WO2022088469A1 - 一种电磁屏蔽舱及具有该电磁屏蔽舱的磁共振系统 - Google Patents

一种电磁屏蔽舱及具有该电磁屏蔽舱的磁共振系统 Download PDF

Info

Publication number
WO2022088469A1
WO2022088469A1 PCT/CN2020/140514 CN2020140514W WO2022088469A1 WO 2022088469 A1 WO2022088469 A1 WO 2022088469A1 CN 2020140514 W CN2020140514 W CN 2020140514W WO 2022088469 A1 WO2022088469 A1 WO 2022088469A1
Authority
WO
WIPO (PCT)
Prior art keywords
shielding
shield
electromagnetic
sliding
magnetic resonance
Prior art date
Application number
PCT/CN2020/140514
Other languages
English (en)
French (fr)
Inventor
王宁
王振
王伟民
李杰银
任重山
孟洪卫
Original Assignee
佛山瑞加图医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山瑞加图医疗科技有限公司 filed Critical 佛山瑞加图医疗科技有限公司
Publication of WO2022088469A1 publication Critical patent/WO2022088469A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/007Environmental aspects, e.g. temperature variations, radiation, stray fields
    • G01R33/0076Protection, e.g. with housings against stray fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/42Screening
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0069Methods for measuring the shielding efficiency; Apparatus therefor; Isolation container for testing

Definitions

  • the present invention relates to the technical field of magnetic resonance, in particular, to an electromagnetic shielding cabin and a magnetic resonance system having the electromagnetic shielding cabin.
  • Magnetic resonance imaging signals are very susceptible to interference from external electromagnetic signals, so they must be installed in an environment with electromagnetic shielding to achieve the best imaging results.
  • Existing shielding usually adopts the method of splicing metal plates, and welding, crimping, etc. are used for seams that are not often opened; in order to achieve good shielding effect when crimping is used, the crimping surface needs to be cushioned with elastic shielding material and ensure sufficient crimping.
  • the surface of the metal plate needs to be treated with anti-oxidation, and in some special environments, stainless steel needs to be selected as the shielding material; Pressing, then this method is laborious to open, and it is quite difficult to open manually, and the spring sheet is easily damaged and needs to be replaced frequently; other methods: such as pneumatic, hydraulic, and electric pressing, the structure is complex, the cost is high, and the reliability is low.
  • the current shielded room has a large structure, is inconvenient to operate, and cannot be moved.
  • the present invention proposes an electromagnetic shielding cabin and a magnetic resonance system having the electromagnetic shielding cabin, which aims to solve the problems of the existing shielding room being bulky in structure, inconvenient to operate, and unable to move.
  • the present invention provides an electromagnetic shielding cabin
  • the electromagnetic shielding cabin includes: a shielding track; a shielding cover, which is slidably arranged on the shielding track, and between the shielding cover and the shielding track
  • a sliding shielding structure is provided to attenuate or shield electromagnetic waves
  • the first open end of the shielding cover is provided with a butt shielding interface for shielding connection with the magnetic resonance main body
  • a shielding door is rotatably arranged and connected to The second open end of the shielding cover is used to form a shielding cavity between the shielding door, the shielding cover and the magnetic resonance main body when the shielding door is closed.
  • the shielding cover includes: a plurality of telescopic shielding sections, which are sequentially covered on the shielding track and at least one section is slidably connected to the shielding track, and any two adjacent sections are slidably connected.
  • a shielding butt joint structure is arranged between the telescopic shielding sections, so as to shield or attenuate electromagnetic waves when two adjacent telescopic shielding sections are butted together.
  • the shielding docking structure includes: a plurality of groove structures, which are arranged on one of the two adjacent stretchable shielding sections; a plurality of raised structures, which are arranged on the adjacent two
  • Each of the protruding structures and the groove structures are arranged in a one-to-one correspondence, and when two adjacent stretches of the telescopic shielding segments are butted together, the protruding structures are inserted into them.
  • a first gap channel that communicates along the inner wall of the groove structure is provided to refract and reflect the electromagnetic wave to realize the electromagnetic wave. attenuation.
  • the shielding docking structure includes: a first pair of ports, which are arranged on the ends of the outer telescopic shielding sections far from the shielding rails in the two adjacent telescopic shielding sections, and , the first pair of ports is provided with an extrusion structure; the second pair of ports is arranged on the end of the inner telescopic shielding section that is close to the shielding track in the two adjacent stretches of the telescopic shielding section , and the second docking port is provided with a reed, and when the second docking port is butted with the first docking port, the pressing structure presses against the reed to compress the reed, so that the The reed is brought into conductive contact with the extruded structure to shield electromagnetic waves.
  • the sliding docking structure includes: a plurality of sliding grooves arranged side by side, which are arranged on the shielding track; a plurality of sliding protrusions, which are arranged on the shielding cover and are connected with the The sliding grooves are arranged in a one-to-one correspondence, the sliding protrusions are slidably disposed in their corresponding sliding grooves, and the sliding grooves and the sliding protrusions are gap-fitted to fold the electromagnetic waves. Reflection to achieve attenuation of electromagnetic waves.
  • the sliding groove is a straight groove structure, an inverted T-shaped groove structure or a dovetail groove structure.
  • an observation window is provided on the shielding cover.
  • the observation window includes: at least two layers of transparent panels; wherein a shielding net is provided between any two adjacent layers of the transparent panels.
  • a gas spring is provided between the shielding door and the shielding cover to drive the shielding door to open or close and support the shielding door.
  • the electromagnetic shielding cabin provided by the present invention through the shielding cover slidably arranged on the shielding track, so as to adjust the position of the shielding cover, not only can be opened so that there is an operating space between the shielding cover and the magnetic resonance main body, so that the operation space can be performed in the operating space.
  • the positioning and fixing of the radio frequency coil and the positioning of the object to be detected can also be moved to the side adjacent to the magnetic resonance body to reduce the overall length and size of the shielding cover and reduce the space occupied during movement;
  • the shielding door set at the open end can realize the entry of the object to be detected into and out of the magnetic resonance system, and also cooperate with the shielding cover to form a shielding cavity, which can completely provide a good shielding environment for the magnetic resonance, so as to ensure that the magnetic resonance can obtain excellent imaging.
  • the electromagnetic shielding chamber has a simple and compact structure, is convenient to operate, and can be moved with the magnetic resonance system, thereby solving the problems that the existing shielding chamber has a large structure, is inconvenient to operate, and cannot be moved.
  • the present invention also provides a magnetic resonance system, on which the electromagnetic shielding cabin is provided.
  • the magnetic resonance system having the electromagnetic shielding cabin also has corresponding technical effects.
  • FIG. 1 is a schematic structural diagram of a magnetic resonance system provided by an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of an electromagnetic shielding cabin provided by an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram between a screen door and a screen cover provided by an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a front shielding segment provided by an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a rear shield section provided by an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a shielding docking structure provided by an embodiment of the present invention.
  • FIG. 7 is another schematic structural diagram of a shielding butt joint structure provided by an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of the shielding docking structure in FIG. 7 at the docking position
  • FIG. 9 is a schematic structural diagram of an observation window provided by an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of the arrangement of two sliding butt structures according to an embodiment of the present invention.
  • FIG. 11 is another schematic structural diagram of the arrangement of two sliding butt structures provided in an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a sliding docking structure provided by an embodiment of the present invention.
  • FIG. 13 is another schematic structural diagram of the sliding docking structure provided by the embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram between a front shielding segment and a shielding rail provided by an embodiment of the present invention.
  • Fig. 15 is a partial enlarged view at A in Fig. 14;
  • 16 is a schematic structural diagram between a rear shield segment and a shield track provided by an embodiment of the present invention.
  • FIG. 17 is a partial enlarged view of B in FIG. 16 .
  • the electromagnetic shielding cabin includes: a shielding track 1, a shielding cover 2 and a shielding door 3; wherein,
  • the shielding cover 2 is slidably arranged on the shielding track 1, and a sliding shielding structure 4 is arranged between the shielding cover 2 and the shielding track 1 to attenuate or shield electromagnetic waves; the first open end of the shielding cover 2 (as shown in FIG. 1 The right end shown) is provided with a docking shielding interface 5 for shielding connection with the magnetic resonance main body 6 .
  • the shielding cover 2 can be a U-shaped structure, which can be covered on the bed board (not shown in the figure) to scan and shield the object to be detected 7 carried on the bed board; the shielding cover 2 is slidably arranged on the shielding cover 2 on the track 1, so that the position adjustment can be carried out along the lateral direction of the magnetic resonance system, that is, the direction in which the object to be detected 7 is set, for example, it can be slid to the position where it contacts the magnetic resonance main body 6, so that the shielding cover and the magnetic resonance main body 6 can pass through the docking shielding interface 5 Make a shield connection.
  • a sliding structure is provided between the shielding cover 2 and the shielding track 1, so as to realize the support of the shielding cover 2 and the sliding of the shielding cover 2; further preferably Ground, the sliding structure can be a sliding rail or a roller.
  • the shielding door 3 is rotatably arranged and connected to the second open end of the shielding cover 2 (the left end as shown in FIG. 1 ), so as to be used for the shielding door 3 , the shielding cover 2 and the magnetic resonance main body 6 when the shielding door is closed
  • the enclosure forms a shielding cavity.
  • the screen door 3 can be opened by turning up, so that after the screen door 3 is opened, the object to be detected 6 enters the screen cavity from the second open end of the screen cover 2 for scanning detection; preferably, the screen door 3
  • a gas spring 8 can be arranged between the shielding cover 2 to drive the shielding door 3 to open or close, and to support the shielding door 3.
  • the setting of the gas spring 8 can make the shielding door press tightly when it is closed, and can be opened when it is opened.
  • the screen door 3 and the screen cover 2 can also be hinged through hydraulic hinges to be fixed at any angle; preferably, the end face of the second open end is provided with an elastic shielding structure (not shown in the figure), to When the shielding door 3 is closed, conductive contact is made between the shielding door 3 and the shielding cover 2 to ensure the shielding effect of the shielding cavity; of course, the shielding or attenuation of electromagnetic waves can also be achieved by other structures between the shielding door 3 and the shielding cover 2
  • the second open end of the shielding cover 2 can be provided with a plurality of cavities arranged side by side along the thickness direction of the shielding cover 2, and the shielding door 3 is provided with a plurality of protrusions, which are arranged corresponding to the cavities, and the protrusions can be inserted When the screen door 3 is closed, the protrusions are inserted into the corresponding cavities
  • the butt shielding interface 5 and the magnetic resonance main body 6 can be in conductive contact through a spring sheet; of course, other methods are also possible.
  • the butt shielding structure 5 can include several pieces arranged side by side along the thickness direction of the shield cover 2
  • the clamping protrusions can be inserted into the clamping grooves corresponding to the magnetic resonance main body 6, and the plurality of clamping grooves arranged side by side are not connected, and only communicate at the openings of the clamping grooves; when When the shielding cover 2 is docked with the magnetic resonance body 6, the clamping protrusions are inserted into the corresponding clamping grooves from the openings at the top of the clamping grooves to form a labyrinth shielding structure.
  • the docking shielding structure 5 may also include a plurality of clamping grooves arranged side by side along the thickness direction of the shielding cover 2 , and the clamping protrusions are disposed on the magnetic resonance main body 6 .
  • the shielding cover 2 includes: a plurality of telescopic shielding segments 21 ; wherein, each telescopic shielding segment 21 is sequentially covered on the shielding rail 1 and at least one segment can be connected to the shielding rail 1 . Slidingly connected, a shielding docking structure 22 is provided between any two adjacent telescopic shielding sections 21 to shield or attenuate electromagnetic waves when docking between two adjacent telescopic shielding sections 21 .
  • the telescopic shielding section 21 can be at least two sections, and each telescopic shielding section 21 can be covered in sequence from the inner side close to the shielding rail 1 to the outer to form a multi-layer structure.
  • at least one telescopic shielding section 21 and the shielding rail 1 can be Slidingly connected to adjust the position of the telescopic shielding section 21 and the telescopic length of the multi-section telescopic shielding section 21, for example, it can be retracted to one telescopic shielding section 21, as shown in FIG.
  • the whole can also be moved to the side adjacent to the magnetic resonance main body 6,
  • the overall length dimension of the shielding cover 2 is reduced, the space occupied during movement is reduced, and at the same time, the cover can be extended so that the cover is arranged above the shielding track 1 after the sections are connected to shield electromagnetic waves.
  • a shielding butt structure 22 is provided between any two adjacent telescopic shielding sections 21, so that when the adjacent two telescopic shielding sections 21 extend to the corresponding ports of the two adjacent telescopic shielding sections 21, the shielding butting structure 22 can be connected.
  • the electromagnetic wave is shielded or attenuated at the connection between two adjacent telescopic shielding sections 21 .
  • a sliding handle 212 may be provided on the outer wall of the telescopic shielding section 21 .
  • the inner telescopic shielding section is arranged close to the shielding track, and the outer telescopic shielding section is arranged away from the shielding track.
  • the inner telescopic shielding section may be partially provided with the outer telescopic shielding section and the shielding track 1 The enclosed cavity can of course be separated.
  • the number of segments of the telescopic shielding segment 21 may also be determined according to specific conditions, which is not limited in this embodiment.
  • the shielding cover 2 shown in FIG. 1 and FIG. 2 includes four telescopic shielding sections 21 , which are: a rear shielding section 2102 and a front shielding section 2101 covered on the outside, both of which can be connected to the shielding rail 1 . slidingly connected.
  • the front shielding section 2101 shown in FIG. 1 is disposed close to the magnetic resonance main body 6 , and the right end of the front shielding section 2101 shown in FIG. When in position, the first interface 21011 is shielded and connected to the magnetic resonance main body 6.
  • the shielding connection in this embodiment can be a labyrinth-type shielding structure formed by several grooves and protrusions, so that the electromagnetic wave can be attenuated through multiple layers of continuous refraction and reflection.
  • the left end of the front shielding segment 2101 is provided with a second interface 21012
  • the front shielding segment 2101 can be a shielding plate for connecting the first interface 21011 and the second interface 21012 .
  • the right end of the rear shielding section 2102 shown in FIG. 4 is provided with a third interface 21021, which is integrally formed with the second interface 21012 as a shielding docking structure 22 to perform the shielding connection between the front shielding section 2101 and the rear shielding section 2102;
  • the left end of the 2102 can be provided with a fourth interface 21022 for connecting to the screen door 3;
  • the shielding butting structure 22 includes: several groove structures 221 and protruding structures 222; wherein, several groove structures 221 are arranged in two adjacent sections On one of the telescopic shielding sections 21; a plurality of raised structures 222 are arranged on the other section of the two adjacent telescopic shielding sections 21; each raised structure 222 is arranged in a one-to-one correspondence with the groove structure 221, when two adjacent sections
  • the protruding structures 222 are correspondingly inserted into the corresponding groove structures 221, and between the groove structures 221 and the protruding structures 222, there is a second connecting piece along the inner wall of the groove structure 221.
  • a gap channel 223 is used for refraction and reflection of the electromagnetic wave to achieve attenuation of the electromagnetic wave.
  • a plurality of groove structures 221 are arranged on the outer telescopic shielding section of the two adjacent telescopic shielding sections 21 away from the shielding track 1; a plurality of raised structures 222 are arranged on the two adjacent telescopic shielding sections 21
  • the shielding section 21 is close to the inner telescopic shielding section of the shielding track 1; each groove structure 221 can be arranged side by side along the thickness direction of the outer telescopic shielding section (the vertical direction as shown in FIG. 5), and each groove structure One end of the 221 is closed, and the other end is opened; the protruding structures 222 can be arranged side by side along the thickness direction of the inner telescopic shielding section (the vertical direction as shown in FIG.
  • the protruding structures 222 can be spaced apart set, it is matched with the groove structure 221 and has the same number, when the outer telescopic shielding section and the inner telescopic shielding section are butted, the convex structure 222 is inserted into the groove structure 221 from the opening of the groove structure 221;
  • Corresponding groove structures 221 and raised structures 222 are provided with first gap channels 223 that communicate with each other along the inner wall of the groove structure 221, and each of the first gap channels 223 is communicated with each other, so as to form electromagnetic wave reflections The electromagnetic wave enters each first gap channel 223 at the connection position of the telescopic shielding section and is continuously refracted and reflected to attenuate the energy.
  • the groove structure 221 is filled with a wave absorbing material, which can further improve the ability to absorb electromagnetic waves and improve the shielding effect.
  • the number of the protruding structures 222 and the groove structures 221 can be changed according to the environment and the strength of the electromagnetic signal in the environment.
  • the groove structure 221 is a straight groove structure, so that the convex structure 222 can be inserted into the groove structure when the telescopic shielding segment 21 moves. 221, or detached from the groove structure 221.
  • the direction indicated by the arrow on the left is the sliding direction of the outer telescopic shielding section
  • the direction indicated by the arrow on the right is the sliding direction of the inner telescopic shielding section.
  • the third interface 21021 may be a plurality of groove structures that open to the left
  • the second interface 21012 may be a plurality of convex structures extending to the right, so that when the front shielding segment 2101 and the rear shielding segment 2102 slide against each other , that is, when the front shielding segment 2101 slides to the right (relative to the position shown in FIG. 2 ), and the rear shielding segment 2102 slides to the left, when the third interface 21021 and the second interface 21012 are butted, the second interface 21012 The protruding structure is inserted into the groove structure of the third interface 21021 .
  • the shielded butt structure 22 includes: a first pair of ports 224 and a second pair of ports 225 ; wherein the first pair of ports 224 are arranged in two adjacent sections of telescopic In the shielding segment 21, the end of the outer telescopic shielding segment that is far from the shielding track 1 is provided with an extrusion structure 2241 on the first pair of ports 224; On the end of the inner telescopic shielding section close to the shielding track 1, and the second pairing port 225 is provided with a reed 2251.
  • the pressing structure 2241 presses against it.
  • the reed 2251 compresses the reed 2251 so that the reed 2251 is in conductive contact with the pressing structure 2241 to shield electromagnetic waves. Specifically, when extending between two adjacent telescopic shielding sections 21 , the first paired port 224 and the second paired port 225 are close to each other until they are butted together.
  • the pressing structure 2241 is always in contact with the reed 2251 , that is, the reed 2251 is in conductive contact with the pressing structure 2241 to shield electromagnetic waves.
  • the extruded structure 2241 may be a sloped structure. In FIG.
  • the direction indicated by the arrow at the left end is the sliding direction of the outer telescopic shielding section when the two adjacent telescopic shielding sections 21 are retracted, and the direction indicated by the arrow at the left end is the sliding direction of the telescopic shielding section 21 retracting the inner telescopic shielding section.
  • the shielding cover 2 is provided with an observation window 211 .
  • at least one of the telescopic shielding sections 21 is provided with an observation window 211 .
  • the observation window 211 can be set as required to observe the patient's condition.
  • the observation window is made of a transparent material and a shielding net.
  • the transparent material can be selected from glass, plexiglass, and transparent polycarbonate according to requirements. In this embodiment, a transparent polycarbonate material that is lighter and has better impact resistance is selected.
  • the viewing window 211 can be in conductive contact with the shielding plate of the telescopic shielding section 21 .
  • an observation window 211 is provided on the front shielding section 2101, and the observation window 211 is in conductive contact with the shielding plate of the front shielding section 2101, so as to ensure the shielding effectiveness of electromagnetic waves and realize observation.
  • the observation window 211 includes: at least two layers of transparent panels 2111 ; wherein, a shielding net 2112 is provided between any two adjacent layers of transparent panels 2111 .
  • this embodiment can adopt a double-layer shielding net structure, and the interval between the two layers of shielding nets 2112 is 4 mm. space, which should be selected according to actual needs.
  • the transparent panel 2111 can be selected from glass, plexiglass, transparent polycarbonate, etc. according to requirements. In this embodiment, a transparent polycarbonate material with light weight and better impact resistance is selected.
  • the shielding cover 2 includes a plurality of telescopic shielding sections 21.
  • a sliding butt joint structure 4 is provided between the shielding track 1 and each telescopic shielding section 21.
  • the sliding butt joint structures 4 do not interfere with each other, so that each telescopic shielding section 21 can slide horizontally and laterally independently.
  • a sliding butt structure 4 is provided between the front shielding segment 2101 and the shielding rail 1
  • a sliding butt joint structure 4 is also provided between the rear shielding segment 2102 and the shielding rail 1 .
  • FIG. 10 to FIG. 11 it shows the schematic structural diagrams of the arrangement of two sliding butt structures provided for the embodiment of the present invention.
  • two sliding butt structures are used as an example for description.
  • FIG. 10 when two sliding butt structures 4 are arranged on the same side of the shielding track 1 (the upper side as shown in FIG. 1 ), the shielding track 1.
  • the machining accuracy is low, the machining is relatively simple, and the space is large; as shown in Figure 11, when the two sliding butt structures 4 are arranged on different sides of the shielding track 1, the relative positional accuracy of the two sliding butt structures 4 is relatively high, and the machining is relatively Difficult, but the size of the space occupied by the shielding rail 1 can be reduced.
  • the sliding docking structure 4 includes: several sliding grooves 41 and sliding protrusions 42; wherein, several sliding grooves 41 are arranged on the shielding track 1 and are arranged side by side; several sliding protrusions 42 are arranged on The shielding case 2 is arranged in a one-to-one correspondence with the sliding grooves 41, and the sliding protrusions 42 are slidably arranged in the sliding grooves 41, and the sliding grooves 41 and the sliding protrusions 42 are gap-fitted, so that the electromagnetic wave can be moved along the sliding groove 41.
  • the gap between the sliding groove 41 and the sliding protrusion 42 propagates to achieve attenuation of electromagnetic waves.
  • the sliding protrusions 42 are arranged on the shield cover 2 and are arranged in a one-to-one correspondence with the sliding grooves 41.
  • the sliding protrusions 42 are arranged in the sliding grooves 41 and can be arranged along the The length direction of the sliding groove 41, that is, the length direction of the sliding track 1, slides to ensure that the sliding protrusion 42 is always located in the sliding groove 41, and at the same time, there is always a clearance fit between the two.
  • Rollers are arranged between the grooves 41 to realize the sliding of the sliding protrusions 42 and at the same time support the sliding protrusions 42 to realize clearance fit between the sliding protrusions 42 and the sliding grooves 41 .
  • the clearance fit between the sliding protrusions 42 and the sliding grooves 41 can reduce the sliding friction between the sliding protrusions 42 and the sliding grooves 41.
  • the electromagnetic waves can be refracted and reflected when they pass through. Attenuation of electromagnetic waves.
  • the sliding groove 41 can be a straight groove structure or an inverted T-shaped groove structure, and of course other structures such as a dovetail groove structure; wherein, the inverted T-shaped groove structure can constrain the sliding protrusion 42 , so that the sliding protrusion 42 can only slide in the length direction of the inverted T-shaped groove structure, so as to avoid the separation between the two in the depth direction of the inverted T-shaped groove structure.
  • the sliding groove 41 is arranged on the side wall surface of the shielding track 1 (the left side in FIG. 11 ). On the wall), the sliding protrusion 42 is bent along the side wall of the shielding cover 2 to the other side wall of the shielding cover 2 to be embedded in the sliding groove 41 .
  • two sets of sliding grooves 41 are provided on the shielding rail 1 to correspond to the two sets of sliding protrusions 42 respectively provided on the front shielding section 2101 and the rear shielding section 2102 respectively.
  • the two sets of sliding grooves 41 are respectively arranged on the upper wall surface and the side wall surface of the shielding track 1.
  • the sliding grooves 41 arranged on the upper wall surface of the shielding track 1 can be inverted T-shaped grooves, which are different from those provided on the rear shielding section 2102. Inverted T-shaped protrusions are adapted; the sliding groove 41 provided on the side wall surface of the shielding track 1 can be a straight groove structure, which is adapted to the inverted T-shaped protrusions provided on the rear shielding section 2102 .
  • FIG. 14 to FIG. 15 shows the preferred structure between the front shielding segment and the shielding rail provided by the embodiment of the present invention.
  • the side wall surface of the shielding rail 1 (the left side wall of the shielding rail on the left side of FIG.
  • sliding groove 41 in a straight groove structure, and the left side wall of the front shielding section 2101 is extended to the right
  • the sliding groove 41 can limit the position of the sliding protrusion 42 in the vertical direction, so the sliding protrusion 42 can only slide along the length direction of the sliding groove 41;
  • a sliding rail structure 21013 can also be provided between the two to achieve a slidable connection between the two.
  • FIG. 16 to FIG. 17 it shows the preferred structure between the rear shielding segment and the shielding rail provided by the embodiment of the present invention.
  • the upper wall surface of the shielding rail 1 is provided with a sliding groove 41 in an inverted T-shaped groove structure, and the bottom side wall of the rear shielding section 2102 is extended with a plurality of sliding protrusions 42 arranged side by side.
  • the sliding groove 41 The opening faces the sliding protrusions 42, that is, upwards, so that the sliding protrusions 42 are slidably arranged in the sliding grooves 41; a roller 21023 can also be provided between the sliding grooves 41 and the sliding protrusions 42 to realize the two slidable connection between.
  • the sliding butt joint structure 4 on the rear shielding section 2102 For the innermost telescopic shielding section and the middle telescopic shielding section, reference may be made to the sliding butt joint structure 4 on the rear shielding section 2102 .
  • the shielding rail 1 includes: a shielding plate 12 and two shielding rails 11; wherein, the two shielding rails 11 are respectively arranged and connected on the two long sides of the shielding plate 12 for use Forms the bottom electromagnetic shield of the shielded cabin.
  • the shielding plate 12 can be a rectangular plate-like structure for electromagnetic shielding, and the shielding plate 12 can be shielded connection or conductive contact with the shielding door 3 and the magnetic resonance main body 6 to realize electromagnetic shielding; two shielding rails 11 are respectively arranged and connected on the two long sides of the shielding plate 12, and are usually arranged along the long sides of the shielding plate 12, for shielding and connecting the shielding cover 2, so that the shielding cover 2, the shielding door 3, the magnetic The resonant body 6 and the shielding rail 1 integrally form a fully enclosed shielding cabin all around.
  • the entire front shielding segment 2101 that is, the shielding plate of the front shielding segment 2101, the first interface 21011, the second interface 21012, and the sliding protrusions 42 on the front shielding segment 2101 can all be made of conductor materials.
  • Aluminum is selected, which has good conductivity and light weight. In order to prevent surface oxidation, all aluminum parts need to undergo conductive oxidation treatment, and good conductive connections are required between each part;
  • the three ports 21021, the fourth port 21022, and the sliding protrusions 42 on the rear shielding section 2102 can all be made of conductor materials. In this embodiment, aluminum is selected, which has good electrical conductivity and light weight. In order to prevent surface oxidation, all aluminum parts need to be Conductive oxidation treatment requires good conductive connection between all parts.
  • the sliding butt structure 4 can also be a reed set on the shielding rail 1, and the shielding cover 2 is in conductive contact with the reed. Since the shielding cover 2 is slidably connected to the shielding rail 1, Therefore, compared with the labyrinth shielding structure, the reed wear is serious in this method.
  • the electromagnetic shielding cabin provided in this embodiment, through the shielding cover 2 slidably arranged on the shielding track 1, in order to adjust the position of the shielding cover 2, not only can it be opened so that there is a gap between the shielding cover 2 and the magnetic resonance main body 6
  • the operation space is used for the positioning and fixing of the radio frequency coil and the positioning of the object to be detected 7 in the operation space, and can also be moved to the side adjacent to the magnetic resonance main body 6 to reduce the overall length and size of the shielding cover 2.
  • the space occupied when moving is small; through the shielding door 3 set at the second open end of the shielding cover 2, the object 7 to be detected can enter and exit the magnetic resonance system, and also cooperate with the shielding cover 2 to form a shielding cavity, which can be completely Magnetic resonance provides a good shielding environment to ensure excellent imaging of magnetic resonance and provide a reliable basis for treatment. Moreover, there is no need to build a shielding room outside, and it can be used anywhere to facilitate the movement of the magnetic resonance system; sliding shielding Structure 4, docking shielding interface 5, and elastic shielding structure can attenuate or shield electromagnetic waves and ensure the shielding effectiveness of the shielding cavity.
  • the electromagnetic shielding chamber has a simple and compact structure, is convenient to operate, and can be moved with the magnetic resonance system, thereby solving the problems that the existing shielding chamber has a large structure, is inconvenient to operate, and cannot be moved.
  • This embodiment also proposes a magnetic resonance system, where the above electromagnetic shielding cabin is arranged on the magnetic resonance system.
  • the specific implementation process of the electromagnetic shielding cabin may refer to the above description, which will not be repeated in this embodiment.
  • the magnetic resonance system having the electromagnetic shielding cabin also has corresponding technical effects.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a It is a detachable connection, or an integral connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication of two components.
  • installed e.g., it may be a fixed connection or a It is a detachable connection, or an integral connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication of two components.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本发明提供了一种电磁屏蔽舱及具有该电磁屏蔽舱的磁共振系统。该电磁屏蔽舱,该电磁屏蔽舱包括:屏蔽轨道;屏蔽罩,其可滑动地设置在所述屏蔽轨道上,并且,所述屏蔽罩和所述屏蔽轨道之间设有滑动屏蔽结构,用以衰减或屏蔽电磁波;所述屏蔽罩的第一开口端设有对接屏蔽接口,用以与磁共振主体之间屏蔽连接;屏蔽门,其可转动地设置且连接在所述屏蔽罩的第二开口端处,并且,所述第二开口端的端面设有弹性屏蔽结构,用以在所述屏蔽门关闭时使得所述屏蔽门和所述屏蔽罩之间导电接触。本发明通过屏蔽门配合屏蔽罩围设形成屏蔽腔体,为磁共振提供良好的屏蔽环境,以保磁共振获得优异的成像,为治疗提供可靠的依据。

Description

一种电磁屏蔽舱及具有该电磁屏蔽舱的磁共振系统 技术领域
本发明涉及磁共振技术领域,具体而言,涉及一种电磁屏蔽舱及具有该电磁屏蔽舱的磁共振系统。
背景技术
磁共振成像信号非常容易受到外界电磁信号的干扰,因此必须安装在带有电磁屏蔽的环境中,以达到最佳的成像效果。
现有屏蔽通常采用金属板拼接的方式,不经常打开的拼缝采用焊接、压接等形式;采用压接时为达到良好的屏蔽效果,压接面需要衬垫弹性屏蔽材料并保证充分压接,且为防止由于金属板表面氧化造成的电阻增大,从而导致屏蔽效果变差的问题,金属板表面需要进行防氧化处理,有些特殊环境需要选择不锈钢作为屏蔽材料;压力的施加方式常用斜面加压,则种方式开启费力,人力开启相当困难,而且弹簧片很容易损坏,需要经常更换;其它方式:如气动、液动、电动压紧,结构复杂成本高可靠性低。
因此,现在的屏蔽室结构庞大,操作不便,不能移动。
发明内容
鉴于此,本发明提出了一种电磁屏蔽舱及具有该电磁屏蔽舱的磁共振系统,旨在解决现有屏蔽室结构庞大、操作不便、不能移动的问题。
一方面,本发明提出了一种电磁屏蔽舱,该电磁屏蔽舱包括:屏蔽轨道;屏蔽罩,其可滑动地设置在所述屏蔽轨道上,并且,所述屏蔽罩和所述屏蔽轨道之间设有滑动屏蔽结构,用以衰减或屏蔽电磁波;所述屏蔽罩的第一开口端设有对接屏蔽接口,用以与磁共振主体之间屏蔽连接;屏蔽门,其可转动地设置且连接在所述屏蔽罩的第二开口端处,用以在所述屏蔽门关闭时所述屏蔽门、所述屏蔽罩和所述磁共振主体之间形成屏蔽腔体。
进一步地,上述电磁屏蔽舱,所述屏蔽罩包括:若干段伸缩屏蔽段,其依次罩设在所述屏蔽轨道上且至少一段与所述屏蔽轨道可滑动地相连接,任意相邻两段所述伸缩屏蔽段之间均设有屏蔽对接结构,用以在相邻两段所述伸缩屏蔽段对接时屏蔽或衰减电磁波。
进一步地,上述电磁屏蔽舱,所述屏蔽对接结构包括:若干个凹槽结构,其设置在相邻两段所述伸缩屏蔽段中其中一段上;若干个凸起结构,其设置在相邻两段所述伸缩屏蔽段中另一段上;各所述凸起结构与所述凹槽结构一一对应设置,当相邻两段所述伸缩屏蔽段对接时,所述凸起结构插设在其对应的凹槽结构内,并且,所述凹槽结构与所述凸起结构之间沿所述凹槽结构的内壁设有相连通的第一间隙通道,用以对电磁波进行折反射以实现电磁波的衰减。
进一步地,上述电磁屏蔽舱,所述屏蔽对接结构包括:第一对接口,其设置在相邻两段所述伸缩屏蔽段中远离所述屏蔽轨道的外层伸缩屏蔽段的端部上,并且,所述第一对接口上设有挤压结构;第二对接口,其设置在所述在相邻两段所述伸缩屏蔽段中靠近所述屏蔽轨道的内层伸缩屏蔽段的端部上,并且,所述第二对接口上设有簧片,所述第二对接口与所述第一对接口对接时,所述挤压结构抵压所述簧片使得所述簧片压缩,以使所述簧片与所述挤压结构导电接触,以屏蔽电磁波。
进一步地,上述电磁屏蔽舱,所述滑动对接结构包括:若干个并排设置的滑动凹槽,其设置在所述屏蔽轨道上;若干个滑动凸起,其设置在所述屏蔽罩上且与所述滑动凹槽一一对应设置,所述滑动凸起可滑动地设置在其对应的滑动凹槽内,并且,所述滑动凹槽和所述滑动凸起之间间隙配合,以对电磁波进行折反射,实现电磁波的衰减。
进一步地,上述电磁屏蔽舱,所述滑动凹槽为直槽结构、倒T型槽结构或燕尾槽结构。
进一步地,上述电磁屏蔽舱,所述屏蔽罩上设有观察窗。
进一步地,上述电磁屏蔽舱,所述观察窗包括:至少两层透明面板;其中, 任意相邻两层所述透明面板之间均设有屏蔽网。
进一步地,上述电磁屏蔽舱,所述屏蔽门和所述屏蔽罩之间设有气弹簧,用以驱动所述屏蔽门打开或关闭,并对所述屏蔽门进行支撑。
本发明提供的电磁屏蔽舱,通过可滑动地设置在屏蔽轨道上的屏蔽罩,以便调节屏蔽罩的位置,不仅可打开使得屏蔽罩和磁共振主体之间存在操作空间,以便在操作空间处进行射频线圈的定位、固定以及对待检测对象的摆位等操作,还可移动至紧邻磁共振主体的一侧,减小屏蔽罩的整体长度尺寸,减小移动时的占用空间;通过屏蔽罩第二开口端设置的屏蔽门,可实现待检测对象进入进出该磁共振系统内,还配合屏蔽罩围设形成屏蔽腔体,完全可以为磁共振提供良好的屏蔽环境,以保磁共振获得优异的成像,为治疗提供可靠的依据,并且,其外部不再需要建设屏蔽室,可在任意地方使用,方便磁共振系统的移动;滑动屏蔽结构、对接屏蔽接口的设置可衰减或屏蔽电磁波,确保屏蔽腔体的屏蔽效能。该电磁屏蔽舱结构简单紧凑,操作便利,可随磁共振系统移动,解决现有屏蔽室结构庞大、操作不便、不能移动的问题。
另一方面,本发明还提出了一种磁共振系统,该磁共振系统上设置有上述电磁屏蔽舱。
由于电磁屏蔽舱具有上述效果,所以具有该电磁屏蔽舱的磁共振系统也具有相应的技术效果。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例提供的磁共振系统的结构示意图;
图2为本发明实施例提供的电磁屏蔽舱的结构示意图;
图3为本发明实施例提供的屏蔽门和屏蔽罩之间的结构示意图;
图4为本发明实施例提供的前屏蔽段的结构示意图;
图5为本发明实施例提供的后屏蔽段的结构示意图;
图6为本发明实施例提供的屏蔽对接结构的结构示意图;
图7为本发明实施例提供的屏蔽对接结构的另一结构示意图;
图8为图7中屏蔽对接结构位于对接位置的结构示意图;
图9为本发明实施例提供的观察窗的结构示意图;
图10为本发明实施例提供的两个滑动对接结构布置的结构示意图;
图11为本发明实施例提供的两个滑动对接结构布置的另一结构示意图;
图12为本发明实施例提供的滑动对接结构的结构示意图;
图13为本发明实施例提供的滑动对接结构的另一结构示意图;
图14为本发明实施例提供的前屏蔽段与屏蔽轨道之间的结构示意图;
图15为图14中A处局部放大图;
图16为本发明实施例提供的后屏蔽段与屏蔽轨道之间的结构示意图;
图17为图16中B处局部放大图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
电磁屏蔽舱实施例:
参见图1至图3,其示出了本发明实施例提供的电磁屏蔽舱的优选结构。如图所示,该电磁屏蔽舱包括:屏蔽轨道1、屏蔽罩2和屏蔽门3;其中,
屏蔽罩2可滑动地设置在屏蔽轨道1上,并且,屏蔽罩2和屏蔽轨道1之间设有滑动屏蔽结构4,用以衰减或屏蔽电磁波;屏蔽罩2的第一开口端(如 图1所示的右端)设有对接屏蔽接口5,用以与磁共振主体6之间屏蔽连接。具体地,屏蔽罩2可以为U型结构,其可以罩设在床板(图中未示出),用以对床板上承载的待检测对象7进行扫描屏蔽;屏蔽罩2可滑动地设置在屏蔽轨道1上,以便可沿磁共振系统的横向即待检测对象7设置的方向进行位置的调整,例如可滑动至接触磁共振主体6的位置,以便屏蔽罩和磁共振主体6通过对接屏蔽接口5进行屏蔽连接。为便于实现屏蔽罩2和屏蔽轨道1之间的可滑动连接,优选地,屏蔽罩2和屏蔽轨道1之间设有滑动结构,以便实现屏蔽罩2的支撑和屏蔽罩2的滑动;进一步优选地,滑动结构可以为滑轨或滚轮。
屏蔽门3可转动地设置且连接在屏蔽罩2的第二开口端(如图1所示的左端)处,用以在所述屏蔽门关闭时屏蔽门3、屏蔽罩2和磁共振主体6围设形成屏蔽腔体。具体地,屏蔽门3可采用上翻的形式打开,以便打开屏蔽门3后,待检测对象6自屏蔽罩2的第二开口端进入至屏蔽腔体内,进行扫描检测;优选地,屏蔽门3和屏蔽罩2之间可设有气弹簧8,用以驱动屏蔽门3打开或关闭,并对屏蔽门3进行支撑,气弹簧8的设置可使得屏蔽门关闭时可实现压紧,打开时可实现自动开启,屏蔽门3和屏蔽罩2亦可通过液压合页相铰接,以便在任意角度下固定;优选地,第二开口端的端面设有弹性屏蔽结构(图中未示出),用以在屏蔽门3关闭时使得屏蔽门3和屏蔽罩2之间导电接触,以确保屏蔽腔体的屏蔽效果;当然,屏蔽门3和屏蔽罩2之间亦可通过其他结构实现电磁波的屏蔽或衰减,例如,屏蔽罩2的第二开口端可设有沿屏蔽罩2厚度方向并排设置的多个空腔,屏蔽门3上设有多个凸起,其与空腔对应设置,凸起可插设至空腔内,多个并排设置的空腔之间不连通,仅在空腔的开口处连通;当屏蔽门3关闭时,凸起从空腔顶部的开口插入对应的空腔内,形成迷宫式结构,电磁波经过多层不断的折反射实现衰减,进而达到屏蔽效能要求。为便于实现屏蔽门3的开关,优选地,屏蔽门3背向屏蔽罩2的一侧(如图1所示的左侧)设有翻转把手31。
在本实施例中,对接屏蔽接口5和磁共振主体6之间可以通过弹簧片导电 接触;当然,亦可为其他方式,例如,对接屏蔽结构5可以包括若干个沿屏蔽罩2厚度方向并排设置的卡设凸起,其可插设至磁共振主体6对应设置的卡设凹槽内,多个并排设置的卡设凹槽之间不连通,仅在卡设凹槽的开口处连通;当屏蔽罩2与磁共振主体6对接时,卡设凸起从卡设凹槽顶部的开口插入对应的卡设凹槽内,形成迷宫式屏蔽结构,电磁波经过多层不断的折反射实现衰减,进而达到屏蔽效能要求。当然,对接屏蔽结构5亦可以包括若干个沿屏蔽罩2厚度方向并排设置的卡设凹槽,卡设凸起设置在磁共振主体6上。
继续参见图1至图2、图4至图5,屏蔽罩2包括:若干段伸缩屏蔽段21;其中,各段伸缩屏蔽段21依次罩设在屏蔽轨道1上且至少一段与屏蔽轨道1可滑动地相连接,任意相邻两段伸缩屏蔽段21之间均设有屏蔽对接结构22,用以在相邻两段伸缩屏蔽段21之间对接时屏蔽或衰减电磁波。
具体地,伸缩屏蔽段21可以为至少两段,各段伸缩屏蔽段21可自靠近屏蔽轨道1的内侧至外依次罩设形成多层结构,同时,至少一段伸缩屏蔽段21与屏蔽轨道1可滑动地相连接,以便调节伸缩屏蔽段21的位置和多段伸缩屏蔽段21的伸缩长度,例如可以回缩至一个伸缩屏蔽段21处,如图2所示,以便使得该各段伸缩屏蔽段21与磁共振主体6之间存在操作空间,进而该在操作空间处进行射频线圈的定位、固定以及对待检测对象7的摆位等操作,当然亦可整体移动至紧邻磁共振主体6的一侧,减小屏蔽罩2的整体长度尺寸,减小移动时的占用空间,同时,可伸出使得各段之间对接后罩设在屏蔽轨道1的上方,进行电磁波的屏蔽。任意相邻两段伸缩屏蔽段21之间均设有屏蔽对接结构22,以便在相邻两段伸缩屏蔽段21伸出至相邻两段伸缩屏蔽段21的对应端口对接时,屏蔽对接结构22对相邻两段伸缩屏蔽段21的连接处进行电磁波的屏蔽或衰减。为便于实现伸缩屏蔽段21的滑动,优选地,伸缩屏蔽段21的外壁上可设有滑动把手212。其中,相邻两段伸缩屏蔽段21中靠近屏蔽轨道设置的为内层伸缩屏蔽段,远离屏蔽轨道设置的为外层伸缩屏蔽段内层伸缩屏蔽段可部分设置外层伸缩屏蔽段和屏蔽轨道1围设的腔体内,当然亦可分离。
需要说明的是,具体实施时,伸缩屏蔽段21的段数也可以根据具体情况来确定,本实施例对其不做任何限定。
例如,图1和图2所示的该屏蔽罩2包括四段伸缩屏蔽段21,分别为:后屏蔽段2102和罩设在外侧的前屏蔽段2101,两者均与屏蔽轨道1之间可滑动地相连接。图1所示的前屏蔽段2101靠近磁共振主体6设置,图3所示的前屏蔽段2101的右端设有第一接口21011,作为对接屏蔽接口5,以便在滑动至磁共振主体6的对接位置时,第一接口21011与磁共振主体6屏蔽连接,本实施例中的屏蔽连接可以为通过若干个凹槽和凸起形成迷宫式屏蔽结构,使得电磁波经过多层不断的折反射实现衰减,进而达到屏蔽效能要求;前屏蔽段2101的左端设有第二接口21012,前屏蔽段2101可以为屏蔽板,用以连接第一接口21011和第二接口21012。图4所示的后屏蔽段2102的右端设有第三接口21021,其与第二接口21012整体作为屏蔽对接结构22,进行前屏蔽段2101和后屏蔽段2102之间的屏蔽连接;后屏蔽段2102的左端可设有第四接口21022,用以连接屏蔽门3;后屏蔽段2102可以为屏蔽板,用以连接第三接口21021和第四接口21022。
在本发明的一种实施方式中,继续参见图3至图6,屏蔽对接结构22包括:若干个凹槽结构221和凸起结构222;其中,若干个凹槽结构221设置在相邻两段伸缩屏蔽段21中其中一段上;若干个凸起结构222设置在相邻两段伸缩屏蔽段21中另一段上;各凸起结构222与凹槽结构221一一对应设置,当相邻两段伸缩屏蔽段21对接时,凸起结构222对应插设在其对应的凹槽结构221内,并且,凹槽结构221与凸起结构222之间沿凹槽结构221的内壁设有相连通的第一间隙通道223,用以对电磁波进行折反射以实现电磁波的衰减。
具体地,本实施例中,若干个凹槽结构221设置在相邻两段伸缩屏蔽段21中远离屏蔽轨道1的外层伸缩屏蔽段上;若干个凸起结构222设置在相邻两段伸缩屏蔽段21靠近屏蔽轨道1的内层伸缩屏蔽段上;各个凹槽结构221可以沿外层伸缩屏蔽段的厚度方向(如图5所示的竖直方向)并排设置,并且,各 个凹槽结构221的一端封闭、另一端开有开口;凸起结构222可以沿内层伸缩屏蔽段的厚度方向(如图5所示的竖直方向)并排设置,并且,各个凸起结构222之间可间隔设置,其与凹槽结构221相配合且数量相同,在外层伸缩屏蔽段和内层伸缩屏蔽段之间对接时,凸起结构222自凹槽结构221的开口插设至凹槽结构221内;对应的凹槽结构221与凸起结构222之间沿凹槽结构221的内壁设有相连通的第一间隙通道223,并且,各个第一间隙通道223之间均相连通,以便形成电磁波折反射通道,电磁波进入伸缩屏蔽段连接位置的各个第一间隙通道223内不断的折反射而使能量衰减,经过多层第一间隙通道223的衰减作用,从而达到电磁屏蔽的屏蔽效能要求。优选地,凹槽结构221内填充有吸波材料,能进一步提高吸收电磁波的能力,提高屏蔽效果。其中,可根据所处的环境以及环境中电磁信号的强度改变凸起结构222与凹槽结构221的数量。为便于实现相邻两段伸缩屏蔽段21端部之间的分离,优选地,凹槽结构221为直槽结构,以便于凸起结构222可随伸缩屏蔽段21移动时插设至凹槽结构221内,或自凹槽结构221内脱离。图6中,左边箭头指示方向为外层伸缩屏蔽段的滑动方向,右边箭头指示方向为内层伸缩屏蔽段的滑动方向。
例如,第三接口21021可以为朝向左侧开口的多个凹槽结构,第二接口21012可以为多个向右延设的凸起结构,以便前屏蔽段2101和后屏蔽段2102相背滑动时,即前屏蔽段2101向右(相对于图2所示的位置而言)滑动,后屏蔽段2102向左滑动时,滑动至第三接口21021与第二接口21012对接时,第二接口21012的凸起结构插设至第三接口21021的凹槽结构内。
在本发明的另一种实施方式中,参见图7至图8,屏蔽对接结构22包括:第一对接口224和第二对接口225;其中,第一对接口224设置在相邻两段伸缩屏蔽段21中远离屏蔽轨道1的外层伸缩屏蔽段的端部上,并且,第一对接口224上设有挤压结构2241;第二对接口225设置在在相邻两段伸缩屏蔽段21中靠近屏蔽轨道1的内层伸缩屏蔽段的端部上,并且,第二对接口225上设有簧片2251,第二对接口225与第一对接口224对接时,挤压结构2241抵压 簧片2251使得簧片2251压缩,以使簧片2251与挤压结构2241导电接触,以屏蔽电磁波。具体地,相邻两段伸缩屏蔽段21之间伸出时,第一对接口224和第二对接口225靠近,直至对接,挤压结构2241抵压簧片2251使得簧片2251逐步压缩,确保挤压结构2241与簧片2251始终接触,即确保簧片2251与挤压结构2241导电接触,以屏蔽电磁波。其中,挤压结构2241可以为斜面结构。图8中,左端箭头指示方向为相邻两段伸缩屏蔽段21回缩时外层伸缩屏蔽段的滑动方向,左端箭头指示方向为伸缩屏蔽段21回缩内层伸缩屏蔽段的滑动方向。
继续参见图1至图4,屏蔽罩2上设有观察窗211,在本实施例中,至少其中一段伸缩屏蔽段21上设有观察窗211。具体地,观察窗211可以根据需要设置,用于观察患者情况,观察窗由透明材料加屏蔽网复合而成,透明材料根据需求可选用玻璃、有机玻璃、透明聚碳酸脂等。本实施例选用较轻且抗冲击性能较好的透明聚碳酸脂材质。观察窗211可以与伸缩屏蔽段21的屏蔽板之间导电接触。
例如,如图4所示,前屏蔽段2101上设置有观察窗211,观察窗211与前屏蔽段2101的屏蔽板之间导电接触,以确保电磁波的屏蔽效能的同时实现观察。
参见图9,其为本发明实施例提供的观察窗的结构示意图。如图所示,观察窗211包括:至少两层透明面板2111;其中,任意相邻两层透明面板2111之间均设有屏蔽网2112。具体地,本实施例可采用双层屏蔽网结构,两层屏蔽网2112之间间隔4mm,屏蔽网2112层数越多,屏蔽网2112之间间隔越大屏蔽效果越好,但会占用更大的空间,需根据实际需求优选。透明面板2111根据需求可选用玻璃、有机玻璃、透明聚碳酸脂等,本实施例选用较轻且抗冲击性能较好的透明聚碳酸脂材质。
在本实施例中,屏蔽罩2包括多段伸缩屏蔽段21,为避免伸缩屏蔽段21之间滑动的干涉,优选地,屏蔽轨道1和各段伸缩屏蔽段21之间均设有滑动 对接结构4,各个滑动对接结构4之间互不干涉,以使各段伸缩屏蔽段21可单独进行水平横向滑动。例如,前屏蔽段2101和屏蔽轨道1之间设有滑动对接结构4,后屏蔽段2102和屏蔽轨道1之间亦设有滑动对接结构4。
参见图10至图11,其示出了为本发明实施例提供的两个滑动对接结构布置的结构示意图。如图所示,以两个滑动对接结构为例进行说明,如图10所示,两个滑动对接结构4布置在屏蔽轨道1的同侧(如图1所示的上侧)时,屏蔽轨道1加工精度要求低,加工相对简单,占用空间大;如图11所示,两个滑动对接结构4布置在屏蔽轨道1不同侧时,两个滑动对接结构4相对位置精度要求较高,加工相对困难,但可以减小屏蔽轨道1占用空间尺寸。当然,滑动对接结构亦可为多个,本实施例中对其不做任何限定。
参见图12至图13,其示出了本发明实施例提供的滑动对接结构的优选结构。如图所示,该滑动对接结构4包括:若干个滑动凹槽41和滑动凸起42;其中,若干个滑动凹槽41设置在屏蔽轨道1上且并排设置;若干个滑动凸起42设置在屏蔽罩2上且与滑动凹槽41一一对应设置,滑动凸起42可滑动地设置在滑动凹槽41内,并且,滑动凹槽41和滑动凸起42之间间隙配合,以使电磁波沿滑动凹槽41和滑动凸起42之间的间隙传播,实现电磁波的衰减。具体地,滑动凹槽41可以为一个或多个,优选为多个,以便增大电磁波的衰减;滑动凹槽41可以沿屏蔽轨道1的宽度方向(如图10所示的水平方向)或厚度方向(如图10所示的竖直方向)并排设置,滑动凸起42设置在屏蔽罩2上且与滑动凹槽41一一对应设置,滑动凸起42设置在滑动凹槽41内且可沿滑动凹槽41的长度方向即滑动轨道1的长度方向滑动,以确保滑动凸起42始终位于滑动凹槽41内,同时,两者之间始终间隙配合,可通过在滑动凸起42和滑动凹槽41之间设置滚轮,以实现滑动凸起42的滑动,同时对滑动凸起42进行支撑,实现滑动凸起42和滑动凹槽41之间的间隙配合。滑动凸起42和滑动凹槽41之间的间隙配合可减小滑动凸起42和滑动凹槽41滑动的摩擦,同时,可通过间隙空腔的设置,使得电磁波经过时对电磁波进行折反射实现电磁 波的衰减。
继续参见图12至图13,滑动凹槽41可以为直槽结构或倒T型槽结构,当然还可以为燕尾槽结构等其他结构;其中,倒T型槽结构可以对滑动凸起42进行约束,使得滑动凸起42仅可在倒T型槽结构的长度方向上滑动,避免两者之间沿倒T型槽结构的深度方向的脱离。当然,滑动凹槽41可以为直槽结构时,为避免滑动凹槽41和滑动凸起42的脱离,优选地,滑动凹槽41设置在屏蔽轨道1的侧壁面(如图11中的左侧壁)上,滑动凸起42沿屏蔽罩2的侧壁向屏蔽罩2的另一侧壁弯折设置,用以嵌设至滑动凹槽41内。
例如,在本实施例中,屏蔽轨道1上设有两组滑动凹槽41,以分别对应设置在前屏蔽段2101和后屏蔽段2102上分别设置的两组滑动凸起42,屏蔽轨道1的两组滑动凹槽41分别设置在屏蔽轨道1的上壁面上和侧壁面上,设置在屏蔽轨道1上壁面上的滑动凹槽41可以为倒T型槽,其与后屏蔽段2102上设置的倒T型凸起相适配;设置在屏蔽轨道1侧壁面上的滑动凹槽41可以为直槽结构,其与后屏蔽段2102上设置的倒T型凸起相适配。
参见图14至图15,其示出了本发明实施例提供的前屏蔽段与屏蔽轨道之间的优选结构。如图所示,屏蔽轨道1的侧壁面(如图14左侧的屏蔽轨道的左侧壁)设有呈直槽结构的滑动凹槽41,前屏蔽段2101的左侧壁上向右延设有若干个并排设置的滑动凸起42,滑动凹槽41开口朝向滑动凸起42设置,以使滑动凸起42可滑动地设置在滑动凹槽41内,由于滑动凹槽41设置在屏蔽轨道1的侧壁面上,滑动凹槽41对滑动凸起42在竖直方向上实现了限位,故滑动凸起42仅可沿滑动凹槽41的长度方向滑动;屏蔽轨道1和前屏蔽段2101之间还可设有滑轨结构21013,以实现两者之间的可滑动连接。最外层的伸缩屏蔽段和屏蔽轨道1之间的滑动对接结构4的结构可参考该前屏蔽段2101上的滑动对接结构4。
参见图16至图17,其示出了本发明实施例提供的后屏蔽段与屏蔽轨道之间的优选结构。如图所示,屏蔽轨道1的上壁面设有呈倒T型槽结构的滑动凹 槽41,后屏蔽段2102的底侧壁延设有若干个并排设置的滑动凸起42,滑动凹槽41开口朝向滑动凸起42即朝上设置,以使滑动凸起42可滑动地设置在滑动凹槽41内;滑动凹槽41和滑动凸起42之间还可设有滚轮21023,以实现两者之间的可滑动连接。最内层伸缩屏蔽段以及中间层伸缩屏蔽段可参考该后屏蔽段2102上的滑动对接结构4。
继续参见图14至图17,屏蔽轨道1包括:屏蔽板12和两个屏蔽轨11;其中,两个屏蔽轨11分别设置且连接在所述屏蔽板12的两个长侧边上,用以形成屏蔽舱的底部电磁屏蔽。具体地,屏蔽板12可以为长方形板状结构,用以进行电磁屏蔽,屏蔽板12可以与屏蔽门3、磁共振主体6之间屏蔽连接或导电接触,以实现电磁的屏蔽;两个屏蔽轨11分别设置且连接在所述屏蔽板12的两个长侧边上,且沿屏蔽板12的长侧边通常设置,用以进行屏蔽连接屏蔽罩2,使得屏蔽罩2、屏蔽门3、磁共振主体6和该屏蔽轨道1整体形成四周的全封闭式的屏蔽舱。
在本实施例中,前屏蔽段2101整体即前屏蔽段2101的屏蔽板、第一接口21011、第二接口21012、前屏蔽段2101上的滑动凸起42均可由导体材料制成,本实施例选用铝,导电良好且质量较轻,为防止表面氧化,所有铝件需进行导电氧化处理,各部分之间均需要良好的导电连接;后屏蔽段2102整体即后屏蔽段2102的屏蔽板、第三接口21021、第四接口21022、后屏蔽段2102的上的滑动凸起42均可由导体材料制成,本实施例选用铝,导电良好且质量较轻,为防止表面氧化,所有铝件需进行导电氧化处理,各部分之间均需要良好的导电连接。
在可替代的实施方式中,滑动对接结构4还可以为设置在屏蔽轨道1上的簧片,屏蔽罩2与簧片之间导电接触,由于屏蔽罩2与屏蔽轨道1可滑动地相连接,故该方式中相比迷宫式屏蔽结构相比,簧片磨损严重。
综上,本实施例提供的电磁屏蔽舱,通过可滑动地设置在屏蔽轨道1上的屏蔽罩2,以便调节屏蔽罩2的位置,不仅可打开使得屏蔽罩2和磁共振主体 6之间存在操作空间,以便在操作空间处进行射频线圈的定位、固定以及对待检测对象7的摆位等操作,还可移动至紧邻磁共振主体6的一侧,减小屏蔽罩2的整体长度尺寸,减小移动时的占用空间;通过屏蔽罩2第二开口端设置的屏蔽门3,可实现待检测对象7进入进出该磁共振系统内,还配合屏蔽罩2围设形成屏蔽腔体,完全可以为磁共振提供良好的屏蔽环境,以保磁共振获得优异的成像,为治疗提供可靠的依据,并且,其外部不再需要建设屏蔽室,可在任意地方使用,方便磁共振系统的移动;滑动屏蔽结构4、对接屏蔽接口5、弹性屏蔽结构的设置可衰减或屏蔽电磁波,确保屏蔽腔体的屏蔽效能。该电磁屏蔽舱结构简单紧凑,操作便利,可随磁共振系统移动,解决现有屏蔽室结构庞大、操作不便、不能移动的问题。
磁共振系统实施例:
本实施例还提出了一种磁共振系统,该磁共振系统上设置有上述电磁屏蔽舱。其中,电磁屏蔽舱的具体实施过程参见上述说明即可,本实施例在此不再赘述。
由于电磁屏蔽舱具有上述效果,所以具有该电磁屏蔽舱的磁共振系统也具有相应的技术效果。
需要说明的是,在本发明的描述中,术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发 明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

  1. 一种电磁屏蔽舱,其特征在于,包括:
    屏蔽轨道;
    屏蔽罩,其可滑动地设置在所述屏蔽轨道上,并且,所述屏蔽罩和所述屏蔽轨道之间设有滑动屏蔽结构,用以衰减或屏蔽电磁波;所述屏蔽罩的第一开口端设有对接屏蔽接口,用以与磁共振主体之间屏蔽连接;
    屏蔽门,其可转动地设置在所述屏蔽罩的第二开口端处,在所述屏蔽门关闭时,所述屏蔽门、所述屏蔽罩、所述屏蔽轨道和所述磁共振主体之间形成屏蔽腔体。
  2. 根据权利要求1所述的电磁屏蔽舱,其特征在于,所述屏蔽罩包括:
    若干段伸缩屏蔽段,其依次罩设在所述屏蔽轨道上,至少一段所述伸缩屏蔽段与所述屏蔽轨道可滑动地相连接,并且,任意相邻两段所述伸缩屏蔽段之间均设有屏蔽对接结构,用以在相邻两段所述伸缩屏蔽段对接时屏蔽或衰减电磁波。
  3. 根据权利要求2所述的电磁屏蔽舱,其特征在于,所述屏蔽对接结构包括:
    若干个凹槽结构,其设置在相邻两段所述伸缩屏蔽段中其中一段上;
    若干个凸起结构,其设置在相邻两段所述伸缩屏蔽段中另一段上;各所述凸起结构与所述凹槽结构一一对应设置,当相邻两段所述伸缩屏蔽段对接时,所述凸起结构插设在其对应的凹槽结构内,并且,所述凹槽结构与所述凸起结构之间沿所述凹槽结构的内壁设有相连通的第一间隙通道,用以对电磁波进行折反射以实现电磁波的衰减。
  4. 根据权利要求2所述的电磁屏蔽舱,其特征在于,所述屏蔽对接结构包括:
    第一对接口,其设置在相邻两段所述伸缩屏蔽段中远离所述屏蔽轨道的外层伸缩屏蔽段的端部上,并且,所述第一对接口上设有挤压结构;
    第二对接口,其设置在所述在相邻两段所述伸缩屏蔽段中靠近所述屏蔽轨道的内层伸缩屏蔽段的端部上,并且,所述第二对接口上设有簧片,所述第二对接口与所述第一对接口对接时,所述挤压结构抵压所述簧片使得所述簧片压缩,以使所述簧片与所述挤压结构导电接触,以屏蔽电磁波。
  5. 根据权利要求1至4任一项所述的电磁屏蔽舱,其特征在于,所述滑动对接结构包括:
    若干个并排设置的滑动凹槽,其设置在所述屏蔽轨道上;
    若干个滑动凸起,其设置在所述屏蔽罩上且与所述滑动凹槽一一对应设置,所述滑动凸起可滑动地设置在其对应的滑动凹槽内,并且,所述滑动凹槽和所述滑动凸起之间间隙配合,以对电磁波进行折反射,实现电磁波的衰减。
  6. 根据权利要求1至4任一项所述的电磁屏蔽舱,其特征在于,
    所述对接屏蔽接口包括:若干个并排设置的卡设凸起,其与所述磁共振主体上设置的若干个卡设凹槽一一对应设置,所述屏蔽罩与所述磁共振主体对接时,所述卡设凸起和所述卡设凹槽之间间隙配合,以对电磁波进行折反射,实现电磁波的衰减;或,
    所述对接屏蔽接口包括:若干个并排设置的卡设凹槽,其与所述磁共振主体上设置的若干个卡设凸起一一对应设置,所述屏蔽罩与所述磁共振主体对接时,所述卡设凸起和所述卡设凹槽之间间隙配合,以对电磁波进行折反射,实现电磁波的衰减。
  7. 根据权利要求1至4任一项所述的电磁屏蔽舱,其特征在于,所述屏蔽罩上设有观察窗。
  8. 根据权利要求7所述的电磁屏蔽舱,其特征在于,所述观察窗包括:至少两层透明面板;其中,
    任意相邻两层所述透明面板之间均设有屏蔽网。
  9. 根据权利要求1至4任一项所述的电磁屏蔽舱,其特征在于,所述屏蔽轨道包括:
    屏蔽板;
    两个屏蔽轨,其分别设置且连接在所述屏蔽板的两个长侧边上,用以形成屏蔽舱的底部全电磁屏蔽。
  10. 一种磁共振系统,其特征在于,设置有如权利要求1至9任一项所述的电磁屏蔽舱。
PCT/CN2020/140514 2020-10-27 2020-12-29 一种电磁屏蔽舱及具有该电磁屏蔽舱的磁共振系统 WO2022088469A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011162786.9 2020-10-27
CN202011162786.9A CN112336333A (zh) 2020-10-27 2020-10-27 一种电磁屏蔽舱及具有该电磁屏蔽舱的磁共振系统

Publications (1)

Publication Number Publication Date
WO2022088469A1 true WO2022088469A1 (zh) 2022-05-05

Family

ID=74358702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140514 WO2022088469A1 (zh) 2020-10-27 2020-12-29 一种电磁屏蔽舱及具有该电磁屏蔽舱的磁共振系统

Country Status (2)

Country Link
CN (1) CN112336333A (zh)
WO (1) WO2022088469A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115137592A (zh) * 2022-08-02 2022-10-04 罗佳 一种移动式核磁共振检查屏蔽舱
CN115778364A (zh) * 2023-02-06 2023-03-14 潍坊新力超导磁电科技有限公司 一种移动式核磁共振检测系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114562133B (zh) * 2022-02-24 2023-02-07 北京航空航天大学 一种具有无磁轨道的可重构式磁屏蔽房
CN217007652U (zh) * 2022-02-28 2022-07-19 合肥泽璞医疗系统有限公司 磁共振系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013000420A (ja) * 2011-06-17 2013-01-07 Yoshida Dental Mfg Co Ltd 磁気共鳴イメージング装置用の電磁シールド構造
JP2013004821A (ja) * 2011-06-17 2013-01-07 Yoshida Dental Mfg Co Ltd 磁気共鳴イメージング装置用の電磁シールド構造
CN105264397A (zh) * 2013-06-06 2016-01-20 皇家飞利浦有限公司 磁共振成像系统的rf屏蔽检查室
CN205648338U (zh) * 2016-04-20 2016-10-12 扬州润扬物流装备有限公司 模块化磁共振屏蔽室及具有其的模块化医院
WO2018098267A1 (en) * 2016-11-22 2018-05-31 Hyperfine Research, Inc. Portable low-field magnetic resonance imaging methods and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013000420A (ja) * 2011-06-17 2013-01-07 Yoshida Dental Mfg Co Ltd 磁気共鳴イメージング装置用の電磁シールド構造
JP2013004821A (ja) * 2011-06-17 2013-01-07 Yoshida Dental Mfg Co Ltd 磁気共鳴イメージング装置用の電磁シールド構造
CN105264397A (zh) * 2013-06-06 2016-01-20 皇家飞利浦有限公司 磁共振成像系统的rf屏蔽检查室
CN205648338U (zh) * 2016-04-20 2016-10-12 扬州润扬物流装备有限公司 模块化磁共振屏蔽室及具有其的模块化医院
WO2018098267A1 (en) * 2016-11-22 2018-05-31 Hyperfine Research, Inc. Portable low-field magnetic resonance imaging methods and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115137592A (zh) * 2022-08-02 2022-10-04 罗佳 一种移动式核磁共振检查屏蔽舱
CN115778364A (zh) * 2023-02-06 2023-03-14 潍坊新力超导磁电科技有限公司 一种移动式核磁共振检测系统

Also Published As

Publication number Publication date
CN112336333A (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
WO2022088469A1 (zh) 一种电磁屏蔽舱及具有该电磁屏蔽舱的磁共振系统
CN1140010A (zh) 用于屏蔽室的门组件
CN214231322U (zh) 一种电磁屏蔽舱及具有该电磁屏蔽舱的磁共振系统
CN102149892B (zh) 电磁屏蔽面板、窗构件、构造物、电磁屏蔽室及电磁屏蔽箱
KR101071510B1 (ko) 전자 기기용 시험 장치 및 전자 기기 시험 방법
CN111562530A (zh) 屏蔽舱
KR102184498B1 (ko) 경량 저비용 emp 방호 랙
JP2008145176A (ja) 電子機器用試験装置および電子機器試験方法
JP2011155274A (ja) 電波試験室
CN215645611U (zh) 一种自动化控制柜
CN212364557U (zh) 屏蔽舱
CN217007540U (zh) 一种标准19英寸抽屉式emc测试装置
JP4569318B2 (ja) エレベータ装置
CN215979131U (zh) 变电站电动轻质隔声卷帘门
CN213775139U (zh) 一种智能感应辐射防护门
CN204984182U (zh) 一种气动屏蔽门装置
JP3062551B1 (ja) 電磁波遮蔽引き戸
CN212465424U (zh) 一种直线推压阻尼滑轨
CN204877177U (zh) 一种气动屏蔽门装置
CN203263418U (zh) 检查床装置和医用诊断装置
JP2008130979A (ja) 電磁波シールド構造体
KR101932691B1 (ko) 매뉴얼 방음 스윙 전자파 차폐도어
CN220247253U (zh) 一种可调吸声装置
KR101047999B1 (ko) 엠알아이 실드용 반자동 차폐도어
CN220521629U (zh) 一种可调吸声装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959626

Country of ref document: EP

Kind code of ref document: A1