WO2022088965A1 - 细胞筛选芯片、细胞筛选系统及其方法 - Google Patents

细胞筛选芯片、细胞筛选系统及其方法 Download PDF

Info

Publication number
WO2022088965A1
WO2022088965A1 PCT/CN2021/116107 CN2021116107W WO2022088965A1 WO 2022088965 A1 WO2022088965 A1 WO 2022088965A1 CN 2021116107 W CN2021116107 W CN 2021116107W WO 2022088965 A1 WO2022088965 A1 WO 2022088965A1
Authority
WO
WIPO (PCT)
Prior art keywords
screening
liquid inlet
groove
liquid
cell
Prior art date
Application number
PCT/CN2021/116107
Other languages
English (en)
French (fr)
Inventor
杨旸
庄紫云
康磊
Original Assignee
上海荧辉医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海荧辉医疗器械有限公司 filed Critical 上海荧辉医疗器械有限公司
Publication of WO2022088965A1 publication Critical patent/WO2022088965A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/06Plates; Walls; Drawers; Multilayer plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor

Definitions

  • the present disclosure relates to the technical field of biological detection, and in particular, to a cell screening chip, a cell screening system and a method thereof.
  • Circulating Tumor Cells are tumor cells that originate from primary tumors and enter the circulatory system. Such cells can develop into metastases through the circulatory system, and then multiply to form secondary tumors. , the timely isolation and detection of such cells is of great significance for monitoring the treatment and recurrence of tumors.
  • the immunoaffinity capture method which uses the affinity between the specific antigen of the target cell and the specific antibody or nucleic acid aptamer immobilized on the substrate surface or magnetic beads. to adsorb and capture the target cells, thereby separating the target cells.
  • the other is the physical property screening method, which utilizes the difference in the physical properties of target cells and other cells to achieve the separation of target cells. Other cells of smaller size flow out with the buffer, thereby isolating the target cells.
  • the former method results in a low capture rate of target cells due to the heterogeneity of specific antigens in different types of target cells, and even the absence of such specific antigens in some target cells; the latter method As the buffer flows through the microfilter, it is prone to rupture, resulting in low capture of target cells.
  • the embodiments of the present disclosure provide a cell screening chip, a cell screening system and a method thereof for improving the capture rate of target cells.
  • the embodiments of the present disclosure provide a cell screening chip, including a chip body, the chip body is provided with a liquid inlet groove and a liquid outlet groove, and along the flow direction of the liquid inlet groove, the The end of the liquid inlet groove is closed, and a screening array is formed between the side walls of the liquid inlet groove and the liquid outlet groove close to each other; the screening array includes a plurality of screening units, and each screening unit includes a container.
  • a cavity and a screening channel the inlet end of the accommodating cavity is communicated with the liquid inlet groove, the outlet end of the accommodating cavity is communicated with the inlet end of the screening channel, and the outlet end of the screening channel is communicated with the inlet end of the screening channel.
  • the accommodating cavity is greater than the diameter of the target cell, and the width of the screening channel is smaller than the diameter of the target cell; in each of the screening units, the accommodating cavity is The included angle between the diversion direction of the liquid inlet groove and the diversion direction of the liquid inlet groove is an acute angle.
  • the chip body is provided with a liquid inlet groove and a liquid outlet groove, and the end of the liquid inlet groove is closed along the diversion direction of the liquid inlet groove.
  • a screening array is arranged between the side walls of the liquid inlet groove and the liquid outlet groove close to each other, that is, the screening array is located on the side of the liquid inlet groove.
  • the screening array includes a plurality of screening units, each screening unit includes a accommodating cavity and a screening channel, the liquid inlet groove, the accommodating cavity, the screening channel and the liquid outlet groove are connected in sequence, and the sample solution containing the target cells is sent from the liquid inlet groove. It flows into the accommodating cavity and the screening channel in sequence, and flows out from the liquid outlet groove.
  • the width of the accommodating cavity is larger than the diameter of the target cell, and the width of the screening channel is smaller than the diameter of the target cell, the target cells cannot pass through the screening channel and are trapped in the accommodating cavity. Flow out to achieve separation of target cells from non-target cells.
  • the included angle between the direction of flow of the accommodating cavity and the direction of flow of the liquid inlet groove is an acute angle, so that the sample solution in the liquid inlet groove flows smoothly into the accommodating cavity, Reduce the vortex and backflow in the sample solution, thereby reducing the impact of the target cells and the deformation and extrusion of the screening channel, improving the retention rate of the target cells, and then improving the capture rate of the target cells.
  • embodiments of the present disclosure further provide a cell screening system, including a sample injection pump, a waste liquid collection device, and the above-mentioned cell screening chip, wherein an injection port of the cell screening chip is connected to the sample injection pump connected, and the sample outlet of the cell screening chip is connected to the waste liquid collection device.
  • the cell screening system includes the above-mentioned cell screening chip, and thus also has the advantage of high capture rate of target cells.
  • the specific effects can be referred to above, and will not be repeated here.
  • the embodiments of the present disclosure also provide a cell screening method using the above-mentioned cell screening system, and the cell screening method includes:
  • the cell screening chip is sequentially injected into the surface treatment solution and the buffer for pretreatment; the sample solution containing the target cells is injected into the cell screening chip, and the cell screening chip captures the target cells; the cell screening chip is sequentially injected with buffer, A fixative solution, a buffer solution, a staining solution and a buffer solution, the buffer solution cleans the cell screening chip, the fixative solution finalizes the target cells in the cell screening chip, and the staining solution
  • the target cells are stained and marked; the image acquisition device collects the image of the cell screening chip, and transmits the image to the data processing device, and the data processing device identifies the target cell.
  • the cell screening chip is pretreated and then injected into the sample solution, and the target cells in the sample solution are captured by the cell screening chip. Since the cell screening method is the method corresponding to the above cell screening system, it can be Improving the capture rate of target cells will not be repeated here. At the same time, the fixative solution is used to finalize the target cells, and the staining solution is used to stain and identify the target cells to distinguish them from non-target cells, which is convenient for the identification of the target cells.
  • FIG. 1 is a schematic structural diagram of a cell screening chip in an embodiment of the disclosure
  • FIG. 2 is a schematic structural diagram of a chip body in an embodiment of the present disclosure
  • Fig. 3 is the partial enlarged view of A place in Fig. 2;
  • FIG. 4 is a schematic diagram of the distribution of accommodating cavities of different widths in an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of the flow of the sample solution in the chip body in the embodiment of the disclosure.
  • FIG. 6 is another schematic structural diagram of the cell screening chip in an embodiment of the present disclosure.
  • Fig. 7 is a partial enlarged view at B in Fig. 6;
  • FIG. 8 is a schematic diagram of a first structure of a liquid inlet groove in an embodiment of the present disclosure
  • Fig. 9 is the first kind of partial enlarged view at C place in Fig. 8;
  • Fig. 10 is the second kind of partial enlarged view at C place in Fig. 8;
  • Fig. 11 is the third partial enlarged view at C in Fig. 8;
  • FIG. 12 is a schematic diagram of the second structure of the liquid inlet groove in the embodiment of the disclosure.
  • FIG. 13 is a schematic diagram of a third structure of the liquid inlet groove in the embodiment of the present disclosure.
  • Fig. 14 is a partial enlarged view of D in Fig. 13;
  • 15 is a schematic diagram of a fourth structure of the liquid inlet groove in the embodiment of the present disclosure.
  • FIG. 16 is a first structural schematic diagram of a dual injection port in an embodiment of the present disclosure.
  • FIG. 17 is a schematic diagram of the second structure of the dual injection port in the embodiment of the present disclosure.
  • FIG. 19 is a schematic structural diagram of a liquid inlet connection pipeline in an embodiment of the present disclosure.
  • Fig. 20 is another structural schematic diagram of the liquid inlet connection pipeline in the embodiment of the present disclosure.
  • 21 is a schematic structural diagram of a cell screening system in an embodiment of the disclosure.
  • 22 is a flow chart of a cell screening method in an embodiment of the disclosure.
  • the first-stage liquid inlet shunt pipeline 163.
  • the second-stage liquid inlet shunt pipeline 163.
  • Outlet connection pipeline 171. Outlet shunt pipeline;
  • a cell screening chip includes a chip body and a cover, the chip body and the cover are sealed, and there is a channel between the chip body and the cover for screening target cells, however, the cell screening chip has a capture rate of target cells. Low technical issues.
  • the cell screening chip in the embodiment of the present disclosure includes a chip body, and the chip body is provided with a liquid inlet groove and a liquid outlet groove disposed on the side of the liquid inlet groove. The diversion direction of the liquid groove, the end of the liquid inlet groove is closed.
  • a plurality of screening units are arranged between the liquid inlet groove and the liquid outlet groove, each screening unit includes a accommodating cavity and a screening channel, and the liquid inlet groove, the accommodating cavity, the screening channel and the liquid outlet groove are connected in sequence,
  • the width of the cavity is larger than the diameter of the target cell
  • the width of the screening channel is smaller than the diameter of the target cell
  • the angle between the diversion direction of the cavity and the flow direction of the sample solution in the liquid inlet groove is an acute angle, so that the liquid inlet
  • the sample solution in the groove enters the accommodating cavity smoothly, reducing the vortex and backflow of the sample solution, thereby reducing the impact of the target cells and extruding the screening channel, and improving the capture rate of the target cells.
  • an embodiment of the present disclosure provides a cell screening chip.
  • the material of the cell screening chip can be a transparent material for subsequent identification of target cells.
  • the cell screening chip in the embodiment of the present disclosure includes a chip body 100 and a cover 180 .
  • the cover 180 covers the chip body and is used to seal the chip body 100 to prevent the sample solution from overflowing the cell screening chip.
  • the chip body 100 is provided with a sample inlet 110 , a liquid inlet groove 120 , a screening array 130 (shown by the dotted line in FIG. 2 ), a liquid outlet groove 140 and a sample outlet 150 .
  • a sample inlet 110 a liquid inlet groove 120
  • a screening array 130 shown by the dotted line in FIG. 2
  • a liquid outlet groove 140 and a sample outlet 150 .
  • one end of the liquid inlet groove 120 is communicated with the sample inlet 110 , and the liquid inlet groove 120 and the liquid outlet groove 140 extend in the same direction.
  • the liquid inlet groove 120 and the liquid outlet groove 140 may be arranged in a horizontal direction.
  • a screening array 130 is disposed between the side walls of the liquid inlet groove 120 and the liquid outlet groove 140 close to each other, and is communicated by the screening array 130 .
  • the extending direction of the liquid inlet groove 120 is also the direction of the flow of the liquid inlet groove 120
  • the extending direction of the liquid outlet groove 140 is also the guiding direction of the liquid outlet groove 140 . flow direction.
  • the liquid inlet groove 120 is a groove body, and the liquid inlet groove 120 has an opening.
  • the bottom surface of the liquid inlet groove 120 refers to the surface opposite to the opening of the liquid inlet groove 120
  • the side wall of the liquid inlet groove 120 refers to the surface parallel to the extending direction of the liquid inlet groove 120
  • the liquid inlet groove 120 The end of the liquid inlet groove 120 refers to the starting or ending face of the extending direction of the liquid inlet groove 120 . It can be understood that the side walls of the liquid inlet groove 120 are connected to both ends of the liquid inlet groove 120 .
  • the left and right sides of the liquid inlet groove 120 are the ends of the liquid inlet groove 120
  • the front and rear vertical surfaces of the liquid inlet groove 120 are the side walls of the liquid inlet groove 120
  • the surface of the liquid inlet groove 120 parallel to the upper surface of the chip body 100 is the bottom surface of the liquid inlet groove 120 .
  • the structure of the liquid outlet groove 140 may refer to the structure of the liquid inlet groove 120 , which is not repeated here.
  • the side walls of the liquid inlet groove 120 and the liquid outlet groove 140 close to each other refer to the side wall of the liquid inlet groove 120 close to the liquid outlet groove 140 and the side wall of the liquid outlet groove 140 close to the liquid inlet groove 120 .
  • the liquid inlet groove 120 and the liquid outlet groove 140 may be first grooves formed in the chip body 100 .
  • One end of the liquid outlet groove 140 communicates with the sample outlet 150 .
  • the sample solution flows in from the sample inlet 110 , and flows to the sample outlet 150 through the liquid inlet groove 120 , the screening array 130 and the liquid outlet groove 140 in sequence.
  • the screening array 130 is used for the retention and capture of target cells, and may include multiple screening units. 2 and 3, in this embodiment, the screening array 130 includes seven screening units. The plurality of screening units in the screening array 130 are distributed at intervals along the extending direction of the liquid inlet groove 120 , that is, the screening units are not communicated with each other. In a possible example, the screening unit is a second groove formed on the chip body 100 , and every two adjacent screening units are separated by the chip body 100 .
  • Each screening unit includes an accommodating cavity 131 and a screening channel 132 communicating with the accommodating cavity 131 .
  • the liquid inlet groove 120 , the accommodating cavity 131 , the screening channel 132 and the liquid outlet groove 140 are communicated in sequence. That is, the liquid inlet groove 120 is communicated with the inlet end of the accommodating cavity 131, the outlet end of the accommodating cavity 131 is communicated with the inlet end of the screening channel 132, the outlet end of the screening channel 132 is communicated with the liquid outlet groove 140, and the inlet end of the screening channel 132 is communicated with the liquid outlet groove 140.
  • the liquid groove 120 , the accommodating cavity 131 , the screening channel 132 and the liquid outlet groove 140 form a channel for the sample solution to flow, so that the sample solution flows through the cell screening chip.
  • the included angle between the diversion direction of the accommodating cavity 131 and the diversion direction of the liquid inlet groove 120 is an acute angle
  • the diversion direction of the accommodating cavity 131 is related to the shape of the accommodating cavity 131 .
  • the direction of the arrow as shown in Figure 5 is the diversion direction in the cell screening chip
  • a is an acute angle, for example, the angle of a is 45°.
  • This arrangement can make the sample solution in the liquid inlet groove 120 smoothly flow into the accommodating cavity 131 in the screening unit, reduce the vortex and backflow in the sample solution, thereby reducing the impact on the target cells and the deformation and extrusion in the screening unit.
  • channel 132 The target cells are trapped in the accommodating cavity 131, and the non-target cells with smaller diameters can flow out through the screening channel 132, thereby improving the capture rate of the target cells.
  • the cover 180 may be located above the chip body 100 , or may be located under the chip body 100 . Specifically, the cover 180 is covered on the chip body 100 , and the bottom surface of the cover 180 is abutted with the upper surface of the chip body 100 .
  • the target cells are prevented from overflowing from the gap between the two surfaces to the area used for target cell screening in the chip body 100 , thereby improving the retention rate of target cells, thereby improving the detection accuracy of the cell screening chip.
  • the cell screening chip can be a microfluidic chip, and its material can be polymethyl methacrylate (PMMA for short), polycarbonate (PC for short), polystyrene (PS for short) or glass Wait. That is, the material of the chip body 100 may be PMMA, PC, PS or glass.
  • the cover 180 may be a flat plate structure to facilitate the processing and molding of the cover 180 .
  • the size of the bottom surface of the cover 180 may be consistent with the size of the upper surface of the chip body 100 . As shown in FIG. 1 , the cover 180 covers the entire upper surface of the chip body 100 .
  • the size of the bottom surface of the cover 180 may also be smaller than the size of the upper surface of the chip body 100 , and the cover 180 covers part of the upper surface of the chip body 100 . That is, the functional area of the chip body 100 is covered to reduce the volume of the cover 180 .
  • the cover 180 can also adopt other existing structures.
  • the cover 180 can be injection-molded, and the cover 180 and the chip body 100 are connected by bonding, such as thermal bonding, adhesive bonding, and ultrasonic bonding.
  • the cover 180 may also be a film layer formed on the chip body 100 by a film sticking process.
  • the cover 180 may also be integrally formed with the chip body 100 , for example, the cover 180 and the chip body 100 are integrally formed by 3D printing.
  • the connection method between the cover 180 and the chip body 100 may also adopt other existing methods, which will not be repeated here.
  • the chip body 100 can also be injection molded.
  • a mold for the chip body 100 needs to be fabricated first, and the mold can be formed by electroforming, machining, or etching.
  • the above-mentioned chip body 100 may also be manufactured by using other micro-manufacturing techniques such as laser etching molding, photolithography molding, and the like.
  • the flow guiding direction of the accommodating cavity 131 and the flow guiding direction of the screening channel 132 may be parallel or coincident. This setting prevents the sample solution from turning in the screening unit and reduces the flow loss of the sample solution.
  • the direction of flow of the accommodating cavity 131 coincides with the direction of flow of the screening channel 132 .
  • the diversion directions in each screening unit are parallel to each other. In this way, the flow direction of each screening unit in the screening array 130 is consistent, so as to improve the uniformity of the flow of the sample solution in the screening array 130 .
  • the width L1 of the accommodating cavity 131 is larger than the diameter of the target cell, and the width L2 of the screening channel 132 is smaller than the diameter of the target cell. Since multiple cells in a target cell have different sizes, the diameter of the target cell is usually a range of values. In this embodiment and the following embodiments, the diameter of the target cell refers to the minimum value of the diameter range of the target cell, that is, the diameter value of the smallest cell in the target cell. For example, when the target cells are circulating tumor cells, the diameter of the target cells is about 10-20 ⁇ m, and the width of the screening channel 132 is less than 10 ⁇ m, which may be 8 ⁇ m.
  • the width of the accommodating cavity 131 is greater than 10 ⁇ m, and may be 20 ⁇ m. In this way, the target cells cannot pass through the screening channel 132 , so that the target cells are trapped in the accommodating cavity 131 . Non-target cells with a diameter smaller than the screening channel 132 can flow out from the screening channel 132 , so that the target cells are separated from the sample solution and trapped in the accommodating cavity 131 . Preferably, each accommodating cavity 131 captures and traps a single target cell.
  • the accommodating cavity 131 may be an accommodating groove formed in the chip body 100 , and the opening of the accommodating groove faces the cover 180 .
  • the width of the accommodating cavity 131 refers to the distance between two opposite side walls of the accommodating groove, and is the length of L1 as shown in FIG. 3 .
  • the screening channel 132 may be a guide groove or a guide hole formed in the chip body 100 . When the screening channel 132 is a guide groove, the opening of the guide groove faces the cover 180 , and the width of the screening channel 132 is the distance between two opposite side walls of the guide groove, as shown in FIG. 3 , the length of L2 .
  • the accommodating cavity 131 and the screening channel 132 form a stepped surface facing the liquid inlet groove 120 .
  • a circular arc transition may be adopted between the stepped surface and the two side walls of the accommodating cavity 131 and the two side walls of the screening channel 132 to reduce the flow resistance of the sample solution.
  • the widths of the plurality of accommodating cavities 131 in the screening array 130 may be the same or not.
  • the accommodating cavities 131 with different widths can capture target cells with different diameters.
  • the accommodating cavity 131 located in the middle of the screening array 130 is greater than the width of the accommodating cavity 131 located at the two ends of the screening array 130 .
  • the widths of the other accommodating cavities 131 may be the same, which is an intermediate value of the widths of the two accommodating cavities 131 . In this way, the width of the accommodating cavity 131 located in the middle of the screening array 130 is relatively large, which is convenient for the target cells to enter, thereby preventing the target cells from accumulating in the accommodating cavity 131 at the end of the screening array 130, and improving the accommodating cavity 131 in the middle of the screening array 130. utilization rate.
  • the width of the accommodating cavity 131 gradually decreases along the direction from the middle to the end of the screening array 130 .
  • the widths of the accommodating cavities 131 gradually increase along the flow direction of the liquid inlet groove 120 .
  • the closer to the middle of the screening array 130 the larger the width of the accommodating cavity 131, which facilitates the transition of the target cells, thereby preventing the target cells from accumulating in the accommodating cavity 131 at the end of the screening array 130, and improving the accommodating cavity in the middle. 131 utilization.
  • the cross-sectional shape of the accommodating cavity 131 can be trapezoid, quadrilateral, U-shaped, parabolic or semicircular, and the specific shape of the accommodating cavity 131 is not limited herein.
  • the shapes of the accommodating cavities 131 may be the same or different.
  • the width of the outlet end of the accommodating cavity 131 is smaller than or equal to the width of the inlet end of the accommodating cavity 131, and is larger than the diameter of the target cells, for capturing and trapping the target cells.
  • the length of the screening unit increases as the degree of the included angle a between the flow guiding direction of the accommodating cavity 131 and the flow guiding direction of the liquid inlet groove 120 decreases. That is, the flow channel through which the sample solution flows between the liquid inlet groove 120 and the liquid outlet groove 140 becomes longer.
  • the length of the accommodating cavity 131 may be increased, thereby reducing the length of the screening channel 132 .
  • a buffer groove 133 is formed at the outlet end of the screening channel 132 , that is, the screening channel 132 communicates with the buffer groove 133 .
  • the buffer groove 133 and the screening channel 132 are projected on a plane perpendicular to the diversion direction of the screening channel 132 , and the projected area of the orthographic projection of the buffer groove 133 is larger than that of the screening channel 132 . In this way, the length of the screening channel 132 can be shortened, the accumulation of non-target cells in the screening channel 132 can be avoided, and the smoothness of the screening channel 132 can be maintained.
  • the buffer tank 133 can reduce or avoid the above-mentioned backflushing phenomenon, thereby avoiding accumulation of non-target cells in the screening channel 132 .
  • the centerline of the buffer tank 133 coincides with the centerline of the screening channel 132, so as to improve the uniformity of the flow of the sample solution in the screening unit.
  • a buffer groove 133 is formed at the outlet end of each screening channel 132 , the opening of the buffer groove 133 faces the liquid outlet groove 140 , and the buffer groove 133 is roughly shaped like a Mitsubishi column, as indicated by the dotted line in FIG. 7 .
  • the plane formed by removing the sharp corners of the left side wall of the screening channel 132 is a part of the bottom of the buffer groove 133 .
  • the buffer groove 133 may also be a quadrangular prism or a semi-cylindrical shape, and the specific shape of the buffer groove 133 is not limited herein.
  • One side of the quadrangular prismatic buffer groove 133 communicates with the outlet end of the screening channel 132
  • the arc surface of the semi-cylindrical buffer groove 133 communicates with the outlet end of the screening channel 132 .
  • At least one of the two sides of the liquid inlet groove 120 is provided with a liquid outlet groove 140, so that a longer screening array 130 can be arranged between the liquid inlet groove 120 and the liquid outlet groove 140, so as to improve the capture of target cells Rate.
  • both sides of the liquid inlet groove 120 are provided with a liquid outlet groove 140 , and screening is provided between the two side walls of the liquid inlet groove 120 and the side walls of the liquid outlet groove 140 close to the liquid inlet groove 120 respectively. array 130 . In this way, the length of the screening array 130 can be further increased, and the screening efficiency of target cells can be improved.
  • the upper and lower sides of the liquid inlet groove 120 are provided with a liquid outlet groove 140 .
  • a screening array 130 is arranged between the lower side walls of the liquid inlet groove 120 and a screening array 130 is arranged between the lower side wall of the liquid inlet groove 120 and the upper side wall of the liquid outlet groove 140 located on the lower side of the liquid inlet groove 120.
  • one end of the liquid outlet groove 140 is communicated with the sample outlet 150 , the other end is closed, and the two liquid outlet grooves 140 are both communicated with the sample outlet 150 . That is, the two liquid outlet grooves 140 converge at the sample outlet 150, and the sample solution after separating the target cells flows out of the cell screening chip through the sample outlet 150.
  • the liquid inlet groove 120 and the liquid outlet groove 140 may both be serpentine, and the liquid inlet groove 120 includes at least two linear channels 121 parallel to each other.
  • the liquid inlet groove 120 includes eight straight channels 121 . In every two adjacent straight channels 121 , the outlet of one straight channel 121 communicates with the inlet of the first arc-shaped channel 122 , and the outlet of the first arc-shaped channel 122 communicates with the inlet of the other straight channel 121 . That is, the straight channel 121 communicates with the first arcuate channel 122 in sequence. In this way, the liquid inlet groove 120 and the liquid outlet groove 140 can be folded to reduce the length of the cell screening chip.
  • the flow direction of the straight channel 121 in the liquid inlet groove 120 may be consistent with the length direction of the cell screening chip. As shown in FIG. 8 , the flow direction of the straight channel 12 is parallel to the length direction of the cell screening chip. The diversion direction of the straight channel 121 in the liquid inlet groove 120 may also be consistent with the width direction of the cell screening chip. The number and flow direction of the straight channels 121 in the liquid inlet groove 120 are arranged according to the needs of the cell screening chip.
  • the first arc-shaped channel 122 in the liquid inlet groove 120 may be a semi-circular arc, connecting two adjacent straight channels 121 for the sample solution to flow through.
  • Part of the screening array 130 may be provided between the liquid inlet groove 120 and the liquid outlet groove 140 , or all of the screening array 130 may be provided.
  • screening arrays 130 are provided on both sides of the straight channel 121 of the liquid inlet groove 120 , and arc guides are provided on both sides of the first arc-shaped channel of the liquid inlet groove 120
  • the flow plate 123 conducts the flow of the sample solution.
  • screening arrays 130 are provided on both sides of the straight channel 121 and the first arc-shaped channel 122 of the liquid inlet channel 120 . In this way, when the sample solution flows through the first arc-shaped channel 122, it turns, and under the action of centrifugation, the target cells gather toward the side of the first arc-shaped channel 122 away from the arc center, and this side captures more target cells.
  • screening arrays 130 are provided on both sides of the first arc-shaped channel 122 of the liquid inlet groove 120 , and linear guides are provided on both sides of the straight channel 121 of the liquid inlet groove 120 Flow plate to capture target cells by centrifugation.
  • Such setting can reduce the processing difficulty of the cell screening chip.
  • the distance between two adjacent accommodating cavities 131 located inside the first arc-shaped channel 122 is the first distance, and between two adjacent accommodating cavities 131 located outside the first arc-shaped channel 122 The distance is the second distance.
  • the first distance is smaller than the second distance and the inlet ends of the accommodating chambers 131 located on both sides of the first arc-shaped channel 122 are staggered.
  • Each accommodating cavity 131 may communicate with two screening channels 132 to improve screening efficiency.
  • the liquid inlet groove 120 and the liquid outlet groove 140 may both be wave-shaped.
  • the liquid inlet channel 120 includes at least two second arc-shaped channels 124 connected in sequence, and a screening array 130 is provided on the side of each second arc-shaped channel 124 . That is to say, no straight channel is provided in the liquid inlet groove 120, and the centrifugal effect can be fully utilized, so that the side of each second arc channel 124 away from the center of each arc captures the target cells and reduces the accumulation of the target cells.
  • the wavy line can be formed by connecting at least two semicircles in sequence.
  • the liquid inlet groove 120 and the liquid outlet groove 140 are both S-shaped.
  • the wavy line shape can also be a sine curve or a cosine curve.
  • both the liquid inlet groove 120 and the liquid outlet groove 140 may be straight. 13 and 14 , along the direction from the middle of the liquid inlet groove 120 to the end of the liquid inlet groove 120 , the width of the liquid inlet groove 120 gradually increases.
  • the left end of a section of liquid inlet groove 120 shown in FIG. 14 is close to the middle of the entire liquid inlet groove 120
  • the right end of a section of liquid inlet groove 120 shown in FIG. 14 is close to the end of the entire liquid inlet groove 120 .
  • the width of the shown section of the liquid inlet groove 120 gradually increases from left to right.
  • the width of the entire liquid inlet groove 120 first decreases, then increases, and then decreases again.
  • the width of the liquid inlet groove 120 changes linearly from the end portion to the middle portion of the liquid inlet groove 120 .
  • the cross-sectional area of the middle of the liquid inlet groove 120 is smaller than that of the end of the liquid inlet groove 120 .
  • the flow velocity in the middle of the liquid inlet groove 120 is greater than the flow velocity at the end, so the side wall pressure in the middle of the liquid inlet groove 120 is greater than the side wall pressure at the end, so that the target cells in the sample solution are urged to enter the screening unit in the middle, and the pressure in the middle is improved.
  • the capture rate of the filter unit In this way, the accumulation of target cells in the screening unit at the end is reduced, the utilization rate of the screening unit in the middle is improved, and the target cells can be dispersed and trapped in multiple screening units in the screening array, so that most of the screening units can be captured. target cells for subsequent identification of target cells.
  • both the liquid inlet groove 120 and the liquid outlet groove 140 are helical, and the liquid inlet groove 120 is fitted with the liquid outlet groove 140 .
  • two sides of the liquid inlet groove 120 may be respectively provided with a liquid outlet groove 140
  • one side of the liquid inlet groove 120 may also be provided with a liquid outlet groove 140 .
  • the liquid outlet groove 140 is located on the side of the liquid inlet groove 120 away from the center of the spiral, that is, the liquid outlet groove 140 is arranged on the outer side of the liquid inlet groove 120 , and the liquid inlet groove 120 is arranged on one side. Screening array 130.
  • the target cells flow close to the screening array 130 in the liquid inlet groove 120, and the target cells in the sample solution flow to the screening array 130 under the action of centrifugal force, thereby improving the The capture rate of the screening array 130.
  • the accumulation of target cells in some of the screening units of the screening array 130 can be avoided, while there are no target cells in other part of the screening units, and this setting can improve the utilization rate of the screening array 130 .
  • the chip body 100 shown in FIG. 2 is provided with a sample inlet 110, the sample inlet 110 communicates with the liquid inlet groove 120, and the sample solution flowing into the liquid inlet groove 120 is a diluted blood sample. That is, the blood sample and the diluent need to be fully mixed before entering the liquid inlet groove 120 from the sample inlet 110 to separate the target cells.
  • the chip body 100 may also be provided with a first injection port 111 and a second injection port 112 at the same time, that is, the chip body 100 adopts dual injection ports.
  • the injection port 110 may include a first injection port 111 and a second injection port 112 .
  • the first injection port 110 may be used for blood injection, or other liquid injections such as fixative liquid, dyeing solution, etc., that is, the first injection port 110 is a multi-purpose port.
  • the second injection port 112 is used for diluent injection, that is, the second injection port 110 is a dedicated port.
  • the first injection port 111 and the second injection port 112 are respectively communicated with the liquid inlet groove 120 , and the blood sample entered through the first injection port 111 and the diluent entered through the second injection port 112 are in the liquid inlet groove 120 Mix while flowing.
  • the flow rate of the blood sample and the diluent By controlling the flow rate of the blood sample and the diluent, the dilution ratio of the blood sample is controlled, and the required sample solution is formed in the liquid inlet groove 120 . This setting eliminates the need to dilute the blood sample in advance, shortens the detection time of target cells, and improves detection efficiency.
  • the sample inlet 110 may also include a first sample inlet 111 and a second sample inlet 111. Two injection ports 112 .
  • the first sample inlet 111 and the second liquid sample inlet 112 are respectively communicated with the liquid inlet groove 120 .
  • the first sample inlet 111 is arranged on the side of the liquid inlet groove 120 close to the screening array 130
  • the second sample inlet 112 is arranged on the side of the liquid inlet groove 120 away from the screening array 130 .
  • the blood sample is close to the screening array 130, and the diluent is far away from the screening array 130.
  • the blood sample interacts with the diluent, and the diluent squeezes the blood sample into the screening array 130 to facilitate the screening array 130 to capture the target cells in the blood sample.
  • a liquid inlet connection pipe 160 may also be provided, and the liquid inlet connection pipe 160 is used for flow splitting, so that the sample inlet 110 can be connected to a plurality of liquid inlet grooves 120 .
  • the flow rate of the sample solution in the chip body 100 can be increased, thereby shortening the detection time;
  • the liquid inlet connection pipeline 160 includes at least two stages of liquid inlet split pipes arranged in sequence, and each stage of the liquid inlet split pipeline includes at least two liquid inlet split pipes 161 arranged in parallel. .
  • Each liquid inlet split pipe 161 located in the upper stage is communicated with at least two liquid inlet split pipes 161 located in the next stage, and the first-level liquid inlet split pipe close to the injection port 110 is communicated with the injection port 110, and is adjacent to the injection port 110.
  • the first-stage liquid inlet branch pipes of the liquid groove 120 are respectively communicated with the liquid inlet groove 120 .
  • the upper stage refers to the first stage in the adjacent two-stage liquid inlet split pipelines that is close to the injection port 110 , that is, the first stage located upstream along the flow direction.
  • the next stage refers to the stage close to the liquid inlet groove 120 in the adjacent two-stage liquid inlet split pipes, that is, the stage located downstream along the flow direction of the sample solution.
  • the liquid inlet connection pipe 160 includes a two-stage liquid inlet branch pipe.
  • the two-stage liquid inlet and branch pipes are respectively defined as a first-stage liquid inflow branch pipe 162 and a second-stage liquid inflow branch pipe 163 .
  • the first-stage liquid inlet and branch pipes 162 are located on the left side as shown in FIG. 19 , and are the upper stage of the two-stage liquid inlet and branch pipes.
  • the second-stage liquid inlet branch pipe 163 is located on the right side as shown in FIG. 19 , and is the next stage in the two-stage liquid inlet branch pipe.
  • the first-stage liquid inlet splitting pipeline 162 includes two liquid inlet splitting pipelines 161 arranged in parallel.
  • the inlet ends of the two liquid inlet splitting pipelines 161 are communicated with each other, and both are communicated with the injection port 110 .
  • the outlet ends of the two liquid inlet branch pipes 161 are not connected.
  • the second-stage liquid inlet shunt pipeline 163 includes four liquid inlet shunt pipelines 161 arranged in parallel, which can be divided into two groups.
  • One group includes two liquid inlet split pipes 161 located at the top as shown in FIG. 19 .
  • the inlet ends of these two liquid inlet split pipes 161 are connected to the two liquid inlet split pipes 161 of the first-stage liquid inlet split pipe 162 .
  • the outlet end of one of them is connected.
  • the other group includes two liquid inlet split pipes 161 located below as shown in FIG. 19 , the inlet ends of these two liquid inlet split pipes 161 are communicated with the two liquid inlet split pipes 161 of the first stage liquid inlet split pipe 162 .
  • the outlet port of the other one is connected.
  • the outlet ends of the four liquid inlet branch pipes 161 of the second stage are respectively communicated with one liquid inlet groove 120 .
  • Each liquid inlet branch pipe 161 located in the upper stage communicates with two liquid inlet branch pipes 161 located in the next stage.
  • the cross-sectional area of the liquid inlet branch pipe 161 located at the next stage is half of the cross-sectional area of the liquid inlet branch pipe 161 located at the previous stage.
  • the liquid inlet connection pipe 160 includes a three-stage liquid inlet branch pipe.
  • the first-stage liquid inlet splitting pipeline near the sample inlet 110 includes two liquid inlet splitting pipelines 161 arranged in parallel. The outlet ends of the two liquid inlet branch pipes 161 are not connected.
  • the first-stage liquid inlet splitting pipeline located in the middle includes four liquid inlet splitting pipelines 161 arranged in parallel, and the inlet ends of the two liquid inlet splitting pipelines 161 located at the top as shown in FIG.
  • the outlet ends of an inlet liquid splitting pipe 161 are communicated with each other.
  • the inlet ends of the two liquid inlet split pipes 161 located at the bottom shown in FIG. 20 are communicated with the outlet end of another liquid inlet split pipe 161 close to the injection port 110.
  • the four liquid inlet split pipes 161 The outlet port is not connected.
  • the first-stage liquid inlet branch pipes close to the liquid inlet groove 120 include eight liquid inlet branch pipes 161 arranged in parallel.
  • the eight liquid inlet shunt pipes 161 are divided into four groups with two adjacent ones as a group.
  • the inlet ends of the two liquid inlet shunt pipes 161 in each group are communicated with each other in the middle stage.
  • the outlet end of the liquid branch pipe 161 is communicated.
  • the outlet ends of the eight liquid inlet branch pipes 161 communicate with the liquid inlet grooves 120, respectively.
  • the cross-sectional area of the liquid inlet shunt pipeline located in the next stage is the same as that of the liquid inlet shunt pipeline located in the upper stage. half of the cross-sectional area.
  • a liquid outlet connection pipe 170 may also be provided between the liquid outlet groove 140 and the sample outlet 150 .
  • the liquid outlet connecting pipe 170 is used for confluence, and the sample solutions of the plurality of liquid outlet grooves 140 are collected to the sample outlet 150 .
  • the liquid outlet connection pipeline 170 includes at least two stages of liquid outlet branch pipes arranged in sequence.
  • Each level of liquid outlet branch pipes includes at least two liquid outlet branch pipes 171 arranged in parallel, and each liquid outlet branch pipe 171 in the upper stage communicates with at least two liquid outlet branch pipes 171 in the next stage.
  • the first-stage liquid outlet shunt pipeline close to the sample outlet 150 is communicated with the sample outlet 150 , and the first-stage liquid outlet shunt pipelines adjacent to the liquid outlet groove 140 are respectively communicated with the liquid outlet groove 140 .
  • the liquid outlet connecting pipe 170 reference may be made to FIG. 19 and FIG. 20 and the structure of the liquid inlet connecting pipe 160, which will not be repeated here.
  • the chip body 100 may only be provided with the liquid inlet connection pipe 160, or only the liquid outlet connection pipe 170 may be provided, or both the liquid inlet connection pipe 160 and the liquid outlet connection pipe 170 may be provided.
  • the number of stages of the liquid inlet connection pipeline 160 and the stage number of the liquid outlet connection pipeline 170 may be the same or different.
  • the liquid inlet connection pipe 160 includes two stages
  • the liquid outlet connection pipe 170 includes four stages.
  • the chip body 100 includes a liquid inlet groove 120 , a liquid outlet groove 140 and a screening array 130 , and the screening array 130 is located between the liquid inlet groove 120 and the liquid outlet groove 140 .
  • the screening array 130 includes a plurality of screening units, each screening unit includes a accommodating cavity 131 and a screening channel 132 , and the liquid inlet groove 120 , the accommodating cavity 131 , the screening channel 132 and the liquid outlet groove 140 are connected in sequence.
  • the sample solution containing the target cells flows from the liquid inlet groove 120 into the accommodating cavity 131 and the screening channel 132 in sequence, and flows out from the liquid outlet groove 140 .
  • the width of the accommodating cavity 131 is larger than the diameter of the target cells
  • the width of the screening channel 132 is smaller than the diameter of the target cells, and the target cells cannot pass through the screening channel 132 and are trapped in the accommodating cavity 131 .
  • the non-target cells whose diameter is smaller than the width of the screening channel 132 flow out from the screening channel 132 to realize the separation of target cells and non-target cells.
  • the included angle between the diversion direction of the accommodating cavity 131 and the diversion direction of the liquid inlet groove 120 is an acute angle, so that the sample solution in the liquid feeding groove 120 flows smoothly into the accommodating cavity In step 131, the vortex and backflow in the sample solution are reduced, thereby reducing the impact of the target cells and the deformation and extrusion of the screening channel 132, thereby increasing the retention rate of the target cells, thereby increasing the capture rate of the target cells.
  • an embodiment of the present disclosure provides a cell screening system for isolating and identifying target cells.
  • the cell screening system includes the above-mentioned cell screening chip 10 , a sample injection pump 20 and a waste liquid collection device 70 .
  • the sample inlet of the cell selection chip 10 is connected to the sample pump 20 , and the sample outlet is connected to the waste liquid collection device 70 .
  • the sampling pump 20 is used for pumping the sample solution
  • the cell screening chip 10 is used for capturing the target cells, so as to separate the target cells from the sample solution
  • the waste liquid collecting device 70 is used for collecting the waste liquid flowing out from the cell screening chip 10. liquid.
  • the sampling pump 20 includes a sample solution pump 22 that pumps the sample solution into the cell screening chip 10 .
  • the sample solution pump 22 includes a blood sample pump and a diluent pump, and the diluent can be Phosphate Buffer Saline (PBS for short).
  • PBS Phosphate Buffer Saline
  • the blood sample and the diluent are mixed into the cell screening chip 10 through the structure of the double injection port, which reduces the time required for detection.
  • the sample solution pump 22 pumps the diluted blood sample.
  • the sampling pump 20 may further include one or more of a surface treatment liquid pump 21 , a buffer liquid pump 23 , a fixative liquid pump 24 , and a staining liquid pump 25 .
  • the sampling pump 20 includes a treatment liquid pump 21 , a sample solution pump 22 , a buffer pump 23 , a fixative liquid pump 24 , and a staining liquid pump 25 , which respectively pump different liquids into the cell screening chip 10 .
  • a reversing valve 30 is disposed between the sampling pump 20 and the cell screening chip 10 . That is, the output end of the sampling pump 20 is connected to one end of the reversing valve 30, and the other end of the reversing valve 30 is connected to the injection port of the cell screening chip 10, and the liquid in each pump is allowed to enter the cells in a certain order through the reversing valve 30. Screening chip 10.
  • the surface treatment liquid may be polyvinyl pyrrolidone (Polyvinyl Pyrrolidone, PVP for short), which is used to reduce the flow resistance of the sample solution.
  • the buffer can be the same as the diluent, also PBS.
  • the fixative solution can be a solution containing 4% paraformaldehyde (Paraformaldehyde, PFA for short), which is used for stereotyping the target cells.
  • the fixative solution can reduce the elasticity of the cells, the cells after the action of the fixative solution are not easily deformed, and various structures in the cells are also fixed to realize the stereotype of the cells themselves.
  • the staining solution can be a fluorescent stain for staining the target cells for easy identification, for example, when the target cells are circulating tumor cells
  • the fluorescent stain can include CD45, 4',6- difluorescein with a fluorescein Amidino-2-phenylindole (4',6-diamidino-2-phenylindole, referred to as DAPI) and epithelial cell adhesion molecule with another fluorescein (Epithelial Cell Adhesion Molecule, referred to as EpCAM), of which, CD 45 is used to label leukocytes, EpCAM is used to label circulating tumor cells, and DAPI is used to label nuclei, and target cells can be further identified by staining different cells.
  • the cell screening system further includes a light source 40 , an image acquisition device 50 and a data processing device 60 .
  • the light source 40 is used to illuminate the cell screening chip 10 when the image acquisition device 50 is working, and the light source 40 may be an LED lamp, or an incandescent lamp or a neon lamp, etc., to provide background light.
  • the light source 40 and the image acquisition device 50 may be located on the same side of the cell screening chip 10 , or may be positioned on two sides of the cell screening chip 10 respectively.
  • the light source 40 is located on the lower side of the cell screening chip 10
  • the image acquisition device 50 is located on the upper side of the cell screening chip 10 .
  • the image acquisition device 50 is signal-connected with the data processing device 60 , and is used for acquiring the image of the cell screening chip 10 and transmitting it to the data processing device 60 .
  • the image acquisition device 50 may be a charge-coupled device (Charge-coupled Device, CCD for short), and the data processing device 60 may be a computer for identifying the number of target cells.
  • CCD Charge-coupled Device
  • the cell screening system may further include a stage 80 for placing the cell screening chip 10 .
  • the stage 80 can be a conveyor belt, so that the cell screening chip 10 moves relative to the image acquisition device 50 at a certain speed, so as to ensure that the image acquisition device 50 can acquire an image of the entire cell screening chip 10 .
  • the cell screening system includes a sample injection pump 20 , a waste liquid collection device 70 and the cell screening chip 10 described above.
  • the sample inlet of the cell selection chip 10 is connected to the sample injection pump 20
  • the sample outlet of the cell selection chip 10 is connected to the waste liquid collection device 70 .
  • the cell screening system includes the above-mentioned cell screening chip, and thus has the advantage of high capture rate of target cells. The specific effect can be referred to above, and will not be repeated here.
  • an embodiment of the present disclosure provides a cell screening method, which is applicable to the above-mentioned cell screening system for separating and identifying target cells, and the cell screening method includes:
  • the cell screening chip 10 is sequentially injected with a surface treatment solution and a dilution solution for pretreatment.
  • the surface treatment liquid is pumped into the cell screening chip 10 through the sampling pump 20 and flows out from the waste liquid collection device 70 to perform surface treatment on the functional area of the cell screening chip 10 for capturing target cells.
  • the surface treatment liquid can be PVP.
  • the diluent is then pumped into the cell screening chip 10 through the sampling pump 20, the surface treatment liquid is rinsed, and the cell screening chip 10 is filled with air bubbles, and the diluent can be PBS.
  • the diluted blood sample can be pumped into the cell screening chip 10 through the sample injection pump 20 , that is, the mixed sample solution is pumped into the cell selection chip 10 , or the sample solution can be pumped separately through the sample injection pump 20 .
  • the blood sample and the diluent are mixed into the cell screening chip 10 to form a sample solution.
  • the cell screening chip 10 is used to separate the target cells from the sample solution, the non-target cells with a smaller size flow out of the cell screening chip 10, and the target cells with a larger size are captured and retained by the cell screening chip 10, thereby separating the target cells from the non-target cells. Cell isolation.
  • the cell screening chip 10 is the cell screening chip 10 described above, and the capture rate of target cells is high.
  • the diluent is pumped into the cell selection chip 10 through the sample injection pump 20 to clean the cell selection chip 10;
  • the fixative can be PFA; the diluent is pumped into the cell screening chip 10 by the sampling pump 20, the cell screening chip 10 is cleaned again, and the fixative is washed away; the dyeing solution is pumped into the cells by the sampling pump 20 In the screening chip 10, the target cells are marked to further distinguish the cell types in the cell screening chip 10, and the staining solution may be a fluorescent dye.
  • the sample solution contains circulating tumor cells, red blood cells, platelets and white blood cells.
  • the diameter of circulating tumor cells is about 10-20 ⁇ m
  • the diameter of red blood cells is about 6-9 ⁇ m
  • the diameter of platelets is about 1-4 ⁇ m
  • the diameter of white blood cells is about 7-20 ⁇ m.
  • the cell screening chip 10 will capture circulating tumor cells and some leukocytes.
  • the two kinds of cells can be marked with different fluorescent colors by the staining solution, so as to facilitate the identification of circulating tumor cells.
  • the sample injection pump 20 pumps the diluent into the cell screening chip 10 , cleans the cell screening chip 10 again, and rinses the staining solution to facilitate the subsequent collection of fluorescence images of the cell screening chip 10 .
  • the image acquisition device 50 acquires an image of the cell screening chip 10 , and transmits the image to the data processing device 60 , and the data processing device 60 identifies the target cells.
  • the light source 40 when the image acquisition device 50 acquires the fluorescent image of the cell screening chip 10, the light source 40 is turned on, providing background light for the cell screening chip 10, and filling light for the image acquisition device 50, so that the image acquisition device 50 can capture clearer images.
  • the image acquisition device 50 is signal-connected to the data processing device 60, and transmits the image to the data processing device 60, and the data processing device 60 identifies the number of target cells.
  • the cell screening chip 10 is sequentially injected with the surface treatment liquid and the diluent for pretreatment, and then the sample solution is injected, and the target cells in the sample solution are captured by the cell screening chip 10 . Since the cell screening method is a method corresponding to the above-mentioned cell screening system, it can improve the capture rate of target cells, which is not repeated here. At the same time, the fixative solution is used to finalize the target cells, and the staining solution is used to stain and identify the target cells to distinguish them from non-target cells, which is convenient for the identification of the target cells.
  • references to the terms “one embodiment,” “some embodiments,” “illustrative embodiments,” “examples,” “specific examples,” or “some examples” and the like are meant to incorporate embodiments A particular feature, structure, material, or characteristic described or exemplified is included in at least one embodiment or example of the present disclosure.
  • schematic representations of the above terms do not necessarily refer to the same embodiment or example.
  • the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Clinical Laboratory Science (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本公开提供一种细胞筛选芯片、细胞筛选系统及其方法,涉及生物检测技术领域,用于解决目标细胞的捕捉率低的技术问题。该细胞筛选芯片的芯片本体设有进液沟槽和出液沟槽,且沿进液沟槽的导流方向,进液沟槽的末端封闭,进液沟槽和出液沟槽彼此靠近的侧壁之间形成有筛选阵列;筛选阵列的每个筛选单元包括容置腔和与容置腔连通的筛选通道,容置腔与进液沟槽连通,筛选通道与出液沟槽连通;目标细胞的直径大于筛选通道的宽度且小于容置腔的宽度;容置腔的导流方向与进液沟槽的导流方向之间的夹角为锐角,进液沟槽中的样品溶液平稳流入容置腔,减少样品溶液的漩涡与回流,减少目标细胞受到冲击而形变挤出筛选通道的概率,提高目标细胞的捕捉率。

Description

细胞筛选芯片、细胞筛选系统及其方法
本申请要求于2020年10月29日提交中国专利局、申请号为202011182425.0、申请名称为“细胞筛选芯片、细胞筛选系统及其方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及生物检测技术领域,尤其涉及一种细胞筛选芯片、细胞筛选系统及其方法。
背景技术
在生物检测领域,常需要将目标细胞进行分离,以便于对目标细胞进行进一步的观测或者检验,例如,对循环肿瘤细胞的分离与检测。循环肿瘤细胞(Circulating Tumor Cell,简称CTC)是一种来自原发肿瘤并进入血液循环系统中的肿瘤细胞,这类细胞可以通过血液循环系统发展成为转移灶,进而繁殖形成继发性肿瘤,因此,及时分离并检查出这类细胞对于监控肿瘤的治疗与复发有重要意义。
对于目标细胞的筛选主要有两种方法,一种为免疫亲和捕捉法,利用目标细胞的特异性抗原与固定在基底表面或者磁珠上的特异性抗体或者核酸适配体的亲和性,来吸附捕捉目标细胞,从而将目标细胞分离。另一种为物理特性筛选法,利用目标细胞与其他细胞的物理特性的差异来实现目标细胞的分离,例如,设计通道尺寸小于目标细胞直径的微过滤网,将尺寸较大的目标细胞捕捉,尺寸较小的其他细胞随着缓冲液流出,从而将目标细胞分离。
然而,前一种方法由于特异性抗原在不同类型的目标细胞中具有异质性,甚至在一些目标细胞中缺失这种特异性抗原,导致目标细胞的捕捉率低;后一种方法目标细胞随着缓冲液流过微过滤网时容易破裂,导致目标细胞的捕捉率低。
发明内容
鉴于上述问题,本公开的实施例提供一种细胞筛选芯片、细胞筛选系统及其方法,用于提高目标细胞的捕捉率。
为了实现上述目的,本公开的实施例提供如下技术方案:
第一方面,本公开的实施例提供一种细胞筛选芯片,包括芯片本体,所述芯片本体设置有进液沟槽和出液沟槽,沿所述进液沟槽的导流方向,所述进液沟槽的末端封闭,所述进液沟槽和所述出液沟槽彼此靠近对方的侧壁之间形成有筛选阵列;所述筛选阵列包括多个筛选单元,每个筛选单元包括容置腔和筛选通道,所述容置腔的入口端与所述进液沟槽连通,所述容置腔的出口端与所述筛选通道的入口端连通,所述筛选通道的出口端与所述出液沟槽连通;且所述容置腔的宽度大于所述目标细胞的直径,所述筛选通道的宽度小 于所述目标细胞的直径;每个所述筛选单元中,所述容置腔的导流方向与所述进液沟槽的导流方向之间的夹角为锐角。
本公开实施例提供的细胞筛选芯片具有如下优点:
本公开实施例提供的细胞筛选芯片中,芯片本体设置有进液沟槽和出液沟槽,沿进液沟槽的导流方向,进液沟槽的末端封闭。进液沟槽与出液沟槽彼此靠近的侧壁之间设置有筛选阵列,即筛选阵列位于进液沟槽的侧面。筛选阵列包括多个筛选单元,每个筛选单元包括容置腔和筛选通道,进液沟槽、容置腔、筛选通道和出液沟槽依次连通,含有目标细胞的样品溶液由进液沟槽依次流入容置腔、筛选通道,并由出液沟槽流出。由于容置腔的宽度大于目标细胞的直径,筛选通道的宽度小于目标细胞的直径,目标细胞无法通过筛选通道而被截留在容置腔中,直径小于筛选通道的宽度的非目标细胞由筛选通道流出,实现目标细胞与非目标细胞的分离。同时,由于在每个筛选单元中,容置腔的导流方向与进液沟槽的导流方向之间的夹角为锐角,使得进液沟槽中的样品溶液平稳流入容置腔中,减少样品溶液中的漩涡与回流,从而减少目标细胞受到冲击而形变挤出筛选通道,提高了目标细胞的截留率,进而提高了目标细胞的捕捉率。
第二方面,本公开的实施例还提供一种细胞筛选系统,包括进样泵、废液收集装置以及如上所述的细胞筛选芯片,所述细胞筛选芯片的进样口与所述进样泵连接,所述细胞筛选芯片的出样口与所述废液收集装置连接。
本公开的实施例提供的细胞筛选系统包括上述细胞筛选芯片,因而也具备目标细胞的捕捉率高的优点,具体效果参照上文,在此不再赘述。
第三方面,本公开的实施例还提供一种细胞筛选方法,采用上述细胞筛选系统,所述细胞筛选方法包括:
对细胞筛选芯片依次注入表面处理液和缓冲液进行预处理;将含有目标细胞的样品溶液注入细胞筛选芯片,所述细胞筛选芯片捕捉所述目标细胞;对所述细胞筛选芯片依次注入缓冲液、固定液、缓冲液、染色液及缓冲液,所述缓冲液对所述细胞筛选芯片进行清洗,所述固定液将所述目标细胞定型在所述细胞筛选芯片中,所述染色液将所述目标细胞进行染色标记;图像采集装置采集所述细胞筛选芯片的图像,并将所述图像传输至数据处理装置,所述数据处理装置识别所述目标细胞。
本公开的实施例提供的细胞筛选方法具有如下优点:
本公开的实施例中,对细胞筛选芯片进行预处理后注入样品溶液,通过细胞筛选芯片对样品溶液中的目标细胞进行捕捉,由于该细胞筛选方法为上述细胞筛选系统所对应的方法,故而可以提高目标细胞的捕捉率,在此不再赘述。同时,利用固定液将目标细胞定型,利用染色液将目标细胞进行染色识别,以和非目标细胞进行区分,便于目标细胞的识别。
附图说明
为了更清楚地说明本公开的实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根 据这些附图获得其他的附图。
图1为本公开的实施例中的细胞筛选芯片的一种结构示意图;
图2为本公开的实施例中的芯片本体的结构示意图;
图3为图2中A处的局部放大图;
图4为本公开的实施例中的不同宽度的容置腔的分布示意图;
图5为本公开的实施例中的样品溶液在芯片本体中的流动示意图;
图6为本公开的实施例中的细胞筛选芯片的另一种结构示意图;
图7为图6中B处的局部放大图;
图8为本公开的实施例中的进液沟槽的第一种结构示意图;
图9为图8中C处的第一种局部放大图;
图10为图8中C处的第二种局部放大图;
图11为图8中C处的第三种局部放大图;
图12为本公开的实施例中的进液沟槽的第二种结构示意图;
图13为本公开的实施例中的进液沟槽的第三种结构示意图;
图14为图13中的D处的局部放大图;
图15为本公开的实施例中的进液沟槽的第四种结构示意图;
图16为本公开的实施例中的双进样口的第一种结构示意图;
图17为本公开的实施例中的双进样口的第二种结构示意图;
图18为本公开的实施例中的双进样口的第二种结构的局部图;
图19为本公开的实施例中的进液连接管道的一种结构示意图;
图20为本公开的实施例中的进液连接管道的另一种结构示意图;
图21为本公开的实施例中的细胞筛选系统的结构示意图;
图22为本公开的实施例中的细胞筛选方法的流程图。
附图标记说明:
10、细胞筛选芯片;                  100、芯片本体;
110、进样口;                       111、第一进样口;
112、第二进样口;                   120、进液沟槽;
121、直线通道;                     122、第一弧形通道;
123、弧形导流板;                   124、第二弧形通道;
130、筛选阵列;                     131、容置腔;
132、筛选通道;                     133、缓冲槽;
140、出液沟槽;                     150、出样口;
160、进液连接管道;                 161、进液分流管道;
162、第一级进液分流管道;           163、第二级进液分流管道;
170、出液连接管道;                 171、出液分流管道;
180、封盖;                         20、进样泵;
21、表面处理液泵;                  22、样品溶液泵;
23、缓冲液泵;                      24、固定液泵;
25、染色液泵;                      30、换向阀;
40、光源;                          50、图像采集装置;
60、数据处理装置;                  70、废液收集装置;
80、载台;                          L1、容置腔的宽度;
L2、筛选通道的宽度;                a、夹角。
具体实施方式
在相关技术中,细胞筛选芯片包括芯片本体和封盖,芯片本体和封盖封接,芯片本体和封盖之间具有用于筛选目标细胞腔道,然而,细胞筛选芯片存在目标细胞的捕捉率低的技术问题。
为了解决目标细胞的捕捉率低的技术问题,本公开的实施例中的细胞筛选芯片包括芯片本体,芯片本体设置有进液沟槽和设置在进液沟槽侧面的出液沟槽,沿进液沟槽的导流方向,进液沟槽的末端封闭。进液沟槽和出液沟槽之间设置有多个筛选单元,每个筛选单元包括容置腔和筛选通道,进液沟槽、容置腔、筛选通道和出液沟槽依次连通,容置腔的宽度大于目标细胞的直径,筛选通道的宽度小于目标细胞的直径,且容置腔的导流方向与进液沟槽中样品溶液的流动方向之间的夹角为锐角,使进液沟槽中的样品溶液平稳进入容置腔中,减少样品溶液的漩涡与回流,从而减少目标细胞受到冲击而挤出筛选通道,提高目标细胞的捕捉率。
为了使本公开的实施例的上述目的、特征和优点能够更加明显易懂,下面将结合本公开的实施例中的附图,对本公开的实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其它实施例,均属于本公开的保护的范围。
实施例一
为了分离样品溶液中的目标细胞以便于后续观测或者检验,本公开的实施例提供一种细胞筛选芯片,细胞筛选芯片的材质可以为透明材料,用于后续对目标细胞进行识别。参照图1,本公开的实施例中的细胞筛选芯片包括芯片本体100和封盖180,封盖180封盖在芯片本体上,用于密封芯片本体100,避免样品溶液溢出细胞筛选芯片。
芯片本体100设置有进样口110、进液沟槽120、筛选阵列130(如图2中虚线所示)、出液沟槽140以及出样口150。参照图2,进液沟槽120的一端与进样口110连通,进液沟槽120与出液沟槽140的延伸方向相同。例如,图2所示,进液沟槽120与出液沟槽140可以水平方向设置。
沿进液沟槽120的导流方向,进液沟槽120的末端封闭。例如,图2所示的进液沟槽120的左端与进样口110连通,右端封闭。进液沟槽120与出液沟槽140彼此靠近对方的侧壁之间设置有筛选阵列130,且由筛选阵列130连通。
本公开的实施例中及以下各实施例中,进液沟槽120的延伸方向也为进液沟槽120的导流方向,出液沟槽140的延伸方向也为出液沟槽140的导流方向。
本公开的实施例中,进液沟槽120为槽体,进液沟槽120具有开口。进液沟槽120的底面是指进与液沟槽120的开口相对的面,进液沟槽120的侧壁是指与进液沟槽120的延 伸方向相平行的面,进液沟槽120的端部是指进液沟槽120的延伸方向的起始或终止的面。可以理解的是,进液沟槽120的侧壁连接进液沟槽120的两端部。
以图1所示的结构为例,进液沟槽120的左右两面为进液沟槽120的端部,进液沟槽120的前后两个竖直面为进液沟槽120的侧壁,进液沟槽120中与芯片本体100的上表面平行的面为进液沟槽120的底面。出液沟槽140的结构可以参照进液沟槽120的结构,在此不再赘述。
进液沟槽120与出液沟槽140彼此靠近对方的侧壁是指进液沟槽120靠近出液沟槽140的侧壁与出液沟槽140中靠近进液沟槽120的侧壁。
进液沟槽120与出液沟槽140可以为形成于芯片本体100中的第一凹槽。出液沟槽140的一端与出样口150连通。样品溶液由进样口110流入,依次经过进液沟槽120、筛选阵列130及出液沟槽140流至出样口150。
筛选阵列130用于对目标细胞进行截留和捕捉,可以包括多个筛选单元。参照图2和图3,在本实施例中,筛选阵列130包括七个筛选单元。筛选阵列130中的多个筛选单元沿进液沟槽120的延伸方向间隔分布,即各筛选单元之间互不连通。在一种可能的示例中,筛选单元为形成于芯片本体100上的第二凹槽,每两个相邻的筛选单元之间由芯片本体100隔开。
每个筛选单元包括容置腔131和与容置腔131相连通的筛选通道132,进液沟槽120、容置腔131、筛选通道132和出液沟槽140依次连通。也就是说,进液沟槽120与容置腔131的入口端连通,容置腔131的出口端与筛选通道132的入口端连通,筛选通道132的出口端与出液沟槽140连通,进液沟槽120、容置腔131、筛选通道132和出液沟槽140形成供样品溶液流通的通道,使得样品溶液流经细胞筛选芯片。
每个筛选单元中,容置腔131的导流方向与进液沟槽120的导流方向之间的夹角为锐角,容置腔131的导流方向与容置腔131的形状有关。如图5所示的箭头方向为细胞筛选芯片中的导流方向,a为锐角,例如a的角度为45°。如此设置,可以使得进液沟槽120中的样品溶液平稳流入筛选单元中的容置腔131中,减少样品溶液中的漩涡与回流,从而减少目标细胞受到冲击而形变挤出筛选单元中的筛选通道132。目标细胞被截留在容置腔131中,直径较小的非目标细胞可以由筛选通道132流出,提高目标细胞的捕捉率。
上述实施例中,封盖180可以位于芯片本体100之上,也可以位于芯片本体100之下。具体地,封盖180盖合于芯片本体100上,封盖180的底面与芯片本体100的上表面相贴合。避免目标细胞由上述两个表面之间的间隙溢出芯片本体100中用于目标细胞筛选的区域,提高目标细胞的截留率,进而提高细胞筛选芯片检测准确率。
细胞筛选芯片可以为微流控芯片,其材质可以为聚甲基丙烯酸甲酯(Poly methyl methacrylate,简称PMMA)、聚碳酸酯(Polycarbonate,简称PC)、聚苯乙烯(Polystyrene,简称PS)或者玻璃等。即芯片本体100的材质可以为PMMA、PC、PS或者玻璃。
封盖180可以为平板结构,以便于封盖180的加工和成型。封盖180的底面的尺寸可以与芯片本体100的上表面的尺寸相一致。如图1所示,封盖180盖合于芯片本体100的整个上表面。封盖180的底面的尺寸也可以小于芯片本体100的上表面的尺寸,封盖180盖合于芯片本体100的部分上表面。即将芯片本体100的功能区盖合,以减少封盖180的体积。当然,封盖180也可以采用现有的其他结构。
封盖180可以采用注塑成型,封盖180与芯片本体100之间采用键合连接,例如采用热键合、粘接键合、超声波键合。封盖180也可以为芯片本体100上通过贴膜工艺形成的膜层。封盖180还可以与芯片本体100一体成型,例如,封盖180与芯片本体100通过3D打印一体成型。封盖180与芯片本体100的连接方式也可以采用现有的其他方式,在此不再赘述。
芯片本体100也可以采用注塑成型。当芯片本体100采用注塑成型时,需要先制作芯片本体100的模具,该模具可以采用电铸成型、机加工成型或者刻蚀成型。上述芯片本体100还可以采用激光蚀刻成型、光刻成型等其他微型制造技术来制造。
在每个筛选单元中,容置腔131的导流方向与筛选通道132的导流方向可以相平行或者相重合。如此设置,避免样品溶液在筛选单元中发生转弯,减少样品溶液的流动损失。在本实施例中,容置腔131的导流方向与筛选通道132的导流方向重合。如此设置,可以进一步提高样品溶液在筛选单元中流动的均匀性。可选地,各个筛选单元中的导流方向相互平行。如此设置,筛选阵列130中的各筛选单元的导流方向一致,以提高样品溶液在筛选阵列130中的流动的均匀性。
参照图3,在每个筛选单元中,容置腔131的宽度L1大于目标细胞的直径,筛选通道132的宽度L2小于目标细胞的直径。由于目标细胞中的多个细胞具有不同的尺寸,因而目标细胞的直径通常为一范围值。在本实施例以及下面的各实施例中,目标细胞的直径是指目标细胞的直径范围的最小值,即目标细胞中最小的细胞的直径值。例如,当目标细胞为循环肿瘤细胞时,目标细胞的直径约为10-20μm,筛选通道132的宽度小于10μm,可以为8μm。容置腔131的宽度大于10μm,可以为20μm。如此设置,目标细胞无法通过筛选通道132,使得目标细胞被截留在容置腔131中。直径小于筛选通道132的非目标细胞可以从筛选通道132中流出,从而将目标细胞从样品溶液中分离,并截留在容置腔131中。优选的,每个容置腔131中捕捉和截留单个目标细胞。
容置腔131可以为形成在芯片本体100中的容置槽,容置槽的开口朝向封盖180。容置腔131的宽度是指容置槽的相对的两个侧壁之间的距离,如图3所示L1的长度。筛选通道132可以为形成在芯片本体100中的导流槽或导流孔。当筛选通道132为导流槽时,导流槽的开口朝向封盖180,筛选通道132的宽度是指导流槽的相对的两个侧壁之间的距离,如图3所示L2的长度。
由于容置腔131的宽度大于筛选通道132的宽度,容置腔131与筛选通道132会形成朝向进液沟槽120的台阶面。该台阶面与容置腔131的两个侧壁,以及与筛选通道132的两个侧壁之间可以采用圆弧过渡,以降低样品溶液的流动阻力。
筛选阵列130中的多个容置腔131的宽度可以一致,也可以不一致。当筛选阵列130中设置有多种宽度的容置腔131时,不同宽度的容置腔131可以捕捉不同直径的目标细胞。
为了避免多个目标细胞在一个容置腔131中堆积,例如在靠近筛选阵列130的端部的容置腔131中堆积,在一种可能的示例中,位于筛选阵列130中部的容置腔131的宽度大于位于筛选阵列130的两个端部的容置腔131的宽度。其他的容置腔131的宽度可以相同,为这两种容置腔131的宽度的中间值。如此设置,位于筛选阵列130中部的容置腔131的宽度较大,便于目标细胞进入,从而避免目标细胞在筛选阵列130的端部的容置腔131中堆积,提高位于中部的容置腔131的利用率。
在另一种可能的示例中,沿筛选阵列130的中部至端部的方向,容置腔131的宽度逐渐减小。如图4中虚线所示从左端部至中部的五个容置腔131中,沿着进液沟槽120的导流方向,容置腔131的宽度逐渐增大。如此设置,越靠近筛选阵列130中部,容置腔131的宽度越大,越便于目标细胞过渡,从而避免目标细胞在筛选阵列130的端部的容置腔131中堆积,提高中部的容置腔131的利用率。
以平行于芯片本体100上表面的平面为截面,容置腔131的截面形状可以为梯形、四边形、U形、抛物线形或者半圆形,在此不限定容置腔131的具体形状。各个容置腔131的形状可以一致,也可以不同。容置腔131的出口端的宽度小于或者等于容置腔131的入口端的宽度,且大于目标细胞的直径,用于捕捉和截留目标细胞。
随着容置腔131的导流方向与进液沟槽120的导流方向之间的夹角a的度数的减少,筛选单元的长度增加。即进液沟槽120和出液沟槽140之间供样品溶液流经的流道变长。为了避免直径较小的非目标细胞在筛选通道132中堆积而影响样品溶液的流速,在一种可能的示例中,可以增加容置腔131的长度,从而减少筛选通道132的长度。
在另一种可能的示例中,筛选通道132的出口端形成有缓冲槽133,即筛选通道132与缓冲槽133相连通。将缓冲槽133和筛选通道132向垂直于筛选通道132的导流方向的平面上进行投影,缓冲槽133的正投影的投影面积大于筛选通道132的正投影的投影面积。如此设置,可以缩短筛选通道132的长度,避免非目标细胞在筛选通道132中堆积,保持筛选通道132的通畅。此外,由于位于上游的筛选通道132中流出的样品溶液可能会流入位于下游筛选通道132中,与该筛选通道132中流出的样品溶液形成反冲现象,设置缓冲槽133可以减少或者避免上述反冲现象,从而避免非目标细胞在该筛选通道132中堆积。
在一种可能的示例中,缓冲槽133的中心线与筛选通道132的中心线重合,以提高样品溶液在筛选单元中流动的均匀性。参照图6与图7,每个筛选通道132的出口端均形成有一个缓冲槽133,缓冲槽133的开口朝向出液沟槽140,缓冲槽133大致成三菱柱形,如图7中虚线所示,筛选通道132的左侧壁去除端部尖角形成的平面为缓冲槽133的部分槽底。
缓冲槽133也可以为四棱柱形或者半圆柱形,在此不限定缓冲槽133的具体形状。其中,四棱柱形的缓冲槽133的一面与筛选通道132的出口端相连通,半圆柱形的缓冲槽133的圆弧面与筛选通道132的出口端相连通。
进液沟槽120的两侧中至少一侧设置有出液沟槽140,以使得进液沟槽120与出液沟槽140之间可以设置较长的筛选阵列130,提高对目标细胞的捕捉率。例如,进液沟槽120的两侧均设置有一个出液沟槽140,进液沟槽120的两侧壁分别与出液沟槽140中靠近进液沟槽120的侧壁之间设置筛选阵列130。如此设置,可以进一步增加筛选阵列130的长度,提高对目标细胞的筛选效率。
如图2所示的方位,进液沟槽120的上下两侧均设置有一个出液沟槽140,进液沟槽120的上侧壁与位于进液沟槽120上侧的出液沟槽140的下侧壁之间设置有一个筛选阵列130,进液沟槽120的下侧壁与位于进液沟槽120下侧的出液沟槽140的上侧壁之间设置有一个筛选阵列130。
继续参照图2,出液沟槽140的一端与出样口150连通,另一端封闭,两个出液沟槽140均与出样口150连通。也就是说,两个出液沟槽140在出样口150汇聚,分离目标细 胞后的样品溶液由出样口150流出细胞筛选芯片。
在一种可能的示例中,进液沟槽120和出液沟槽140可以均为蛇形,进液沟槽120包括相互平行的至少两个直线通道121。图8所示,本公开的实施例中,进液沟槽120包括八条直线通道121。每相邻的两个直线通道121中,其中一个直线通道121的出口与第一弧形通道122的进口连通,第一弧形通道122的出口与另一个直线通道121的进口连通。也就是说,直线通道121与第一弧形通道122依次连通。如此设置,可以将进液沟槽120与出液沟槽140折叠以减少细胞筛选芯片的长度。
进液沟槽120中的直线通道121的导流方向可以与细胞筛选芯片的长度方向一致。如图8所示,直线通道12的导流方向与细胞筛选芯片的长度方向相平行。进液沟槽120中的直线通道121的导流方向也可以与细胞筛选芯片的宽度方向一致。进液沟槽120中的直线通道121的数量与导流方向根据细胞筛选芯片的使用需要进行排布。
进液沟槽120中的第一弧形通道122可以为半圆弧,将相邻两个直线通道121连通,以供样品溶液流过。进液沟槽120与出液沟槽140之间可以部分设置筛选阵列130,也可以全部设置筛选阵列130。
在一种可能的示例中,如图9所示,进液沟槽120的直线通道121的两侧设置有筛选阵列130,进液沟槽120的第一弧形通道的两侧设置弧形导流板123,对样品溶液进行导流。
在另一种可能的示例中,如图10所示,进液沟槽120的直线通道121与第一弧形通道122的两侧均设置筛选阵列130。如此设置,当样品溶液流经第一弧形通道122时转弯,离心作用下,目标细胞向第一弧形通道122远离弧形中心的一侧聚集,该侧捕捉较多的目标细胞。
在又一种可能的示例中,如图11所示,进液沟槽120的第一弧形通道122的两侧设置筛选阵列130,进液沟槽120的直线通道121的两侧设置直线导流板,利用离心作用捕捉目标细胞。如此设置,可以减少细胞筛选芯片的加工难度。示例性的,位于第一弧形通道122的内侧的相邻两个容置腔131之间距离为第一距离,位于第一弧形通道122的外侧的相邻两个容置腔131之间距离为第二距离。第一距离小于第二距离且位于第一弧形通道122的两侧的容置腔131的入口端相错开。每个容置腔131可以连通两个筛选通道132,以提高筛选效率。
在另一种可能的示例中,进液沟槽120和出液沟槽140可以均为波浪线形。参照图12,进液沟槽120包括依次相连通的至少两个第二弧形通道124,每个第二弧形通道124的侧面设置有筛选阵列130。也就是说,在进液沟槽120中不设置直线通道,可以充分利用离心作用,使得每一个第二弧形通道124中的远离各弧形中心的一侧捕捉目标细胞,减少目标细胞堆积。
波浪线形可以由至少两个半圆形依次连接形成,当波浪线形由两个半圆连接而成时进液沟槽120和出液沟槽140均为S形。波浪线形也可以为正弦曲线或者余弦曲线。
在另一种可能的示例中,进液沟槽120和出液沟槽140可以均为直线形。参照图13与图14,沿进液沟槽120的中部向进液沟槽120的端部方向,进液沟槽120的宽度逐渐增大。图14所示的一段进液沟槽120的左端靠近整个进液沟槽120的中部,图14所示的一段进液沟槽120的右端靠近整个进液沟槽120的端部,图14所示的一段进液沟槽120的 宽度由左至右逐渐增加。
可以理解的是,沿进液沟槽120的导流方向,整个进液沟槽120的宽度先减小后增大然后再减小。例如,从进液沟槽120的端部至中部,进液沟槽120的宽度线性变化。如此设置,以垂直于进液沟槽120的导流方向的平面为截面,进液沟槽120中部的截面积小于进液沟槽120的端部的截面积。进液沟槽120中部的流速大于端部的流速,故而进液沟槽120中部的侧壁压力大于端部的侧壁压力,从而促使样品溶液中的目标细胞进入中部的筛选单元,提高中部的筛选单元的捕捉率。如此设置,减少端部的筛选单元中目标细胞的堆积,提高中部的筛选单元的利用率,目标细胞可以被分散截留在筛选阵列中的多个筛选单元内,进而使得大部分筛选单元均可以捕获目标细胞,以便于后续对目标细胞进行识别。
在另一种可能的实例中,进液沟槽120和出液沟槽140均为螺旋形,进液沟槽120与出液沟槽140嵌合。其中,进液沟槽120的两侧可以各设置有一个出液沟槽140,进液沟槽120也可以在一侧设置有一个出液沟槽140。
示例性的,参照图15出液沟槽140位于进液沟槽120远离螺旋中心的一侧,即出液沟槽140设置在进液沟槽120的外侧,且进液沟槽120单侧设置筛选阵列130。如此设置,样品溶液在螺旋形进液沟槽120中流动时,目标细胞靠近进液沟槽120中的筛选阵列130流动,且样品溶液中的目标细胞在离心力作用下流向筛选阵列130,从而提高筛选阵列130的捕捉率。同时,可以避免目标细胞在筛选阵列130的部分筛选单元中堆积,而其他部分筛选单元中没有目标细胞的情况,如此设置可以提高筛选阵列130的利用率。
继续参照图2,图2所示的芯片本体100设置有一个进样口110,进样口110与进液沟槽120连通,流入进液沟槽120的样品溶液为稀释后的血样。即需要先将血样和稀释液充分混合后,再由进样口110进入进液沟槽120中进行目标细胞的分离。
芯片本体100也可以同时设置有第一进样口111和第二进样口112,即芯片本体100采用双进样口。参照图16,进样口110可以包括第一进样口111和第二进样口112。其中,第一进样口110可以用于血液进样,或者固定液、染色液等其他液体进样,即第一进样口110为多用口。第二进样口112用于稀释液进样,即第二进样口110为专用口。
第一进样口111和第二进样口112分别与进液沟槽120连通,由第一进样口111进入的血样和由第二进样口112进入稀释液在进液沟槽120中一边流动一边混合。通过控制血样和稀释液的流量来控制血样的稀释比例,在进液沟槽120中形成所需的样品溶液。如此设置,无需预先稀释血样,缩短目标细胞的检测时长,提高检测效率。
当进液沟槽120和出液沟槽140采取上述螺旋形结构,且出液沟槽140设置在进液沟槽120的外侧时,进样口110也可以包括第一进样口111和第二进样口112。
参照图17与图18,第一进样口111和第二液进样口112分别与进液沟槽120连通。其中,第一进样口111设置在进液沟槽120靠近筛选阵列130的一侧,第二进样口112设置在进液沟槽120远离筛选阵列130的一侧。如此设置,当由第一进样口111进入的血样和由第二进样口112进入的稀释液刚进入进液沟槽120中时,血样和稀释液还未完全混合。血样靠近筛选阵列130,稀释液远离筛选阵列130,血样和稀释液相互作用,稀释液将血样挤入筛选阵列130,方便筛选阵列130对血样中的目标细胞进行捕捉。
进样口110与进液沟槽120之间的还可以设置有进液连接管道160,进液连接管道160用于分流,从而使得进样口110可以连接多条进液沟槽120。一方面可以提高芯片本体100 中的样品溶液的流速,从而缩短检测时间,另一方面还实现了多条进液沟槽120对应的筛选阵列并行对目标细胞进行捕获,提高检测效率。
沿进样口110至进液沟槽120的方向,进液连接管道160包括依次设置的至少两级进液分流管道,每级进液分流管道包括并列排布的至少两个进液分流管道161。位于上一级中每个进液分流管道161与位于下一级中至少两个进液分流管道161连通,靠近进样口110的一级进液分流管道与进样口110连通,靠接进液沟槽120的一级进液分流管道分别与进液沟槽120连通。
上一级是指相邻两级进液分流管道中靠近进样口110的一级,即沿导流方向,位于上游的一级。下一级是指相邻两级进液分流管道中靠近进液沟槽120的一级,即沿样品溶液的流动方向,位于下游的一级。
在一种可能的示例中,参照图19,进液连接管道160包括两级进液分流管道。为方便描述,将两级进液分流管道分别定义为第一级进液分流管道162和第二级进液分流管道163。其中,第一级进液分流管道162位于图19所示的左侧,为两级进液分流管道中的上一级。第二级进液分流管道163位于图19所示的右侧,为两级进液分流管道中的下一级。
第一级进液分流管道162包括并列排布的两个进液分流管道161,这两个进液分流管道161的入口端相连通,且均与进样口110连通。两个进液分流管道161的出口端不连通。
第二级进液分流管道163包括并列排布的四个进液分流管道161,可以分为两组。其中一组包括位于图19所示上方的两个进液分流管道161,这两个进液分流管道161的入口端相连通,与第一级进液分流管道162的两个进液分流管道161中的一个的出口端连通。另一组包括位于图19所示下方的两个进液分流管道161,这两个进液分流管道161的入口端相连通,与第一级进液分流管道162的两个进液分流管道161中的另一个的出口端连通。第二级的四个进液分流管道161的出口端分别与一个进液沟槽120连通。
位于上一级中每个进液分流管道161与位于下一级中的两个进液分流管道161连通。以垂直于进液分流管道161的导流方向的平面为截面,位于下一级的进液分流管道161的截面积为位于上一级的进液分流管道161的截面积的一半。如此设置,可以提高进液沟槽120中样品溶液流动的均匀性,使得各进液沟槽120中压力均衡,避免某一个进液沟槽120中压力过大,导致芯片本体100破坏而不能正常工作。
在另一种可能的示例中,参照图20,进液连接管道160包括三级进液分流管道。靠近进样口110的一级进液分流管道包括并列排布的两个进液分流管道161,这两个进液分流管道161的入口端相连通,且均与进样口110连通。两个进液分流管道161的出口端不连通。
位于中间的一级进液分流管道包括并列排布的四个进液分流管道161,位于图20所示上方的两个进液分流管道161的入口端相连通,且与靠近进样口110的一个进液分流管道161的出口端相连通。位于图20所示下方的两个进液分流管道161的入口端相连通,且与靠近进样口110的另一个进液分流管道161的出口端相连通,这四个进液分流管道161的出口端不连通。
靠近进液沟槽120的一级进液分流管道包括并列排布的八个进液分流管道161。这八个进液分流管道161以相邻的两个为一组分为四组,每一组中的两个进液分流管道161的入口端连通,且分别与中间的一级的每个进液分流管道161的出口端连通。这八个进液分 流管道161的出口端分别与进液沟槽120连通。以垂直于进液分流管道161的导流方向的平面为截面,相邻两级进液分流管道中,位于下一级的进液分流管道的截面积为位于上一级的进液分流管道的截面积的一半。
出液沟槽140与出样口150之间还可以设置有出液连接管道170。出液连接管道170用于汇流,将多条出液沟槽140的样品溶液汇聚至出样口150。参照图20,沿出样口150至出液沟槽140的方向,出液连接管道170包括依次设置的至少两级出液分流管道。每级出液分流管道包括并列排布的至少两个出液分流管道171,位于上一级中每个出液分流管道171与位于下一级中至少两个出液分流管道171连通。靠近出样口150的一级出液分流管道与出样口150连通,靠接出液沟槽140的一级出液分流管道分别与出液沟槽140连通。出液连接管道170的具体结构可以参照图19和图20以及进液连接管道160的结构,在此不再赘述。
示例性的,芯片本体100中可以只设置进液连接管道160,也可以只设置出液连接管道170,也可以同时设置进液连接管道160和出液连接管道170。进液连接管道160的级数与出液连接管道170的级数可以相同,也可以不同。例如,进液连接管道160包括两级,出液连接管道170包括四级。当芯片本体100中的进液连接管道160的级数与出液连接管道170的级数相同时,样品溶液的流动均匀性较好。
本公开实施例提供的细胞筛选芯片中,芯片本体100包括进液沟槽120、出液沟槽140和筛选阵列130,筛选阵列130位于进液沟槽120与出液沟槽140之间。筛选阵列130包括多个筛选单元,每个筛选单元包括容置腔131和筛选通道132,进液沟槽120、容置腔131、筛选通道132和出液沟槽140依次连通。含有目标细胞的样品溶液由进液沟槽120依次流入容置腔131、筛选通道132,并由出液沟槽140流出。由于容置腔131的宽度大于目标细胞的直径,筛选通道132的宽度小于目标细胞的直径,目标细胞无法通过筛选通道132而被截留在容置腔131中。直径小于筛选通道132的宽度的非目标细胞由筛选通道132流出,实现目标细胞与非目标细胞的分离。同时,在每个筛选单元中,容置腔131的导流方向与进液沟槽120的导流方向之间的夹角为锐角,使得进液沟槽120中的样品溶液平稳流入容置腔131中,减少样品溶液中的漩涡与回流,从而减少目标细胞受到冲击而形变挤出筛选通道132,提高了目标细胞的截留率,进而提高了目标细胞的捕捉率。
实施例二
参照图21,本公开的实施例提供一种细胞筛选系统,用于分离、识别目标细胞。细胞筛选系统包括上述细胞筛选芯片10、进样泵20和废液收集装置70。细胞筛选芯片10的进样口与进样泵20连接,出样口与废液收集装置70连接。进样泵20用于将样品溶液泵入,细胞筛选芯片10用于对目标细胞进行捕捉,从而将目标细胞从样品溶液中分离,废液收集装置70用于收集自细胞筛选芯片10流出的废液。
进样泵20包括样品溶液泵22,样品溶液泵22将样品溶液泵入细胞筛选芯片10。在一种可能的示例中,样品溶液泵22包括血样泵和稀释液泵,稀释液可以为磷酸盐缓冲液(Phosphate Buffer Saline,简称PBS)。血样和稀释液通过双进样口的结构进入细胞筛选芯片10中混合,减少检测所需时间。在另一种可能的示例中,样品溶液泵22泵入稀释后的血样。
进样泵20还可以包括表面处理液泵21、缓冲液泵23、固定液泵24、染色液泵25中的一种或多种。例如,图21中所示,进样泵20包括处理液泵21、样品溶液泵22、缓冲液泵23、固定液泵24、染色液泵25,分别向细胞筛选芯片10泵入不同的液体。
当进样泵20包括多种泵时,进样泵20和细胞筛选芯片10之间设置有换向阀30。即进样泵20的输出端与换向阀30的一端连接,换向阀30的另一端与细胞筛选芯片10进样口连接,通过换向阀30使得各泵中的液体依照一定顺序进入细胞筛选芯片10中。
示例性的,表面处理液可以为聚乙烯吡咯烷酮(Polyvinyl Pyrrolidone,简称PVP),用于减少样品溶液的流动阻力。缓冲液可以与稀释液相同,也为PBS。固定液可以为含4%多聚甲醛(Paraformaldehyde,简称PFA)的溶液,用于对目标细胞定型。具体的,固定液可以减少细胞弹性,经固定液作用后的细胞不易变形,且细胞内各种结构也被固定住,实现细胞自身的定型。染色液可以为荧光染色剂,用于将目标细胞染色,以便于识别,例如,当目标细胞为循环肿瘤细胞时,荧光染色剂可以包括带一种荧光素的CD 45、4',6-二脒基-2-苯基吲哚(4',6-diamidino-2-phenylindole,简称DAPI)和带另一种荧光素的上皮细胞粘附分子(Epithelial Cell Adhesion Molecule,简称EpCAM),其中,CD 45用于标记白细胞,EpCAM用于标记循环肿瘤细胞,DAPI用于标记细胞核,通过对不同的细胞进行染色可以进一步识别目标细胞。
继续参照图21,细胞筛选系统还包括光源40、图像采集装置50和数据处理装置60。其中,光源40用于在图像采集装置50工作时照射细胞筛选芯片10,光源40可以是LED灯,或者白炽灯或者氖灯等,提供背景光。光源40和图像采集装置50可以位于细胞筛选芯片10的同一侧,也可以分别位于细胞筛选芯片10的两侧。例如,本实施例中,光源40位于细胞筛选芯片10的下侧,图像采集装置50位于细胞筛选芯片10的上侧。
图像采集装置50与数据处理装置60信号连接,用于采集细胞筛选芯片10的图像并传输给数据处理装置60。图像采集装置50可以为电荷耦合元件(Charge-coupled Device,简称CCD),数据处理装置60可以为计算机,用于识别目标细胞的数量。
继续参照图21,细胞筛选系统还可以包括载台80,载台80用于放置细胞筛选芯片10。载台80可以为传送带,以使得细胞筛选芯片10以某一速度相对图像采集装置50移动,从而保证图像采集装置50可以采集到整个细胞筛选芯片10的图像。
本公开的实施例中,细胞筛选系统包括进样泵20、废液收集装置70以及上述的细胞筛选芯片10。细胞筛选芯片10的进样口与进样泵20连接,细胞筛选芯片10的出样口与废液收集装置70连接。该细胞筛选系统包括上述细胞筛选芯片,因而具备目标细胞的捕捉率高的优点,具体效果参照上文,在此不再赘述。
实施例三
参照图22,本公开的实施例提供一种细胞筛选方法,适用上述细胞筛选系统,用于分离和识别目标细胞,该细胞筛选方法包括:
S101、对细胞筛选芯片10依次注入表面处理液和稀释液进行预处理。
通过进样泵20泵入表面处理液至细胞筛选芯片10,并由废液收集装置70流出,对细胞筛选芯片10用于捕捉目标细胞的功能区进行表面处理,表面处理液可以为PVP。
再通过进样泵20泵入稀释液至细胞筛选芯片10,冲洗表面处理液,并充满细胞筛选 芯片10中,排出气泡,稀释液可以为PBS。
S102、将含有目标细胞的样品溶液注入细胞筛选芯片10,细胞筛选芯片10捕捉目标细胞。
本公开的实施例中,可以通过进样泵20泵入稀释后的血样至细胞筛选芯片10中,即将混合后的样品溶液泵入细胞筛选芯片10中,也可以通过进样泵20分别泵入血样和稀释液至细胞筛选芯片10中混合后形成样品溶液。
细胞筛选芯片10用于将目标细胞从样品溶液中分离,尺寸较小的非目标细胞流出细胞筛选芯片10,尺寸较大的目标细胞被细胞筛选芯片10捕捉和截留,从而将目标细胞与非目标细胞分离。细胞筛选芯片10为上文所述的细胞筛选芯片10,目标细胞的捕捉率高。
S103、对细胞筛选芯片10依次注入稀释液、固定液、稀释液、染色液及稀释液,将目标细胞定型并染色。
本公开的实施例中,通过进样泵20泵入稀释液至细胞筛选芯片10中,对细胞筛选芯片10进行清洗;由进样泵20泵入固定液至细胞筛选芯片10中,将目标细胞定型,固定液可以为PFA;由进样泵20泵入稀释液至细胞筛选芯片10中,对细胞筛选芯片10再次进行清洗,将固定液清洗掉;由进样泵20泵入染色液至细胞筛选芯片10中,对目标细胞进行标记,进一步区分细胞筛选芯片10中的细胞类型,染色液可以为荧光染色剂。
例如,样品溶液中包含循环肿瘤细胞、红细胞、血小板及白细胞,循环肿瘤细胞的直径约为10-20μm,红细胞的直径约为6-9μm,血小板的直径约为1-4μm,白细胞的直径约为7-20μm。当目标细胞为循环肿瘤细胞时,细胞筛选芯片10中会捕捉循环肿瘤细胞及部分白细胞。为了区分上述两种细胞,可以通过染色液将这两种细胞标记为不同的荧光颜色,以便于对循环肿瘤细胞进行识别。
染色后,由进样泵20泵入稀释液至细胞筛选芯片10中,对细胞筛选芯片10再次进行清洗,将染色液冲洗干净,以便于后续采集细胞筛选芯片10的荧光图像。
S104、图像采集装置50采集细胞筛选芯片10的图像,并将图像传输至数据处理装置60,数据处理装置60识别目标细胞。
本公开的实施例中,当图像采集装置50采集细胞筛选芯片10的荧光图像时,光源40打开,为细胞筛选芯片10提供背景光,并为图像采集装置50进行补光,以使得图像采集装置50可以采集到较清晰的图像。
图像采集装置50与数据处理装置60信号连接,将图像传输至数据处理装置60,数据处理装置60识别目标细胞的数量。
本公开的实施例中,对细胞筛选芯片10依次注入表面处理液和稀释液进行预处理后注入样品溶液,通过细胞筛选芯片10对样品溶液中的目标细胞进行捕捉。由于该细胞筛选方法为上述细胞筛选系统所对应的方法,故而可以提高目标细胞的捕捉率,在此不再赘述。同时,利用固定液将目标细胞定型,利用染色液将目标细胞进行染色识别,以和非目标细胞进行区分,便于目标细胞的识别。
本说明书中各实施例或实施方式采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分相互参见即可。
本领域技术人员应理解的是,在本公开的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外” 等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的系统或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本公开的限制。
在本说明书的描述中,参考术“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。

Claims (22)

  1. 一种细胞筛选芯片,其特征在于,包括芯片本体,所述芯片本体设置有进液沟槽和出液沟槽,沿所述进液沟槽的导流方向,所述进液沟槽的末端封闭,所述进液沟槽和所述出液沟槽彼此靠近对方的侧壁之间形成有筛选阵列;
    所述筛选阵列包括多个筛选单元,每个筛选单元包括容置腔和筛选通道,所述容置腔的入口端与所述进液沟槽连通,所述容置腔的出口端与所述筛选通道的入口端连通,所述筛选通道的出口端与所述出液沟槽连通;且所述容置腔的宽度大于目标细胞的直径,所述筛选通道的宽度小于所述目标细胞的直径;
    每个所述筛选单元中,所述容置腔的导流方向与所述进液沟槽的导流方向之间的夹角为锐角。
  2. 根据权利要求1所述的细胞筛选芯片,其特征在于,每个所述筛选单元中,所述容置腔的导流方向与所述筛选通道的导流方向重合或平行。
  3. 根据权利要求1所述的细胞筛选芯片,其特征在于,所述筛选通道为形成在所述芯片本体中的导流槽或导流孔。
  4. 根据权利要求3所述的细胞筛选芯片,其特征在于,所述筛选通道的出口端形成有缓冲槽,所述缓冲槽的导流方向与所述筛选通道的导流方向重合;所述缓冲槽在垂直于所述筛选通道的导流方向的平面上的正投影大于所述筛选通道在所述平面上的正投影。
  5. 根据权利要求1所述的细胞筛选芯片,其特征在于,位于所述进液沟槽和所述出液沟槽之间的芯片本体中形成有所述筛选阵列。
  6. 根据权利要求5所述的细胞筛选芯片,其特征在于,位于所述筛选阵列的中部的所述容置腔的宽度大于位于所述筛选阵列的端部的所述容置腔的宽度。
  7. 根据权利要求5所述的细胞筛选芯片,其特征在于,沿所述筛选阵列的中部至端部的方向,所述容置腔的宽度逐渐减小。
  8. 根据权利要求1所述的细胞筛选芯片,其特征在于,所述芯片本体还设置有进样口和出样口,所述进样口与所述进液沟槽连通,所述出样口与所述出液沟槽连通。
  9. 根据权利要求8所述的细胞筛选芯片,其特征在于,所述进样口包括分别与所述进液沟槽连通的第一进样口以及第二进样口。
  10. 根据权利要求8所述的细胞筛选芯片,其特征在于,所述芯片本体还设置有位于所述进液沟槽与所述进样口之间的进液连接管道;
    沿所述进样口至所述进液沟槽的方向,所述进液连接管道包括依次设置的至少两级进液分流管道,每级所述进液分流管道包括并列分布的至少两个进液分流管道,且位于上一级中每个所述进液分流管道与位于下一级中至少两个所述进液分流管道连通;
    且在各级进液分流管道中,最接近所述进样口的一级所述进液分流管道与所述进样口连通,最接近所述进液沟槽的一级所述进液分流管道分别与所述进液沟槽连通。
  11. 根据权利要求8或10所述的细胞筛选芯片,其特征在于,所述芯片本体还设置有位于所述出液沟槽与所述出样口之间的出液连接管道;
    沿所述出样口至所述出液沟槽的方向,所述出液连接管道包括依次设置的至少两级出液分流管道,每级所述出液分流管道包括并列分布的至少两个出液分流管道;且位于上一 级中每个所述出液分流管道与位于下一级中至少两个所述出液分流管道连通;
    且在各级出液分流管道中,最接近所述出样口的一级所述出液分流管道与所述出样口连通,最接近所述出液沟槽的一级所述出液分流管道分别与所述出液沟槽连通。
  12. 根据权利要求1所述的细胞筛选芯片,其特征在于,所述芯片本体设置有一个所述进液沟槽,所述进液沟槽两侧中的至少一侧设置有一个所述出液沟槽。
  13. 根据权利要求1、2、5-10、12任一项所述的细胞筛选芯片,其特征在于,所述进液沟槽和所述出液沟槽均为蛇形,所述进液沟槽包括相互平行的至少两个直线通道,每相邻两个直线通道中,其中一个所述直线通道的出口与另一个直线通道的进口通过第一弧形通道连通;
    所述直线通道和/或所述第一弧形通道的侧面设置有所述筛选阵列。
  14. 根据权利要求1、2、5-10、12任一项所述的细胞筛选芯片,其特征在于,所述进液沟槽和所述出液沟槽均为波浪线形,所述进液沟槽包括依次相连通的至少两个第二弧形通道,每个所述第二弧形通道的侧面设置有所述筛选阵列。
  15. 根据权利要求14所述的细胞筛选芯片,其特征在于,所述波浪线形由半圆形依次连接形成,或者所述波浪线形为正弦曲线、余弦曲线中的一种。
  16. 根据权利要求1、2、5-10、12任一项所述的细胞筛选芯片,其特征在于,所述进液沟槽为直线形,沿所述进液沟槽的中部向所述进液沟槽的端部的方向,所述进液沟槽的宽度逐渐增大。
  17. 根据权利要求1、2、5-10、12任一项所述的细胞筛选芯片,其特征在于,所述进液沟槽和出液沟槽均为螺旋形,且所述进液沟槽和出液沟槽嵌合,所述出液沟槽位于所述进液沟槽远离螺旋中心的一侧。
  18. 根据权利要求17所述的细胞筛选芯片,其特征在于,所述进液沟槽分别连通第一进样口以及第二进样口,所述第一进样口设置在所述进液沟槽靠近所述筛选阵列的一侧,所述第二进样口设置在所述进液沟槽远离所述筛选阵列的一侧。
  19. 一种细胞筛选系统,其特征在于,包括进样泵、废液收集装置以及如权利要求1-18任一项所述的细胞筛选芯片,所述细胞筛选芯片的进样口与所述进样泵连接,所述细胞筛选芯片的出样口与所述废液收集装置连接。
  20. 根据权利要求19所述的细胞筛选系统,其特征在于,所述进样泵包括样品溶液泵,以及表面处理液泵、缓冲液泵、固定液泵、染色液泵中的一种或多种;
    所述进样泵的输出端与换向阀的一端连接,所述换向阀的另一端与所述进样口连接。
  21. 根据权利要求19所述的细胞筛选系统,其特征在于,所述细胞筛选系统还包括光源、图像采集装置和数据处理装置;
    所述光源用于在所述图像采集装置工作时照射所述细胞筛选芯片;
    所述图像采集装置信号连接所述数据处理装置,所述图像采集装置采集所述细胞筛选芯片的图像并传输给所述数据处理装置;
    所述数据处理装置根据所述图像进行所述目标细胞的识别。
  22. 一种细胞筛选方法,其特征在于,采用权利要求19-21任一项所述的细胞筛选系统,所述细胞筛选方法包括:
    对细胞筛选芯片依次注入表面处理液和缓冲液进行预处理;
    将含有目标细胞的样品溶液注入所述细胞筛选芯片,所述细胞筛选芯片捕捉所述目标细胞;
    对所述细胞筛选芯片依次注入缓冲液、固定液、缓冲液、染色液及缓冲液,将所述目标细胞定型并染色;
    图像采集装置采集所述细胞筛选芯片的图像,并将所述图像传输至数据处理装置,所述数据处理装置识别所述目标细胞。
PCT/CN2021/116107 2020-10-29 2021-09-02 细胞筛选芯片、细胞筛选系统及其方法 WO2022088965A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011182425.0A CN112210474A (zh) 2020-10-29 2020-10-29 细胞筛选芯片、细胞筛选系统及其方法
CN202011182425.0 2020-10-29

Publications (1)

Publication Number Publication Date
WO2022088965A1 true WO2022088965A1 (zh) 2022-05-05

Family

ID=74057522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116107 WO2022088965A1 (zh) 2020-10-29 2021-09-02 细胞筛选芯片、细胞筛选系统及其方法

Country Status (2)

Country Link
CN (1) CN112210474A (zh)
WO (1) WO2022088965A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112210474A (zh) * 2020-10-29 2021-01-12 上海荧辉医疗器械有限公司 细胞筛选芯片、细胞筛选系统及其方法
CN112175792A (zh) * 2020-10-29 2021-01-05 上海荧辉医疗器械有限公司 细胞筛选芯片、细胞筛选系统及其方法
CN113373039B (zh) * 2021-05-28 2023-03-17 哈尔滨工业大学(深圳) 基于逐级增压打印单个微粒的微流控芯片和方法
CN113528447A (zh) * 2021-06-10 2021-10-22 广州市第一人民医院(广州消化疾病中心、广州医科大学附属市一人民医院、华南理工大学附属第二医院) 一种微流控芯片及其在肿瘤干细胞分选、扩增、回收中的应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106769338A (zh) * 2017-02-27 2017-05-31 大连海事大学 一种单细胞全自动连续捕获与收集装置及方法
CN206627336U (zh) * 2017-02-27 2017-11-10 大连海事大学 一种单细胞全自动连续捕获与收集装置
CN111032218A (zh) * 2017-09-07 2020-04-17 索尼公司 颗粒捕获室、颗粒捕获芯片、颗粒捕获方法、设备和颗粒分析系统
CN112175792A (zh) * 2020-10-29 2021-01-05 上海荧辉医疗器械有限公司 细胞筛选芯片、细胞筛选系统及其方法
CN112210474A (zh) * 2020-10-29 2021-01-12 上海荧辉医疗器械有限公司 细胞筛选芯片、细胞筛选系统及其方法
CN112226336A (zh) * 2020-10-29 2021-01-15 上海荧辉医疗器械有限公司 细胞筛选芯片、细胞筛选系统及其方法
CN112275337A (zh) * 2020-10-29 2021-01-29 上海荧辉医疗器械有限公司 一种微流控芯片及细胞筛选装置和方法
CN112358945A (zh) * 2020-10-29 2021-02-12 上海荧辉医疗器械有限公司 微流控芯片、细胞筛选系统与控制方法
CN213624100U (zh) * 2020-10-29 2021-07-06 上海荧辉医疗器械有限公司 细胞筛选芯片及细胞筛选系统
CN213624101U (zh) * 2020-10-29 2021-07-06 上海荧辉医疗器械有限公司 微流控芯片与细胞筛选系统
CN213624099U (zh) * 2020-10-29 2021-07-06 上海荧辉医疗器械有限公司 微流控芯片
CN213624192U (zh) * 2020-10-29 2021-07-06 上海荧辉医疗器械有限公司 微流控芯片与细胞筛选系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206052033U (zh) * 2016-01-22 2017-03-29 苏州汶颢芯片科技有限公司 肿瘤细胞捕获微流控芯片
CN107505249B (zh) * 2017-08-23 2024-01-26 中国科学院苏州生物医学工程技术研究所 用于稀有细胞筛选的微流控芯片系统
CN107723207B (zh) * 2017-11-01 2019-01-01 深圳市瑞格生物科技有限公司 一种分离捕获细胞的芯片及其在肿瘤细胞分选中的应用
CN108102877B (zh) * 2018-01-12 2024-04-02 哈尔滨工业大学深圳研究生院 一种集成单细胞捕获与筛选功能的微流控芯片与筛选方法
CN209940990U (zh) * 2019-01-29 2020-01-14 南方科技大学 微流控芯片及细胞培养设备
CN111454831B (zh) * 2020-04-21 2023-05-09 东莞市东阳光诊断产品有限公司 微流控芯片以及细胞分离装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106769338A (zh) * 2017-02-27 2017-05-31 大连海事大学 一种单细胞全自动连续捕获与收集装置及方法
CN206627336U (zh) * 2017-02-27 2017-11-10 大连海事大学 一种单细胞全自动连续捕获与收集装置
CN111032218A (zh) * 2017-09-07 2020-04-17 索尼公司 颗粒捕获室、颗粒捕获芯片、颗粒捕获方法、设备和颗粒分析系统
CN112175792A (zh) * 2020-10-29 2021-01-05 上海荧辉医疗器械有限公司 细胞筛选芯片、细胞筛选系统及其方法
CN112210474A (zh) * 2020-10-29 2021-01-12 上海荧辉医疗器械有限公司 细胞筛选芯片、细胞筛选系统及其方法
CN112226336A (zh) * 2020-10-29 2021-01-15 上海荧辉医疗器械有限公司 细胞筛选芯片、细胞筛选系统及其方法
CN112275337A (zh) * 2020-10-29 2021-01-29 上海荧辉医疗器械有限公司 一种微流控芯片及细胞筛选装置和方法
CN112358945A (zh) * 2020-10-29 2021-02-12 上海荧辉医疗器械有限公司 微流控芯片、细胞筛选系统与控制方法
CN213624100U (zh) * 2020-10-29 2021-07-06 上海荧辉医疗器械有限公司 细胞筛选芯片及细胞筛选系统
CN213624101U (zh) * 2020-10-29 2021-07-06 上海荧辉医疗器械有限公司 微流控芯片与细胞筛选系统
CN213624099U (zh) * 2020-10-29 2021-07-06 上海荧辉医疗器械有限公司 微流控芯片
CN213624192U (zh) * 2020-10-29 2021-07-06 上海荧辉医疗器械有限公司 微流控芯片与细胞筛选系统

Also Published As

Publication number Publication date
CN112210474A (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
WO2022088965A1 (zh) 细胞筛选芯片、细胞筛选系统及其方法
WO2022088966A1 (zh) 细胞筛选芯片、细胞筛选系统及其方法
CN213624100U (zh) 细胞筛选芯片及细胞筛选系统
CN107084916A (zh) 一种循环肿瘤细胞分离微流控芯片装置及其使用方法
WO2019128841A1 (zh) 一种螺旋形微通道及其使用方法与串、并联安装结构
JP2018079327A (ja) 高分子精密濾過装置、その製造方法及び精密濾過装置の使用
EP3215854A1 (en) Combined sorting and concentrating particles in a microfluidic device
CN109852544B (zh) 细胞分离用微流控芯片及其在肿瘤细胞分离中的应用、细胞分离鉴定方法
US20220251497A1 (en) Microfluidic chip suitable for capturing circulating tumour cells
CN105879936A (zh) 全血过滤及定量移取微流控芯片
CN105062866A (zh) 用于外周血循环肿瘤细胞的一次性分离芯片模块及其使用方法
CN103589629A (zh) 循环肿瘤细胞分离系统
CN112275337B (zh) 一种微流控芯片及细胞筛选装置和方法
CN110958915B (zh) 用于选择性富集目标颗粒或细胞的流通池
CN104111190A (zh) 一种双螺旋微流控芯片
US9908117B2 (en) Microfluidic separation device, separation method using the same and kit for separating circulating rare cells from blood using the same
CN205517819U (zh) 全血过滤及定量移取微流控芯片
CN112226336A (zh) 细胞筛选芯片、细胞筛选系统及其方法
CN206906211U (zh) 一种循环肿瘤细胞分离微流控芯片装置
CN110514855A (zh) 一种换液方法、换液板及其在细胞染色和颗粒洗涤中的用途
CN110577884A (zh) 一种白细胞提取装置
TWI598587B (zh) 流體動力式轉運晶片及其用於單細胞捕獲之方法
CN213624099U (zh) 微流控芯片
TWI764279B (zh) 用於裝載樣本的方法及用於分析樣本的設備
CN213835269U (zh) 细胞筛选芯片及细胞筛选系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21884696

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21884696

Country of ref document: EP

Kind code of ref document: A1