WO2022088404A1 - 一种均压控制电路及其控制方法 - Google Patents

一种均压控制电路及其控制方法 Download PDF

Info

Publication number
WO2022088404A1
WO2022088404A1 PCT/CN2020/134881 CN2020134881W WO2022088404A1 WO 2022088404 A1 WO2022088404 A1 WO 2022088404A1 CN 2020134881 W CN2020134881 W CN 2020134881W WO 2022088404 A1 WO2022088404 A1 WO 2022088404A1
Authority
WO
WIPO (PCT)
Prior art keywords
main power
power circuit
output
voltage
circuit
Prior art date
Application number
PCT/CN2020/134881
Other languages
English (en)
French (fr)
Inventor
唐德平
陈亚东
赵涛
蔡振鸿
Original Assignee
合肥科威尔电源系统股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥科威尔电源系统股份有限公司 filed Critical 合肥科威尔电源系统股份有限公司
Publication of WO2022088404A1 publication Critical patent/WO2022088404A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to the field of electronic equipment for measurement and testing, and more particularly to a voltage equalization control circuit and a control method thereof.
  • DC test power supply is one of the indispensable test instruments for power electronics companies. Since many devices under test require high-voltage testing, our DC test power supply is required to provide high-voltage output to meet various test environments. .
  • the full-bridge conversion is a commonly used topology for high-frequency DC test power supply, and the full-bridge conversion topology is limited by the development level of existing semiconductor devices, which makes it difficult to achieve high-voltage output in a single channel, so multiple channels in series are used to achieve high-voltage output. output, but the duty cycle of the main control signal is very small when no-load or light-load output, and individual differences in hardware will cause each module to fail to achieve voltage equalization output.
  • the existing method of adding dead load greatly reduces the efficiency of the power supply itself, on the other hand, it will also increase the size and cost of the power supply; there is also a method of independently controlling the wave, which will take up a lot of DSP resources.
  • Chinese Patent Publication No. CN108494259A discloses a control method for a series-parallel combination system of high-voltage DC power supply, which belongs to the technical field of high-voltage DC power supply and voltage and current control.
  • the voltage outer loop samples the system output voltage and the output voltage of each module in each switching cycle, adjusts the system output voltage through the PI control strategy, and achieves output voltage equalization at the same time;
  • the loop mainly uses the deadbeat control strategy to control the output current of the inverter module in the system to reduce the distortion rate of the current waveform and improve the instantaneous response speed of the system.
  • the control method in the patent application can not only obtain high voltage and high power, but also reduce the current stress of the input-side switch and the voltage stress of the output-side device, and at the same time speed up the dynamic response speed and improve the control accuracy.
  • the patent application applies to high-voltage DC power supplies that require high output voltage and fast dynamic response. However, it does not solve the problem that the DC power supply cannot be equalized when it is no-load or light-load output.
  • the technical problem to be solved by the present invention lies in the problem that the DC power supply in the prior art cannot equalize the voltage when the output is no-load or light-load.
  • a voltage equalization control circuit comprising three main power circuits connected in series, a sampling circuit and a main control chip, wherein the output ends of the three main power circuits are connected to the sampling The input end of the circuit is connected, the output end of the sampling circuit is connected to the main control chip, and the main control chip is respectively connected to the control end of the three main power circuits.
  • the full-bridge conversion module, the resonance module, the rectifier module and the filter module are connected in sequence; when the DC power supply is light-loaded or no-load output, the three-way main power circuit performs PWM control by copying waves, and two of the main power circuits are
  • the output voltage equalization loop of the circuit works to fine-tune the duty ratio of the driving signal to realize voltage equalization control.
  • the present invention outputs the voltage sampling of each channel and sends it to the main control chip by designing the main power circuit connected in series.
  • the DC voltage is fed back to the control terminal of the three-way main power circuit, and the on and off of the full-bridge conversion module is controlled by the pulse driving signal sent by the main control chip.
  • the main control chip adjusts the duty cycle of the driving signal to To achieve the output voltage and power, through the resonance module, the rectifier module and the filter module, and the three main power circuits are connected in series to achieve the specified high voltage equalizing output, when the DC power supply is light-loaded or no-load output, the three-way main power circuit will generate waves by copying
  • the output voltage equalization loops of the two main power circuits function to fine-tune the duty ratio of the driving signal, realize the voltage equalization control, and solve the problem that the voltage cannot be equalized during no-load or light-load output.
  • the full-bridge conversion module includes a capacitor C3n, a switch An, a switch Bn, a switch Cn, and a switch Dn.
  • One end of the capacitor C3n is connected to the source of the switch An, and the drain of the switch An. It is connected to the source of the switch Cn, the drain of the switch Cn is connected to the other end of the capacitor C3n, the source of the switch Bn is connected to the source of the switch An, and the drain of the switch Bn is connected to the source of the switch Dn
  • the poles are connected, and the drain of the switch tube Dn is connected to the drain of the switch tube Cn, where n is 1, 2 or 3, and n represents the nth main power circuit.
  • the resonance module includes an inductor L1n, a capacitor C1n and an inductor L2n, one end of the inductor L1n is connected to the drain of the switch An, and the other end of the inductor L1n is connected to one end of the inductor L2n through the capacitor C1n.
  • the rectifier module includes a transformer Tn, a diode D1n, a diode D2n, a diode D3n, and a diode D4n, one end of the primary coil of the transformer Tn is connected to the other end of the inductor L2n, and the primary coil of the transformer Tn is connected to the other end of the inductor L2n.
  • the other end is connected to the source of the switch tube Dn, one end of the secondary coil of the transformer Tn is connected to the anode of the diode D1n and the cathode of the diode D2n, and the other end of the secondary coil of the transformer Tn is connected to the anode of the diode D3n and the cathode of the diode D4n.
  • the cathode of diode D3n is connected to the cathode of diode D1n
  • the anode of diode D4n is connected to the anode of diode D2n.
  • the filter module includes an inductor L3n, a capacitor C2n and a load Rn.
  • One end of the inductor L3n is connected to the cathode of the diode D3n, and the other end of the inductor L3n is connected to one end of the capacitor C2n and one end of the load Rn, respectively.
  • the other end of C2n and the other end of load Rn are connected to the anode of diode D4n.
  • model of the main control chip is TMS320F28335.
  • the main chip model of the sampling circuit is ADMC401.
  • the present invention also provides a control method for a voltage equalization control circuit, the method comprising: the sum of the output voltages of the three main power circuits is U O , and the sum of the output voltages of the second main power circuit and the third main power circuit The sum is 2U O /3, the output voltage of the third main power circuit is U O /3, the sum of the output voltages of the three main power circuits is compared with the reference voltage Uref and then input to the third PI regulator, the third PI The output result of the regulator is compared with the average value of the primary current, and the comparison result is output to the fourth PI regulator.
  • the sum of the output voltages of the power circuit and the third main power circuit 2U O /3 is sampled by the sampling circuit.
  • the main control chip After sampling by the sampling circuit, the main control chip takes the sum of the output voltages of the power circuit and the three main power circuits as U O to obtain the first main power circuit.
  • the voltage of the first main power circuit is compared with the reference value and the comparison result is input to the first PI regulator.
  • the first PI regulator is used as the output voltage equalizing loop of the first main power circuit to The duty cycle of the driving signal is fine-tuned to control the first main power circuit; after the output voltage of the third main power circuit is sampled by the sampling circuit, the main control chip compares the sampled value with the reference value and inputs the comparison result to the second main power circuit.
  • the PI regulator and the second PI regulator are used as the output voltage equalization loop of the third main power circuit to fine-tune the duty ratio of the driving signal of the third main power circuit, and control the third main power circuit.
  • the method further includes: before performing the voltage equalization control, testing how much load can be added to the output terminal for voltage equalization output without performing the voltage equalization control on the second main power circuit and the third main power circuit.
  • the test does not perform voltage equalization control on the second main power circuit and the third main power circuit.
  • Adding a large load to the output terminal can equalize the output, including: making the second main power circuit and the third main power circuit.
  • the output voltage equalization loop of the three main power circuits is open-loop, no-load output, monitors the output voltage of each channel, gradually increases the load until the voltage equalization output, and records the output current Imin, when the output current is lower than Imin, the fourth PI adjustment
  • the device outputs three identical PWM waves to adjust the PI of the first main power circuit, the second main power circuit and the third main power circuit.
  • the outputs of the second main power circuit and the third main power circuit are both The pressure loop works, that is, the first PI regulator and the second PI regulator work to fine-tune the duty ratio of the driving signal of each main power circuit to achieve voltage equalization at no load or light load; when the output current is greater than Imin
  • the fourth PI regulator directly outputs three identical PWM waves, that is, the three main power circuits are replicated and controlled to achieve natural equalizing pressure.
  • the present invention outputs each voltage sampling to the main control chip by designing the main power circuit connected in series.
  • the DC voltage is fed back to the control terminal of the three-way main power circuit, and the on and off of the full-bridge conversion module is controlled by the pulse driving signal sent by the main control chip.
  • the main control chip adjusts the duty cycle of the driving signal to Realize the size of output voltage and power.
  • the three-way main power circuit performs PWM control by copying waves, and the output voltage equalizing loop works to fine-tune the duty cycle of the drive signal to achieve voltage equalization. Control, to solve the problem of no-load or light-load output can not be equalized.
  • the voltage equalization control method provided by the present invention when the output current is greater than 1min, shield the output voltage equalization ring of the second main power circuit and the third main power circuit, and carry out PI adjustment to the first main power circuit,
  • the fourth PI regulator directly outputs three identical PWM waves, that is, the three-way main power circuit is replicated and controlled, which can achieve the effect of natural voltage equalization.
  • the control is simple, the required PI regulator is less, and since the current is greater than At Imin, natural voltage equalization can be achieved, and no voltage equalization adjustment is required, so the output voltage equalization loop of the second main power circuit and the third main power circuit is directly shielded, so only the third PI regulator and the fourth PI are required.
  • the regulator works, reduces the control logic, simplifies the control steps, and occupies less DSP resources than the three-way independent control.
  • FIG. 1 is a schematic diagram of a voltage equalization control circuit provided by an embodiment of the present invention.
  • FIG. 2 is a driving signal waveform diagram of a voltage equalization control circuit provided by an embodiment of the present invention
  • FIG. 3 is a schematic control logic diagram of a control method for a voltage equalization control circuit provided by an embodiment of the present invention
  • FIG. 4 is a schematic diagram of the control logic when the output current is greater than Imin in a control method for a voltage equalization control circuit provided by an embodiment of the present invention.
  • a voltage equalization control circuit includes three main power circuits connected in series, a sampling circuit U1 and a main control chip U2, the output ends of the three main power circuits are all connected with the input end of the sampling circuit U1
  • the output terminal of the sampling circuit U1 is connected to the main control chip U2, and the main control chip U2 is respectively connected to the control terminals of the three main power circuits.
  • Each main power circuit includes a full-bridge conversion module 1, a resonance module 2, and a rectifier module 3.
  • the filter module 4 the full-bridge conversion module 1, the resonance module 2, the rectifier module 3 and the filter module 4 are connected in turn; when the DC power supply is light-loaded or no-load output, the three-way main power circuit performs PWM by copying the wave At the same time, the output voltage equalizing loop works to fine-tune the duty ratio of the driving signal to achieve voltage equalization control.
  • the model of the main control chip U2 is TMS320F28335.
  • the main chip model of the sampling circuit U1 is ADMC401.
  • the full-bridge conversion module 1 includes a capacitor C3n, a switch An, a switch Bn, a switch Cn, and a switch Dn.
  • One end of the capacitor C3n is connected to the source of the switch An, and the drain of the switch An is connected to the switch.
  • the source of the transistor Cn is connected, the drain of the switch Cn is connected to the other end of the capacitor C3n, the source of the switch Bn is connected to the source of the switch An, the drain of the switch Bn is connected to the source of the switch Dn , the drain of the switch tube Dn is connected to the drain of the switch tube Cn, where n is 1, 2 or 3, and n represents the nth main power circuit.
  • the resonance module 2 includes an inductor L1n, a capacitor C1n, and an inductor L2n.
  • One end of the inductor L1n is connected to the drain of the switch An, and the other end of the inductor L1n is connected to one end of the inductor L2n through the capacitor C1n.
  • the rectifier module 3 includes a transformer Tn, a diode D1n, a diode D2n, a diode D3n, and a diode D4n.
  • One end of the primary coil of the transformer Tn is connected to the other end of the inductor L2n, and the other end of the primary coil of the transformer Tn is connected to the other end of the inductor L2n.
  • the source of the switch tube Dn is connected, one end of the secondary coil of the transformer Tn is connected to the anode of the diode D1n and the cathode of the diode D2n, and the other end of the secondary coil of the transformer Tn is connected to the anode of the diode D3n and the cathode of the diode D4n.
  • the cathode of D3n is connected to the cathode of diode D1n
  • the anode of diode D4n is connected to the anode of diode D2n.
  • the filter module 4 includes an inductor L3n, a capacitor C2n and a load Rn, one end of the inductor L3n is connected to the cathode of the diode D3n, the other end of the inductor L3n is connected to one end of the capacitor C2n and one end of the load Rn respectively, and the other end of the capacitor C2n is connected.
  • One end and the other end of the load Rn are connected to the anode of the diode D4n.
  • the primary side three is composed of a full-bridge transformation structure composed of four switch tubes, a resonant inductor and a DC blocking capacitor, and the secondary side three is composed of a rectifier circuit and an LC filter circuit.
  • the output voltage samples of each channel are sent to the main control chip U2.
  • the DC voltage is applied between the bus Vbus+ and Vbus-, and the on and off of the four switches An, Bn, Cn, and Dn are controlled by the pulse drive signal sent by the main control chip U2.
  • the main The control chip U2 realizes the output voltage and power by adjusting the duty cycle of the driving signal, and then passes through the transformer to achieve the electrical isolation of the primary and secondary sides and the effect of boosting or bucking, and finally through LC filtering and three-way series connection to achieve the specified High voltage equalizing output.
  • the driving signal waveform of each switch tube is shown in Figure 2.
  • the invention adopts the mode of three-way driving signal copying, wave-emitting and fine-tuning to control.
  • the 1/3Uo, 2/3Uo output voltage equalizing loop is output to the current inner loop, and the voltage equalizing output is realized by fine-tuning the duty ratio of the driving signal of each switch tube, but the duty ratio changed by the voltage equalizing ring should be limited.
  • the present invention also provides a control method for a voltage equalizing control circuit.
  • the method includes: the sum of the output voltages of the three main power circuits is U O , the second main power circuit is The sum of the output voltages of the power circuit and the third main power circuit is 2U O /3, the output voltage of the third main power circuit is U O /3, the sum of the output voltages of the three main power circuits and the reference voltage Uref
  • the third PI regulator the output result of the third PI regulator is compared with the average value of the primary current, and the comparison result is output to the fourth PI regulator, and the fourth PI regulator outputs three identical PWM waves respectively for
  • the three main power circuits are controlled by PWM; the sum of the output voltages of the second main power circuit and the third main power circuit 2U O /3 is sampled by the sampling circuit, and the main control chip compares it with the output voltage of the three main power circuits.
  • the sum is the difference between U and O to obtain the voltage of the first main power circuit, compare the voltage of the first main power circuit with the reference value, and input the comparison result to the first PI regulator, and the first PI regulator is used as the first main power circuit.
  • the output voltage equalizing loop of the power circuit fine-tunes the duty cycle of the driving signal of the first main power circuit to control the first main power circuit; after the output voltage of the third main power circuit is sampled by the sampling circuit, the main control chip will sample the value Compare with the reference value and input the comparison result to the second PI regulator.
  • the second PI regulator acts as the output voltage equalizing loop of the third main power circuit to fine-tune the duty cycle of the driving signal of the third main power circuit, and controls the third main power circuit.
  • the method further includes: before performing the voltage equalization control, testing how much load can be added to the output terminal for voltage equalization output without performing the voltage equalization control on the second main power circuit and the third main power circuit.
  • adding a large load to the output terminal can make the voltage equalization output, including: making the second main power circuit and the third main power circuit
  • the output voltage equalizing loop of the circuit is open-loop, no-load output, monitoring the output voltage of each channel, gradually increasing the load until the equalizing output, and recording the output current Imin, when the output current is lower than Imin, that is, the DC power supply is no-load or light-load output.
  • the fourth PI regulator outputs three identical PWM waves to adjust the PI of the first main power circuit, the second main power circuit and the third main power circuit, and at the same time the second main power circuit and the third main power circuit
  • the output voltage equalizing loop of the main power circuit works, that is, the first PI regulator and the second PI regulator work to fine-tune the duty ratio of the driving signal of each main power circuit, and the three driving signals are copied and waved.
  • the regulator outputs three identical PWM waves, that is, the control of the three main power circuits by duplicating the wave generation.
  • the three PWMs are the same, and the effect of natural voltage equalization can be achieved.
  • the control is simple and the required PI
  • the three PI regulators and the fourth PI regulator work, reducing the control logic, simplifying the control steps, and occupying less DSP resources than the three-way independent control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种均压控制电路及其控制方法,所述控制电路包括三路串联连接的主功率电路、采样电路(U1)以及主控芯片(U2),三路所述主功率电路的输出端均与采样电路(U1)的输入端连接,采样电路(U1)的输出端与主控芯片(U2)连接,主控芯片(U2)分别与三路主功率电路的控制端连接,每一路主功率电路包括全桥变换模块(1)、谐振模块(2)、整流模块(3)以及滤波模块(4),全桥变换模块(1)、谐振模块(2)、整流模块(3)以及滤波模块(4)依次连接;直流电源轻载或者空载输出时,三路主功率电路通过复制发波的方式进行PWM控制同时其中两路主功率电路的输出均压环起作用进行驱动信号占空比微调,实现均压控制,从而解决直流电源空载或轻载输出时无法均压的问题。

Description

一种均压控制电路及其控制方法 技术领域
本发明涉及测量测试用电子设备领域,更具体涉及一种均压控制电路及其控制方法。
背景技术
在电子技术领域,直流测试电源是电力电子企业必不可少的测试仪器之一,由于很多被测设备需要高压测试,所以就要求我们的直流测试电源能够提供高电压输出,以满足各种测试环境。而全桥变换是目前高频直流测试电源常用的一种拓扑,而全桥变换拓扑由于受现有半导体器件发展水平的限制,导致单路很难实现高压输出,所以会用多路串联实现高压输出,但空载或轻载输出时主控制信号占空比很小,硬件的个体差异会导致各个模块无法实现均压输出。现有的通过加死负载的方法,一方面大大地降低了电源本身的效率,另一方面,也会令电源体积、成本有所增加;现也有通过单独控制发波的方法,这样会占用大量DSP资源。
中国专利公开号CN108494259A,公开了一种高压直流电源串并联组合系统的控制方法,属于高压直流电源和电压电流控制相关技术领域。高压直流电源IPOS组合系统在正常工作时,电压外环在每个开关周期对系统输出电压和各模块输出电压进行采样,通过PI控制策略对系统输出电压进行调节,同时实现输出均压;电流内环主要是采用无差拍控制策略对系统中逆变模块输出电流进行控制,减小电流波形的畸变率,提高系统瞬时响应速度。该专利申请中的控制方法不仅可获得高电压大功率,而且减小了输入侧开 关的电流应力和输出侧器件电压应力,同时加快了动态响应速度,提高了控制精度。该专利申请适用于要求高输出电压和快速动态响应的高压直流电源。但是其没有解决直流电源空载或轻载输出时无法均压的问题。
发明内容
本发明所要解决的技术问题在于现有技术直流电源存在空载或轻载输出时无法均压的问题。
本发明通过以下技术手段实现解决上述技术问题的:一种均压控制电路,包括三路串联连接的主功率电路、采样电路以及主控芯片,三路所述主功率电路的输出端均与采样电路的输入端连接,采样电路的输出端与主控芯片连接,主控芯片分别与三路主功率电路的控制端连接,每一路主功率电路包括全桥变换模块、谐振模块、整流模块以及滤波模块,所述全桥变换模块、谐振模块、整流模块以及滤波模块依次连接;直流电源轻载或者空载输出时,三路主功率电路通过复制发波的方式进行PWM控制同时其中两路主功率电路的输出均压环起作用进行驱动信号占空比微调,实现均压控制。
本发明通过设计串联连接的主功率电路,输出每路电压采样送给主控芯片。工作时,直流电压反馈给三路主功率电路的控制端,通过主控芯片发出的脉冲驱动信号来控制全桥变换模块的导通与关断,主控芯片通过调节驱动信号的占空比来实现输出电压及功率的大小,通过谐振模块、整流模块以及滤波模块且三路主功率电路串联达到指定高压均压输出,直流电源轻载或者空载输出时,三路主功率电路通过复制发波的方式进行PWM控制同时其中两路主功率电路的输出均压环起作用进行驱动信号占空比微调,实现均压控制,解决空载或轻载输出时无法均压的问题。
进一步地,所述全桥变换模块包括电容C3n、开关管An、开关管Bn、开关管Cn和开关管Dn,所述电容C3n的一端与开关管An的源极连接,开关管An的漏极与开关管Cn的源极连接,开关管Cn的漏极与电容C3n的另一端连接,开关管Bn的源极与开关管An的源极连接,开关管Bn的漏极与开关管Dn的源极连接,开关管Dn的漏极与开关管Cn的漏极连接,其中,n取1、2或3,n表示第n路主功率电路。
更进一步地,所述谐振模块包括电感L1n、电容C1n以及电感L2n,所述电感L1n的一端与开关管An的漏极连接,电感L1n的另一端通过电容C1n与电感L2n的一端连接。
再进一步地,所述整流模块包括变压器Tn、二极管D1n、二极管D2n、二极管D3n、以及二极管D4n,所述变压器Tn的原边线圈的一端与电感L2n的另一端连接,变压器Tn的原边线圈的另一端与开关管Dn的源极连接,变压器Tn的副边线圈的一端与二极管D1n的阳极以及二极管D2n的阴极连接,变压器Tn的副边线圈的另一端与二极管D3n的阳极以及二极管D4n的阴极连接,二极管D3n的阴极与二极管D1n的阴极连接,二极管D4n的阳极与二极管D2n的阳极连接。
再进一步地,所述滤波模块包括电感L3n、电容C2n以及负载Rn,所述电感L3n的一端与二极管D3n的阴极连接,电感L3n的另一端分别与电容C2n的一端以及负载Rn的一端连接,电容C2n的另一端以及负载Rn的另一端均与二极管D4n的阳极连接。
进一步地,所述主控芯片的型号为TMS320F28335。
进一步地,所述采样电路的主芯片型号为ADMC401。
本发明还提供一种均压控制电路的控制方法,所述方法包括:三路主功率电路的输出电压之和为U O,第二路主功率电路与第三路主功率电路的输出电压之和为2U O/3,第三路主功率电路的输出电压为U O/3,三路主功率电路的输出电压之和与参考电压Uref进行比较以后输入给第三PI调节器,第三PI调节器输出结果与原边电流的均值进行比较,比较结果输出给第四PI调节器,第四PI调节器输出三路相同的PWM波分别对三路主功率电路进行PWM控制,第二路主功率电路与第三路主功率电路的输出电压之和2U O/3经采样电路采样以后主控芯片将其与三路主功率电路的输出电压之和为U O作差获取第一主功率电路的电压,将第一主功率电路的电压与参考值进行比较并将比较结果输入给第一PI调节器,第一PI调节器作为第一主功率电路的输出均压环对第一主功率电路的驱动信号占空比进行微调,控制第一路主功率电路;第三路主功率电路的输出电压经采样电路采样以后主控芯片将采样值与参考值进行比较并将比较结果输入给第二PI调节器,第二PI调节器作为第三主功率电路的输出均压环对第三主功率电路的驱动信号占空比进行微调,控制第三路主功率电路。
进一步地,所述方法还包括:在进行均压控制之前先测试没有对第二路主功率电路以及第三路主功率电路进行均压控制的情况下输出端加多大负载可以均压输出。
更进一步地,所述测试没有对第二路主功率电路以及第三路主功率电路进行均压控制的情况下输出端加多大负载可以均压输出,包括:使第二路主功率电路以及第三路主功率电路的输出均压环开环,空载输出,监控每路输出电压,逐渐的增加负载直至均压输出,并记录输出电流Imin,当输出 电流低于Imin时,第四PI调节器输出三路相同的PWM波对第一路主功率电路、第二路主功率电路以及第三路主功率电路进行PI调节,同时第二路主功率电路以及第三路主功率电路的输出均压环起作用也即第一PI调节器和第二PI调节器起作用,对各路主功率电路的驱动信号占空比进行微调,实现空载或轻载时均压;当输出电流大于Imin时,屏蔽第二路主功率电路以及第三路主功率电路的输出均压环,直接由第四PI调节器输出三路相同的PWM波即对三路主功率电路复制发波控制,实现自然均压。
本发明的优点在于:
(1)本发明通过设计串联连接的主功率电路,输出每路电压采样送给主控芯片。工作时,直流电压反馈给三路主功率电路的控制端,通过主控芯片发出的脉冲驱动信号来控制全桥变换模块的导通与关断,主控芯片通过调节驱动信号的占空比来实现输出电压及功率的大小,直流电源轻载或者空载输出时,三路主功率电路通过复制发波的方式进行PWM控制同时输出均压环起作用进行驱动信号占空比微调,实现均压控制,解决空载或轻载输出时无法均压的问题。
(2)本发明提供的均压控制方法,当输出电流低于Imin也即直流电源空载或轻载输出时,对第一主功率电路、第二路主功率电路以及第三路主功率电路进行PI调节,第二路主功率电路以及第三路主功率电路的输出均压环起作用,三路驱动信号复制发波再利用均压环进行微调,逻辑清晰控制简单。
(3)本发明提供的均压控制方法,当输出电流大于Imin时,屏蔽第二路主功率电路以及第三路主功率电路的输出均压环,对第一路主功率电路 进行PI调节,直接由第四PI调节器输出三路相同的PWM波即对三路主功率电路复制发波控制,可以达到自然均压的效果,此时控制简单,所需PI调节器少,且由于电流大于Imin时能够达到自然均压,不需要进行均压调节,所以直接屏蔽第二路主功率电路以及第三路主功率电路的输出均压环,由此只需第三PI调节器以及第四PI调节器起作用,减少了控制逻辑,简化控制步骤,比三路单独控制占用DSP资源少。
附图说明
图1为本发明实施例所提供的一种均压控制电路的原理图;
图2为本发明实施例所提供的一种均压控制电路的驱动信号波形图;
图3为本发明实施例所提供的一种均压控制电路的控制方法的控制逻辑示意图;
图4为本发明实施例所提供的一种均压控制电路的控制方法中输出电流大于Imin时的控制逻辑示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,一种均压控制电路,包括三路串联连接的主功率电路、采样电路U1以及主控芯片U2,三路所述主功率电路的输出端均与采样电路U1的输入端连接,采样电路U1的输出端与主控芯片U2连接,主控芯片 U2分别与三路主功率电路的控制端连接,每一路主功率电路包括全桥变换模块1、谐振模块2、整流模块3以及滤波模块4,所述全桥变换模块1、谐振模块2、整流模块3以及滤波模块4依次连接;直流电源轻载或者空载输出时,三路主功率电路通过复制发波的方式进行PWM控制同时输出均压环起作用进行驱动信号占空比微调,实现均压控制。所述主控芯片U2的型号为TMS320F28335。所述采样电路U1的主芯片型号为ADMC401。
所述全桥变换模块1包括电容C3n、开关管An、开关管Bn、开关管Cn和开关管Dn,所述电容C3n的一端与开关管An的源极连接,开关管An的漏极与开关管Cn的源极连接,开关管Cn的漏极与电容C3n的另一端连接,开关管Bn的源极与开关管An的源极连接,开关管Bn的漏极与开关管Dn的源极连接,开关管Dn的漏极与开关管Cn的漏极连接,其中,n取1、2或3,n表示第n路主功率电路。
所述谐振模块2包括电感L1n、电容C1n以及电感L2n,所述电感L1n的一端与开关管An的漏极连接,电感L1n的另一端通过电容C1n与电感L2n的一端连接。
所述整流模块3包括变压器Tn、二极管D1n、二极管D2n、二极管D3n、以及二极管D4n,所述变压器Tn的原边线圈的一端与电感L2n的另一端连接,变压器Tn的原边线圈的另一端与开关管Dn的源极连接,变压器Tn的副边线圈的一端与二极管D1n的阳极以及二极管D2n的阴极连接,变压器Tn的副边线圈的另一端与二极管D3n的阳极以及二极管D4n的阴极连接,二极管D3n的阴极与二极管D1n的阴极连接,二极管D4n的阳极与二极管D2n的阳极连接。
所述滤波模块4包括电感L3n、电容C2n以及负载Rn,所述电感L3n的一端与二极管D3n的阴极连接,电感L3n的另一端分别与电容C2n的一端以及负载Rn的一端连接,电容C2n的另一端以及负载Rn的另一端均与二极管D4n的阳极连接。
原边三路由四个开关管组成的全桥变换结构及谐振电感、隔直电容组成,副边三路由整流电路及LC滤波电路组成,输出每路电压采样送给主控芯片U2。工作时,直流电压加在母线Vbus+与Vbus-之间,通过主控芯片U2发出的脉冲驱动信号来控制4个开关管An、Bn、Cn、Dn的导通与关断,而PWM模式下主控芯片U2通过调节驱动信号的占空比来实现输出电压及功率的大小,然后再通过变压器,达到原副边电气隔离以及升压或降压的效果,最后通过LC滤波并且三路串联达到指定高压均压输出。每个开关管的驱动信号波形如图2所示。
而实际由于硬件的个体差异导致开关管实际的导通时间会有误差,而在空载或轻载情况下,由于输出端没有足够的负载去把这部分能量给消耗掉,开关管实际的占空比会很小,所以每路实际开关管占空比会相差比较大,导致三路输出不均压。本发明采用三路驱动信号复制发波再微调的方式来控制。1/3Uo、2/3Uo输出均压环给电流内环输出,通过微调每路开关管的驱动信号占空比来实现均压输出,但是要对均压环改变的占空比大小进行限制,以下详细介绍具体控制方法,如图3所示,本发明还提供一种均压控制电路的控制方法,所述方法包括:三路主功率电路的输出电压之和为U O,第二路主功率电路与第三路主功率电路的输出电压之和为2U O/3,第三路主功率电路的输出电压为U O/3,三路主功率电路的输出电压之和与参考电压 Uref进行比较以后输入给第三PI调节器,第三PI调节器输出结果与原边电流的均值进行比较,比较结果输出给第四PI调节器,第四PI调节器输出三路相同的PWM波分别对三路主功率电路进行PWM控制;第二路主功率电路与第三路主功率电路的输出电压之和2U O/3经采样电路采样以后主控芯片将其与三路主功率电路的输出电压之和为U O作差获取第一主功率电路的电压,将第一主功率电路的电压与参考值进行比较并将比较结果输入给第一PI调节器,第一PI调节器作为第一主功率电路的输出均压环对第一主功率电路的驱动信号占空比进行微调,控制第一路主功率电路;第三路主功率电路的输出电压经采样电路采样以后主控芯片将采样值与参考值进行比较并将比较结果输入给第二PI调节器,第二PI调节器作为第三主功率电路的输出均压环对第三主功率电路的驱动信号占空比进行微调,控制第三路主功率电路。
所述方法还包括:在进行均压控制之前先测试没有对第二路主功率电路以及第三路主功率电路进行均压控制的情况下输出端加多大负载可以均压输出。
所述测试没有对第二路主功率电路以及第三路主功率电路进行均压控制的情况下输出端加多大负载可以均压输出,包括:使第二路主功率电路以及第三路主功率电路的输出均压环开环,空载输出,监控每路输出电压,逐渐的增加负载直至均压输出,并记录输出电流Imin,当输出电流低于Imin也即直流电源空载或轻载输出时,第四PI调节器输出三路相同的PWM波对第一路主功率电路、第二路主功率电路以及第三路主功率电路进行PI调节,同时第二路主功率电路以及第三路主功率电路的输出均压环起作用也 即第一PI调节器和第二PI调节器起作用,对各路主功率电路的驱动信号占空比进行微调,,三路驱动信号复制发波再利用均压环进行微调,逻辑清晰控制简单;如图4所示,当输出电流大于Imin时,屏蔽第二路主功率电路以及第三路主功率电路的输出均压环,直接由第四PI调节器输出三路相同的PWM波即对三路主功率电路复制发波控制,,采用复制发波的方式,三路PWM相同,可以达到自然均压的效果,此时控制简单,所需PI调节器少,且由于电流大于Imin时能够达到自然均压,不需要进行均压调节,所以直接屏蔽第二路主功率电路以及第三路主功率电路的输出均压环,由此只需第三PI调节器以及第四PI调节器起作用,减少了控制逻辑,简化控制步骤,比三路单独控制占用DSP资源少。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种均压控制电路,其特征在于,包括三路串联连接的主功率电路、采样电路以及主控芯片,三路所述主功率电路的输出端均与采样电路的输入端连接,采样电路的输出端与主控芯片连接,主控芯片分别与三路主功率电路的控制端连接,每一路主功率电路包括全桥变换模块、谐振模块、整流模块以及滤波模块,所述全桥变换模块、谐振模块、整流模块以及滤波模块依次连接;直流电源轻载或者空载输出时,三路主功率电路通过复制发波的方式进行PWM控制同时其中两路主功率电路的输出均压环起作用进行驱动信号占空比微调,实现均压控制。
  2. 根据权利要求1所述的一种均压控制电路,其特征在于,所述全桥变换模块包括电容C3n、开关管An、开关管Bn、开关管Cn和开关管Dn,所述电容C3n的一端与开关管An的源极连接,开关管An的漏极与开关管Cn的源极连接,开关管Cn的漏极与电容C3n的另一端连接,开关管Bn的源极与开关管An的源极连接,开关管Bn的漏极与开关管Dn的源极连接,开关管Dn的漏极与开关管Cn的漏极连接,其中,n取1、2或3,n表示第n路主功率电路。
  3. 根据权利要求2所述的一种均压控制电路,其特征在于,所述谐振模块包括电感L1n、电容C1n以及电感L2n,所述电感L1n的一端与开关管An的漏极连接,电感L1n的另一端通过电容C1n与电感L2n的一端连接。
  4. 根据权利要求3所述的一种均压控制电路,其特征在于,所述整流模块包括变压器Tn、二极管D1n、二极管D2n、二极管D3n、以及二极管D4n,所述变压器Tn的原边线圈的一端与电感L2n的另一端连接,变压器Tn的原边线圈的另一端与开关管Dn的源极连接,变压器Tn的副边线圈的一端 与二极管D1n的阳极以及二极管D2n的阴极连接,变压器Tn的副边线圈的另一端与二极管D3n的阳极以及二极管D4n的阴极连接,二极管D3n的阴极与二极管D1n的阴极连接,二极管D4n的阳极与二极管D2n的阳极连接。
  5. 根据权利要求4所述的一种均压控制电路,其特征在于,所述滤波模块包括电感L3n、电容C2n以及负载Rn,所述电感L3n的一端与二极管D3n的阴极连接,电感L3n的另一端分别与电容C2n的一端以及负载Rn的一端连接,电容C2n的另一端以及负载Rn的另一端均与二极管D4n的阳极连接。
  6. 根据权利要求1所述的一种均压控制电路,其特征在于,所述主控芯片的型号为TMS320F28335。
  7. 根据权利要求1所述的一种均压控制电路,其特征在于,所述采样电路的主芯片型号为ADMC401。
  8. 根据权利要求1-7任一项所述的一种均压控制电路的控制方法,其特征在于,所述方法包括:三路主功率电路的输出电压之和为U O,第二路主功率电路与第三路主功率电路的输出电压之和为2U O/3,第三路主功率电路的输出电压为U O/3,三路主功率电路的输出电压之和与参考电压Uref进行比较以后输入给第三PI调节器,第三PI调节器输出结果与原边电流的均值进行比较,比较结果输出给第四PI调节器,第四PI调节器输出三路相同的PWM波分别对三路主功率电路进行PWM控制,第二路主功率电路与第三路主功率电路的输出电压之和2U O/3经采样电路采样以后主控芯片将其与三路主功率电路的输出电压之和为U O作差获取第一主功率电路的电压,将 第一主功率电路的电压与参考值进行比较并将比较结果输入给第一PI调节器,第一PI调节器作为第一主功率电路的输出均压环对第一主功率电路的驱动信号占空比进行微调,控制第一路主功率电路;第三路主功率电路的输出电压经采样电路采样以后主控芯片将采样值与参考值进行比较并将比较结果输入给第二PI调节器,第二PI调节器作为第三主功率电路的输出均压环对第三主功率电路的驱动信号占空比进行微调,控制第三路主功率电路。
  9. 根据权利要求8所述的一种均压控制电路的控制方法,其特征在于,所述方法还包括:在进行均压控制之前先测试没有对第二路主功率电路以及第三路主功率电路进行均压控制的情况下输出端加多大负载可以均压输出。
  10. 根据权利要求9所述的一种均压控制电路的控制方法,其特征在于,所述测试没有对第二路主功率电路以及第三路主功率电路进行均压控制的情况下输出端加多大负载可以均压输出,包括:使第二路主功率电路以及第三路主功率电路的输出均压环开环,空载输出,监控每路输出电压,逐渐的增加负载直至均压输出,并记录输出电流Imin,当输出电流低于Imin时,第四PI调节器输出三路相同的PWM波对第一路主功率电路、第二路主功率电路以及第三路主功率电路进行PI调节,同时第二路主功率电路以及第三路主功率电路的输出均压环起作用也即第一PI调节器和第二PI调节器起作用,对各路主功率电路的驱动信号占空比进行微调,实现空载或轻载时均压;当输出电流大于Imin时,屏蔽第二路主功率电路以及第三路主功率电路的输出均压环,直接由第四PI调节器输出三路相同的PWM波即对三路主功率电路复制发波控制,实现自然均压。
PCT/CN2020/134881 2020-11-02 2020-12-09 一种均压控制电路及其控制方法 WO2022088404A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011204970.5A CN112234825A (zh) 2020-11-02 2020-11-02 一种均压控制电路及其控制方法
CN202011204970.5 2020-11-02

Publications (1)

Publication Number Publication Date
WO2022088404A1 true WO2022088404A1 (zh) 2022-05-05

Family

ID=74121805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134881 WO2022088404A1 (zh) 2020-11-02 2020-12-09 一种均压控制电路及其控制方法

Country Status (2)

Country Link
CN (1) CN112234825A (zh)
WO (1) WO2022088404A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116404880A (zh) * 2023-04-04 2023-07-07 北京龙腾云海科技股份有限公司 一种基于多路开关电源并联的高效供电系统
CN116520932A (zh) * 2023-04-12 2023-08-01 团车互联网信息服务(北京)有限公司 一种太阳能汽车mppt功率分配控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113258752B (zh) * 2021-06-07 2021-10-01 深圳市永联科技股份有限公司 一种电路信号的动态控制方法、系统及电源模块

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7151362B1 (en) * 2005-06-03 2006-12-19 The Aerospace Corporation Uniform converter output voltage distribution power system
CN101345490A (zh) * 2008-08-26 2009-01-14 南京航空航天大学 输入串联输出并联组合变换器全负载输入均压的控制方法
CN105978332A (zh) * 2016-05-13 2016-09-28 重庆大学 IPOS四电平Boost变换器及其中点电位平衡控制
CN108054922A (zh) * 2017-12-29 2018-05-18 深圳青铜剑科技股份有限公司 一种燃料电池直流-直流变换器及其控制方法
CN108494259A (zh) * 2018-03-30 2018-09-04 大连理工大学 一种高压直流电源串并联组合系统的控制方法
CN213342016U (zh) * 2020-11-02 2021-06-01 合肥科威尔电源系统股份有限公司 一种均压控制电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7151362B1 (en) * 2005-06-03 2006-12-19 The Aerospace Corporation Uniform converter output voltage distribution power system
CN101345490A (zh) * 2008-08-26 2009-01-14 南京航空航天大学 输入串联输出并联组合变换器全负载输入均压的控制方法
CN105978332A (zh) * 2016-05-13 2016-09-28 重庆大学 IPOS四电平Boost变换器及其中点电位平衡控制
CN108054922A (zh) * 2017-12-29 2018-05-18 深圳青铜剑科技股份有限公司 一种燃料电池直流-直流变换器及其控制方法
CN108494259A (zh) * 2018-03-30 2018-09-04 大连理工大学 一种高压直流电源串并联组合系统的控制方法
CN213342016U (zh) * 2020-11-02 2021-06-01 合肥科威尔电源系统股份有限公司 一种均压控制电路

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116404880A (zh) * 2023-04-04 2023-07-07 北京龙腾云海科技股份有限公司 一种基于多路开关电源并联的高效供电系统
CN116404880B (zh) * 2023-04-04 2023-12-26 北京龙腾云海科技股份有限公司 一种基于多路开关电源并联的高效供电系统
CN116520932A (zh) * 2023-04-12 2023-08-01 团车互联网信息服务(北京)有限公司 一种太阳能汽车mppt功率分配控制方法
CN116520932B (zh) * 2023-04-12 2023-09-22 团车互联网信息服务(北京)有限公司 一种太阳能汽车mppt功率分配控制方法

Also Published As

Publication number Publication date
CN112234825A (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
WO2022088404A1 (zh) 一种均压控制电路及其控制方法
US8031495B2 (en) Prediction scheme for step wave power converter and inductive inverter topology
KR101923690B1 (ko) 전력보상장치의 서브모듈성능시험을 위한 합성시험회로 및 그 시험방법
WO2023226723A1 (zh) 双有源桥型微逆变器的电路建模方法及输出电流控制方法
CN107294391A (zh) 一种功率转换模块及由该功率转换模块组成的电源系统
Wang et al. A current-sharing method for interleaved high-frequency LLC converter with partial energy phase shift regulation
CN112615547A (zh) 自动均压开关网络、直流变换器、控制系统及控制方法
CN107370387A (zh) 一种功率转换模块及由该功率转换模块串并联组成的电源系统
CN111082665A (zh) 一种基于集中式多相变压器的双向llc直流变压器子模块
WO2021068640A1 (zh) 直流升压变换电路及装置
Esmaeili et al. High gain magnetically coupled single switch quadratic modified SEPIC DC-DC converter
CN213342016U (zh) 一种均压控制电路
TWI750649B (zh) 高低頻補償轉換裝置及其方法
Zhu et al. A family of interleaved boost converters for battery discharging in space applications
Rajasekaran et al. Implementation of an A-source DC–DC boost combination phase-shifting full-bridge converter for electric car rapid charging applications
CN116345918A (zh) 一种宽功率范围全桥llc谐振变换器并联均流控制方法
US20220399818A1 (en) Control circuit for controlling a power switch in a switching power supply circuit for improved emi performance
WO2023015833A1 (zh) 一种开关电容型模块化高降压比直流电源
CN112953276B (zh) 一种模块化多电平谐振变换器输出电压调控方法
Ranipriya et al. A brief review on partially isolated bidirectional multiport converters for renewable energy sourced DC microgrids
CN207283408U (zh) 一种功率转换模块及由该功率转换模块组成的电源系统
WO2022188063A1 (zh) 一种光伏系统、逆变器及控制方法
Gray et al. A Bidirectional Current-Fed Isolated MMC with Zero-Current Switching for High Step Ratio DC-DC Applications
Naghipour et al. A Single DC Source Gradient Driver Circuit with Boosting Output Capability for MRI Applications
CN219833990U (zh) 一种逆变电源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959563

Country of ref document: EP

Kind code of ref document: A1