2021127770-appb-000007
式VII中,R 1、R 2、R 3各自独立地选自H、取代或未取代的烷基;R 4选自取代或未取代的烷基、取代或未取代的烷氧基、取代或未取代的芳基、取代或未取代的酯基、取代或未取代的羧基、取代或未取代的环烷基或杂环基、氰基;
优选地,R 1、R 2、R 3各自独立地选自H、取代或未取代的C 1-C 6烷基,更优选地, R1、R 2、R 3各自独立地选自H、取代或未取代的C 1-C 3烷基;优选地,R 4选自取代或未取代的C 1-C 20烷基、取代或未取代的C 1-C 20烷氧基、取代或未取代的C 6-C 20芳基、取代或未取代的C 1-C 20酯基、取代或未取代的C 1-C 20羧基、取代或未取代的C 3-C 20环烷基或杂环基、氰基,所述取代的基团为卤素、羟基、氨基、C 1-C 6烷基、C 3-C 6环烷基;进一步优选地,R 4选自取代或未取代的C 1-C 12烷基、取代或未取代的C 1-C 18烷氧基、取代或未取代的C 6-C 12芳基、取代或未取代的C 1-C 12酯基、取代或未取代的C 1-C 12羧基、取代或未取代的C 3-C 12环烷基或杂环基、氰基,所述取代的基团为卤素、C 1-C 6烷基、C 3-C 6环烷基;更优选地,R 4选自取代或未取代的C 1-C 6烷基、取代或未取代的C 1-C 12烷氧基、取代或未取代的 C6-C 8芳基、取代或未取代的C 1-C 6酯基、取代或未取代的C 1-C 6羧基、取代或未取代的C 3-C 6环烷基或杂环基、氰基;优选地,所述杂环基选自咪唑基、吡唑基、咔唑基、吡咯烷酮基、吡啶基、哌啶基、己内酰胺基、吡嗪基、噻唑基、嘌呤基、吗啉基、噁唑啉基。
所述的含有酸酐基团的聚丙烯接枝物,其中,R 1、R 2、R 3各自独立地选自H、取代或未取代的C 1-C 6烷基;
R 4选自式VIII所示基团、式IX所示基团、式X所示基团、式XI所示基团、式XI所示基团和式XII所示基团的组合、杂环基团;
Figure PCTCN2021127770-appb-000008
式VIII中,R 4-R 8各自独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基;优选地,R 4-R 8各自独立地选自H、卤素、羟基、氨基、取代或未取代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷氧基;
Figure PCTCN2021127770-appb-000009
式IX中,R 4-R 10各自独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基;优选地,R 4-R 10各自独立地选自H、卤素、羟基、氨基、取代或未取代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷氧基,所述取代的基团选自卤素、羟基、氨基、C 1-C 6的烷基、C 1-C 6的烷氧基;
Figure PCTCN2021127770-appb-000010
式X中,R 4’-R 10’各自独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基;优选地,R 4’-R 10’各自独立地选自H、卤素、羟基、氨基、取代或未取 代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷氧基,所述取代的基团选自卤素、羟基、氨基、C 1-C 6的烷基、C 1-C 6的烷氧基;
Figure PCTCN2021127770-appb-000011
式XI中,Rm选自取代或未取代的以下基团:C 1-C 20直链烷基、C 3-C 20支链烷基、C 3-C 12环烷基、C 3-C 12环氧烷基、C 3-C 12环氧烷基,所述取代的基团选自卤素、氨基和羟基中的至少一种。
所述的含有酸酐基团的聚丙烯接枝物,其中,所述含烯基聚合单体选自乙酸乙烯酯、苯乙烯、α-甲基苯乙烯、(甲基)丙烯酸酯、乙烯基烷基醚、乙烯基吡咯烷酮、乙烯基吡啶、乙烯基咪唑和丙烯腈中的至少一种;所述(甲基)丙烯酸酯优选为(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯和(甲基)丙烯酸缩水甘油酯中的至少一种;优选地,所述含烯基聚合单体选自乙酸乙烯酯、苯乙烯、α-甲基苯乙烯;进一步优选地,所述含烯基聚合单体为苯乙烯。
所述的含有酸酐基团的聚丙烯接枝物,其中,所述含有酸酐基团的聚丙烯接枝物中衍生自酸酐单体的结构单元与衍生自含烯基聚合单体的结构单元的摩尔比为1:1-20,优选为1:1-10。
所述的含有酸酐基团的聚丙烯接枝物,其中,所述酸酐选自具有至少一个烯烃不饱和度的酸酐;优选地,所述酸酐选自马来酸酐和/或衣康酸酐;进一步优选地,所述酸酐为马来酸酐。
根据本发明所述的热塑性复合材料的具体实施方式,所述聚丙烯接枝杂环的改性材料为聚丙烯-g-苯乙烯/马来酸酐,230℃,2.16kg载荷下的熔体流动速率2-8g/10min,处于接枝态的结构单元的含量为1-8%。
根据本发明所述的热塑性复合材料的又一些实施方式,所述电绝缘改性剂为聚丙烯接枝杂环的改性材料。该聚丙烯接枝杂环的改性材料包括衍生自共聚聚丙烯的结构单元和衍生自含烯基的杂环类单体的结构单元;以聚丙烯接枝杂环的改性材料的重量为基准,所述聚丙烯接枝杂环的改性材料中衍生自含烯基的杂环类单体且处于接枝态的结构单元的含量为0.5-6重量%,优选为0.5-4重量%;所述共聚聚丙烯具有以下特征:共聚单体含量为0.5-40mol%,优选为0.5-30mol%,更优选为4-25mol%;二甲苯可溶物含量为2-80重量%;可溶物中共聚单体含量为10-70重量%;可溶物与聚丙烯的特性粘数比为0.3-5。
所述聚丙烯接枝杂环的改性材料在230℃,2.16kg载荷下的熔体流动速率为0.01-30g/10min,优选为0.05-20g/10min,进一步优选为0.1-10g/10min,更优选为0.2-8g/10min;
所述含烯基的杂环类单体可以是任何能够通过自由基进行聚合的含烯基的杂环类化合物,可选自含烯基取代基的咪唑、含烯基取代基的吡唑、含烯基取代基的咔唑、含烯基取代 基的吡咯烷酮、含烯基取代基的吡啶或吡啶盐、含烯基取代基的哌啶、含烯基取代基的己内酰胺、含烯基取代基的吡嗪、含烯基取代基的噻唑、含烯基取代基的嘌呤、含烯基取代基的吗啉和含烯基取代基的噁唑啉中的至少一种。优选地,所述含烯基的杂环类单体为含单烯基的杂环类单体。
具体地,所述含烯基的杂环类单体可选自:1-乙烯基咪唑、2-甲基-1-乙烯基咪唑、N-烯丙基咪唑、1-乙烯基吡唑、3-甲基-1-乙烯基吡唑、乙烯基咔唑、N-乙烯基吡咯烷酮、2-乙烯基吡啶、3-乙烯基吡啶、4-乙烯基吡啶、2-甲基-5-乙烯基吡啶、乙烯基吡啶N氧化物、乙烯基吡啶盐、乙烯基哌啶、N-乙烯基己内酰胺、2-乙烯基吡嗪、N-乙烯基哌嗪、4-甲基-5-乙烯基噻唑、N-乙烯基嘌呤、乙烯基吗啉和乙烯基噁唑啉中的至少一种。
本发明第二方面提供了一种热塑性复合材料的制备方法,所述方法包括以下步骤:
步骤A、第一热塑性树脂和第一助剂混合后熔融,得到第一组分熔体;
步骤B、将连续纤维束与所述第一组分熔体进行第一浸渍处理,形成丝状芯层制品;
步骤C、第二热塑性树脂和任选的第二助剂混合后熔融,得到第二组分熔体;
步骤D、将所述丝状芯层制品与所述第二组分熔体进行第二浸渍处理,形成连续包裹芯层的树脂层。
根据本发明所述的制备方法的一些实施方式,所述制备方法可以在线连续进行,得到连续丝状制品,这样的连续丝状制品可以直接储存、使用,也可以切割成具有一定长度的条状、棒状或颗粒状制品。
根据本发明所述的制备方法的一些实施方式,步骤A的混合条件包括:温度为40-60℃,时间为0.5-20min,优选为1-10min,更优选为3-5min。
根据本发明所述的制备方法的一些实施方式,步骤A中的熔融温度为200-380℃。在本发明中,熔融时间可以具有较宽的选择范围,以能使得第一热塑性树脂和第一助剂充分熔融得到熔体为目的。
根据本发明所述的制备方法的一些实施方式,优选地,步骤B中,将连续纤维与第一组分熔体进行第一浸渍处理之前还包括对连续纤维进行分散处理和预热处理,预热处理温度优选为80-250℃。本发明中的分散处理过程采用本领域常规的纤维分散处理工艺。
根据本发明所述的制备方法的一些实施方式,步骤C的混合条件包括:温度为40-60℃,时间为0.5-20min,优选为1-10min,更优选为3-5min。
根据本发明所述的制备方法的一些实施方式,步骤C中的熔融温度为200-380℃。在本发明中,熔融时间可以具有较宽的选择范围,以使得第二热塑性树脂和任选的第二助剂充分熔融为目的。
根据本发明所述的制备方法的一些实施方式,步骤B中所述第一浸渍处理可在第一浸渍模具中进行,所述第一浸渍模具为可调节浸渍模具,所述第一浸渍模具包括纤维入口、纤维出口和熔体流道,所述第一浸渍模具的模腔内设置有至少一个第一导丝辊;所述第一导丝辊能够在所述纤维入口和纤维出口之间移动;和/或,所述第一导丝辊能够沿垂直于所述纤维入口和纤维出口的连线的方向移动。
根据本发明所述的制备方法的一些实施方式,步骤B中所述第一浸渍处理可在第二浸渍模具中进行,所述第二浸渍模具为组合式浸渍模具,所述第二浸渍模具包括依次连接的第一模块、中间模块和第二模块,所述第一模块上设置有纤维入口和第一模块流道,所述第二模块上设置有纤维出口和第二模块流道,所述中间模块中设置有中间模块流道;所述第一模块、中间模块和第二模块依次连接后,所述第一模块流道、所述中间模块流道和第二模块流道相连通以形成用于使纤维经过的组合流道。
根据本发明所述的制备方法的一些实施方式,步骤B中所述第一浸渍处理还可以在第三浸渍模具中进行,所述第三浸渍模具为强紊流浸渍模具,所述第三浸渍模具包括纤维入口通道、浸渍出口和熔体夹缝流道,所述纤维入口通道、浸渍出口和熔体夹缝流道均与所述第三浸渍模具内部的模腔相连通;其中,所述第三浸渍模具的模腔内设置有第二导丝辊,所述第二导丝辊包括至少一个主动导丝辊,所述主动导丝辊由驱动装置驱动转动。
本发明中使用的第一浸渍模具、第二浸渍模具和第三浸渍模具描述于中国专利申请CN 202011193483.3、202011191450.5和202011199839.4中,与本发明一致的程度上通过引用其全部内容在通过引用并入本文中。
需要说明的是,本发明上述的第一浸渍模具、第二浸渍模具和第三浸渍模具能够应用于任何现有的热塑性复合材料的制造系统和制备技术中,尤其是能够应用于任何现有的连续纤维增强热塑性复合材料的制造系统和制备技术中。
根据本发明所述的制备方法的一些实施方式,步骤D中的第二浸渍处理可以在成型模具中进行。所述成型模具由芯部、外套、外套口模板组成。所述芯部位于外套内部,与外套形成型腔,树脂熔体可以从外套底部或顶部或两个侧面进入型腔。所述芯部在外套中可以前后移动,通过调整形成的型腔空间大小决定型腔中熔体的压力。也可通过芯部与外套间的夹角大小来调整型腔中熔体的压力。
该成型模具的工作原理为:经过浸渍模具后形成内层浸渍材料的料条,从芯部中间的孔中导向穿过,然后,在芯部与外套形成的充满混合熔体的型腔中实现内外层材料复合结构的成型,最后通过外套口模板导出。
根据本发明所述的制备方法的一些实施方式,在步骤D之后还包括,对得到的热塑性复合材料进行牵出、拉条、冷却、干燥、切粒处理。其中,牵出、拉条、冷却、干燥、切粒处 理的工艺条件不做特别限定,均在较宽的选择范围内,以能得到满足不同规格需求的热塑性复合材料为目的。
根据本发明所述的制备方法的一些实施方式,在所述内层材料中,所述第一热塑性树脂的量为1-90重量份,所述纤维束的量为10-110重量份。
在一些具体实施方式中,在所述内层材料中,所述第一热塑性树脂的量可以为1重量份、10重量份、20重量份、25重量份、30重量份、40重量份、45重量份、50重量份、55重量份、60重量份、70重量份、80重量份、90重量份或由其组成的范围;以及在一些具体实施方式中,所述纤维束的量可以为1重量份、10重量份、20重量份、25重量份、30重量份、40重量份、50重量份、60重量份、70重量份、80重量份、90重量份、100重量份、110重量份或由其组成的范围。
在一些优选实施方式中,在所述内层材料中,所述第一热塑性树脂的量可以20-70重量份,优选为20-55重量份,更优选为24-45重量份;和/或所述纤维束的量可以为20-110重量份,优选为25-110重量份。
根据本发明所述的制备方法的一些实施方式,在所述外层材料中,所述第二热塑性树脂的用量为1-110重量份。
在一些具体实施方式中,在所述外层材料中,所述第二热塑性树脂的量可以为1重量份、10重量份、20重量份、30重量份、40重量份、45重量份、50重量份、60重量份、65重量份、70重量份、75重量份、80重量份、85重量份、90重量份、95重量份、100重量份、105重量份、110重量份或由其组成的范围。
在一些优选实施方式中,在所述外层材料中,所述第二热塑性树脂的量可以为10-90重量份,优选为40-90重量份。
根据本发明所述的制备方法的一些具体实施方式,在内层材料中,第一热塑性树脂的量为1-90重量份,优选为20-70重量份,更优选为20-55重量份,进一步优选为24-45重量份;和/或所述纤维束的量为10-99重量份,优选为20-80重量份,更优选为25-50重量份。
根据本发明所述的制备方法的另一些具体实施方式,在所述内层材料中,所述第一热塑性树脂的量为50-70重量份,进一步优选为50-60重量份;和/或所述纤维束的量为90-110重量份,优选为100-110重量份;和/或在所述外层材料中,所述第二热塑性树脂的量为90-110重量份,进一步优选为95-105重量份。
根据本发明所述的制备方法的一些实施方式,所述内层材料中,所述纤维与所述第一热塑性树脂的重量比为0.25-6:1。例如,所述内层材料中,所述纤维束与所述第一热塑性树脂的重量比为0.25:1、0.3:1、0.35:1、0.4:1、0.45:1、0.5:1、0.55:1、0.6:1、0.65:1、0.7:1、0.8:1、0.9:1、1:1、1.2:1、1.5:1、1.7:1、1.8:1、1.9:1、2:1、2.5:1、3:1、3.5:1、4:1、4.5:1、5:1、6:1 或由其组成的范围。
在一些优选实施方式中,所述内层材料中,所述纤维束与所述第一热塑性树脂的重量比可以为0.35-4.5:1,优选为0.43-4.5:1。
在本发明的不同实施方式中,并不限定外层材料的层数,该外层材料可为一层或多层。当外层材料为多层时,多层外层材料可采用一种外层材料形成,也可由多种外层材料形成。
根据本发明所述的制备方法的一些实施方式,所述第一热塑性树脂和所述第二热塑性树脂相同或不同,各自独立地选自聚丙烯、聚乙烯、聚苯乙烯、聚氯乙烯、聚丙烯腈-丁二烯-苯乙烯共聚物、聚丙烯腈-苯乙烯共聚物、聚甲醛、聚酰胺、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚甲基丙烯酸甲酯、聚碳酸酯、聚苯醚、聚氨酯、聚醚醚酮和聚苯硫醚以及它们的合金聚合物中的至少一种。
根据本发明所述的制备方法的优选实施方式,所述第一热塑性树脂和第二热塑性树脂各自独立地选自聚丙烯、聚乙烯、聚酰胺(又称尼龙)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯硫醚、聚氨酯和聚醚醚酮(PEEK)中的至少一种。
根据本发明所述的制备方法的优选实施方式,所述第一热塑性树脂和第二热塑性树脂各自独立地选自均聚聚丙烯、共聚聚丙烯、均聚聚丙烯和共聚聚丙烯的混合物、尼龙6(PA6)、尼龙66(PA66)、尼龙6和尼龙66的混合物中的至少一种。
根据本发明所述的制备方法的其它实施方式,所述第一热塑性树脂和第二热塑性树脂还可以选自热塑性聚氨酯弹性体(TPU)和/或高温尼龙(PPA)。
根据本发明所述的制备方法的一些实施方式,所述第一热塑性树脂在230℃和负载为2.16kg的条件下的熔体流动速率为60-8000g/10min。例如,所述第一热塑性树脂在230℃和负载为2.16kg的条件下的熔体流动速率可以为60g/10min、100g/10min、200g/10min、450g/10min、500g/10min、1000g/10min、1500g/10min、2000g/10min、3000g/10min、4000g/10min、5000g/10min、6000g/10min、7000g/10min、7500g/10min、8000g/10min或由其组成的范围。
在一些优选实施方式中,所述第一热塑性树脂在230℃和负载为2.16kg的条件下的熔体流动速率可以为100-8000g/10min,优选为1000-7500g/10min,更优选为1900-7500g/10min。
根据本发明所述的制备方法的一些实施方式,所述第二热塑性树脂在230℃和负载为2.16kg的条件下的熔体流动速率为0.1-8000g/10min。例如,所述第二热塑性树脂在230℃和负载为2.16kg的条件下的熔体流动速率可以为0.1g/10min、1g/10min、1.5g/10min、3g/10min、10g/10min、20g/10min、30g/10min、40g/10min、45g/10min、50g/10min、55g/10min、60g/10min、70g/10min、80g/10min、90g/10min、100g/10min、450g/10min、500g/10min、800g/10min、1000g/10min、1500g/10min、1900g/10min、2500g/10min、3000g/10min、4000g/10min、5000g/10min、6000g/10min、7000g/10min、8000g/10min或由其组成的范围。
在一些优选实施方式中,所述第二热塑性树脂在230℃和负载为2.16kg的条件下的熔体流动速率可以为3-55g/10min或450-8000g/10min,优选为3-45g/10min或1900-8000g/10min。
在本发明的不同实施方式中,并不特别限定所述第一热塑性树脂和所述第二热塑性树脂的熔体流动速率,可以根据所期望的性能来选择所述第一热塑性树脂和所述第二热塑性树脂的熔体流动速率。特别地,本申请发明人发现,根据本发明的制备条件(例如,熔体流动速率)能够制备得到表面质量性能和综合性能都较高的热塑性复合材料。例如,所述第一热塑性树脂的熔体流动速率高于所述第二热塑性树脂的熔体流动速率,由此可以使得热塑性复合材料具有改进的力学性能;反之,所述第二热塑性树脂的熔体流动速率高于所述第一热塑性树脂的熔体流动速率,可以使得热塑性复合材料具有改进的光泽度。
根据本发明所述的制备方法的一些优选实施方式,所述第一热塑性树脂在230℃和负载为2.16kg的条件下的熔体流动速率为60-450g/10min,例如,60-200g/10min,所述第二热塑性树脂在230℃和负载为2.16kg的条件下的熔体流动速率为3-55g/10min或450-8000g/10min。在一些具体实施方式中,所述第一热塑性树脂在230℃和负载为2.16kg的条件下的熔体流动速率为60-450g/10min,所述第二热塑性树脂在230℃和负载为2.16kg的条件下的熔体流动速率为800-8000g/10min。
根据本发明所述的制备方法的另一些优选实施方式,所述第一热塑性树脂在230℃和负载为2.16kg的条件下的熔体流动速率在450g/10min以上,特别是大于450g/10min,所述第二热塑性树脂在230℃和负载为2.16kg的条件下的熔体流动速率小于100g/10min,优选为1.5-55g/10min,更优选为3-50g/10min。
根据本发明所述的制备方法的一些实施方式,所述第二热塑性树脂与所述第一热塑性树脂的重量比为0.05-12.5:1。例如,所述第二热塑性树脂与所述第一热塑性树脂的重量比可以为0.05:1、0.1:1、0.14:1、0.15:1、0.18:1、0.2:1、0.25:1、0.3:1、0.5:1、0.8:1、1:1、1.2:1、1.3:1、1.4:1、1.7:1、2:1、2.5:1、3:1、3.5:1、4:1、5:1、8:1、10:1、12.5:1或由其组成的范围。
在一些优选实施方式中,所述第二热塑性树脂与所述第一热塑性树脂的重量比可以为0.14-4:1,优选为0.14-3.5:1。
根据本发明所述的制备方法的优选实施方式,当所述第二热塑性树脂在230℃和负载为2.16kg的条件下的熔体流动速率为800-8000g/10min时,所述第二热塑性树脂与第一热塑性树脂的重量比小于0.25:1,优选小于0.18:1,更优选小于0.15:1。
根据本发明所述的制备方法的一些实施方式,当所述第一热塑性树脂和所述第二热塑性树脂选自尼龙6、尼龙66、尼龙6和尼龙66的混合物中的至少一种时,所选择的尼龙6和尼龙66的粘度为1.8-3.5。
根据本发明所述的制备方法的具体实施方式,所述第一热塑性树脂和所述第二热塑性树 脂可以自制,也可以商购得到。
例如,可以采用购自中国石化扬子石化公司的、牌号为PPB-M100-GH的聚丙烯树脂,购自中石化华东分公司的、牌号为M60RHC的聚丙烯树脂,购自中国石化巴陵分公司的、牌号为PA6-BL3200H的尼龙6作为所述第一热塑性树脂。
例如,可以采用购自中国石化扬子石化公司的、牌号为PPB-M100-GH,购自中国石化茂名分公司的、牌号为PPH-T03的聚丙烯树脂,购自中国石化华东分公司的、牌号为M50RH的聚丙烯树脂、购自燕山石化公司的、牌号为K8303的聚丙烯树脂,购自湖南盛锦新材料有限公司的、牌号为PF1500的聚丙烯树脂,或购自中国石化石家庄炼化分公司的、牌号为PPH-Y450聚丙烯树脂,购自中国石化巴陵分公司的牌号为PA6-BL3200H的尼龙6作为所述第二热塑性树脂。
根据本发明所述的制备方法的一些实施方式,所述纤维束选自玻璃纤维、碳纤维、玄武岩纤维、芳香族聚酰胺纤维、不锈钢纤维、合成树脂纤维和矿物纤维中的至少一种。
根据本发明所述的制备方法的优选实施方式,所述玻璃纤维为连续玻璃纤维和/或定长玻璃纤维。
根据本发明所述的制备方法的一些实施方式,分别以所述第一热塑性树脂和所述第二热塑性树脂质量为100重量份,所述第一助剂和第二助剂各自独立地包括0.5-15重量份的相容剂、0.05-3重量份的抗氧剂和0.05-2.5重量份的润滑剂中的至少一种。优选地,所述第一助剂和第二助剂各自独立地包括1-15重量份,优选地1-6重量份,更优选地3-6重量份的相容剂,0.1-1重量份,优选地0.1-0.5重量份的抗氧剂和0.5-2.5重量份的润滑剂中的至少一种。
根据本发明所述的制备方法的一些实施方式,所述相容剂选自极性单体接枝改性聚合物中的至少一种。优选地,所述极性单体选自马来酸酐、马来酸酐衍生物、丙烯酸和丙烯酸酯类衍生物中的至少一种。
优选地,所述聚合物选自聚乙烯、聚丙烯、乙烯-α-烯烃共聚物和丙烯-α-烯烃(除丙烯之外的α-烯烃)中的至少一种。
根据本发明所述的制备方法的一些实施方式,所述润滑剂选自乙撑双硬脂酰胺、硬脂酸钙、聚乙烯蜡、季戊四醇硬脂酸酯、硅酮、聚乙二醇和含氟树脂中的至少一种。
在本发明的不同实施方式中,所述第一助剂还可以包括爽滑剂、抗静电剂和增塑剂中的至少一种,所述第二助剂还可以包括爽滑剂、抗静电剂、增塑剂、成核剂、光稳定剂、膨胀阻燃剂、热稳定剂、色母、抗静电剂和填充剂中的至少一种,且并不限定该几种助剂的具体种类和用量,用量可以在一个较宽的范围内进行选择。
在本发明的一些实施方式中,本发明的制备方法在如图2或图3所示的热塑性复合材料制造系统中进行,该热塑性复合材料制造系统的具体结构和连接方式在具体实施方式部分进 行描述。
本发明第三方面提供了一种上述的热塑性复合材料、上述的制备方法制得的热塑性复合材料在汽车工业、机械制造、电子电器、化工环保、航天通讯和建筑行业领域中的应用,优选为在大型汽车零部件和/或高精密电子电器元件中的应用,更优选为在汽车前端模块和/或全塑尾门内板中的应用。但并不限于此。
本发明的有益效果:
1、本发明制备的热塑性复合材料具有芯层和外层复合结构,基于该多种材料的复合体系设计能够使得内层材料和外层材料之间实现不同组分间的性能协同效果,能够有效改善热塑性复合材料的加工性能和注塑成型时纤维与树脂基体之间的润滑性,并提升纤维在树脂基体熔体中的流动性,进而改善二者之间的粘结状态,减少二者之间的分离状态,并提升整个材料体系的流动性,使得所制备得到的热塑性复合材料的综合性能和表面质量都得到了很大的提高,同时降低了注塑成型工艺的要求,扩展了热塑性复合材料的应用范围,具有广阔的应用前景和经济意义。
2、本发明的热塑性复合材料具有成本低、注塑成型周期短、制件尺寸稳定性高、材料强度高、使用时无需二次混合,并且可以向第一组分和/或第二组分中,特别是第二组分(树脂层)中添加功能性材料,适用性广。进一步地,本发明的热塑性复合材料材料的外层材料可以不含纤维,表面质量性能好的优势,表面没有浮纤,具有提高的光泽度。
附图说明
附图说明是用来对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用来解释本发明,但不构成对本发明的限制。在附图中:
图1为本发明一种实施方式的热塑性复合材料结构示意图;
图2为本发明一种实施方式中热塑性复合材料制造系统结构示意图;
图3为本发明另一种实施方式中热塑性复合材料制造系统结构示意图;
图4为本发明一种实施方式中第一浸渍模具的截面剖视图;
图5为本发明一种实施方式中第二浸渍模具的截面剖视图;
图6为本发明一种实施方式中第三浸渍模具的截面剖视图;
图7为本发明一种实施方式中第二浸渍处理的示意图;
图8为本发明一种实施方式的第二浸渍处理中采用的成型模具的截面剖视图。
附图标记说明:
0-1、芯层;0-2、纤维束;0-3、树脂层;
1、纤维架及导纤装置;2、纤维预处理装置;3、第一浸渍模具;4、熔融塑化供料装置;5、成型模具;6、冷却水槽;7、干燥机;8、牵引机;9、切粒机;10、收集箱;
A300、第一浸渍模具模头;A1、纤维入口;A2、第二滑槽;A3、熔体流道;A4、第一滑槽;A5、上模盖;A6、纤维出口;A7、浸渍模体;A8、第一导丝辊;
B300、第二浸渍模具模头;B1、纤维入口;B2、熔体流道;B3、第一模块;B31、第一模块流道;B4、组合流道;B5、标准化接头;B6、中间模块;B61、中间模块流道;B7、第二模块;B71、第二模块流道;B8、纤维出口;
C300、第三浸渍模具模头;C1、熔体夹缝流道;C2、浸渍模外体;C3、纤维入口通道;C4、主动导丝辊;C5、从动导丝辊;C6、浸渍出口;
4-1、挤出机I;4-2、挤出机Ⅱ;
5-1、芯部;5-2、外套;5-3、外套口模板;5-4、料条;5-5、第二树脂入口。
具体实施方式
为使本发明更加容易理解,下面将结合实施例来详细说明本发明,这些实施例仅起说明性作用,并不局限于本发明的应用范围。
本发明的测试方法以及测试中所用设备如下:
(1)拉伸强度测试按照ISO527-2标准进行检测,拉伸速度为5mm/min。
(2)弯曲强度测试按照ISO178标准进行检测,弯曲速度为2mm/min。
(3)缺口冲击强度测试按照ISO179标准进行检测。
(4)表面光泽度测试按照ISO2813标准进行检测。
(5)体积电阻率:按照GB/T 1410-2006中规定的方法进行测定。
本发明所用到的部分试剂来源为:
(1)PPB-M100-GH,熔体流动速率为100g/10min,测试条件为230℃,2.16Kg负载,由中国石化扬子石化公司生产。
(2)PF1500,熔体流动速率1500g/10min,测试条件为230℃,2.16Kg负载,由湖南盛锦新材料有限公司生产。
(3)PPH-Y450,熔体流动速率450g/10min,测试条件为230℃,2.16Kg负载,中国石化石家庄炼化分公司的生产。
(4)BL3200H,粘度1.8,由中国石化巴陵分公司生产。
(5)SE4805,无碱玻璃纤维,直径为17μm,线密度2400tex,由欧文斯科宁(上海)玻璃 纤维有限公司生产。
(6)ER4301H,无碱玻璃纤维,直径为17μm,线密度2400tex,由重庆国际复合材料股份有限公司生产。
(7)T700SC,碳纤维,丝束1200-50C,由日本东丽公司生产。
(8)玄武岩纤维,单纤维直径12μm,牡丹江金石玄武岩纤维有限公司生产。
(9)PP-g-MAH牌号为BONDYRAM 1001,普利朗塑料工业有限公司生产。
(10)POE-g-MAH牌号为CMG9805,由上海日之升科技有限公司生产。
(11)NDZ12,由南京曙光化工集团有限公司生产。
(12)XHY-501,由南京优普化工有限公司生产。
(13)抗氧剂1010,由巴斯夫公司生产。
(14)抗氧剂168,由巴斯夫公司生产。
(15)XH-201,由祥和涂料集团生产。
(16)聚丙烯-g-甲基丙烯酸缩水甘油酯,230℃,2.16kg载荷下的熔体流动速率5.47g/10min,处于接枝态的结构单元的含量为4.05%,接枝效率85%。
(17)聚丙烯-g-苯乙烯,230℃,2.16kg载荷下的熔体流动速率6.37g/10min,处于接枝态的结构单元的含量为4.74%,接枝效率52%。
(18)聚丙烯-g-乙烯基三乙氧基硅烷,230℃,2.16kg载荷下的熔体流动速率1.15g/10min,处于接枝态的硅烷类单体结构单元的含量1.03%。
(19)聚丙烯-g-苯乙烯/马来酸酐,北京化工研究院自制;230℃,2.16kg载荷下的熔体流动速率5.84g/10min,衍生自马来酸酐单体和含烯基聚合单体且处于接枝态的结构单元的含量0.84%,接枝效率23%。
(20)聚丙烯-g-乙烯基咪唑,230℃,2.16kg载荷下的熔体流动速率7.98g/10min,处于接枝态的结构单元的乙烯基咪唑含量为3.45%,单体接枝效率46%。
下面结合附图对本发明作进一步说明。
图1显示了本发明的热塑性复合材料的结构。如图1所示,本发明的热塑性复合材料的横截面呈圆形,由内而外依次包括芯层0-1和树脂层0-3,芯层0-1内分布有沿纵向取向的纤维束0-2,并且纤维束0-2在芯层0-1中均匀分散。
如图2和图3所示,本发明的制造系统包括依次连接的纤维架及导纤装置1、纤维预处理装置2、第一浸渍模具3、熔融塑化供料装置4、成型模具5、冷却水槽6、干燥机7、牵引 机8、切粒机9、收集箱10以及电控系统(图中未示出)。
制造系统中,成型模具5用于内外层复合结构复合材料的成型,其结构如图8所示。
制造系统中,第一浸渍模具3用于纤维与树脂熔体的浸润。
如图4所示,在其中一种实施方式中,第一浸渍模具为可调节导丝辊位置的浸渍装置,包括第一浸渍模具模头A300,第一浸渍模具模头A300包括浸渍模体A7、纤维入口A1、纤维出口A6以及熔体流道A3。模腔内至少设置有一个第一导丝辊A8,其中,第一导丝辊A8能够在纤维入口A1和纤维出口A6之间移动,或者,第一导丝辊A8能够沿垂直于纤维入口A1和纤维出口A6的连线的方向移动;更或者,第一导丝辊A8既可在纤维入口A1和纤维出口A6之间移动又可沿垂直于纤维入口A1和纤维出口A6的连线的方向移动。
以矩形的第一浸渍模具模头A300为例,第一浸渍模具模头A300中设置有多个第一导丝辊A8,每个第一导丝辊A8的轴向方向为第一浸渍模具模头A300的宽度方向,因此每个第一导丝辊A8都可沿第一浸渍模具模头A300的长度方向移动,也可沿高度方向移动,从而改变第一导丝辊A8在第一浸渍模具模头A300内的位置。
可以理解地,第一导丝辊A8的轴向方向还可以是第一浸渍模具模头A300的长度方向,此时每个第一导丝辊A8都可沿第一浸渍模具模头A300的宽度方向移动,也可沿第一浸渍模具模头A300的高度方向移动,从而改变第一导丝辊A8在第一浸渍模具模头A300内的位置。
由于纤维(纤维束)在第一浸渍模具模头A300内的模腔内的行走时,其需要依次绕过模腔内的第一导丝辊A8,因此通过改变第一导丝辊A8在第一浸渍模具模头A300内的位置(水平位置、纵向位置等),能够使纤维在模腔内的行走路径改变,从而当纤维所需浸渍条件改变时,无需要更换新的模具而仅需调整第一导丝辊A8在第一浸渍模具模头A300内的位置即可,由此提高了生产效率以及生产的连续性。同时还可减少第一浸渍模具模头A300的数量,节约生产成本。
具体来说,本发明的发明构思在于通过在第一浸渍模具模头A300的模腔内壁上开槽的方式来实现调节第一导丝辊A8位置的目的。
第一浸渍模具模头A300的第一内壁上设置有第一滑槽A4,第一滑槽A4在纤维入口A1和纤维出口A6之间延伸(即图4所示X轴方向),第一导丝辊A8沿第一滑槽A4移动以改变其在第一浸渍模具模头A300内的水平位置。
进一步地,第一浸渍模具模头A300的第一内壁上还设置有第二滑槽A2,第二滑槽沿垂直于第一滑槽A4的方向延伸(即图4所示Y轴方向),第一导丝辊A8沿第二滑槽A2移动以改变其在模头内的竖直位置。
需要说明的是,第一滑槽A4和第二滑槽A2可以相连通。由此,第一导丝辊A8可以沿纵向或者横向任意地移动,从而使其位置发生改变。
其中,第一滑槽A4和第二滑槽A2的横截面可以是梯形、圆形、弧形或矩形等形状,本发明对此并不进行限定。
第一导丝辊A8的两端均设置有调节装置(图中未示出),调节装置用于调节第一导丝辊A8的轴向长度,其中,第一导丝辊A8的最小轴向长度小于第一内壁和第二内壁之间的间距,第一导丝辊A8的最大轴向长度大于第一内壁和第二内壁之间的间距。
如图5所示,在本发明的另一种实施方式中,第二浸渍模具为组合式浸渍模具,包括第二浸渍模具模头B300,第二浸渍模具模头B300包括依次连接的第一模块B3、中间模块B6和第二模块B7。其中,第一模块B3上设置有纤维入口B1和第一模块流道B31,第二模块B7上设置有纤维出口B8和第二模块流道B71,中间模块B6中设置有中间模块流道B61。
将第一模块B3、中间模块B6和第二模块B7依次连接后,第一模块流道B31、中间模块流道B61和第二模块流道B71相连通以形成用于使纤维经过的组合流道B4,其中,中间模块B6的数量至少为一个。即第一模块B3为首模块,第二模块B7为尾模块,二者之间具有一个或多个中间模块B6。需要说明的是,这些中间模块B6也依次相连。
也就是说,中间模块B6的数量可以根据需要进行增加或者减少,从而在浸渍要求条件发生变化时,选择将不同的中间模块B6进行组合以成组合式第二浸渍模具模头B300,由此可提高生产的连续性以及生产效率,节省额外开模的成本。
再者,通过选择不同的中间模块B6,能够改变所形成的组合流道B4的形状参数(例如曲率等),从而使可使纤维和熔体的流动路径发生改变,则可改变纤维在模具不同工位中浸渍角度和纤维张力,最终达到调整和优化纤维整个浸渍过程的目的,并提高了第二浸渍模具模头B300对不同树脂基体和纤维的适应性。
将上述第一模块B3、中间模块B6和第二模块B7放入模架中,通过模架的约束作用使其相互紧密接触,从而保证所形成的组合流道B4的密封性。
如图5所示,示出了具有2个中间模块B6的实施方式。在图5所示的实施方式中,第一模块流道B31的下游端与其中一个中间模块流道B61的上游端相连,两个中间模块流道B61彼此相连,并且另一个中间模块流道B61的下游段与第二中间模块流道B71的上游端相连,由此形成了一个从纤维入口B1至纤维出口B8延伸的组合流道B4。
可以理解地,通过选择不同的中间模块B6,可以获得不同的组合流道B4。
如图5所示,第一模块流道B31的下游端、第二模块流道B71的上游端以及中间模块流 道B61的两端均位于同一平面内,且构造有标准化接头B5。换言之,第一模块流道B31、中间模块流道B61以及第二模块B71相互之间的连接处是通过标准化接头B5进行连接的。由于标准化接头B5均位于同一平面内,并且标准化接头B5的形状和尺寸都相同,因此便于不同模块之间的组合连接。
如图6所示,本发明的再一种实施方式中,第三浸渍模具为强紊流浸渍模具,包括第三浸渍模具模头C300,第三浸渍模具模头C300包括浸渍模外体C2,浸渍模外体C2上设置有纤维入口通道C3、浸渍出口C6以及熔体夹缝流道C1,纤维入口通道C3、浸渍出口C6以及熔体夹缝流道C1均与浸渍模外体C2内部的模腔相连通。
其中,浸渍模外体C2的模腔内设置有第二导丝辊,第二导丝辊包括至少一个主动导丝辊C4,主动导丝辊C4由驱动装置(图中未示出)驱动转动。由于主动导丝辊C4的转动是通过驱动装置进行驱动的,而并非是由纤维的牵引带动,纤维在经过主动导丝辊C4时,主动转动的主动导丝辊C4有助于减少纤维的牵引张力以及纤维与主动导丝辊C4之间的摩擦力,从而使纤维的断裂量减少、保证纤维的完整性,避免纤维被拉断的情况,从而提高材料的力学性能。优选地,第二导丝辊还包括至少一个从动导丝辊C5,从动导丝辊C5由经过主动导丝辊C4的纤维驱动;或者从动导丝辊C5与主动导丝辊C4通过皮带机构、齿轮机构或链条机构相连。如图6所示,示出了具有一个主动导丝辊C4以及2个从动导丝辊C5的示例,其中2个从动导丝辊C5一上一下地布置,以延长经过其的纤维的浸渍路径。主动导丝辊C4和从动导丝辊C5在模腔内的高度可以相同,也可以不同。
进一步地,驱动装置可以是电机、液压机构或减速箱等能够驱动主动导丝辊C4进行旋转的装置。
根据进入浸渍模外体C2的模腔中的纤维的行进速度v1,可以选择相应的主动导丝辊C4的切线速度v2,例如使主动导丝辊C4的切线速度v2与纤维的行进速度v1相同,即v1=v2,从而达到减少纤维的断裂和磨损的目的,因此能够保证纤维的完整性并促进了纤维的浸渍程度、缩短了浸渍时间、提高了生产效率。
如图2所示,熔融塑化供料装置4由一台双螺杆挤出机组成,用于熔融塑化物料。双螺杆挤出机为同向双螺杆挤出机,螺杆直径为25mm-95mm,长径比为36:1-65:1。熔融塑化供料装置4由一台挤出机4组成时,通过熔体分配器将挤出机中熔融塑化的熔体进行分流,分别进入到浸渍模具和成型模具中,并利用熔体流量控制阀控制各自的流量。
如图3所示,熔融塑化供料装置4由两台挤出机4-1和4-2组成时,通过挤出机I 4-1和挤出机II 4-2分别将各自熔融塑化的熔体进入浸渍模具和成型模具中。在本实施方式中,熔 融塑化供料装置由两台挤出机,即挤出机I 4-1和挤出机II 4-2组成,通过挤出机I 4-1和挤出机II 4-2分别将各自熔融塑化的熔体进入第一浸渍模具3和成型模具5中。挤出机I 4-1和挤出机II 4-2可加入相同或不同的物料,因此可制备内层和外层相同或不同材料的复合材料。
纤维预处理装置2由张力辊和热烘道组合的方式组成,这种组合方式使得纤维在进入热烘道时所受到的张力得到一定的释放,从而适应不同强度的纤维,避免自身强度较小的纤维在进入浸渍模头前断丝。纤维预处理装置2中的张力辊表面需进行表面镀陶瓷处理,以提高表面粗糙度,以减小对纤维的摩擦。
制造系统中,纤维架及导纤装置1用于纤维的导出和解捻,该装置装有自动控制解捻装置,与牵引机8联动,分别与电控系统(如PLC控制装置)电连接。
制造系统中,冷却水槽6、干燥机7、牵引机8、切粒机9、收集箱10是本领域技术人员所知晓的常规设备或装置,在此不再赘述。
图7显示了采用成型模具进行第二浸渍处理的示意图,图8显示了第二浸渍处理中采用的成型模具的截面剖视图。
如图8所示,在一种实施方式中,成型模具5由芯部5-1、外套5-2、外套口模板5-3组成。芯部5-1位于外套5-2内部,与外套5-2形成型腔,树脂熔体可以从外套5-2底部或顶部或两个侧面进入型腔。芯部5-1在外套5-2中可以前后移动,通过调整形成的型腔空间大小决定型腔中熔体的压力。也可通过芯部5-1与外套5-2间的夹角大小来调整型腔中熔体的压力。该成型模具5的工作原理为:经过浸渍模具3后形成内层浸渍材料的料条,从芯部5-1中间的孔中导向穿过,然后,在芯部5-1与外套5-2形成的充满混合熔体的型腔中实现内外层材料复合结构的成型,最后通过外套口模板5-3导出。
如图7所示,料条5-4进入芯部(未显示)与外套5-2形成的充满第二组分熔体的型腔中进行处理,其中,第二组分熔体从第二树脂入口5-5送入型腔中。
在以下实施例和对比例中,采用图3所示的制造系统制备热塑性复合材料,其中,第一浸渍处理选用图4所示的第一浸渍模具,第二浸渍处理采用图8所示的成型模具。
【实施例1】
(1)称取干燥的50重量份PPB-M100-GH聚丙烯树脂(熔体流动速率为100g/10min)、3重量份BONDYRAM 1001、0.1重量份抗氧剂1010、0.5重量份XH-201,在高速混合机中,50℃下搅拌3min,得到第一组分熔体,并送入第一浸渍模具中。
(2)30重量份玻纤SE4805在牵引机的作用下进入到第一浸渍模具中,在此与第一组分 熔体进行浸润分散,形成料条,将其作为内层材料。
(3)称取干燥的49重量份PPH-Y450聚丙烯树脂(熔体流动速率为450g/10min)、3重量份BONDYRAM 1001、0.1重量份抗氧剂1010、0.5重量份XH-201,在高速混合机中,50℃下搅拌3min,将其作为外层材料,并送入与成型模具相连接的双螺杆挤出机中,得到第二组分熔体。
(4)内层材料在牵引机的作用下进入到成型模具中,从芯部中间的孔中导向穿过,在芯部与外套形成的充满第二组分熔体的型腔中,实现内外层材料复合结构的成型,最后通过模具出口导出。
(5)通过调节用于外层材料的挤出机的挤出量和模具口模出口直径来调整外层材料的包覆量,使其按照步骤(3)中限定的量进行包覆,调整切粒机的切刀转速,使制备得到的热塑性复合材料的切粒长度控制为6.1mm。
(6)将上述方法制得的聚丙烯复合材料注塑成标准样条,进行性能测试。测试结果见表1。
【实施例2】
(1)称取干燥的20重量份自制高流动聚丙烯(熔体流动速率为1000g/10min)、0.6重量份BONDYRAM 1001、0.1重量份抗氧剂1010、0.5重量份XH-201,在高速混合机中,50℃下搅拌3min,得到第一组分熔体,并送入第一浸渍模具中。
(2)50重量份玻纤SE4805在牵引机的作用下进入到第一浸渍模具中,在此与熔体进行浸润分散,形成料条,将其作为内层材料。
(3)称取干燥的59重量份PPH-T03聚丙烯树脂(熔体流动速率3g/10min)、3重量份BONDYRAM 1001、0.1重量份抗氧剂1010、0.5重量份XH-201,在高速混合机中,50℃下搅拌3min,将其作为外层材料,并送入与成型模具相连接的双螺杆挤出机中,得到第二组分熔体。
(4)内层材料在牵引机的作用下进入到成型模具中,从芯部中间的孔中导向穿过,在芯部与外套形成的充满第二组分熔体的型腔中,实现内外层材料复合结构的成型,最后通过模具出口导出。
(5)通过调节用于外层材料挤出机的挤出量和模具口模出口直径来调整外层材料的包覆量,使其按照步骤(3)中限定的量进行包覆,调整切粒机的切刀转速,使制备得到的热塑性复合材料的切粒长度控制为15mm。
(6)将上述方法制得的聚丙烯复合材料注塑成标准样条,进行性能测试。测试结果见表1。
【实施例3】
(1)称取干燥的20重量份自制高流动聚丙烯(熔体流动速率7500g/10min)、0.6重量份BONDYRAM 1001、0.1重量份抗氧剂1010、0.5重量份XH-201,在高速混合机中,50℃下搅拌3min,得到第一组分熔体,并送入第一浸渍模具中。
(2)80重量份玻纤SE4805在牵引机的作用下进入到第一浸渍模具中,在此与熔体进行浸润分散,形成料条,将其作为内层材料。
(3)称取干燥的69重量份K8303聚丙烯树脂(熔体流动速率1.5g/10min)、3重量份BONDYRAM 1001、0.1重量份抗氧剂1010、0.5重量份XH-201,在高速混合机中,50℃下搅拌3min,将其作为外层材料,并送入与成型模具相连接的双螺杆挤出机中,得到第二组分熔体。
(4)内层材料在牵引机的作用下进入到成型模具中,从芯部中间的孔中导向穿过,在芯部与外套形成的充满第二组分熔体的型腔中,实现内外层材料复合结构的成型,最后通过模具出口导出。
(5)通过调节用于外层材料的挤出机的挤出量和模具口模出口直径来调整外层材料的包覆量,使其按照步骤(3)中限定的量进行包覆,调整切粒机的切刀转速,使制备得到的热塑性复合材料的切粒长度控制为18mm。
(6)将上述方法制得的聚丙烯复合材料注塑成标准样条,进行性能测试。测试结果见表1。
【实施例4】
(1)称取干燥的70重量份PPB-M100-GH(熔体流动速率100g/10min)、3重量份BONDYRAM 1001、0.1重量份抗氧剂1010、0.5重量份XH-201,在高速混合机中,50℃下搅拌3min,得到第一组分熔体,并送入第一浸渍模具中。
(2)25重量份玻纤SE4805在牵引机的作用下进入到第一浸渍模具中,在此与熔体进行浸润分散,形成料条,将其作为内层材料。
(3)称取干燥的10重量份自制高流动聚丙烯(熔体流动速率1900g/10min)、0.5重量份BONDYRAM 1001、0.05重量份抗氧剂1010、0.25重量份XH-201,在高速混合机中,50℃ 下搅拌3min,将其作为外层材料,并送入与成型模具相连接的双螺杆挤出机中,得到第二组分熔体。
(4)内层材料在牵引机的作用下进入到成型模具中,从芯部中间的孔中导向穿过,在芯部与外套形成的充满第二组分熔体的型腔中,实现内外层材料复合结构的成型,最后通过模具出口导出。
(5)通过调节用于外层材料挤出机的挤出量和模具口模出口直径来调整外层材料的包覆量,使其按照步骤(3)中限定的量进行包覆,调整切粒机的切刀转速,使制备得到的热塑性复合材料的切粒长度控制为5mm。
(6)将上述方法制得的聚丙烯复合材料注塑成标准样条,进行性能测试。测试结果见表1。
【实施例5】
(1)称取干燥的57重量份M60RHC聚丙烯树脂(熔体流动速率60g/10min)、2.5重量份BONDYRAM 1001、0.5重量份NDZ12、0.1重量份抗氧剂168、0.25重量份XH-201,在高速混合机中,50℃下搅拌3min,得到第一组分熔体,并送入第一浸渍模具中。
(2)40重量份玻纤SE4805在牵引机的作用下进入到第一浸渍模具中,在此与熔体进行浸润分散,形成料条,将其作为内层材料。
(3)称取干燥的97重量份M50RH聚丙烯树脂(熔体流动速率50g/10min)、4重量份BONDYRAM 1001、0.8重量份NDZ12、0.1重量份抗氧剂168、0.8重量份XH-201,在高速混合机中,50℃下搅拌3min,将其作为外层材料,并送入与成型模具相连接的双螺杆挤出机中,得到第二组分熔体。
(4)内层材料在牵引机的作用下进入到成型模具中,从芯部中间的孔中导向穿过,在芯部与外套形成的充满第二组分熔体的型腔中,实现内外层材料复合结构的成型,最后通过模具出口导出。
(5)通过调节用于外层材料的挤出机的挤出量和模具口模出口直径来调整外层材料的包覆量,使其按照步骤(3)中限定的量进行包覆,调整切粒机的切刀转速,使制备得到的热塑性复合材料的切粒长度控制为10mm。
(6)将上述方法制得的聚丙烯复合材料注塑成标准样条,进行性能测试。测试结果见表1。
【实施例6】
(1)称取干燥的57重量份PA6-BL3200H、3重量份CMG9805、0.1重量份抗氧剂1010、0.5重量份XH-201,在高速混合机中,50℃下搅拌3min,得到第一组分熔体,并送入第一浸渍模具中。
(2)ER4301H在牵引机的作用下进入到第一浸渍模具中,在此与第一组分熔体进行浸润分散,形成料条,将其作为内层材料。
(3)称取干燥的97重量份PA6-BL3200H、3重量份CMG9805、0.1重量份抗氧剂1010、0.5重量份XH-201,在高速混合机中,50℃下搅拌3min,将其作为外层材料,并送入与成型模具相连接的双螺杆挤出机中,得到第二组分熔体。
(4)内层材料在牵引机的作用下进入到成型模具中,从芯部中间的孔中导向穿过,在芯部与外套形成的充满第二组分熔体的型腔中,实现内外层材料复合结构的成型,最后通过模具出口导出。
(5)通过调节用于外层材料的挤出机的挤出量和模具口模出口直径来调整外层材料的包覆量,使其按照步骤(3)中限定的量进行包覆,调整切粒机的切刀转速,使制备得到的热塑性复合材料的切粒长度控制为12mm。复合材料中,ER4301H占比为40重量%。
(6)将上述方法制得的长玻纤增强PA6复合材料注塑成标准样条,进行性能测试。测试结果见表1。
【实施例7】
(1)称取干燥的57重量份PPB-M100-GH、3重量份BONDYRAM 1001、0.5重量份XHY-501、0.1重量份抗氧剂1010、0.5重量份XH-201,在高速混合机中,50℃下搅拌3min,得到第一组分熔体,并送入第一浸渍模具中。
(2)连续玄武岩纤维在牵引机的作用下进入到第一浸渍模具中,在此与第一组分熔体进行浸润分散,形成料条,将其作为内层材料。
(3)称取干燥的97重量份PPB-M100-GH、3重量份BONDYRAM 1001、0.5重量份XHY-501、0.1重量份抗氧剂1010、0.5重量份XH-201,在高速混合机中,50℃下搅拌3min,将其作为外层材料,并送入与成型模具相连接的双螺杆挤出机中,得到第二组分熔体。
(4)内层材料在牵引机的作用下进入到成型模具中,从芯部中间的孔中导向穿过,在芯部与外套形成的充满第二组分熔体的型腔中,实现内外层材料复合结构的成型,最后通过模具出口导出。
(5)通过调节用于外层材料的挤出机的挤出量和模具口模出口直径来调整外层材料的包覆量,使其按照步骤(3)中限定的量进行包覆,调整切粒机的切刀转速,使制备得到的热塑性复合材料的切粒长度控制为12mm。复合材料中,连续玄武岩纤维占比为40重量%。
(6)将上述方法制得的玄武岩纤维增强PP复合材料注塑成标准样条,进行性能测试。测试结果见表1。
【实施例8】
(1)称取干燥的57重量份PA6-BL3200H、3重量份BONDYRAM 1001、0.5重量份NDZ12、0.1重量份抗氧剂1010、0.5重量份XH-201,在高速混合机中,50℃下搅拌3min,得到第一组分熔体,并送入第一浸渍模具中。
(2)连续碳纤维在牵引机的作用下进入到第一浸渍模具中,在此与第一组分熔体进行浸润分散,形成料条,将其作为内层材料。
(3)称取干燥的97重量份PA6-BL3200H、3重量份BONDYRAM 1001、0.5重量份NDZ12、0.1重量份抗氧剂1010、0.5重量份XH-201,在高速混合机中,50℃下搅拌3min,将其作为外层材料,并送入与成型模具相连接的双螺杆挤出机中,得到第二组分熔体。
(4)内层材料在牵引机的作用下进入到成型模具中,从芯部中间的孔中导向穿过,在芯部与外套形成的充满第二组分熔体的型腔中,实现内外层材料复合结构的成型,最后通过模具出口导出。
(5)通过调节用于外层材料的挤出机的挤出量和模具口模出口直径来调整外层材料的包覆量,使其按照步骤(3)中限定的量进行包覆,调整切粒机的切刀转速,使制备得到的热塑性复合材料的切粒长度控制为12mm。复合材料中,连续碳纤维占比为40重量%。
(6)将上述方法制得的长碳纤维增强PA6复合材料注塑成标准样条,进行性能测试。测试结果见表1。
【实施例9】
同实施例1的制备过程,不同之处在于:步骤(1)中称取70重量份PPB-M100-GH,步骤(3)中称取85重量份PPH-Y450。并对制备得到的复合材料进行性能测试,测试结果见表1。
【实施例10】
同实施例1的制备过程,不同之处在于:步骤(1)中称取45重量份PPB-M100-GH, 步骤(3)中称取65重量份PPH-Y450。并对制备得到的复合材料进行性能测试,测试结果见表1。
【实施例11】
同实施例1的制备过程,不同之处在于:步骤(1)中称取25重量份PPB-M100-GH,步骤(3)中称取45重量份PPH-Y450。并对制备得到的复合材料进行性能测试,测试结果见表1。
【实施例12】
同实施例1的制备过程,不同之处在于:步骤(1)中称取55重量份PPB-M100-GH,步骤(3)中称取70重量份PPH-Y450。并对制备得到的复合材料进行性能测试,测试结果见表1。
【实施例13】
(1)称取干燥的50重量份PPB-M100-GH聚丙烯树脂(熔体流动速率为100g/10min)、3重量份BONDYRAM 1001、0.1重量份抗氧剂1010、0.5重量份XH-201,在高速混合机中,50℃下搅拌3min,得到第一组分熔体,并送入第一浸渍模具中。
(2)30重量份玻纤SE4805在牵引机的作用下进入到第一浸渍模具中,在此与第一组分熔体进行浸润分散,形成料条,将其作为内层材料。
(3)称取干燥的49重量份M60RHC聚丙烯树脂(熔体流动速率为60g/10min)、20重量份由玻纤SE4805裁切成的长度为3mm的短玻璃纤维、2.5重量份BONDYRAM 1001、0.1重量份抗氧剂1010、0.5重量份XH-201,在高速混合机中,50℃下搅拌3min,将其作为外层材料,并送入与成型模具相连接的双螺杆挤出机中,得到第二组分熔体。
(4)内层材料在牵引机的作用下进入到成型模具中,从芯部中间的孔中导向穿过,在芯部与外套形成的充满第二组分熔体的型腔中,实现内外层材料复合结构的成型,最后通过模具出口导出。
(5)通过调节用于外层材料的挤出机的挤出量和模具口模出口直径来调整外层材料的包覆量,使其按照步骤(3)中限定的量进行包覆,调整切粒机的切刀转速,使制备得到的热塑性复合材料的切粒长度控制为6.1mm。
(6)将上述方法制得的聚丙烯复合材料注塑成标准样条,进行性能测试。测试结果见表1。
【实施例14】
同实施例1的制备过程,不同之处在于:步骤(1)和步骤(3)中各自添加5重量份聚丙烯-g-甲基丙烯酸缩水甘油酯,测试结果见表1。
【实施例15】
同实施例1的制备过程,不同之处在于:步骤(1)和步骤(3)中各自添加5重量份聚丙烯-g-苯乙烯,测试结果见表1。
【实施例16】
同实施例1的制备过程,不同之处在于:步骤(1)和步骤(3)中各自添加5重量份聚丙烯-g-乙烯基三乙氧基硅烷,测试结果见表1。
【实施例17】
同实施例1的制备过程,不同之处在于:步骤(1)和步骤(3)中各自添加5重量份聚丙烯-g-苯乙烯/马来酸酐,测试结果见表1。
【实施例18】
同实施例1的制备过程,不同之处在于:步骤(1)和步骤(3)中各自添加5重量份聚丙烯-g-乙烯基咪唑,测试结果见表1。
【对比例1】
(1)称取干燥的57重量份PPB-M100-GH、3重量份BONDYRAM 1001、0.1重量份抗氧剂1010、0.5重量份XH-201,在高速混合机中,50℃下搅拌3min,得到熔体,并送入浸渍模具中。
(2)SE4805在牵引机的作用下进入到浸渍模具中,在此与熔体进行浸润分散,通过选择浸渍模具定型口模板的尺寸来调整复合材料中SE4805的含量,控制SE4805的含量为22重量%,调整切粒机的切刀转速,使制备得到的聚丙烯复合材料的切粒长度控制为12mm。
(3)将上述方法制得的聚丙烯复合材料注塑成标准样条,进行性能测试。测试结果见表1。
【对比例2】
(1)称取干燥的50重量份PPB-M100-GH聚丙烯树脂(熔体流动速率为100g/10min)、30重量份由玻纤SE4805裁切成的长度为3mm的短玻璃纤维、3重量份BONDYRAM 1001、0.1重量份抗氧剂1010、0.5重量份XH-201,在高速混合机中,50℃下搅拌3min,作为内层树脂;
(2)称取干燥的49重量份M60RHC聚丙烯树脂(熔体流动速率为60g/10min)、20重量份由玻纤SE4805裁切成的长度为3mm的短玻璃纤维、3重量份BONDYRAM 1001、0.1重量份抗氧剂1010、0.5重量份XH-201,在高速混合机中,50℃下搅拌3min,将其作为外层材料;
(3)分别将所属内层材料加入到1号挤出机中,所属外层材料加入到2号挤出机中,两台挤出机同时挤出所述原料,并通过具有内外层结构的摸头挤出得到具有内层为含短玻纤树脂层,外层为含短玻纤树脂层的连续丝材,并经切粒后的到对比例原料。性能测试见表1。
表1
Figure PCTCN2021127770-appb-000012
注:表1中D1和D2分别为对比例1和对比例2,S1-S18分别为实施例1-实施例18。
通过对比实施例1-5和实施例9-18与对比例1-2,得出本发明制备的长玻纤增强聚丙烯材料的拉伸强度、弯曲强度、简支梁缺口冲击强度和表面光泽度均明显高于对比例1制备的材料,并且制件的表面质量更高。
根据本发明的实施例6-8可知,本发明提出的制备方法不仅适用于长玻纤增强聚丙烯复合材料,而且还适用于连续玻纤增强PA6、连续玄武岩纤维增强聚丙烯、连续碳纤维增强PA6复合材料的制备。
进一步地,根据表1的数据可以看出,通过选择内层材料和外层材料的热塑性树脂的熔体流动速率,可以使得所制备的复合材料具有理想的表面光泽度。
本发明的制备方法操作简单,可以实现在线连续化生产,能够保证较高的产能及较低的能耗,适合工业化生产和应用。
以上所述的仅是本发明的优选实例。应当指出对于本领域的普通技术人员来说,在本发明所提供的技术启示下,作为本领域的公知常识,还可以做出其它等同变型和改进,也应视为本发明的保护范围。

Claims (16)

  1. 一种热塑性复合材料,包括内层材料和至少一层外层材料,所述内层材料为包括纤维束、第一热塑性树脂和第一助剂的芯层,所述至少一层外层材料包裹所述芯层并且为包括第二热塑性树脂和任选的第二助剂的树脂层,其中,所述纤维束从所述芯层的一端连续延伸至其相对端。
  2. 根据权利要求1所述的热塑性复合材料,其特征在于,所述热塑性复合材料为条状、棒状或颗粒状,条状、棒状或颗粒状热塑性复合材料的长度优选为5-30mm,更优选为5-25mm,进一步优选为6-15mm。
  3. 根据权利要求1或2所述的热塑性复合材料,其特征在于,在所述内层材料中,所述第一热塑性树脂的量为1-90重量份,优选为20-70重量份,更优选为20-55重量份,进一步优选为24-45重量份;所述纤维束的量为10-110重量份,优选为20-110重量份,更优选为25-110重量份;和/或,
    所述内层材料中,所述纤维束与所述第一热塑性树脂的重量比为0.25-6:1,优选为0.35-4.5:1,进一步优选为0.43-4.5:1;和/或,
    在所述外层材料中,所述第二热塑性树脂的量为1-110重量份,优选为10-99重量份,优选为40-90重量份;
    优选地,在所述内层材料中,所述第一热塑性树脂的量为1-90重量份,优选为20-70重量份,更优选为20-55重量份,进一步优选为24-45重量份;和/或所述纤维束的量为10-99重量份,优选为20-80重量份,更优选为25-50重量份;或者,
    在所述内层材料中,所述第一热塑性树脂的量为50-70重量份,进一步优选为50-60重量份;和/或所述纤维束的量为90-110重量份,优选为100-110重量份;和/或在所述外层材料中,所述第二热塑性树脂的量为90-110重量份,进一步优选为95-105重量份。
  4. 根据权利要求1-3中任一项所述的热塑性复合材料,其特征在于,所述内层材料不含非取向的短纤维,优选地,所述内层材料由纤维束、第一热塑性树脂和第一助剂组成。
  5. 根据权利要求1-4中任一项所述的热塑性复合材料,其特征在于,所述外层材料不含纤维,优选地,所述外层材料由第二热塑性树脂组成或由第二热塑性树脂和第二助剂组成;或者
    所述外层材料含有纤维,例如短纤维;优选地,在所述外层材料中,所述纤维与所述第二热塑性树脂的重量比为1-50:100,优选为5-50:100,更优选为20-45:100。
  6. 根据权利要求1-5中任一项所述的热塑性复合材料,其特征在于,所述第一热塑性树脂和第二热塑性树脂相同或不同,各自独立地选自聚丙烯、聚乙烯、聚苯乙烯、聚氯 乙烯、聚丙烯腈-丁二烯-苯乙烯共聚物、聚丙烯腈-苯乙烯共聚物、聚甲醛、聚酰胺、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚甲基丙烯酸甲酯、聚碳酸酯、聚苯醚、聚氨酯、聚醚醚酮和聚苯硫醚以及它们的合金聚合物中的至少一种;优选地,所述第一热塑性树脂和第二热塑性树脂各自独立地选自聚丙烯、聚乙烯、聚酰胺、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚苯硫醚、聚氨酯和聚醚醚酮中的至少一种;更优选地,所述第一热塑性树脂和第二热塑性树脂各自独立地选自均聚聚丙烯、共聚聚丙烯、均聚聚丙烯和共聚聚丙烯的混合物、尼龙6、尼龙66、尼龙6和尼龙66的混合物中的至少一种;和/或,
    所述纤维束选自玻璃纤维、碳纤维、玄武岩纤维、芳香族聚酰胺纤维、不锈钢纤维、合成树脂纤维和矿物纤维中的至少一种。
  7. 根据权利要求1-6中任一项所述的热塑性复合材料,其特征在于,所述第一热塑性树脂在230℃和负载为2.16kg的条件下的熔体流动速率为60-8000g/10min,优选为100-8000g/10min,更优选为1000-7500g/10min,进一步优选为1900-7500g/10min;所述第二热塑性树脂在230℃和负载为2.16kg的条件下的熔体流动速率为0.1-8000g/10min,优选为3-55g/10min或450-8000g/10min,进一步优选为3-45g/10min或1900-8000g/10min;
    优选地,
    所述第一热塑性树脂在230℃和负载为2.16kg的条件下的熔体流动速率为60-450g/10min,例如,60-200g/10min,所述第二热塑性树脂在230℃和负载为2.16kg的条件下的熔体流动速率为3-55g/10min或450-8000g/10min;更优选地,所述第一热塑性树脂在230℃和负载为2.16kg的条件下的熔体流动速率为60-450g/10min,所述第二热塑性树脂在230℃和负载为2.16kg的条件下的熔体流动速率为800-8000g/10min;或
    所述第一热塑性树脂在230℃和负载为2.16kg的条件下的熔体流动速率在450g/10min以上,特别是大于450g/10min,所述第二热塑性树脂在230℃和负载为2.16kg的条件下的熔体流动速率小于100g/10min,优选为1.5-55g/10min,更优选为3-50g/10min;
    和/或,所述第二热塑性树脂与所述第一热塑性树脂的重量比为0.05-12.5:1,优选为0.1-4:1,更优选为0.14-3.5:1。
  8. 根据权利要求7所述的热塑性复合材料,其特征在于,当所述第二热塑性树脂在230℃和负载为2.16kg的条件下的熔体流动速率为800-8000g/10min时,所述第二热塑性树脂与第一热塑性树脂的重量比小于0.25:1,优选小于0.18:1,更优选小于0.15:1;和/或,
    当所述第一热塑性树脂和所述第二热塑性树脂选自尼龙6、尼龙66、尼龙6和尼龙66的混合物中的至少一种时,所述尼龙6和尼龙66的粘度为1.8-3.5。
  9. 根据权利要求1-8中任意一项所述的热塑性复合材料,其特征在于,分别以所述第一热塑性树脂和所述第二热塑性树脂质量为100重量份计,所述第一助剂和第二助剂各自独立地包括0.5-15重量份的相容剂、0.05-3重量份的抗氧剂和0.05-2.5重量份的润滑剂中的至少一种;优选地,所述第一助剂和所述第二助剂各自独立地包括1-15重量份的相容剂、0.1-1重量份的抗氧剂和0.5-2.5重量份的润滑剂中的至少一种;和/或,
    所述相容剂选自极性单体接枝改性聚合物中的至少一种,优选地,所述极性单体选自马来酸酐、马来酸酐衍生物、丙烯酸和丙烯酸酯类衍生物中的至少一种;优选地,所述聚合物选自聚乙烯、聚丙烯、乙烯-α-辛烯共聚物和丙烯-α-烯烃共聚物中的至少一种;和/或,
    所述抗氧剂选自四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯、三[2,4-二叔丁基苯基]亚磷酸酯、β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳醇酯、2,2'-亚甲基双(4-甲基-6-叔丁基苯酚)、1,1,3-三(2-甲基-4-羟基-5-叔丁基苯基)丁烷和双(2,4-二叔丁基苯酚)季戊四醇二亚磷酸酯中的至少一种;和/或,
    所述润滑剂选自乙撑双硬脂酰胺、硬脂酸钙、聚乙烯蜡、季戊四醇硬脂酸酯、硅酮、聚乙二醇和含氟树脂中的至少一种;和/或,
    所述第一助剂还可以包括爽滑剂、抗静电剂和增塑剂中的至少一种;
    和/或所述第二助剂还可以包括爽滑剂、抗静电剂、增塑剂、成核剂、光稳定剂、阻燃剂、热稳定剂、色母、抗静电剂和填充剂中的至少一种。
  10. 根据权利要求1-9中任意一项所述的热塑性复合材料,其特征在于,分别以所述第一热塑性树脂和所述第二热塑性树脂质量为100重量份计,所述第一助剂和第二助剂各自独立地包括2-30重量份的电绝缘改性剂,优选地各自独立包括5-25重量份电绝缘改性剂;
    优选地,所述电绝缘改性剂为以下a)至e)中的至少一种:
    a)烷基和/或烷氧基接枝改性聚丙烯,包括衍生自共聚聚丙烯的结构单元和衍生自丙烯酸酯类单体以及任选的丙烯酸类单体的结构单元;例如,聚丙烯-g-甲基丙烯酸缩水甘油酯;
    b)芳香烯烃接枝改性聚丙烯,包括衍生自共聚聚丙烯的结构单元和衍生自苯乙烯类单体的结构单元;例如,聚丙烯-g-苯乙烯;
    c)硅烷改性的聚丙烯接枝物,包括衍生自共聚聚丙烯的结构单元和衍生自含烯基的硅烷类单体的结构单元;
    d)有酸酐基团的聚丙烯接枝物,包括衍生自共聚聚丙烯的结构单元、衍生自马来酸酐单体的结构单元和衍生自含烯基聚合单体的结构单元;和/或
    e)聚丙烯接枝杂环的改性材料,包括衍生自共聚聚丙烯的结构单元和衍生自含烯基的杂环类单体的结构单元。
  11. 权利要求1-10中任一项所述的热塑性复合材料的制备方法,其特征在于,所述方法包括以下步骤:
    步骤A、第一热塑性树脂和第一助剂混合后熔融,得到第一组分熔体;
    步骤B、将连续纤维束与所述第一组分熔体进行第一浸渍处理,形成丝状芯层制品;
    步骤C、第二热塑性树脂和任选的第二助剂混合后熔融,得到第二组分熔体;
    步骤D、将所述丝状芯层制品与所述第二组分熔体进行第二浸渍处理,形成包裹芯层的树脂层。
  12. 根据权利要求11所述的制备方法,其特征在于,步骤A的混合条件包括:温度为40-60℃,时间为0.5-20min,优选为1-10min,更优选为3-5min;步骤A中的熔融温度为200-380℃;和/或,
    步骤C的混合条件包括:温度为40-60℃,时间为0.5-20min,优选为1-10min,更优选为3-5min;步骤C中的熔融温度为200-380℃。
  13. 根据权利要求11或12所述的制备方法,其特征在于,步骤B中所述第一浸渍处理在第一浸渍模具中进行,所述第一浸渍模具为可调节浸渍模具,所述第一浸渍模具包括纤维入口、纤维出口和熔体流道,所述第一浸渍模具的模腔内设置有至少一个第一导丝辊;所述第一导丝辊能够在所述纤维入口和纤维出口之间移动;和/或,所述第一导丝辊能够沿垂直于所述纤维入口和纤维出口的连线的方向移动。
  14. 根据权利要求11或12所述的制备方法,其特征在于,步骤B中所述第一浸渍处理在第二浸渍模具中进行,所述第二浸渍模具为组合式浸渍模具,所述第二浸渍模具包括依次连接的第一模块、中间模块和第二模块,所述第一模块上设置有纤维入口和第一模块流道,所述第二模块上设置有纤维出口和第二模块流道,所述中间模块中设置有中间模块流道;所述第一模块、中间模块和第二模块依次连接后,所述第一模块流道、所述中间模块流道和第二模块流道相连通以形成用于使纤维经过的组合流道。
  15. 根据权利要求11或12所述的制备方法,其特征在于,步骤B中所述第一浸渍处理在第三浸渍模具中进行,所述第三浸渍模具为强紊流浸渍模具,所述第三浸渍模具包括纤维入口通道、浸渍出口和熔体夹缝流道,所述纤维入口通道、浸渍出口和熔体夹缝流道 均与所述第三浸渍模具内部的模腔相连通;其中,所述第三浸渍模具的模腔内设置有第二导丝辊,所述第二导丝辊包括至少一个主动导丝辊,所述主动导丝辊由驱动装置驱动转动。
  16. 一种权利要求1-10中任意一项所述的热塑性复合材料或权利要求11-15中任意一项所述的制备方法制得的热塑性复合材料在汽车工业、机械制造、电子电器、化工环保、航天通讯和建筑行业领域中的应用,优选为在大型汽车零部件和/或高精密电子电器元件中的应用,更优选为在汽车前端模块和/或全塑尾门内板中的应用。
PCT/CN2021/127770 2020-10-30 2021-10-30 一种热塑性复合材料及其制备方法和应用 WO2022089623A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/250,234 US20230415430A1 (en) 2020-10-30 2021-10-30 Thermoplastic composite material, preparation method therefor and use thereof
JP2023525054A JP2023549063A (ja) 2020-10-30 2021-10-30 熱可塑性複合材料及びその製造方法並びに応用
KR1020237016491A KR20230095992A (ko) 2020-10-30 2021-10-30 열가소성 복합 재료, 그의 제조 방법 및 그 용도
EP21885349.7A EP4238744A1 (en) 2020-10-30 2021-10-30 Thermoplastic composite material, preparation method therefor and use thereof

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202011192228 2020-10-30
CN202011193483.3A CN114434671A (zh) 2020-10-30 2020-10-30 浸渍模具、浸渍方法及包括浸渍模具的制造系统
CN202011191450.5A CN114434670B (zh) 2020-10-30 2020-10-30 浸渍模具、浸渍方法及包括浸渍模具的制造系统
CN202011193483.3 2020-10-30
CN202011191450.5 2020-10-30
CN202011199839.4 2020-10-30
CN202011199839.4A CN114434672A (zh) 2020-10-30 2020-10-30 浸渍模具、浸渍方法及包括浸渍模具的制造系统
CN202011192228.7 2020-10-30

Publications (1)

Publication Number Publication Date
WO2022089623A1 true WO2022089623A1 (zh) 2022-05-05

Family

ID=81381891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127770 WO2022089623A1 (zh) 2020-10-30 2021-10-30 一种热塑性复合材料及其制备方法和应用

Country Status (5)

Country Link
US (1) US20230415430A1 (zh)
EP (1) EP4238744A1 (zh)
JP (1) JP2023549063A (zh)
KR (1) KR20230095992A (zh)
WO (1) WO2022089623A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114933787A (zh) * 2022-06-01 2022-08-23 宁波金富亮塑料科技有限公司 一种哑光pet改性材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03272830A (ja) * 1990-03-23 1991-12-04 Polyplastics Co 長繊維強化熱可塑性樹脂組成物及びその製造方法
CN1187157A (zh) * 1995-06-07 1998-07-08 欧文斯科尔宁格公司 采用多重树脂的树脂注塑挤压预成型方法
US6090319A (en) * 1997-01-14 2000-07-18 Ticona Celstran, Inc. Coated, long fiber reinforcing composite structure and process of preparation thereof
JP2008296494A (ja) * 2007-06-01 2008-12-11 Toyota Motor Corp 繊維強化複合材料成形システム、繊維強化複合材料成形方法及び繊維強化複合材料
CN102328443A (zh) * 2011-09-30 2012-01-25 台州市家得宝日用品有限公司 连续纤维增强热塑性复合材料预浸带的制造方法及设备
CN202242003U (zh) * 2011-09-30 2012-05-30 台州市家得宝日用品有限公司 连续纤维增强热塑性复合材料预浸带的制造设备
CN109016565A (zh) * 2017-06-12 2018-12-18 科思创德国股份有限公司 用于制备纤维增强复合材料的拉挤成型方法及设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03272830A (ja) * 1990-03-23 1991-12-04 Polyplastics Co 長繊維強化熱可塑性樹脂組成物及びその製造方法
CN1187157A (zh) * 1995-06-07 1998-07-08 欧文斯科尔宁格公司 采用多重树脂的树脂注塑挤压预成型方法
US6090319A (en) * 1997-01-14 2000-07-18 Ticona Celstran, Inc. Coated, long fiber reinforcing composite structure and process of preparation thereof
JP2008296494A (ja) * 2007-06-01 2008-12-11 Toyota Motor Corp 繊維強化複合材料成形システム、繊維強化複合材料成形方法及び繊維強化複合材料
CN102328443A (zh) * 2011-09-30 2012-01-25 台州市家得宝日用品有限公司 连续纤维增强热塑性复合材料预浸带的制造方法及设备
CN202242003U (zh) * 2011-09-30 2012-05-30 台州市家得宝日用品有限公司 连续纤维增强热塑性复合材料预浸带的制造设备
CN109016565A (zh) * 2017-06-12 2018-12-18 科思创德国股份有限公司 用于制备纤维增强复合材料的拉挤成型方法及设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114933787A (zh) * 2022-06-01 2022-08-23 宁波金富亮塑料科技有限公司 一种哑光pet改性材料及其制备方法

Also Published As

Publication number Publication date
JP2023549063A (ja) 2023-11-22
US20230415430A1 (en) 2023-12-28
EP4238744A1 (en) 2023-09-06
KR20230095992A (ko) 2023-06-29

Similar Documents

Publication Publication Date Title
CN103756125B (zh) 一种聚丙烯复合材料汽车水箱横梁及制备方法
CN1948379B (zh) 一种增强改性的超高分子量聚乙烯/聚丙烯复合材料
CN103254633B (zh) 锂离子聚合物电池外膜用尼龙薄膜复合材料
KR20050055015A (ko) 섬유 강화 열가소성 중합체 조성물을 포함하는 부품
CN107892772A (zh) 一种轻质抗翘曲连续玻纤增强聚丙烯复合材料及制备方法
CN103113706A (zh) 一种基于长玻纤增强聚丙烯的锂电池外壳阻燃材料及其制备方法
CN111205554A (zh) 一种聚丙烯复合材料及其制备方法
WO2022089623A1 (zh) 一种热塑性复合材料及其制备方法和应用
WO2014069911A1 (ko) 과산화물 마스터배치 생산 기술 및 이를 이용한 폴리프로필렌 개질 방법
CN109749663B (zh) 一种连续纤维增强塑料复合管用粘接树脂及其制备方法
KR101481218B1 (ko) 압출-사출 일체 성형공법을 이용한 직접 유리 장섬유 강화폴리올레핀계 수지 조성물의 제조 방법
CN114437456B (zh) 一种热塑性复合材料及其制备方法和应用
CN109627585B (zh) 改性碳纳米管纤维增强的聚丙烯类复合材料及其制备方法
CN116063780A (zh) 一种热塑性导电复合材料及其制备方法和应用
CN111484666A (zh) 一种改性粉末橡胶增韧聚丙烯复合材料及其制备方法
CN104558425A (zh) 超声波技术引发接枝的丙烯基弹性体聚合物及其制备方法
CN116063778A (zh) 具有芯层结构的电绝缘热塑性复合材料及其制备方法和应用
CN110591345B (zh) 一种类铝线性膨胀系数的导热复合材料及其制备方法
CN116063779A (zh) 一种电绝缘热塑性复合材料及其制备方法和应用
JP2004300293A (ja) 長繊維強化樹脂ペレット及びその組成物、並びにこれらの成形体
CN116063784A (zh) 含有硅烷改性的聚丙烯接枝物的电绝缘热塑性复合材料及其制备方法和应用
CN116063785A (zh) 含有芳香烯烃接枝改性聚丙烯的电绝缘热塑性复合材料及其制备方法和应用
CN116061518A (zh) 环保型膨胀阻燃的热塑性复合材料及其制备方法和应用
CN116063782A (zh) 具有改进的电绝缘性能的热塑性复合材料及其制备方法和应用
CN116063787A (zh) 耐应力发白的热塑性复合材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885349

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18250234

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023525054

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237016491

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021885349

Country of ref document: EP

Effective date: 20230530

WWE Wipo information: entry into national phase

Ref document number: 523440490

Country of ref document: SA