WO2022088869A1 - 壳体及其制作方法、电子设备 - Google Patents

壳体及其制作方法、电子设备 Download PDF

Info

Publication number
WO2022088869A1
WO2022088869A1 PCT/CN2021/113799 CN2021113799W WO2022088869A1 WO 2022088869 A1 WO2022088869 A1 WO 2022088869A1 CN 2021113799 W CN2021113799 W CN 2021113799W WO 2022088869 A1 WO2022088869 A1 WO 2022088869A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
wrapping
main surface
core layer
wrapping layer
Prior art date
Application number
PCT/CN2021/113799
Other languages
English (en)
French (fr)
Inventor
唐中帜
李聪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2022088869A1 publication Critical patent/WO2022088869A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0217Mechanical details of casings
    • H05K5/0243Mechanical details of casings for decorative purposes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/06Hermetically-sealed casings

Definitions

  • the present application relates to the technical field of casings, and in particular, to a casing and a manufacturing method thereof, and electronic equipment.
  • the main technical problem to be solved by the present application is to provide a casing, a manufacturing method thereof, and an electronic device, which can provide technical support for improving the strength of the entire outer periphery of the casing.
  • a technical solution adopted in the present application is to provide a casing, the casing includes: a core layer and a wrapping layer; the wrapping layer defines a closed space, and the core layer is filled in In the closed space; wherein, the first thermal expansion coefficient of the core layer is greater than the second thermal expansion coefficient of the wrapping layer.
  • another technical solution adopted in the present application is to provide a method for manufacturing a shell, the manufacturing method comprising: providing a wrapping material and a core material; performing heat treatment so that the wrapping material is in a fluid state and wraps the core material, so that the core material is filled in the closed space formed by the wrapping material; and the wrapping material and the core are The core material is subjected to cooling treatment to obtain the shell; wherein, the first thermal expansion coefficient of the wrapping material is smaller than the second thermal expansion coefficient of the core material.
  • an electronic device including a casing and a functional device, wherein the casing defines an accommodating space; the functional device is accommodated in the accommodating space. In the space; wherein, the casing is the above-mentioned casing.
  • the shell in the present application includes a core layer and a wrapping layer, wherein the wrapping layer defines a closed space, the core layer is filled in the closed space, and the core layer
  • the first thermal expansion coefficient of is greater than the second thermal expansion coefficient of the wrapping layer.
  • FIG. 1 is a schematic structural diagram of an embodiment of an electronic device of the present application.
  • FIG. 2 is a partial structural schematic diagram of an embodiment of the casing of the present application.
  • FIG. 3 is a schematic diagram of the formation scene of the wrapping layer monomer and the core core layer monomer corresponding to the wrapping layer and the core layer in an embodiment of the present application;
  • FIG. 4 is a schematic diagram of a formation scene of a casing in an embodiment of the casing of the present application.
  • FIG. 5 is a schematic diagram of the first compressive stress of the wrapping layer in an embodiment of the casing of the present application.
  • FIG. 6 is a schematic diagram of the third compressive stress of the wrapping layer of the casing in the related art
  • FIG. 7 is a schematic diagram of the superposition of the first compressive stress and the second compressive stress of the wrapping layer in an embodiment of the casing of the present application;
  • FIG. 8 is a schematic diagram of superposition of the third compressive stress and the fourth compressive stress of the wrapping layer of the casing in the related art
  • FIG. 9 is a schematic structural diagram of a cross-section in a direction perpendicular to the main surface of the casing according to an embodiment of the casing of the present application.
  • FIG. 10 is a schematic structural diagram of a cross-section in a direction perpendicular to the main surface of the casing according to an embodiment of the casing of the present application;
  • FIG. 11 is a schematic structural diagram of a cross-section in a direction parallel to the main surface of the casing according to an embodiment of the casing of the present application;
  • FIG. 12 is a schematic structural diagram of a cross-section in a direction parallel to the main surface of the casing according to an embodiment of the casing of the present application;
  • FIG. 13 is a schematic structural diagram of a cross-section in a direction perpendicular to the main surface of the casing according to an embodiment of the casing of the present application;
  • FIG. 14 is a schematic structural diagram of a cross-section in a direction perpendicular to the main surface of the casing according to an embodiment of the casing of the present application;
  • FIG. 15 is a schematic structural diagram of a cross-section in a direction perpendicular to the main surface of the casing according to an embodiment of the casing of the present application;
  • 16 is a schematic structural diagram of a cross-section in a direction perpendicular to the main surface of the casing according to an embodiment of the casing of the present application;
  • 17 is a schematic structural diagram of a cross-section in a direction perpendicular to the main surface of the casing according to an embodiment of the casing of the present application;
  • FIG. 18 is a schematic structural diagram of a cross-section in a direction perpendicular to the main surface of the casing according to an embodiment of the casing of the present application;
  • FIG. 19 is a schematic structural diagram of a cross-section in a direction perpendicular to the main surface of the casing according to an embodiment of the casing of the present application;
  • FIG. 20 is a schematic structural diagram of a cross section in a direction perpendicular to the main surface of the casing according to an embodiment of the casing of the present application;
  • 21 is a schematic structural diagram of a cross-section in a direction perpendicular to the main surface of the casing according to an embodiment of the casing of the present application;
  • FIG. 22 is a schematic structural diagram of a cross-section in a direction perpendicular to the main surface of the casing according to an embodiment of the casing of the present application;
  • FIG. 23 is a schematic structural diagram of a cross-section in a direction perpendicular to the main surface of the casing according to an embodiment of the casing of the present application;
  • FIG. 24 is a schematic structural diagram of a cross-section in a direction perpendicular to the main surface of the casing according to an embodiment of the casing of the present application;
  • 25 is a schematic structural diagram of a cross-section in a direction perpendicular to the main surface of the casing according to an embodiment of the casing of the present application;
  • 26 is a schematic structural diagram of a cross-section in a direction perpendicular to the main surface of the casing according to an embodiment of the casing of the present application;
  • FIG. 27 is a schematic structural diagram of a cross-section in a direction perpendicular to the main surface of the casing according to an embodiment of the casing of the present application;
  • FIG. 28 is a schematic structural diagram of a cross-section in a direction perpendicular to the main surface of the casing according to an embodiment of the casing of the present application;
  • 29 is a schematic structural diagram of a cross-section in a direction perpendicular to the main surface of the casing according to an embodiment of the casing of the present application;
  • FIG. 30 is a schematic structural diagram of a cross-section in a direction perpendicular to the main surface of the casing according to an embodiment of the casing of the present application;
  • FIG. 31 is a schematic structural diagram of a cross-section in a direction perpendicular to the main surface of the casing according to an embodiment of the casing of the present application;
  • FIG. 32 is a schematic structural diagram of a cross-section in a direction perpendicular to the main surface of the casing according to an embodiment of the casing of the present application;
  • FIG. 33 is a schematic structural diagram of a cross-section in a direction parallel to the main surface of the casing according to an embodiment of the casing of the present application;
  • FIG. 34 is a schematic structural diagram of a cross-section in a direction parallel to the main surface of the casing according to an embodiment of the casing of the present application;
  • 35 is a schematic structural diagram of a cross-section in a direction parallel to the main surface of the casing according to an embodiment of the casing of the present application;
  • 36 is a schematic structural diagram of an embodiment of the housing of the present application.
  • FIG. 38 is a schematic flowchart of an embodiment of a method for manufacturing a casing of the present application.
  • the electronic device includes a casing 10 and a functional device 20 .
  • the housing 10 defines an accommodating space 10a, and the functional device 20 is disposed in the accommodating space 10a.
  • the housing 10 can protect the functional device 20 (eg, a motherboard, a battery, etc.).
  • the electronic device can be a mobile phone, a tablet computer, a notebook computer, a smart bracelet, a smart watch, etc.
  • the housing 10 can be a front shell, a frame, a back cover, etc. of the electronic device, which is not limited here.
  • the casing 10 may include a core layer 11 and a wrapping layer 12, wherein the wrapping layer 12 defines a closed space 12a, and the core layer 11 is filled in the closed space 12a, The wrapping layer 12 is wrapped around the entire periphery of the core layer 11 , so that the entire outer surface and the edge of the shell 10 are formed by the wrapping layer 12 .
  • both the wrapping layer 12 and the core layer 11 can be at least one of glass, ceramic and sapphire.
  • both the wrapping layer 12 and the core layer 11 can be made of glass, and the corresponding softening points can be greater than 400°C, such as 450°C, 500°C, 550°C, etc.
  • ordinary glass, Glass-ceramic, colored glass, etc. are not specifically limited here.
  • the first thermal expansion coefficient of the core layer 11 is greater than the second thermal expansion coefficient of the wrapping layer 12.
  • the difference between the first thermal expansion coefficient and the second thermal expansion coefficient may not be less than 5 ⁇ 10 ⁇ -7/°C, For example, 5x10 ⁇ -7/°C, 5.5x10 ⁇ -7/°C, 6x10 ⁇ -7/°C, etc.
  • the above thermal expansion coefficients may all refer to thermal expansion coefficients at 0-300°C.
  • the wrapping material that is, the raw material of the wrapping layer 12
  • the core material that is, the raw material of the core layer 11
  • the wrapping layer sheet and the core sheet sheet are further cut, such as wire cutting, to obtain a plurality of wrapping layer units and core layer units with smaller sizes.
  • further shape processing such as CNC machine tool CNC shape processing, polishing, etc. is performed, so as to obtain the wrapping layer monomer 121 and the core layer monomer 111 .
  • the encapsulation layer monomer 121 and the core layer monomer 111 can be combined more fully when the casing 10 is subsequently fabricated. It should be noted that the formation methods of the envelope layer monomer 121 and the core layer monomer 111 are basically the same, and both can be illustrated in FIG. 3 .
  • the encapsulation layer monomer 121 may be in a fluid state by heat treatment and/or pressure treatment, so as to be encapsulated in the core layer.
  • the outer periphery of the monomer 111 to obtain the shell 10 with the above-mentioned wrapping layer 12 and the core layer 11; of course, the wrapping layer monomer 121 and the core layer monomer 111 can also be heated and/or pressurized at the same time Processed to form housing 10 .
  • both the wrapping layer monomers 121 and the core layer monomers 111 are made of glass.
  • two wrapping layer monomers 121 are used, and two core layer monomers 111 are used.
  • the number is one, and the size of each wrapping layer monomer 121 is larger than that of the core layer monomer 111, for example, at least the length and width of the wrapping layer monomer 121 are greater than the length and width of the core layer monomer 111, so that The wrapping layer monomer 121 can form a closed space 12a large enough to sufficiently wrap the core layer monomer.
  • the die-casting equipment may include a vacuum chamber, a high-temperature heating system, and a lamination mold.
  • two wrapping layer monomers 121 and one core layer monomer 111 are respectively stacked and placed in a vacuum in the manner of wrapping layer monomers 121 + core layer monomers 111 + wrapping layer monomers 121 .
  • start the high-temperature heating system to heat the wrapping layer monomer 121 and the core layer monomer 111 to a glass softening point higher than the two, such as 800-900 ° C, and continue to heat and pressurize until the temperature reaches 900-1100°C, so that the viscosity of the wrapping layer monomer 121 is lower than 30000Poise and is in a fluid state, the upper and lower wrapping layer monomers 121 are fused together and fully wrapped around the outer periphery of the core layer monomer 111, and then the vacuum chamber is broken.
  • the vacuum environment inside the cavity is filled with a protective atmosphere, such as nitrogen, argon, etc., and cooled and discharged, so as to obtain the above-mentioned shell 10 including the
  • the first compressive stress F 1 can be formed on the entire periphery of the casing 10 , thereby enhancing the strength of the entire periphery of the casing 10 .
  • the shell can also be composed of a wrapping layer 22 and a core layer 21 .
  • the glass with a low thermal expansion coefficient is fused to both sides of the glass with a high thermal expansion coefficient at a high temperature by an overflow method. , forming a sandwich structure, that is, the wrapping layer 22 is only wrapped on both sides of the core layer 21, rather than the outer periphery of the entire core layer 21.
  • the glass with low thermal expansion coefficient shrinks less, and the high The glass with the thermal expansion coefficient shrinks greatly, so that compressive stress (the third compressive stress F 3 indicated by the arrow in FIG. 6 ) is formed in the cladding layer 22 , and tensile stress is formed in the core layer 21 .
  • the wrapping layer 22 does not wrap the entire periphery of the core layer 21 in the related art, the portion of the core layer 21 that is not wrapped by the wrapping layer 22 , that is, the edge portion, does not generate corresponding compressive stress, or The compressive stress is small and can be ignored, that is to say, the edge of the shell has not been strengthened accordingly.
  • the entire periphery including the edge of the above-mentioned casing 10 of the present application can be strengthened, which can reduce the occurrence of cracking of the casing 10 on the one hand, and on the other hand, the relatively thin casing 10 can also be used. It has a considerable strength, so that it can meet the user's demand for light and thin to a certain extent. Moreover, since the core layer 11 is completely wrapped by the wrapping layer 12, the strength of the core layer 11 has little effect on the overall strength of the shell 10, so there are more choices in terms of materials and shapes.
  • CTE A and CTE B are the first thermal expansion coefficient of the wrapping layer 12 and the second thermal expansion coefficient of the core layer 11, respectively.
  • the difference between the two may not be less than 5 ⁇ 10 ⁇ -7/°C;
  • the strain point of , T2 is the strain point of the core layer 11;
  • Emod A and Emod B are the Young's modulus of the wrapping layer 12 and the Young's modulus of the core layer 11, respectively, both of which can be greater than 50GPa.
  • t A and t B are respectively the thickness of the wrapping layer 12 and the thickness of the core layer 11 in the direction perpendicular to the main surface 13 of the casing 10 (as shown in FIG. 2 ), wherein the main surface 13 of the casing 10 is The larger area surface of the housing 10 .
  • Both the thickness of the wrapping layer 12 and the thickness of the core layer 11 may be 0.02-2 mm, specifically 0.02 mm, 0.04 mm, 0.05 mm, 0.1 mm, 0.5 mm, 1 mm, 2 mm, etc., wherein the thickness of the wrapping layer 12 t A and the thickness t B of the core layer 11 may be equal or different, which are not limited here; ⁇ A is the Poisson's ratio of the wrapping layer 12 .
  • the first compressive stress F 1 formed on the wrapping layer 12 can be increased to a certain extent by increasing the difference between CTE B and CTE A , thereby further improving the casing 10 Strength of.
  • the casing 10 may be further chemically tempered to further generate another compressive stress, ie, the second compressive stress F 2 , on the wrapping layer 12 .
  • the compressive stress may be generated by the ion exchange reaction of the wrapping layer 12 .
  • the material of the wrapping layer 12 may be a material capable of ion exchange, specifically high alumina silicate glass, more specifically, at least one of lithium aluminum silicate glass, soda aluminum silicate glass, and the like.
  • the shell 10 can be immersed in a salt furnace at a certain temperature, so that the shell 10 reacts to replace small ions (such as Li + , Na + , etc.) on the surface of the shell 10 with large ions (such as Li + , Na + , etc.) in the salt furnace K + ), the volume of the surface layer of the casing 10 is increased, a second compressive stress F 2 is further generated on the surface of the casing 10 , and a tensile stress is generated inside, so that the casing 10 is further strengthened.
  • small ions such as Li + , Na + , etc.
  • large ions such as Li + , Na + , etc.
  • the second compressive stress F 2 is further superimposed on the basis of the first compressive stress F 1 that has been generated on the wrapping layer 12 .
  • the entire outer layer of the shell is formed by the wrapping layer 12, so the surface layer of the entire shell 10 can be further strengthened.
  • the wrapping layer 22 only covers both sides of the core layer 21 , but does not cover the edge portion of the core layer 21 .
  • a fourth compressive stress F 4 is further generated on the entire outer surface of the shell (as shown in FIG. 8 ). shown), but since the above-mentioned third compressive stress F2 is only generated on the wrapping layer 12, it is equivalent to that the edge portion of the casing is only chemically tempered.
  • the casing 10 in the above-mentioned embodiment of the present application still has higher strength.
  • the core layer 11 may also be glass that has been physically tempered and/or chemically tempered, that is, the core layer monomer 111 used in the manufacture of the shell 10 is After the physical tempering treatment and/or the glass after chemical tempering treatment, the strength of the casing 10 can be further improved.
  • the thickness t A of the wrapping layer 12 can be 0.02-2 mm, specifically Such as 0.02mm, 0.04mm, 0.05mm, 0.1mm, 0.5mm, 1mm, 2mm, etc.
  • the thickness t A of the wrapping layers 12 on both sides of the core layer 11 may be equal, as shown in FIG. 9, or may not be equal, as shown in FIG. 10 It is not limited here.
  • the thickness t B of the core layer 11 may be 0.02-2 mm, specifically 0.02 mm, 0.04 mm, 0.05 mm, 0.1 mm, 0.5 mm, 1 mm, 2 mm, etc.
  • the total thickness t of the housing 10 may be greater than 0.1 mm, such as 0.15 mm, 0.2 mm, 0.5 mm, 1 mm, 2 mm, 4 mm, and the like. It should be pointed out that when the material of the shell is glass, the tougher the glass is, the worse the toughness will be. In actual production, the total thickness t can be set according to the rigidity and toughness required for the shell. the size of.
  • the thickness t C of the wrapping layer 12 may be 0.02-2 mm, specifically 0.02 mm, 0.04 mm, 0.05 mm, 0.1 mm, 0.5 mm, 1 mm , 2mm, etc., which are not specifically limited here. It should be pointed out that the thickness of the wrapping layer 12 can be set to meet the strength requirements of the edge portion of the casing 10 .
  • the thickness t C of the wrapping layers 12 on both sides of the core layer 11 may be equal, as shown in FIG. 9 and FIG. 11, or may not be equal, as shown in FIG. 10 and FIG. 12, which is not limited here.
  • the wrapping layer 12 includes a first main surface 122 and a second main surface 123 arranged oppositely, and a first side surface 124 connected to the first main surface 122 and the second main surface 123 and arranged oppositely respectively and the second side surface 125.
  • the first main surface 122 and the second main surface 123 refer to surfaces with larger areas of the wrapping layer 12 , and specifically correspond to the main surface 13 of the housing 10 .
  • the first main surface 122 and the second main surface 123 are the main surfaces 13 of the casing 10;
  • the first main surface 122 and the second main surface 123 are not the main surface 13 of the housing 10 .
  • the first side surface 124 and the second side surface 125 are surfaces connected between the first main surface 122 and the second main surface 123 . It should be noted that the number of side surfaces connected between the first main surface 122 and the second main surface 123 may be plural, and the first side surface 124 and the second side surface 125 may be only two of them.
  • first main surface 122 and the second main surface 123 may be parallel to each other and extend straight.
  • connection between the first main surface 122 and the first side surface 124 , the connection between the first main surface 122 and the second side surface 125 , and the second main surface 123 are all rounded connections, and are curved in different directions away from the casing 10 .
  • connection between the first main surface 122 and the first side surface 124 , the connection between the first main surface 122 and the second side surface 125 , and the second main surface 123 are all right-angle connections.
  • connection between the first main surface 122 and the first side surface 124 , the connection between the first main surface 122 and the second side surface 125 , and the second main surface 123 are all bevel connections.
  • connection between the first main surface 122 and the first side surface 124 and the connection between the first main surface 122 and the second side surface 125 are bevel connections
  • second The connection between the main surface 123 and the first side surface 124 and the connection between the second main surface 123 and the second side surface 125 are rounded connections.
  • the size of the bevel and the area of the corresponding bevel can be are equal, and similarly, the radians of the corresponding rounded corners and the areas of the corresponding circular arc surfaces can also be equal.
  • the size of the bevel and the area of the corresponding bevel may not be equal.
  • the radians of the corresponding rounded corners and the areas of the corresponding circular arc surfaces may also be unequal.
  • the connections between them are all rounded connections, but the curvature of the rounded connection between the second main surface 123 and the first side surface 124 is smaller than that of the other two rounded connections, and the connection between the first main surface 122 and the second side surface 125 is smaller than that of the other two rounded connections.
  • the connection between is an oblique connection.
  • connections between the first main surface 122 , the second main surface 123 and the first side surface 124 and the second side surface 125 are all rounded connections, and the two opposite main surfaces are connected to the same The rounded connection between the sides can be bent in the same direction.
  • connection between the first main surface 122 and the first side surface 124 and the connection between the first main surface 122 and the second side surface 125 are both is bent in a direction away from the core layer 11, correspondingly, the connection between the second main surface 123 and the first side surface 124 is in the same direction as the connection between the first main surface 122 and the first side surface 124, and The curvature is the same; the connection between the second main surface 123 and the second side surface 125 has the same bending direction as the connection between the first main surface 122 and the second side surface 125, and has the same curvature.
  • the difference between FIG. 18 and FIG. 19 is that the core layer 11 in FIG.
  • the core layer 11 is only correspondingly filled between the relative positions of the first main surface 122 and the second main surface 123 , and is not filled between the corresponding rounded corner connections.
  • connection between the first main surface 122 and the first side surface 124 and the connection between the first main surface 122 and the second side surface 125 are directed away from the core
  • the direction of the core layer 11 is curved.
  • the connection between the second main surface 123 and the first side surface 124 is in the same direction as the connection between the first main surface 122 and the first side surface 124, but the curvature is small.
  • the connection between the second main surface 123 and the second side surface 125 is in the same direction as the connection between the first main surface 122 and the second side surface 125, but with a smaller curvature.
  • the difference between FIG. 20 and FIG. 21 is that the core layer 11 in FIG.
  • the core layer 11 is only filled between the relative positions of the first main surface 122 and the second main surface 123 , and is not filled between the corresponding rounded corner connections.
  • one of the first main surface 122 and the second main surface 123 is curved in a direction away from the core layer 11 , and the other is straight and extended.
  • one of the first main surface 122 and the second main surface 123 is curved away from the core layer 11 , and the other is curved toward the core layer 11 .
  • the first main surface 122 is bent in a direction away from the core layer 11, and the bending direction of the second main surface 123 is the same as that of the first main surface 122, and the curvature is also the same.
  • the second main surface 123 is bent in a direction away from the core layer 11 , and the first main surface 122 has the same bending direction and the same curvature as the second main surface 123 .
  • both the first main surface 122 and the second main surface 123 are curved in a direction away from the core layer 11 .
  • the core layer 11 includes a first inner surface 112 and a second inner surface 113 arranged oppositely, and a first inner surface 112 and the second inner surface 113 respectively connected to the first inner surface 112 and the second inner surface 113 and arranged oppositely. Side 114 and second inner side 115 .
  • the first inner surface 112 , the second inner surface 113 , the first inner side surface 114 and the second inner side surface 115 are all surfaces of the core layer 11 in contact with the wrapping layer 12 .
  • the first inner surface 112 and the second inner surface 113 refer to the surface of the core layer 11 with a larger area, and specifically correspond to the main surface 13 of the casing 10 .
  • the first inner surface 114 and the second inner surface 115 are surfaces connected between the first inner surface 112 and the second inner surface 113 . It should be pointed out that the number of inner surfaces connected between the first inner surface 112 and the second inner surface 113 may be multiple, and the first inner surface 114 and the second inner surface 115 may be only two of them.
  • the first inner surface 112 and the second inner surface 113 are parallel to each other and extend straight.
  • connection between the first inner surface 112 and the first inner surface 114 , the connection between the first inner surface 112 and the second inner surface 115 , and the second inner surface 113 are all rounded connections.
  • connection between the first inner surface 112 and the first inner surface 114 , the connection between the first inner surface 112 and the second inner surface 115 , and the second inner surface 113 are all right-angle connections.
  • connection between the first inner surface 112 and the first inner surface 114 , the connection between the first inner surface 112 and the second inner surface 115 , and the second inner surface 113 are all bevel connections.
  • connection between the first inner surface 112 and the first inner side 114 and the connection between the first inner surface 112 and the second inner side 115 are rounded connections, and the first The connection between the two inner surfaces 113 and the first inner surface 114 and the connection between the second inner surface 113 and the second inner surface 115 are both bevel connections.
  • the size of the bevel and the area of the corresponding bevel may be equal or unequal, Similarly, the curvatures of the corresponding rounded corners and the areas of the corresponding circular arc surfaces may also be equal or unequal.
  • At least one of the first inner surface 112 and the second inner surface 113 is curved.
  • the first inner surface 112 is curved in a direction away from the second inner surface 113 , and the second inner surface 113 is arranged to extend straight.
  • the first inner surface 112 is curved in a direction away from the second inner surface 113
  • the second inner surface 113 is curved in a direction away from the first inner surface 112 .
  • the first inner surface 112 is curved toward the second inner surface 113
  • the second inner surface 113 is curved toward the first inner surface 112 .
  • both the first inner surface 112 and the second inner surface 113 are curved in a wavy shape.
  • the shape of the cross section of the core layer 11 parallel to the main surface 13 of the casing 10 may be a regular shape, for example, a square (as shown in FIG. 11 ), a rectangle, etc., or may also be different
  • the regular shape, as shown in Figure 33 and Figure 34, is not specifically limited here.
  • the number of closed spaces 12a may be one or more, and the number of core layers 11 is equal to the number of closed spaces 12a, and they are respectively filled in the corresponding closed spaces 12a.
  • the number of core layers 11 may be multiple.
  • a plurality of monomers of the core layers 11 may be placed at intervals in the vacuum chamber, and the heating will continue in the high-temperature heating system.
  • the wrapping layer 12 is transformed into a fluid state and flows into the space between the monomers of each core layer 11, and wraps around the periphery of each core layer monomer 111, thereby finally obtaining a core layer with multiple core layers.
  • the shell 10 of the core layer 11 is shown in FIG. 35 .
  • the number of core layers 11 is not limited to one or four as shown in Figure 35, but can also be two, three, five, etc., which can be selected according to actual needs. There is no specific limitation here.
  • the casing may further include an appearance layer 14 formed on at least one side of the above-mentioned wrapping layer 12 .
  • the appearance layer 14 can be a color layer that can make the casing present a certain color, a reflective layer that can reflect incident light and make the casing present a high-brightness effect, a texture pattern layer that can provide a texture effect, and a layer that shields the electronic device.
  • At least one of the light-shielding layers and the like of the internal functional device 20 can be specifically selected according to actual needs, which is not limited here.
  • an embodiment of the manufacturing method of the casing may include:
  • Step S10 providing wrapping material and core material
  • Step S20 heating the wrapping material and the core material, so that the wrapping material is in a fluid state and wraps the core material, so that the core material is filled in the closed space formed by the wrapping material;
  • Step S30 cooling the wrapping material and the core material to obtain a shell
  • the first thermal expansion coefficient of the wrapping material is smaller than the second thermal expansion coefficient of the core material.
  • the manufacturing method of the casing in this embodiment can be used to manufacture the casing described in the above-mentioned embodiments of the present application.
  • the wrapping material, the type of core material, the method of heating treatment and cooling treatment, and the equipment used for implementing the method in this embodiment are the same as those in the above-mentioned shell embodiment.
  • the manufacturing method of the casing may further include:
  • Step S40 After the cooling treatment, further chemical tempering treatment is performed on the shell.
  • the method for chemically tempering the casing in this embodiment can also be the same as that described in the above-mentioned casing embodiment.
  • the first coefficient of thermal expansion CTE A of the wrapping layer is 7.6x10 ⁇ -6/°C
  • the second coefficient of thermal expansion CTE B of the core layer is 9.8x10 ⁇ -6/°C
  • the room temperature and the strain point of the wrapping layer and the core layer The difference ⁇ T between the lower of the strain points is -430°C
  • the Young's modulus Emod A of the cladding layer is 69.3GPa
  • the Young's modulus Emod B of the core layer is 78.2GPa
  • the Poisson's ratio ⁇ of the cladding layer A was 0.23
  • the thickness of the cladding layer was t A 0.2 mm
  • the thickness t B of the core layer was 0.6 mm.
  • the compressive stress of the wrapping layer of the casing is 53.7 MPa, which has a relatively high compressive stress. strength.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Casings For Electric Apparatus (AREA)

Abstract

本申请公开了一种壳体及其制作方法、电子设备,其中,所述壳体包括:核芯层及包裹层;所述包裹层定义有封闭空间,所述核芯层填充于所述封闭空间内;其中,所述核芯层的第一热膨胀系数大于所述包裹层的第二热膨胀系数。通过上述方式,本申请能够为提高整个壳体外周的强度提供技术支持。

Description

壳体及其制作方法、电子设备 【技术领域】
本申请涉及壳体技术领域,特别是涉及一种壳体及其制作方法、电子设备。
【背景技术】
出于功能以及外观等方面的需求,诸多生产、生活工具,例如电子设备、家用电器等都具有壳体。
随着科技的发展,用户对于当前各种设备的壳体的强度等方面的要求越来越高,低强度的壳体容易导致碎裂,已无法满足用户日益增长的需求。
【发明内容】
本申请主要解决的技术问题是提供一种壳体及其制作方法、电子设备,能够为提高整个壳体外周的强度提供技术支持。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种壳体,所述壳体包括:核芯层及包裹层;所述包裹层定义有封闭空间,所述核芯层填充于所述封闭空间内;其中,所述核芯层的第一热膨胀系数大于所述包裹层的第二热膨胀系数。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种壳体的制作方法,所述制作方法包括:提供包裹材料和核芯材料;对所述包裹材料及所述核芯材料进行加热处理,以使所述包裹材料处于流动态并包裹所述核芯材料,而使所述核芯材料填充于所述包裹材料形成的封闭空间内;及对所述包裹材料及所述核芯材料进行降温处理,得到所述壳体;其中,所述包裹材料的第一热膨胀系数小于所述核芯材料的第二热膨胀系数。
为解决上述技术问题,本申请采用的又一个技术方案是:提供一种电子设备,包括壳体及功能器件,所述壳体定义有容置空间;所述功能器件容置于所述容置空间内;其中,所述壳体为如上所述的壳体。
本申请的有益效果是:区别于现有技术的情况,本申请中壳体包括核芯层及包裹层,其中,包裹层定义有封闭空间,核芯层填充于封闭空间内,且核芯层的第一热膨胀系数大于包裹层的第二热膨胀系数。通过这种方式,在对上述壳体加热并进行冷却处理后,热膨胀系数小的包裹层的收缩小,而热膨胀系数大的核芯层的收缩大,从而会在包裹层形成压应力,并在核芯层形成拉应力,由于包裹层包裹于整个核芯层的外围,从而使得壳体外周均形成相应的压应力,以为提高整个壳体外周的强度提供技术支持。
【附图说明】
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是本申请电子设备一实施方式的结构示意图;
图2是本申请壳体一实施方式的部分结构示意图;
图3是本申请壳体一实施方式中的包裹层和核芯层所分别对应的包裹层单体和核芯层单体的形成场景示意图;
图4是本申请壳体一实施方式中壳体的形成场景示意图;
图5是本申请壳体一实施方式中包裹层的第一压应力示意图;
图6是相关技术中壳体的包裹层的第三压应力示意图;
图7是本申请壳体一实施方式中包裹层的第一压应力和第二压应力叠加的示意图;
图8是相关技术中壳体的包裹层的第三压应力和第四压应力叠加的示意图;
图9是本申请壳体一实施方式的垂直于壳体的主表面的方向上的横截面的结构示意图;
图10是本申请壳体一实施方式的垂直于壳体的主表面的方向上的横截面的结构示意图;
图11是本申请壳体一实施方式的平行于壳体的主表面的方向上的横截面的结构示意图;
图12是本申请壳体一实施方式的平行于壳体的主表面的方向上的横截面的结构示意图;
图13是本申请壳体一实施方式的垂直于壳体的主表面的方向上的横截面的结构示意图;
图14是本申请壳体一实施方式的垂直于壳体的主表面的方向上的横截面的结构示意图;
图15是本申请壳体一实施方式的垂直于壳体的主表面的方向上的横截面的结构示意图;
图16是本申请壳体一实施方式的垂直于壳体的主表面的方向上的横截面的结构示意图;
图17是本申请壳体一实施方式的垂直于壳体的主表面的方向上的横截面的结构示意图;
图18是本申请壳体一实施方式的垂直于壳体的主表面的方向上的横截面的结构示意图;
图19是本申请壳体一实施方式的垂直于壳体的主表面的方向上的横截面的结构示意图;
图20是本申请壳体一实施方式的垂直于壳体的主表面的方向上的横截面的结构示意图;
图21是本申请壳体一实施方式的垂直于壳体的主表面的方向上的横截面的结构示意图;
图22是本申请壳体一实施方式的垂直于壳体的主表面的方向上的横截面的结构示意图;
图23是本申请壳体一实施方式的垂直于壳体的主表面的方向上的横截面的结构示意图;
图24是本申请壳体一实施方式的垂直于壳体的主表面的方向上的横截面的结构示意图;
图25是本申请壳体一实施方式的垂直于壳体的主表面的方向上的横截面的结构示意图;
图26是本申请壳体一实施方式的垂直于壳体的主表面的方向上的横截面的结构示意图;
图27是本申请壳体一实施方式的垂直于壳体的主表面的方向上的横截面的结构示意图;
图28是本申请壳体一实施方式的垂直于壳体的主表面的方向上的横截面的结构示意图;
图29是本申请壳体一实施方式的垂直于壳体的主表面的方向上的横截面的结构示意图;
图30是本申请壳体一实施方式的垂直于壳体的主表面的方向上的横截面的结构示意图;
图31是本申请壳体一实施方式的垂直于壳体的主表面的方向上的横截面的结构示意图;
图32是本申请壳体一实施方式的垂直于壳体的主表面的方向上的横截面的结构示意图;
图33是本申请壳体一实施方式的平行于壳体的主表面的方向上的横截面的结构示意图;
图34是本申请壳体一实施方式的平行于壳体的主表面的方向上的横截面的结构示意图;
图35是本申请壳体一实施方式的平行于壳体的主表面的方向上的横截面的结构示意图;
图36是本申请壳体一实施方式的结构示意图;
图37是本申请壳体的制作方法一实施方式的流程示意图;
图38是本申请壳体的制作方法一实施方式的流程示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性的劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请提供一种电子设备,请参阅图1,在一实施方式中,电子设备包括壳体10及功能 器件20。其中,该壳体10定义有容置空间10a,功能器件20设置于该容置空间10a内,该壳体10能够起到保护功能器件20(例如,主板、电池等)的作用。
具体地,电子设备可以是手机、平板电脑、笔记本电脑、智能手环、智能手表等,壳体10可以为电子设备的前壳、边框、后盖等此处不做限定。
请一并参阅图2,在一实施方式中,壳体10可以包括核芯层11及包裹层12,其中,包裹层12定义有封闭空间12a,核芯层11填充于该封闭空间12a内,使得包裹层12包裹在核芯层11的整个外周,从而使得壳体10的整个外表面及边缘均由包裹层12形成。
其中,包裹层12及核芯层11均可为玻璃、陶瓷、蓝宝石中的至少一种。在实际应用中,包裹层12和核芯层11均可以为玻璃,且对应的软化点均可大于400℃,具体如450℃、500℃、550℃等,具体可以根据实际需求选择普通玻璃、微晶玻璃、有色玻璃等,此处不做具体限定。
需要指出的是,核芯层11的第一热膨胀系数大于包裹层12的第二热膨胀系数,具体地,第一热膨胀系数与第二热膨胀系数之间的差值可不小于5x10^-7/℃,例如5x10^-7/℃、5.5x10^-7/℃、6x10^-7/℃等。其中,上述热膨胀系数均可指0-300℃下的热膨胀系数。通过这种方式,在对上述壳体10加热并进行冷却处理后,会在包裹层12形成压应力,并在核芯层11形成拉应力,而且由于包裹层12包裹于整个核芯层11的外围,从而使得壳体10外周均形成相应的压应力,以为提高整个壳体10外周的强度提供技术支持。
在实际生产过程中,请参阅图3,可先分别利用包裹材料(即包裹层12的原材料)和核芯材料(即核芯层11的原材料)制成包裹层板材及核芯层板材,然后再进一步分别对包裹层板材和核芯层板材进行切割,如线切割等,得到多个尺寸较小的包裹层单元和核芯层单元。然后根据实际需求进一步进行数控机床CNC外形加工、抛光等外形处理,从而得到包裹层单体121和核芯层单体111。其中,通过抛光处理,能够使得后续在制作壳体10时,使得包裹层单体121与核芯层单体111结合得更加充分。需要说明的是,包裹层单体121与核芯层单体111的形成方式基本一致,均可通过图3进行示意。
进一步地,在得到包裹层单体121和核芯层单体111后,可通过对包裹层单体121进行加热处理和/或加压处理而使其处于流动状态,以包封在核芯层单体111的外围,从而得到具有上述包裹层12和核芯层11的壳体10;当然,还可通过同时对包裹层单体121以及核芯层单体111进行加热处理和/或加压处理以形成壳体10。
在一个应用场景中,包裹层单体121和核芯层单体111的材质均为玻璃,在制作壳体10时,采用的包裹层单体121的数量为两个,核芯层单体111的数量为一个,且每个包裹层单体121的尺寸大于核芯层单体111的尺寸,例如至少包裹层单体121的长度、宽度大于核芯层单体111的长度、宽度,以使得包裹层单体121能够形成足够大的封闭空间12a,以充分包裹核心层单体。
具体地,在得到包裹层单体121和核芯层单体111之后,可利用压铸设备进行进一步的操作,以得到壳体10。其中,压铸设备可包含真空腔、高温加热系统以及合片模具等。
具体地,请参阅图4,分别将两个包裹层单体121和一个核芯层单体111按照包裹层单体121+核芯层单体111+包裹层单体121的方式层叠放置于真空腔内的模具内,启动高温加热系统将包裹层单体121和核芯层单体111加热到高于二者的玻璃软化点,如800-900℃,并持续进行加热加压,使温度达到900-1100℃,从而使得包裹层单体121的粘度低于30000Poise而呈流动状态,上下两个包裹层单体121融合在一起并充分包裹在核芯层单体111的外周,然后打破真空腔内的真空环境,在腔体内充入保护气氛,如氮气、氩气等,并进行冷却处理并出料,从而得到上述的包括包裹层12、核芯层11的壳体10。
当然,还可以在出料后根据实际需求进一步进行机械加工(如CNC加工等)、抛光以及 进一步的强化,如化学钢化等,从而得到壳体10成品。
需要指出的是,在上述对包裹层单体121及核芯层单体111加热后冷却的过程中,由于二者在热膨胀系数上的差异,热膨胀系数小的包裹层12的收缩小,而热膨胀系数大的核芯层11的收缩大,从而会在包裹层12产生压应力(如图5中的箭头所示的第一压应力F 1),而在核芯层11产生拉应力,而又由于包裹层12包裹在核芯层11的整个外周,从而能够在壳体10的整个外围形成第一压应力F 1,进而能够提升壳体10的整个外围的强度。
在相关技术当中,请参阅图6,壳体也可由包裹层22及核芯层21构成,具体地,通过溢流法在高温下将低热膨胀系数的玻璃融合到高热膨胀系数的玻璃的两侧,形成三明治结构,即包裹层22仅包覆在核芯层21的两侧,而并非包裹于整个核芯层21的外周,在冷却过程中,同样地,低热膨胀系数的玻璃收缩小,高热膨胀系数的玻璃收缩大,从而在包裹层22形成压应力(如图6中箭头所示的第三压应力F 3),而在核芯层21形成拉应力。
然而,由于相关技术中包裹层22并没有包裹整个核芯层21的外周,因此,未被包裹层22包裹的核芯层21部分,即边缘部,并未产生相应的压应力,或者说产生的压应力较小,可以忽略,也就是说该壳体的边缘部未得到相应的强化。
相比之下,本申请上述壳体10的包括边缘在内的整个外围均能够得到强化,一方面能够减少壳体10破裂的情况发生,另一方面,采用相对较薄的壳体10也能够具有相当的强度,从而能够在一定程度上满足用户轻薄化的使用需求。而且,由于核芯层11被包裹层12完全包裹于其中,因此相对来说核芯层11的强度对壳体10的整体强度影响较小,从而在材质、形状等方面有更多的选择。
需要指出的是,上述基于第一热膨胀系数与第二热膨胀系数之间的差值而在包裹层12产生的第一压应力F 1满足如下公式(1):
Figure PCTCN2021113799-appb-000001
其中,CTE A、CTE B分别为包裹层12的第一热膨胀系数和核芯层11的第二热膨胀系数,如上所述,二者之间的差值可不小于5x10^-7/℃;ΔT为常温与包裹层12的应变点和核芯层11的应变点中的较低者之差,即ΔT=T -min{T 应1,T 应2},其中,T 应1为包裹层12的应变点,T 应2为核芯层11的应变点;Emod A、Emod B分别为包裹层12的杨氏模量和核芯层11的杨氏模量,二者均可大于50GPa,具体如51GPa、52GPa、53GPa等,其中,包裹层12和核芯层11的杨氏模量越大,则最终在包裹层12上形成的压应力也越大,具体可根据实际需求进行选择;t A、t B分别为在垂直于壳体10的主表面13(如图2所示)的方向上,包裹层12的厚度和核芯层11的厚度,其中,壳体10的主表面13为壳体10的面积较大的表面。包裹层12的厚度和核芯层11的厚度二者均可以为0.02-2mm,具体如0.02mm、0.04mm、0.05mm、0.1mm、0.5mm、1mm、2mm等,其中,包裹层12的厚度t A与核芯层11的厚度t B可以相等也可以不等,此处不做限定;ν A为包裹层12的泊松比。
能够理解地,在一些实施方式中,可以在一定程度上通过增大CTE B与CTE A之间的差值来增大包裹层12上形成的第一压应力F 1,从而进一步提高壳体10的强度。
在一实施方式中,请参阅图7,在得到上述壳体10之后,还可以对壳体10进一步进行化学钢化,以在包裹层12进一步产生另一压应力,即第二压应力F 2
具体地,该压应力可以为包裹层12经离子交换反应产生。其中,包裹层12的材质可以为能够进行离子交换的材质,具体可以为高铝硅玻璃,更加具体地,可以为锂铝硅玻璃、钠铝硅玻璃等中的至少一种。
具体地,可将壳体10浸泡在一定温度盐炉内,使得壳体10发生反应以将壳体10表层的 小离子(如Li +、Na +等)替换为盐炉中的大离子(如K +),使得壳体10表层体积增大,在壳体10表面进一步产生第二压应力F 2,内部产生拉应力,从而使壳体10得到进一步的强化。
需要指出的是,如图7所示,在进一步进行化学钢化后,在包裹层12上已经产生了第一压应力F 1的基础上,进一步叠加第二压应力F 2,而且由于壳体10的整个外层均由包裹层12形成,因此能够对整个壳体10的表层进行进一步的强化。
而如上所述,相关技术中,包裹层22仅覆盖于核芯层21的两侧,而未覆盖核芯层21的边缘部。在进一步进行化学钢化后,虽然化学钢化不受包裹层22和核芯层21的热膨胀系数差异的影响,即也会在壳体的整个外表面进一步产生一第四压应力F 4(如图8所示),但是由于上述第三压应力F 2仅产生在包裹层12上,因此相当于壳体的边缘部仅进行了化学钢化,相比之下,本申请上述实施方式中的壳体10仍具有更高的强度。
在一实施方式中,核芯层11还可以为经物理钢化处理后,和/或经化学钢化处理后的玻璃,即,在制作壳体10时所采用的核芯层单体111即为经过物理钢化处理后,和/或经化学钢化处理后的玻璃,从而能够进一步提升壳体10的强度。
进一步地,请结合参阅图9,为了满足壳体10自身的强度,如上所述,在垂直于壳体10的主表面13的方向上,包裹层12的厚度t A可以为0.02-2mm,具体如0.02mm、0.04mm、0.05mm、0.1mm、0.5mm、1mm、2mm等。
另外,在垂直于壳体10的主表面13的方向上,位于核芯层11的两侧的包裹层12的厚度t A可以相等,如图9所示,也可以不相等,如图10所示,此处不做限定。
进一步地,在垂直于壳体10的主表面13的方向上,核芯层11的厚度t B可以为0.02-2mm,具体如0.02mm、0.04mm、0.05mm、0.1mm、0.5mm、1mm、2mm等,壳体10的总厚度t可大于0.1mm,例如0.15mm、0.2mm、0.5mm、1mm、2mm、4mm等。需要指出的是,在壳体的材质为玻璃时,由于玻璃的刚性越强,则韧性则越差,在实际生产中可根据对壳体所要求的刚性与韧性强弱程度设定总厚度t的大小。
请参阅图11,在平行于壳体10的主表面13的方向上,包裹层12的厚度t C可以为0.02-2mm,具体如0.02mm、0.04mm、0.05mm、0.1mm、0.5mm、1mm、2mm等,此处不做具体限定。需要指出的是,该包裹层12的厚度的设置,能够满足壳体10边缘部位的强度需求。
另外,在平行于壳体10的主表面13的方向上,位于核芯层11两侧的包裹层12的厚度t C可以相等,如图9和图11所示,也可以不相等,如图10和图12所示,此处不做限定。
其中,请参阅图13,包裹层12包括相对设置的第一主表面122和第二主表面123,以及分别与第一主表面122和第二主表面123连接且相对设置的第一侧表面124和第二侧表面125。
具体地,第一主表面122和第二主表面123是指包裹层12的面积较大的表面,具体对应于壳体10的主表面13。在一些应用场景中,第一主表面122和第二主表面123即壳体10的主表面13;在另一些应用场景中,壳体10还包括位于包裹层12外围的其它结构层,此时第一主表面122和第二主表面123则并非壳体10的主表面13。另外,第一侧表面124和第二侧表面125为连接在第一主表面122和第二主表面123之间的面。需要指出的是,连接在第一主表面122和第二主表面123之间的侧表面的数量可以为多个,而第一侧表面124和第二侧表面125可以仅是其中的两个。
在一实施方式中,请参阅图13至图21,第一主表面122与第二主表面123可互相平行且平直延伸设置。
在一个应用场景中,如图13所示,第一主表面122与第一侧表面124之间的连接、第一 主表面122与第二侧表面125之间的连接,以及第二主表面123与第一侧表面124之间的连接、第二主表面123与第二侧表面125之间的连接均为圆角连接,且均朝向不同的且远离壳体10的方向弯曲设置。
在一个应用场景中,如图14所示,第一主表面122与第一侧表面124之间的连接、第一主表面122与第二侧表面125之间的连接,以及第二主表面123与第一侧表面124之间的连接、第二主表面123与第二侧表面125之间的连接均为直角连接。
在一个应用场景中,如图15所示,第一主表面122与第一侧表面124之间的连接、第一主表面122与第二侧表面125之间的连接,以及第二主表面123与第一侧表面124之间的连接、第二主表面123与第二侧表面125之间的连接均为斜角连接。
在一个应用场景中,如图16所示,第一主表面122与第一侧表面124之间的连接及第一主表面122与第二侧表面125之间的连接为斜角连接,第二主表面123与第一侧表面124之间的连接及第二主表面123与第二侧表面125之间的连接则为圆角连接。
需要指出的是,上述各应用场景中,第一、第二主表面122、123与第一、第二侧表面124、125之间的连接中,斜角的大小,以及对应的斜面的面积可以相等,同样地,对应的圆角的弧度及对应的圆弧面的面积也可相等。
在另一些应用场景中,第一、第二主表面122、123与第一、第二侧表面124、125之间的连接中,斜角的大小,以及对应的斜面的面积也可以不相等,同样地,对应的圆角的弧度及对应的圆弧面的面积也可不相等。
具体地,请参阅图17,在一个应用场景中,第一主表面122与第一侧表面124之间的连接,以及第二主表面123分别与第一侧表面124和第二侧表面125之间的连接均为圆角连接,但第二主表面123与第一侧表面124之间的圆角连接的曲率小于另外两个圆角连接,而第一主表面122与第二侧表面125之间的连接为斜角连接。
在另一些应用场景中,第一主表面122、第二主表面123与第一侧表面124、第二侧表面125之间的连接均为圆角连接,而相对的两个主表面与同一个侧面之间的圆角连接弯曲方向可以一致。
具体地,请参阅图18及图19,在一个应用场景中,第一主表面122与第一侧表面124之间的连接,以及第一主表面122与第二侧表面125之间的连接均朝背离核芯层11的方向弯曲,对应地,第二主表面123与第一侧表面124之间的连接与第一主表面122与第一侧表面124之间的连接的弯曲方向一致,且曲率相同;第二主表面123与第二侧表面125之间的连接与第一主表面122与第二侧表面125之间的连接的弯曲方向一致,且曲率相同。其中,图18与图19相比,不同的是,图18中核芯层11对应填充于第一主表面122与第二主表面123的相对位置之间以及上述相对应设置的圆角连接之间,且对应于圆角连接的核芯层11部分也弯曲设置,且与对应的圆角连接的曲率相同。而图19中核芯层11仅对应填充于第一主表面122与第二主表面123的相对位置之间,而并不填充于相对应设置的圆角连接之间。
请参阅图20及图21,在一个应用场景中,第一主表面122与第一侧表面124之间的连接,以及第一主表面122与第二侧表面125之间的连接均朝背离核芯层11的方向弯曲,对应地,第二主表面123与第一侧表面124之间的连接与第一主表面122与第一侧表面124之间的连接的弯曲方向一致,但曲率较小;第二主表面123与第二侧表面125之间的连接与第一主表面122与第二侧表面125之间的连接的弯曲方向一致,但曲率较小。其中,图20与图21相比,不同的是,图20中核芯层11对应填充于第一主表面122与第二主表面123的相对位置之间以及上述相对应设置的圆角连接之间,且对应于圆角连接的核芯层11部分也弯曲设置,且与对应的第二主表面123分别第一侧表面124和第二侧表面125之间的圆角连接的曲 率相同。而图21中核芯层11仅对应填充于第一主表面122与第二主表面123的相对位置之间,而并不填充于相对应设置的圆角连接之间。
在一实施方式中,请参阅图22,第一主表面122与第二主表面123中的一个朝背离核芯层11的方向弯曲设置,另一个平直延伸设置。
在一实施方式中,请参阅图23和图24,第一主表面122与第二主表面123中的一个朝背离核芯层11的方向弯曲设置,另一个朝向核芯层11弯曲设置。其中,图23中,第一主表面122朝背离核芯层11的方向弯曲设置,第二主表面123的弯曲方向与第一主表面122相同,且曲率也相同。图24中,第二主表面123朝背离核芯层11的方向弯曲设置,第一主表面122的弯曲方向与第二主表面123相同,且曲率也相同。
在一实施方式中,请参阅图25,第一主表面122和第二主表面123均朝背离核芯层11的方向弯曲设置。
其中,请继续参阅图13,核芯层11包括相对设置的第一内表面112和第二内表面113,以及分别与第一内表面112和第二内表面113连接且相对设置的第一内侧面114和第二内侧面115。
具体地,第一内表面112、第二内表面113、第一内侧面114和第二内侧面115均为核芯层11与包裹层12接触的表面。其中,第一内表面112和第二内表面113是指核芯层11的面积较大的表面,具体对应于壳体10的主表面13。第一内侧面114和第二内侧面115则为连接在第一内表面112和第二内表面113之间的面。需要指出的是,连接在第一内表面112和第二内表面113之间的内侧面的数量可以为多个,而第一内侧面114和第二内侧面115可以仅是其中的两个。
在一实施方式中,请参阅图13及图26至图28,第一内表面112与第二内表面113互相平行且平直延伸设置。
在一个应用场景中,如图13所示,第一内表面112与第一内侧面114之间的连接、第一内表面112与第二内侧面115之间的连接,以及第二内表面113与第一内侧面114之间的连接、第二内表面113与第二内侧面115之间的连接均为圆角连接。
在一个应用场景中,如图26所示,第一内表面112与第一内侧面114之间的连接、第一内表面112与第二内侧面115之间的连接,以及第二内表面113与第一内侧面114之间的连接、第二内表面113与第二内侧面115之间的连接均为直角连接。
在一个应用场景中,如图27所示,第一内表面112与第一内侧面114之间的连接、第一内表面112与第二内侧面115之间的连接,以及第二内表面113与第一内侧面114之间的连接、第二内表面113与第二内侧面115之间的连接均为斜角连接。
在一个应用场景中,如图28所示,第一内表面112与第一内侧面114之间的连接及第一内表面112与第二内侧面115之间的连接为圆角连接,而第二内表面113与第一内侧面114之间的连接及第二内表面113与第二内侧面115之间的连接均为斜角连接。
需要指出的是,上述第一、第二内表面112、113与第一、第二内侧面114、115之间的连接中,斜角的大小,以及对应的斜面的面积可以相等或者不相等,同样地,对应的圆角的曲率及对应的圆弧面的面积也可相等或者不相等。
在一实施方式中,请参阅图29至图32,第一内表面112与第二内表面113中的至少一者弯曲设置。
具体地,在一个应用场景中,如图29所示,第一内表面112朝远离第二内表面113的方向弯曲,第二内表面113平直延伸设置。
在一个应用场景中,如图30所示,第一内表面112朝远离第二内表面113的方向弯曲, 第二内表面113朝远离第一内表面112的方向弯曲。
在一个应用场景中,如图31所示,第一内表面112朝向第二内表面113弯曲,第二内表面113朝向第一内表面112弯曲。
在一个应用场景中,如图32所示,第一内表面112和第二内表面113均呈波浪状弯曲设置。
进一步地,核芯层11的在平行于壳体10的主表面13的横截面的形状可以为规则的形状,例如可以为如正方形(如图11所示)、矩形等,或者还可以为不规则的形状,如图33、图34所示,此处不做具体限定。
另外,在一个实施方式中,封闭空间12a的数量既可以为一个,也可以为多个,核芯层11的数量与封闭空间12a的数量相等,并分别填充于对应的封闭空间12a内。
在一个应用场景中,核芯层11的数量可以为多个,在壳体10的实际生产过程中,可以在真空腔内间隔放置多个核芯层11的单体,在高温加热系统持续加热的过程中,包裹层12转化为流动状态并流动至每个核芯层11的单体之间的间隔内,并包裹在每个核芯层单体111的外围,从而最终得到具有多个核芯层11的壳体10,如图35所示。当然,在其它应用场景中,核芯层11的数量并不限定为一个或者如图35所示的4个,还可以为2个、3个、5个等,具体可根据实际需求进行选择,此处不做具体限定。
进一步地,请参阅图36,在一实施方式当中,壳体还可包括形成在上述包裹层12的至少一侧的外观层14。具体地,该外观层14可以是能够使壳体呈现一定色彩的颜色层、用于反射入射光线而使壳体呈现高亮效果的反射层、能够提供纹理效果的纹理图案层、遮挡电子设备的内部的功能器件20的遮光层等中的至少一种,具体可根据实际需求进行选择,此处不做限定。
本申请还提供壳体的制作方法,请参阅图37,壳体的制作方法一实施例可包括:
步骤S10:提供包裹材料和核芯材料;
步骤S20:对包裹材料及核芯材料进行加热处理,以使包裹材料处于流动态并包裹核芯材料,而使核芯材料填充于包裹材料形成的封闭空间内;及
步骤S30:对包裹材料及核芯材料进行降温处理,得到壳体;
其中,包裹材料的第一热膨胀系数小于核芯材料的第二热膨胀系数。
本实施方式中的壳体制作方法可用于制作本申请上述实施方式中所描述的壳体。本实施方式中所涉及的包裹材料、核芯材料的种类、加热处理以及降温处理的方式,以及实施方法所使用的设备等均与上述壳体实施方式中的相同,相关详细内容请参阅上述实施方式,此处不再赘述。
需要指出的是,上述方式中,在对包裹材料及核芯材料加热并进行冷却处理后,会在包裹材料上形成压应力,并在核芯材料上形成拉应力,而且由于包裹材料包裹于整个核芯材料的外围,从而使得壳体外周均形成相应的压应力,从而能够提高整个壳体外周的强度。
进一步地,在一些实施方式中,请参阅图38,步骤S30之后,壳体的制作方法还可包括:
步骤S40:在降温处理后,进一步对壳体进行化学钢化处理。
本实施方式中对壳体进行化学钢化的方法也可与上述壳体实施方式中所描述的相同。
下面以具体的实施例描述本申请上述实施方式中的壳体。本实施例中,包裹层采用康宁GG3玻璃,核芯层采用国产熊猫1代料,最终得到的复合玻璃壳体的厚度为1mm。
其中,包裹层的第一热膨胀系数CTE A为7.6x10^-6/℃,核芯层的第二热膨胀系数CTE B为9.8x10^-6/℃,常温与包裹层的应变点和核芯层的应变点中的较低者之差ΔT为-430℃,包 裹层的杨氏模量Emod A为69.3GPa,核芯层的杨氏模量Emod B为78.2GPa,包裹层的泊松比ν A为0.23,且在垂直于壳体的主表面的方向上,包裹层的厚度为t A0.2mm,核芯层的厚度t B为0.6mm。
根据上述公式(1),在按照本申请上述壳体的制作方法得到上述壳体后,在进行化学钢化前,能够得出壳体的包裹层所具有的压应力为53.7MPa,具有较高的强度。
以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种壳体,其特征在于,包括:
    核芯层;及
    包裹层,定义有封闭空间,所述核芯层填充于所述封闭空间内;
    其中,所述核芯层的第一热膨胀系数大于所述包裹层的第二热膨胀系数。
  2. 根据权利要求1所述的壳体,其特征在于,
    所述包裹层具有第一压应力,所述核芯层具有拉应力;
    其中,所述第一压应力及所述拉应力,基于所述第一热膨胀系数与所述第二热膨胀系数之间的差值,所述包裹层及所述核芯层在加热处理后经降温处理而相应产生。
  3. 根据权利要求2所述的壳体,其特征在于,
    所述第一压应力满足:
    Figure PCTCN2021113799-appb-100001
    其中,CTE A、CTE B分别为所述第一热膨胀系数和所述第二热膨胀系数,ΔT为常温与所述包裹层的应变点和所述核芯层的应变点中的较低者之差,Emod A、Emod B分别为所述包裹层的杨氏模量和所述核芯层的杨氏模量,t A、t B分别为在垂直于所述壳体的主表面的方向上,所述包裹层的厚度和所述核芯层的厚度,ν A为所述包裹层的泊松比。
  4. 根据权利要求3所述的壳体,其特征在于,CTE B与CTE A之差不小于5x10^-7/℃,Emod A与Emod B均大于50GPa,t A为0.02-2mm,t B为0.02-2mm。
  5. 根据权利要求2所述的壳体,其特征在于,所述包裹层还具有第二压应力,所述第二压应力为所述包裹层经离子交换反应产生。
  6. 根据权利要求1所述的壳体,其特征在于,
    所述包裹层及所述核芯层为玻璃、陶瓷、蓝宝石中的至少一种。
  7. 根据权利要求6所述的壳体,其特征在于,
    所述包裹层和/或所述核芯层为玻璃时,所述玻璃的软化点大于400℃;
    所述包裹层与所述核芯层为微晶玻璃、有色玻璃中的至少一种,和/或
    所述包裹层为高铝硅玻璃,和/或
    所述核芯层为经物理钢化处理后,和/或经化学钢化处理后的玻璃。
  8. 根据权利要求7所述的壳体,其特征在于,
    在所述包裹层为高铝硅玻璃时,所述包裹层为锂铝硅玻璃、钠铝硅玻璃中的至少一种。
  9. 根据权利要求1所述的壳体,其特征在于,
    在垂直于所述壳体的主表面的方向上,所述包裹层的厚度为0.02-2mm,所述核芯层的厚度为0.02-2mm,所述壳体的总厚度大于0.1mm;
    在平行于所述壳体的主表面的方向上,所述包裹层的厚度为0.02-2mm。
  10. 根据权利要求1所述的壳体,其特征在于,所述包裹层包括相对设置的第一主表面和第二主表面,以及分别与所述第一主表面和所述第二主表面连接且相对设置的第一侧表面和第二侧表面;
    所述第一主表面与第二主表面互相平行且平直延伸设置,或所述第一主表面与所述第二主表面中的一个朝背离所述核芯层的方向弯曲设置,另一个平直延伸设置,或所述第一主表面与所述第二主表面中的一个朝背离所述核芯层的方向弯曲设置,另一个朝向所述核芯层弯曲设置;
    所述第一主表面分别与所述第一侧表面、第二侧表面之间的连接,以及第二主表面分别与所述第一侧表面、第二侧表面之间的连接分别为圆角连接、斜角连接、直角连接中的至少一者。
  11. 根据权利要求1所述的壳体,其特征在于,所述核芯层包括相对设置的第一内表面和第二内表面,以及分别与所述第一内表面和所述第二内表面连接且相对设置的第一内侧面和第二内侧面;
    所述第一内表面与第二内表面互相平行且平直延伸设置,或所述第一内表面与所述第二内表面中的至少一者弯曲设置;
    所述第一内表面分别与所述第一内侧面、第二内侧面之间的连接,以及第二内表面分别与所述第一内侧面、第二内侧面之间的连接为圆角连接、斜角连接、直角连接中的至少一者。
  12. 根据权利要求1所述的壳体,其特征在于,所述封闭空间的数量为多个,所述核芯层的数量与所述封闭空间的数量相等,并分别填充于对应的所述封闭空间内。
  13. 根据权利要求1所述的壳体,其特征在于,还包括:
    外观层,设置于所述包裹层的至少一侧,其中,所述外观层包括颜色层、遮光层、纹理层、反射层中的至少一种。
  14. 一种壳体的制作方法,其特征在于,包括:
    提供包裹材料和核芯材料;
    对所述包裹材料及所述核芯材料进行加热处理,以使所述包裹材料处于流动态并包裹所述核芯材料,而使所述核芯材料填充于所述包裹材料形成的封闭空间内;及
    对所述包裹材料及所述核芯材料进行降温处理,得到所述壳体;
    其中,所述包裹材料的第一热膨胀系数小于所述核芯材料的第二热膨胀系数。
  15. 根据权利要求14所述的制作方法,其特征在于,
    所述包裹层具有第一压应力,所述核芯层具有拉应力;
    其中,所述第一压应力及所述拉应力,基于所述第一热膨胀系数与所述第二热膨胀系数之间的差值,所述包裹层及所述核芯层在加热处理后经降温处理而相应产生。
  16. 根据权利要求15所述的制作方法,其特征在于,
    所述第一压应力满足:
    Figure PCTCN2021113799-appb-100002
    其中,CTEA、CTEB分别为所述第一热膨胀系数和所述第二热膨胀系数,ΔT为常温与所述包裹层的应变点和所述核芯层的应变点中的较低者之差,EmodA、EmodB分别为所述包裹层的杨氏模量和所述核芯层的杨氏模量,tA、tB分别为在垂直于所述壳体的主表面的方向上,所述包裹层的厚度和所述核芯层的厚度,νA为所述包裹层的泊松比。
  17. 根据权利要求16所述的制作方法,其特征在于,CTEB与CTEA之差不小于 5x10^-7/℃,EmodA与EmodB均大于50GPa,tA为0.02-2mm,tB为0.02-2mm。
  18. 根据权利要求15所述的制作方法,其特征在于,所述包裹层还具有第二压应力,所述第二压应力为所述包裹层经离子交换反应产生。
  19. 根据权利要求14所述的制作方法,其特征在于,在垂直于所述壳体的主表面的方向上,所述包裹层的厚度为0.02-2mm,所述核芯层的厚度为0.02-2mm,所述壳体的总厚度大于0.1mm;
    在平行于所述壳体的主表面的方向上,所述包裹层的厚度为0.02-2mm。
  20. 一种电子设备,其特征在于,包括:
    壳体,定义有容置空间;
    功能器件,容置于所述容置空间内;
    其中,所述壳体为如权利要求1-13任一项所述的壳体。
PCT/CN2021/113799 2020-10-30 2021-08-20 壳体及其制作方法、电子设备 WO2022088869A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011197510.4A CN114449792A (zh) 2020-10-30 2020-10-30 壳体及其制作方法、电子设备
CN202011197510.4 2020-10-30

Publications (1)

Publication Number Publication Date
WO2022088869A1 true WO2022088869A1 (zh) 2022-05-05

Family

ID=81358376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113799 WO2022088869A1 (zh) 2020-10-30 2021-08-20 壳体及其制作方法、电子设备

Country Status (2)

Country Link
CN (1) CN114449792A (zh)
WO (1) WO2022088869A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110200805A1 (en) * 2010-02-12 2011-08-18 Masahiro Tomamoto Reinforced plate glass and method for manufacturing the same
CN103072336A (zh) * 2011-10-26 2013-05-01 仁宝电脑工业股份有限公司 复合板结构及其制造方法
US20140132132A1 (en) * 2011-05-27 2014-05-15 Dipakbin Qasem Chowdhury Glass-plastic laminate device, processing line and methods therefor
CN106660327A (zh) * 2014-05-07 2017-05-10 康宁股份有限公司 具有形状的玻璃制品及其形成方法
US20170203551A1 (en) * 2014-07-09 2017-07-20 Sabic Global Technologies B.V. Thinwall composites for electronic enclosures and other devices
CN210026512U (zh) * 2018-07-20 2020-02-07 五行科技股份有限公司 一种复合构件
CN111051256A (zh) * 2017-07-31 2020-04-21 康宁股份有限公司 具有非玻璃芯体和玻璃包封物的层压制品及其方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010057046A (ko) * 1999-12-17 2001-07-04 이형도 캐비티를 갖는 패키지 기판
DE10136370B4 (de) * 2001-07-26 2005-03-31 Schwingel, Dirk, Dr. Verbundwerkstoff und daraus hergestelltes Bauteil bestehend aus einem aufgeschäumten Metallkern und massiven Deckblechen, sowie Verfahren zur Herstellung
US7201965B2 (en) * 2004-12-13 2007-04-10 Corning Incorporated Glass laminate substrate having enhanced impact and static loading resistance
KR100941830B1 (ko) * 2007-05-03 2010-02-11 유명기 전자제품 케이스 및 그 제조방법
CN101562169A (zh) * 2008-04-16 2009-10-21 力成科技股份有限公司 积层式基板以及使用该基板的芯片封装构造
US9155191B2 (en) * 2013-05-31 2015-10-06 Qualcomm Incorporated Substrate comprising inorganic material that lowers the coefficient of thermal expansion (CTE) and reduces warpage
CN105023883B (zh) * 2014-04-29 2018-09-14 清华大学 一种塑料封装及其制备方法
JP6679585B2 (ja) * 2014-10-07 2020-04-15 ショット アクチエンゲゼルシャフトSchott AG 高められた強度を有する合わせガラス
JP2019521065A (ja) * 2016-06-07 2019-07-25 コーニング インコーポレイテッド 三次元積層ガラス物品を製造する方法
JP7144159B2 (ja) * 2018-03-12 2022-09-29 トヨタ自動車株式会社 電気機器
CN110972418B (zh) * 2018-09-30 2022-01-07 比亚迪股份有限公司 电子设备壳体、电子设备和复合体
JP7155875B2 (ja) * 2018-10-29 2022-10-19 株式会社デンソー 電子装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110200805A1 (en) * 2010-02-12 2011-08-18 Masahiro Tomamoto Reinforced plate glass and method for manufacturing the same
US20140132132A1 (en) * 2011-05-27 2014-05-15 Dipakbin Qasem Chowdhury Glass-plastic laminate device, processing line and methods therefor
CN103072336A (zh) * 2011-10-26 2013-05-01 仁宝电脑工业股份有限公司 复合板结构及其制造方法
CN106660327A (zh) * 2014-05-07 2017-05-10 康宁股份有限公司 具有形状的玻璃制品及其形成方法
US20170203551A1 (en) * 2014-07-09 2017-07-20 Sabic Global Technologies B.V. Thinwall composites for electronic enclosures and other devices
CN111051256A (zh) * 2017-07-31 2020-04-21 康宁股份有限公司 具有非玻璃芯体和玻璃包封物的层压制品及其方法
CN210026512U (zh) * 2018-07-20 2020-02-07 五行科技股份有限公司 一种复合构件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG CHENGYU, TAO YING: "Design and Adjustment for Glass Composition (18)", GLASS & ENAMEL, vol. 32, no. 6, 31 December 2004 (2004-12-31), pages 56 - 59, XP055924734, ISSN: 1000-2871 *

Also Published As

Publication number Publication date
CN114449792A (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
CN110845126B (zh) 制备电子设备壳体的方法、电子设备壳体及电子设备
CN110407460B (zh) 化学强化玻璃板及其制造方法、以及携带信息终端
CN107739948B (zh) 一种金刚石/铝复合材料及其高效率制备方法
WO2018057342A1 (en) Thermoformed cover glass for an electronic device
CN112654192A (zh) 壳体组件及其制备方法和电子设备
CN109534663B (zh) 一种玻璃盖板的纹理制作方法
TW201304951A (zh) 經層壓及離子交換之強化玻璃疊層
CN112142301B (zh) 冷弯玻璃的成型方法及冷弯玻璃
CN113292232A (zh) 电子装置壳体的制造方法、电子装置壳体及电子装置
US20180037486A1 (en) Glass housing, electronic device having the same, manufacturing apparatus and method thereof
JP7006534B2 (ja) 化学強化ガラス板、携帯情報端末および化学強化ガラス板の製造方法
CN105008295B (zh) 形成熔凝石英玻璃的系统和方法
CN109133588A (zh) 玻璃加工模具及玻璃加工方法
WO2022088869A1 (zh) 壳体及其制作方法、电子设备
CN112939452A (zh) 具有高表面压应力的超薄柔性玻璃盖板及其制备方法、平板玻璃
CN109574496A (zh) 基于网络结构调控的3d模压手机盖板玻璃
CN112919812A (zh) 微晶玻璃、化学强化微晶玻璃、其制备方法及电子设备
JP2013028506A (ja) ディスプレイ用カバーガラス
JP6075719B2 (ja) 強化ガラス板、及び強化ガラス板の製造方法
CN115259844A (zh) 一种陶瓷材料及其制备方法和应用
CN103459335A (zh) 电子设备用覆盖玻璃雏形的制造方法以及电子设备用覆盖玻璃的制造方法
WO2021197146A1 (zh) 一种具有局部增强结构的玻璃及其加工方法
TW201431813A (zh) 玻璃基體強化處理方法及玻璃製品
CN114040615B (zh) 壳体、其制备方法及电子设备
TWI673240B (zh) 具有弧面結構之玻璃及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21884601

Country of ref document: EP

Kind code of ref document: A1