WO2022088308A1 - 压缩机 - Google Patents

压缩机 Download PDF

Info

Publication number
WO2022088308A1
WO2022088308A1 PCT/CN2020/129998 CN2020129998W WO2022088308A1 WO 2022088308 A1 WO2022088308 A1 WO 2022088308A1 CN 2020129998 W CN2020129998 W CN 2020129998W WO 2022088308 A1 WO2022088308 A1 WO 2022088308A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
housing
cylindrical
cylindrical body
axially extending
Prior art date
Application number
PCT/CN2020/129998
Other languages
English (en)
French (fr)
Inventor
段振飞
刘利涛
徐海进
王小燕
李斌
雷纳特·西蒙
波塞·皮埃尔
Original Assignee
艾默生环境优化技术(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011179429.3A external-priority patent/CN114427534A/zh
Priority claimed from CN202022461376.6U external-priority patent/CN213684518U/zh
Application filed by 艾默生环境优化技术(苏州)有限公司 filed Critical 艾默生环境优化技术(苏州)有限公司
Priority to US18/034,321 priority Critical patent/US20230383751A1/en
Publication of WO2022088308A1 publication Critical patent/WO2022088308A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/20Manufacture essentially without removing material
    • F04C2230/23Manufacture essentially without removing material by permanently joining parts together
    • F04C2230/231Manufacture essentially without removing material by permanently joining parts together by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings

Definitions

  • the present disclosure relates to a compressor.
  • the compressor includes a compression mechanism for compressing a working fluid, a crankshaft for driving the compression mechanism, and a bearing housing that rotatably supports the crankshaft via a bearing.
  • the compression mechanism, crankshaft and bearing housing are housed in the housing.
  • the stationary components and bearing blocks in the compression mechanism are secured to the housing.
  • the inventors of the present application have found that the space where the lower bearing is located (ie, the space defined by the motor and the lower casing) has a serious problem of noise radiation, and for this purpose proposes a method that can significantly reduce the noise by simply improving the compressor casing Radiation technology solutions.
  • An object of the present disclosure is to provide a compressor capable of effectively reducing noise radiation.
  • Another object of the present disclosure is to provide a compressor having a casing capable of effectively reducing noise, simplifying a manufacturing process, and reducing manufacturing costs.
  • a compressor includes: a casing including a cylindrical body and first and second covers respectively provided at both axial ends of the cylindrical body; a compression mechanism accommodated in within the housing and configured to compress a working fluid; a crankshaft configured to drive the compression mechanism; a motor configured to drive rotation of the crankshaft, and a bearing seat housing the Positioned in a space defined by the motor and the housing and fixedly attached to the housing, the bearing housing is configured to rotatably support the crankshaft via bearings.
  • the housing has a cylindrical reinforcement for defining the space, and the rigidity of the cylindrical reinforcement is greater than that of other parts of the housing.
  • the first cover includes a base and an axial extension extending from an outer periphery of the base in an axial direction of the compressor.
  • the axially extending portion is an interference fit in the cylindrical body to form the cylindrical reinforcement portion of the housing.
  • the end of the axial extension is fixedly attached to the end of the cylindrical body and the thickness of the axial extension is greater than the thickness of the cylindrical body, the axial extension forming the cylindrical reinforcement of the housing.
  • the thickness of the axial extension is greater than or equal to 2 times the thickness of the cylindrical body.
  • the first cover is attached to the cylindrical body by an annular weld.
  • a support plate is an interference fit at the end of the axial extension.
  • the support plate is an annular flat plate.
  • the top of the axial extension has a concave stepped surface for supporting or positioning the support plate.
  • a gap is formed between the end face of the axially extending portion and the bearing housing, and the gap is greater than or equal to 0.5 mm and less than or equal to 3 mm.
  • the compressor includes a stiffener that is an interference fit in the cylindrical body to form the cylindrical stiffener.
  • the reinforcement includes a cylindrical portion that is an interference fit with the cylindrical body and a bottom portion extending in a radial direction from one end of the cylindrical portion.
  • the base is positioned adjacent to the bearing adapter.
  • the reinforcing member is located between the motor and the bearing housing, and the end face of the cylindrical portion has a shape that fits with the stator.
  • the base is annular.
  • the base is connected to the bearing adapter via fasteners.
  • the reinforcement is made of a different material than that of the outer shell.
  • the compressor is a vertical compressor
  • the first cover is a bottom cover
  • the bearing housing is a lower bearing housing
  • a plurality of independent feet are provided on the bottom cover, the feet are equally spaced in the circumferential direction to support the compressor on the outer structure.
  • FIG. 1 is a schematic perspective cross-sectional view of a compressor according to a first embodiment of the present disclosure
  • Fig. 2 is a partial enlarged schematic view of the compressor of Fig. 1;
  • 3 and 4 are a schematic perspective view and a schematic cross-sectional view of the bottom cover of the compressor of FIG. 1, respectively;
  • FIG. 5 is a perspective view of a support plate of the compressor of FIG. 1;
  • FIG. 6 is a schematic perspective cross-sectional view of a compressor according to a second embodiment of the present disclosure.
  • Fig. 7 is a partial enlarged schematic view of the compressor of Fig. 6;
  • FIG. 8 and 9 are a perspective view and a cross-sectional view of the bottom cover of the compressor of FIG. 6, respectively;
  • FIG. 10 is a schematic perspective cross-sectional view of a compressor according to a third embodiment of the present disclosure.
  • FIG. 11 is a schematic perspective view of a reinforcing member of the compressor of FIG. 10;
  • FIG. 12 is a schematic perspective cross-sectional view of a compressor according to a fourth embodiment of the present disclosure.
  • Fig. 13 is a partial enlarged schematic view of the compressor of Fig. 12;
  • Fig. 14 is a perspective view of a reinforcing member of the compressor of Fig. 12;
  • FIG. 15 is a partially enlarged schematic cross-sectional view of a compressor according to a fifth embodiment of the present disclosure.
  • FIG. 16 is a schematic perspective view of a reinforcing member of the compressor of FIG. 15 .
  • Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods in order to provide a thorough understanding of various embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
  • the compressor 100 includes a compression mechanism CM for compressing a working fluid, a crankshaft (also referred to as a drive shaft or a rotating shaft) 12 for driving the compression mechanism CM, a motor 14 for driving the crankshaft 12 to rotate,
  • a main bearing housing (which may also be referred to as an upper bearing housing) 16 rotatably supports the upper portion of the crankshaft 12 via a bearing
  • a bearing housing (which may also be referred to as a lower bearing housing) rotatably supports the lower portion of the crankshaft 12 via a bearing )18.
  • the compression mechanism CM, the crankshaft 12 , the motor 14 , the main bearing housing 16 and the bearing housing 18 are accommodated in the housing 110 .
  • the housing 110 includes a cylindrical body 101 , a bottom cover (which may also be referred to as a first cover) 103 at the lower end of the cylindrical body 101 and a top cover (which may also be referred to as a second cover) at the upper end of the cylindrical body 101 105.
  • the bearing housing 18 is located in the space SP below the motor 14 .
  • the space SP is defined by the motor 14 and the housing 110 (specifically, the lower portion of the cylindrical body 101 and the bottom cover 103 ).
  • the bearing block 18 is fixedly attached to the cylindrical body 101 .
  • the bottom cover 103 includes a base portion 131 and an axially extending portion 132 .
  • the base 131 is generally partially spherical in shape.
  • the axially extending portion 132 extends from the circular outer peripheral edge of the base portion 131 in the axial direction of the compressor 100 .
  • the axially extending portion 132 is an interference fit in the cylindrical body 101 , thereby forming the cylindrical reinforcement portion 111 of the housing 110 .
  • the cylindrical reinforcement 111 has an increased thickness and increased rigidity compared to the cylindrical body 101 . Since the rigidity of the cylindrical reinforcement portion 111 is greater than that of the other parts of the housing 110, noise radiation can be significantly reduced.
  • the cylindrical body 101 has an interference fit with the axially extending portion 132, so it is possible to absorb part of the energy through a slight relative frictional motion, that is, increase damping to reduce noise radiation.
  • the bottom cover 103 increases the overall weight due to the axial extension 132, which also contributes to reducing noise.
  • the thickness T of the axially extending portion 132 may be equal to or greater than the thickness t of the cylindrical body 101 .
  • the thickness T of the axial extension 132 is greater than the thickness t of the cylindrical body 101.
  • the thickness T of the axially extending portion 132 may also be greater than the thickness of the base portion 131 .
  • an "axial extension” as used herein is a portion having an axially extending height capable of significantly reducing noise, rather than a flange extending axially for mounting, positioning or attachment purposes in the usual sense.
  • the axial height measured from the bottom surface of the bearing 18 to the circular outer periphery of the base portion 131 of the bottom cover 103 is H
  • the axially extending height of the axially extending portion 132 is greater than is equal to half of H.
  • the axial extension 132 may extend toward the bearing seat 18 as far as possible.
  • a certain gap G is formed between the end surface 134 of the axially extending portion 132 and the bearing seat 18 .
  • the gap G may be equal to or greater than 0.5 mm and equal to or less than 3 mm.
  • the compressor according to the first embodiment of the present disclosure can significantly reduce noise radiation only by making improvements to the structure of the bottom cover 103 . This significantly reduces the manufacturing process and cost.
  • the lower end 113 of the cylindrical body 101 may be welded to the axially extending portion 132 of the bottom cover 103 .
  • the lower end 113 of the cylindrical body 101 is welded to the axially extending portion 132 of the bottom cover 103 by 360 degrees in the circumferential direction, that is, there is an annular weld between the lower end 113 and the axially extending portion 132 . In this way, a firm attachment between the cylindrical body 101 and the bottom cover 103 can be achieved, and noise radiation can be further reduced.
  • a support plate 102 may be further provided.
  • the support plate 102 is an interference fit at the end (which may be referred to as the upper end or free end) 133 of the axially extending portion 132 .
  • the support plate 102 can improve the radial rigidity of the bottom cover 103, and thus can improve the radial rigidity of the housing. In this way, noise can be further reduced.
  • the top surface 134 of the end portion 133 of the axially extending portion 132 may be recessed to form a stepped surface 135 .
  • the support plate 102 may abut on the stepped surface 135 . This facilitates installation, support and positioning of the support plate 102 .
  • the support plate 102 is in the form of a flat plate.
  • the support plate 102 may be provided with a central through hole 122 for the passage of the crankshaft 12 , thereby having a generally annular shape.
  • the support plate 102 may be provided with holes 121 for ventilation, oil return or other purposes.
  • a plurality of independent feet 104 may be provided on the outer surface of the base 131 of the bottom cover 103 to support the compressor 100 on an external structure (eg, a floor, etc.). For example, there may be three or four legs 104 .
  • the independent feet 104 can reduce the radiation area of the noise, thereby reducing the noise radiation. It should be understood that the shape, structure and number of the support feet 104 are not limited to the specific examples shown in the drawings, as long as they can reduce the radiation area of noise while satisfying the support strength.
  • FIG. 6 to 9 illustrate a compressor 200 according to a second embodiment of the present disclosure.
  • the compressor 200 differs from the compressor 100 in the attachment between the bottom cover 203 and the cylindrical body 201 .
  • the bottom cover 203 includes a base portion 231 and an axially extending portion 232 .
  • the axially extending portion 232 extends from the circular outer peripheral edge of the base portion 231 in the axial direction of the compressor 200 .
  • the thickness of the axially extending portion 232 is greater than that of the cylindrical body 201 , thereby forming the cylindrical reinforcing portion 211 of the housing 210 .
  • the thickness T of the axially extending portion 232 is equal to or greater than twice the thickness t of the cylindrical body 201 .
  • the cylindrical reinforcement 211 has an increased thickness and increased rigidity compared to the cylindrical body 201 . Since the rigidity of the cylindrical reinforcement portion 211 is greater than that of the other parts of the housing 210, noise radiation can be significantly reduced.
  • the end 233 of the axially extending portion 232 and the end 213 of the cylindrical body 201 are fixed to each other, for example by welding.
  • there is an annular weld between the end 233 of the axial extension 232 and the end 213 of the cylindrical body 201 ie welded 360 degrees in the circumferential direction.
  • the top surface 234 of the axially extending portion 232 may be recessed to form the first stepped surface 236 so that the end portion 213 of the cylindrical body 201 may abut on the first stepped surface 236. This facilitates the installation, support and positioning of the cylindrical body 201 .
  • the top surface 234 of the axially extending portion 232 may be further recessed to form the second stepped surface 235 so that the support plate 202 may abut on the second stepped surface 235 . This facilitates installation, support and positioning of the support plate 202 .
  • the second stepped surface 235 is located radially inward of the first stepped surface 236 .
  • the structure of the support plate 202 may be the same as that of the support plate 102 .
  • FIGS. 10 and 11 illustrate a compressor 300 according to a third embodiment of the present disclosure.
  • the compressor 300 differs from the compressor 100 in that a separate reinforcement 320 is provided in place of the axial extension of the bottom cover.
  • the compressor 300 includes a separate reinforcement 320 .
  • the reinforcement member 320 has a cylindrical shape and is interference-fitted in the cylindrical body 301 , thereby forming the cylindrical reinforcement portion 311 of the housing 310 .
  • the bottom cover 303 does not have an axial extension that is interference-fitted in the cylindrical body 301 .
  • the cylindrical reinforcement 311 has an increased thickness and increased rigidity compared to the cylindrical body 301 . Since the rigidity of the cylindrical reinforcement portion 311 is greater than that of the other parts of the housing 310, noise radiation can be significantly reduced.
  • the reinforcement 320 may be made of a different material than that of the housing 310 .
  • the materials of the reinforcement 320 and the casing 310 have different expansion rates, so there is a slight relative movement between the reinforcement 320 and the casing 310, thereby increasing damping and thus reducing noise radiation.
  • FIG. 12 to 14 illustrate a compressor 400 according to a fourth embodiment of the present disclosure.
  • the compressor 400 differs from the compressor 300 in that the structure of the individual reinforcements is different.
  • the compressor 400 includes a separate reinforcement 420 .
  • the reinforcing member 420 includes a cylindrical portion 421 that is interference-fitted with the cylindrical body 401, and a bottom portion 422 that extends in the radial direction from one end of the cylindrical portion.
  • the cylindrical portion 421 is in an interference fit with the cylindrical body 401 , thereby forming the cylindrical reinforcing portion 411 of the housing 410 .
  • the cylindrical reinforcement 411 has an increased thickness and increased rigidity compared to the cylindrical body 401 . Since the rigidity of the cylindrical reinforcement portion 411 is greater than that of the other parts of the housing 410, noise radiation can be significantly reduced.
  • the bottom portion 422 may serve a similar function to that of the support plate 102, ie, the cylindrical portion 421 and thus the radial stiffness of the housing may be increased.
  • Bottom 422 may be positioned adjacent bearing adapter 18 .
  • bottom 422 is annular and has holes 423 to receive fasteners, such as bolts 19 .
  • the bottom 422 can be connected to the bearing housing 18 by means of the bolts 19 .
  • the bottom 422 may also be provided with holes 424 for ventilation, oil return or other purposes.
  • FIG. 15 and 16 illustrate a compressor 500 according to a fifth embodiment of the present disclosure.
  • the difference between the compressor 500 and the compressor 400 lies in that the positions of the reinforcement members are different.
  • a separate stiffener 520 of the compressor 500 is provided between the motor 14 and the bearing housing 18 .
  • the reinforcement member 520 includes a cylindrical portion 521 that is interference-fitted with the cylindrical body 501 and a bottom portion 522 that extends in a radial direction from one end of the cylindrical portion 521 .
  • the cylindrical portion 521 is in an interference fit with the cylindrical body 501 , thereby forming the cylindrical reinforcing portion 511 of the housing 510 .
  • the cylindrical reinforcement 511 has an increased thickness and increased rigidity compared to the cylindrical body 501 . Since the rigidity of the cylindrical reinforcement portion 511 is greater than that of the other parts of the housing 510, noise radiation can be significantly reduced.
  • Bottom 522 may be positioned adjacent bearing adapter 18 .
  • the bottom portion 522 may have the same structure as the bottom portion 422 shown in FIG. 14 , or may have a different structure from the bottom portion 422 shown in FIG. 16 .
  • the radial width of the bottom portion 522 is small, so no mounting holes or holes for other purposes are provided.
  • the upper end surface of the cylindrical portion 521 may have a shape matching the motor 14 (the stator of the motor in the illustrated example). As shown in FIG. 16 , the upper end surface of the cylindrical portion 521 has a convex portion 523 and a concave portion 525 . In this example, the stiffener 520 may be press fit into the casing of the compressor along with the motor 14 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种压缩机(100),包括:外壳(110),外壳(110)包括筒形本体(101)以及分别设置在筒形本体(101)的两个轴向端部处的第一盖(103)和第二盖(105);压缩机构(CM),压缩机构(CM)容置在外壳(110)内并且构造成对工作流体进行压缩;曲轴(12),曲轴(12)构造成用于驱动压缩机构(CM);马达(14),马达(14)构造成驱动曲轴(12)旋转,和轴承座(18),轴承座(18)容置在由马达(14)和外壳(110)限定的空间中并且固定地附接至外壳(110),轴承座(18)构造成经由轴承可旋转地支承曲轴(12)。外壳(110)具有用于限定空间(SP)的筒形加强部(111),筒形加强部(111)的刚度大于外壳(110)的其他部分的刚度。该结构可以显著降低噪音辐射并降低了制造工艺和成本。

Description

压缩机
本申请要求于2020年10月29日提交中国专利局的申请号为202011179429.3、发明创造名称为“压缩机”的中国专利申请以及2020年10月29日提交中国专利局的申请号为202022461376.6、发明创造名称为“压缩机”的中国专利申请的优先权。这些专利申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及一种压缩机。
背景技术
本部分的内容仅提供了与本公开相关的背景信息,其可能并不构成现有技术。
压缩机包括用于压缩工作流体的压缩机构、用于驱动压缩机构的曲轴以及经由轴承对曲轴可旋转地支承的轴承座。压缩机构、曲轴和轴承座容置在外壳中。通常,压缩机构中的固定部件和轴承座固定至外壳。当压缩机运行时,压缩机的外壳由于内部运动件的激励而产生振动,并且向外部环境辐射噪音。
发明内容
本申请的发明人发现下轴承所处的空间(即,由马达与下壳体限定的空间)的噪音辐射问题严重,并且为此提出一种通过对压缩机外壳进行简单改进就能够显著降低噪音辐射的技术方案。
本公开的目的是提供一种能够有效降低噪音辐射的压缩机。
本公开的另一目的是提供一种压缩机,其具有既能够有效降低噪音又能 够简化加工工艺且降低制造成本的外壳。
根据本公开的一个方面,提供一种压缩机。该压缩机包括:外壳,所述外壳包括筒形本体以及分别设置在所述筒形本体的两个轴向端部处的第一盖和第二盖;压缩机构,所述压缩机构容置在所述外壳内并且构造成对工作流体进行压缩;曲轴,所述曲轴构造成用于驱动所述压缩机构;马达,所述马达构造成驱动所述曲轴旋转,和轴承座,所述轴承座容置在由所述马达和所述外壳限定的空间中并且固定地附接至所述外壳,所述轴承座构造成经由轴承可旋转地支承所述曲轴。所述外壳具有用于限定所述空间的筒形加强部,所述筒形加强部的刚度大于所述外壳的其他部分的刚度。
在一些示例中,所述第一盖包括基部和轴向延伸部,所述轴向延伸部从所述基部的外周缘沿所述压缩机的轴向方向延伸。所述轴向延伸部过盈配合在所述筒形本体中以形成所述外壳的所述筒形加强部。或者,所述轴向延伸部的端部固定地附接至所述筒形本体的端部,并且所述轴向延伸部的厚度大于所述筒形本体的厚度,所述轴向延伸部形成所述外壳的所述筒形加强部。
在一些示例中,所述轴向延伸部的厚度大于等于所述筒形本体的厚度的2倍。
在一些示例中,所述第一盖通过环形焊缝附接至所述筒形本体。
在一些示例中,在所述轴向延伸部的端部处过盈配合有支承板。
在一些示例中,所述支承板为环形平板。
在一些示例中,所述轴向延伸部的顶部具有凹入的台阶面以便支承或定位所述支承板。
在一些示例中,在所述轴向延伸部的端面与所述轴承座之间形成有间 隙,所述间隙大于等于0.5mm且小于等于3mm。
在一些示例中,所述压缩机包括加强件,所述加强件过盈配合在所述筒形本体中以形成所述筒形加强部。
在一些示例中,所述加强件包括与所述筒形本体过盈配合的筒形部和从所述筒形部的一个端部沿径向方向延伸的底部。所述底部定位成邻近所述轴承座。
在一些示例中,所述加强件位于所述马达与所述轴承座之间,所述筒形部的端面具有与所述定子配合的形状。
在一些示例中,所述底部呈环形。
在一些示例中,所述底部经由紧固件被连接至所述轴承座。
在一些示例中,所述加强件由与所述外壳的材料不同的材料制成。
在一些示例中,所述压缩机为立式压缩机,所述第一盖为底盖,并且所述轴承座为下轴承座。
在一些示例中,在所述底盖上设置有多个独立的支脚,所述支脚沿周向方向等间距地分布以将所述压缩机支承在外部结构上。
从下文的详细描述中,本公开的其它应用领域将变得更为明显。应该理解的是,这些详细描述和具体示例,虽然示出了本公开的优选实施例,但是它们旨在为了示例性说明的目的,而非试图限制本公开。
附图说明
通过以下参照附图的描述,本公开的一个或多个实施方式的特征和优点将变得更加容易理解,在附图中:
图1为根据本公开的第一实施方式的压缩机的立体剖面示意图;
图2为图1的压缩机的局部放大示意图;
图3和图4分别为图1的压缩机的底盖的立体示意图和剖面示意图;
图5为图1的压缩机的支承板的立体示意图;
图6为根据本公开的第二实施方式的压缩机的立体剖面示意图;
图7为图6的压缩机的局部放大示意图;
图8和图9分别为图6的压缩机的底盖的立体示意图和剖面示意图;
图10为根据本公开的第三实施方式的压缩机的立体剖面示意图;
图11为图10的压缩机的加强件的立体示意图;
图12为根据本公开的第四实施方式的压缩机的立体剖面示意图;
图13为图12的压缩机的局部放大示意图;
图14为图12的压缩机的加强件的立体示意图;
图15为根据本公开的第五实施方式的压缩机的局部放大剖面示意图;以及
图16为图15的压缩机的加强件的立体示意图。
具体实施方式
现在将参照附图更全面地描述示例性实施方式。
提供示例性实施方式以使得本公开将是详尽的并且将向本领域技术人员更全面地传达范围。阐述了许多具体细节比如具体部件、装置和方法的示例,以提供对本公开的各实施方式的透彻理解。对本领域技术人员而言将清楚的是,不需要采用具体细节,示例性实施方式可以以许多不同的形式实施,并且也不应当理解为限制本公开的范围。在一些示例性实施方式中,不对公知的过程、公知的装置结构和公知的技术进行详细的描述。
下面参照图1至图5来描述根据本公开的第一实施方式的压缩机100。如图所示,压缩机100包括对工作流体进行压缩的压缩机构CM、用于驱动压缩机构CM的曲轴(也可以称为驱动轴或旋转轴)12、用于驱动曲轴12旋转的马达14、经由轴承对曲轴12的上部进行可旋转地支承的主轴承座(也可以称为上轴承座)16以及经由轴承对曲轴12的下部进行可旋转地支承的轴承座(也可以称为下轴承座)18。
压缩机构CM、曲轴12、马达14、主轴承座16和轴承座18容置在外壳110中。外壳110包括筒形本体101、位于筒形本体101的下端处的底盖(也可以称为第一盖)103和位于筒形本体101的上端处的顶盖(也可以称为第二盖)105。轴承座18位于马达14下方的空间SP中。空间SP由马达14和外壳110(具体为筒形本体101的下部和底盖103)限定。轴承座18固定附接至筒形本体101。
底盖103包括基部131和轴向延伸部132。基部131大体呈局部球形形状。轴向延伸部132从基部131的圆形外周缘沿压缩机100的轴向方向延伸。轴向延伸部132过盈配合在筒形本体101中,由此形成外壳110的筒形加强部111。
筒形加强部111与筒形本体101相比具有增大的厚度和增加的刚度。由于筒形加强部111的刚度大于外壳110的其他部分的刚度,因此可以显著降低噪音辐射。此外,筒形本体101与轴向延伸部132过盈配合,因此能够通过微小的相对摩擦运动来吸收部分能量,即,增加阻尼来降低噪音辐射。
底盖103由于轴向延伸部132而增加了总重量,这也有利于降低噪音。轴向延伸部132的厚度T可以大于等于筒形本体101的厚度t。在图2的示 例中,轴向延伸部132的厚度T大于筒形本体101的厚度t。此外,轴向延伸部132的厚度T也可以大于基部131的厚度。
本文中所述的“轴向延伸部”是具有能够显著降低噪音的轴向延伸高度的部分,而不是通常意义上的为了安装、定位或附接的目的而沿轴向延伸的凸缘。例如,在图1至图5的示例中,从轴承18的底面至底盖103的基部131的圆形外周缘测得的轴向高度为H,则轴向延伸部132的轴向延伸高度大于等于H的一半。为了更好地降低噪音,可以使轴向延伸部132尽可能地朝向轴承座18延伸。为了避免与轴承座18产生干涉,在轴向延伸部132的端面134与轴承座18之间形成一定间隙G。间隙G可以大于等于0.5mm且小于等于3mm。
因此,根据本公开的第一实施方式的压缩机仅仅需要对底盖103的结构做出改进就可以显著降低噪音辐射。这显著降低了制造工艺和成本。
此外,可以将筒形本体101的下端113焊接至底盖103的轴向延伸部132。例如,将筒形本体101的下端113沿周向方向360度焊接至底盖103的轴向延伸部132,即,下端113与轴向延伸部132之间存在环形焊缝。这样,既可以实现筒形本体101与底盖103之间的牢固附接,又可以进一步降低噪音辐射。
在图1至图5的示例中,还可以进一步设置支承板102。支承板102过盈配合在轴向延伸部132的端部(可以称为上端部或自由端部)133处。这样,支承板102能够提高底盖103的径向刚度,并因此能够提高外壳的径向刚度。这样,可以进一步降低噪音。
可以使轴向延伸部132的端部133的顶面134凹入以形成台阶面135。 支承板102可以抵接在台阶面135上。这有利于支承板102的安装、支承和定位。支承板102为平板的形式。支承板102可以设置有中央通孔122以便曲轴12通过,由此大体呈环形形状。支承板102上可以设置有孔121,以便通气、回油或其他目的。
在底盖103的基部131的外表面上可以设置有多个独立的支脚104,以便将压缩机100支承在外部结构(例如,地板等)上。例如,可以具有三个或四个支脚104。独立的支脚104可以减小噪音的辐射面积,由此降低噪音辐射。应理解的是,支脚104的形状、结构和数量不局限于图示的具体示例,只要其能够在满足支承强度的情况下减少噪音的辐射面积即可。
图6至图9示出了根据本公开的第二实施方式的压缩机200。压缩机200与压缩机100的不同之处在于底盖203与筒形本体201之间的附接。
参见图6至图9,底盖203包括基部231和轴向延伸部232。轴向延伸部232从基部231的圆形外周缘沿压缩机200的轴向方向延伸。轴向延伸部232的厚度大于筒形本体201的厚度,由此形成外壳210的筒形加强部211。例如,轴向延伸部232的厚度T大于等于筒形本体201的厚度t的2倍。
筒形加强部211与筒形本体201相比具有增大的厚度和增加的刚度。由于筒形加强部211的刚度大于外壳210的其他部分的刚度,因此可以显著降低噪音辐射。
轴向延伸部232的端部233与筒形本体201的端部213例如通过焊接而固定至彼此。例如,在轴向延伸部232的端部233与筒形本体201的端部213之间具有环形焊缝,即,沿周向方向焊接360度。
可以使轴向延伸部232的顶面234凹入以形成第一台阶面236,使得筒 形本体201的端部213可以抵接在第一台阶面236上。这有利于筒形本体201的安装、支承和定位。此外,可以使轴向延伸部232的顶面234进一步凹入以形成第二台阶面235,使得支承板202可以抵接在第二台阶面235上。这有利于支承板202的安装、支承和定位。第二台阶面235位于第一台阶面236的径向内侧。支承板202的结构可以与支承板102的结构相同。
图10和图11示出了根据本公开的第三实施方式的压缩机300。压缩机300与压缩机100的不同之处在于:设置有单独的加强件320,以取代底盖的轴向延伸部。
参见图10和图11,压缩机300包括单独的加强件320。加强件320呈圆筒形并且过盈配合在筒形本体301中,由此形成外壳310的筒形加强部311。在压缩机300中,底盖303不具有过盈配合在筒形本体301中的轴向延伸部。
筒形加强部311与筒形本体301相比具有增大的厚度和增加的刚度。由于筒形加强部311的刚度大于外壳310的其他部分的刚度,因此可以显著降低噪音辐射。
加强件320可以由与外壳310的材料不同的材料制成。当压缩机运行时,加强件320与外壳310的材料的膨胀率不同,因此加强件320与外壳310之间存在微小相对运动,由此增加阻尼,并因此可以降低噪音辐射。
图12至图14示出了根据本公开的第四实施方式的压缩机400。压缩机400与压缩机300的不同之处在于:单独的加强件的结构不同。
参见图12至图14,压缩机400包括单独的加强件420。加强件420包括与筒形本体401过盈配合的筒形部421和从筒形部的一个端部沿径向方向 延伸的底部422。筒形部421与筒形本体401过盈配合,由此形成外壳410的筒形加强部411。
筒形加强部411与筒形本体401相比具有增大的厚度和增加的刚度。由于筒形加强部411的刚度大于外壳410的其他部分的刚度,因此可以显著降低噪音辐射。
底部422可以起到与支承板102相似的作用,即,可以提高筒形部421并因此提高外壳的径向刚度。
底部422可以定位成邻近轴承座18。在图示的示例中,底部422呈环形,并且具有孔423以接收紧固件,例如,螺栓19。通过螺栓19可以将底部422连接至轴承座18。底部422上还可以设置有孔424,以便通气、回油或其他目的。
图15和图16示出了根据本公开的第五实施方式的压缩机500。压缩机500与压缩机400的不同之处在于:加强件的设置位置不同。
参见图15和图16,压缩机500的单独的加强件520设置在马达14与轴承座18之间。加强件520包括与筒形本体501过盈配合的筒形部521和从筒形部521的一个端部沿径向方向延伸的底部522。筒形部521与筒形本体501过盈配合,由此形成外壳510的筒形加强部511。
筒形加强部511与筒形本体501相比具有增大的厚度和增加的刚度。由于筒形加强部511的刚度大于外壳510的其他部分的刚度,因此可以显著降低噪音辐射。
底部522可以定位成邻近轴承座18。底部522可以具有与图14所示的底部422相同的结构,也可以具有如图16所示的与底部422不同的结构。在 图16所示的示例中,底部522的径向宽度较小,因此没有设置安装孔或其他目的的孔。
筒形部521的上端面可以具有与马达14(图示的示例中为马达的定子)相匹配的形状。如图16所示,筒形部521的上端面具有凸起部523和凹入部525。在该示例中,加强件520可以和马达14一起压配合至压缩机的外壳中。
本文中所述的各个部件或部分的结构不局限于图示的具体示例,而是可以根据实际需要而改变,只要其能够实现上述目的即可。
尽管说明附图中示出了涡旋压缩机,然而应理解的是本公开可以适用于其他任何合适类型的压缩机。
虽然已经参照示例性实施方式对本公开进行了描述,但是应当理解,本公开并不局限于文中详细描述和示出的具体实施方式。在不偏离权利要求书所限定的范围的情况下,本领域技术人员可以对示例性实施方式做出各种改变。还应理解的是,在技术方案不矛盾的情况下,各个实施方式的特征可以相互结合或者可以省去。

Claims (17)

  1. 一种压缩机,包括:
    外壳,所述外壳包括筒形本体以及分别设置在所述筒形本体的两个轴向端部处的第一盖和第二盖;
    压缩机构,所述压缩机构容置在所述外壳内并且构造成对工作流体进行压缩;
    曲轴,所述曲轴构造成用于驱动所述压缩机构;
    马达,所述马达构造成驱动所述曲轴旋转,和
    轴承座,所述轴承座容置在由所述马达和所述外壳限定的空间中并且固定地附接至所述外壳,所述轴承座构造成经由轴承可旋转地支承所述曲轴,
    其中,所述外壳具有用于限定所述空间的筒形加强部,所述筒形加强部的刚度大于所述外壳的其他部分的刚度。
  2. 根据权利要求1所述的压缩机,其中,
    所述第一盖包括基部和轴向延伸部,所述轴向延伸部从所述基部的外周缘沿所述压缩机的轴向方向延伸,
    所述轴向延伸部过盈配合在所述筒形本体中以形成所述外壳的所述筒形加强部。
  3. 根据权利要求1所述的压缩机,其中,
    所述第一盖包括基部和轴向延伸部,所述轴向延伸部从所述基部的外周缘沿所述压缩机的轴向方向延伸,
    所述轴向延伸部的端部固定地附接至所述筒形本体的端部,
    所述轴向延伸部的厚度大于所述筒形本体的厚度,所述轴向延伸部形成所述外壳的所述筒形加强部。
  4. 根据权利要求3所述的压缩机,其中,所述轴向延伸部的厚度大于等于所述筒形本体的厚度的2倍。
  5. 根据权利要求2至4中的任一项所述的压缩机,其中,所述第一盖通过环形焊缝附接至所述筒形本体。
  6. 根据权利要求2至4中的任一项所述的压缩机,其中,在所述轴向延伸部的端部处过盈配合有支承板。
  7. 根据权利要求6所述的压缩机,其中,所述支承板为环形平板。
  8. 根据权利要求6所述的压缩机,其中,所述轴向延伸部的顶部具有凹入的台阶面以便支承或定位所述支承板。
  9. 根据权利要求2至4中的任一项所述的压缩机,其中,在所述轴向延伸部的端面与所述轴承座之间形成有间隙,所述间隙大于等于0.5mm且小于等于3mm。
  10. 根据权利要求1所述的压缩机,其中,所述压缩机包括加强件,所述加强件过盈配合在所述筒形本体中以形成所述筒形加强部。
  11. 根据权利要求10所述的压缩机,其中,所述加强件包括与所述筒形本体过盈配合的筒形部和从所述筒形部的一个端部沿径向方向延伸的底部,
    所述底部定位成邻近所述轴承座。
  12. 根据权利要求11所述的压缩机,其中,所述加强件位于所述马达与所述轴承座之间,所述筒形部的端面具有与所述马达的定子配合的形状。
  13. 根据权利要求11或12所述的压缩机,其中,所述底部呈环形。
  14. 根据权利要求11或12所述的压缩机,其中,所述底部经由紧固件被连接至所述轴承座。
  15. 根据权利要求10至12中的任一项所述的压缩机,其中,所述加强件由与所述外壳的材料不同的材料制成。
  16. 根据权利要求1至4以及10至12中的任一项所述的压缩机,其中,所述压缩机为立式压缩机,所述第一盖为底盖,并且所述轴承座为下轴承座。
  17. 根据权利要求16所述的压缩机,其中,在所述底盖上设置有多个独 立的支脚,所述支脚沿周向方向等间距地分布以将所述压缩机支承在外部结构上。
PCT/CN2020/129998 2020-10-29 2020-11-19 压缩机 WO2022088308A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/034,321 US20230383751A1 (en) 2020-10-29 2020-11-19 Compressor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011179429.3A CN114427534A (zh) 2020-10-29 2020-10-29 压缩机
CN202022461376.6 2020-10-29
CN202011179429.3 2020-10-29
CN202022461376.6U CN213684518U (zh) 2020-10-29 2020-10-29 压缩机

Publications (1)

Publication Number Publication Date
WO2022088308A1 true WO2022088308A1 (zh) 2022-05-05

Family

ID=81381767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129998 WO2022088308A1 (zh) 2020-10-29 2020-11-19 压缩机

Country Status (2)

Country Link
US (1) US20230383751A1 (zh)
WO (1) WO2022088308A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104341A (ja) * 2011-11-14 2013-05-30 Daikin Industries Ltd 二段圧縮機
WO2015060030A1 (ja) * 2013-10-24 2015-04-30 愛三工業株式会社 電動バキュームポンプ
JP6535153B2 (ja) * 2013-12-16 2019-06-26 三菱重工サーマルシステムズ株式会社 スクロール型圧縮機
CN110762913A (zh) * 2019-10-30 2020-02-07 广东美芝精密制造有限公司 压缩机储液器、压缩机及电器
CN210343699U (zh) * 2019-07-18 2020-04-17 深圳市英维克精机技术有限公司 一种卧式旋转压缩机
CN210440220U (zh) * 2019-08-08 2020-05-01 广东美芝制冷设备有限公司 压缩机和制冷设备
CN211082277U (zh) * 2019-12-13 2020-07-24 浙江中广电器股份有限公司 一种冷媒压缩机及其降噪结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104341A (ja) * 2011-11-14 2013-05-30 Daikin Industries Ltd 二段圧縮機
WO2015060030A1 (ja) * 2013-10-24 2015-04-30 愛三工業株式会社 電動バキュームポンプ
JP6535153B2 (ja) * 2013-12-16 2019-06-26 三菱重工サーマルシステムズ株式会社 スクロール型圧縮機
CN210343699U (zh) * 2019-07-18 2020-04-17 深圳市英维克精机技术有限公司 一种卧式旋转压缩机
CN210440220U (zh) * 2019-08-08 2020-05-01 广东美芝制冷设备有限公司 压缩机和制冷设备
CN110762913A (zh) * 2019-10-30 2020-02-07 广东美芝精密制造有限公司 压缩机储液器、压缩机及电器
CN211082277U (zh) * 2019-12-13 2020-07-24 浙江中广电器股份有限公司 一种冷媒压缩机及其降噪结构

Also Published As

Publication number Publication date
US20230383751A1 (en) 2023-11-30

Similar Documents

Publication Publication Date Title
EP3926171B1 (en) Scroll compressor, vehicle air conditioner and vehicle
JPH0676806B2 (ja) 回転軸用支持組立体
WO2022088308A1 (zh) 压缩机
US20230043328A1 (en) Scroll compressor
US20020172442A1 (en) Bearing arrangement for a shaft bearing
CN213684518U (zh) 压缩机
CN114427534A (zh) 压缩机
JP2003074543A (ja) 動圧流体軸受装置及びこれを備えたモータ
JP2006037993A (ja) ディスクロータ
JP2004108549A (ja) 動圧軸受装置
JP2519432Y2 (ja) 密閉形圧縮機
JP2004115141A (ja) エレベータ用巻上機
TWI705189B (zh) 軸承系統
CN216157899U (zh) 一种曲轴平衡组件和压缩机
CN220791532U (zh) 风机
CN114476903B (zh) 电梯曳引机
JPH076700Y2 (ja) アウタ−ロ−タ型モ−タ
JPH0247266Y2 (zh)
JP2579119Y2 (ja) ビスカスダンパー
US20230250829A1 (en) Rotary shaft of a ceiling fan and ceiling fan having the same
JPH0133831Y2 (zh)
JPS6234670Y2 (zh)
JPH01158577U (zh)
JPH0439460Y2 (zh)
JP3904179B2 (ja) スピンドルモータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959468

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18034321

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959468

Country of ref document: EP

Kind code of ref document: A1