WO2022088151A1 - 正极活性材料及其制造方法、二次电池、电池模块、电池包和装置 - Google Patents

正极活性材料及其制造方法、二次电池、电池模块、电池包和装置 Download PDF

Info

Publication number
WO2022088151A1
WO2022088151A1 PCT/CN2020/125667 CN2020125667W WO2022088151A1 WO 2022088151 A1 WO2022088151 A1 WO 2022088151A1 CN 2020125667 W CN2020125667 W CN 2020125667W WO 2022088151 A1 WO2022088151 A1 WO 2022088151A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
electrode active
ppm
containing compound
Prior art date
Application number
PCT/CN2020/125667
Other languages
English (en)
French (fr)
Inventor
何金华
吴奇
范敬鹏
陈强
赵宇翔
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202080104536.1A priority Critical patent/CN116802834A/zh
Priority to EP20959312.8A priority patent/EP4075547A4/en
Priority to KR1020237003749A priority patent/KR20230031939A/ko
Priority to JP2022548243A priority patent/JP2023513558A/ja
Priority to PCT/CN2020/125667 priority patent/WO2022088151A1/zh
Publication of WO2022088151A1 publication Critical patent/WO2022088151A1/zh
Priority to US18/085,497 priority patent/US20230119115A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of lithium batteries, and in particular, to a positive electrode active material and a manufacturing method thereof, a secondary battery, a battery module, a battery pack and a device.
  • lithium-ion batteries are widely used in energy storage power systems such as water power, thermal power, wind power and solar power stations, as well as power tools, electric bicycles, electric motorcycles, electric vehicles, Military equipment, aerospace and other fields. Due to the great development of lithium-ion batteries, higher requirements are also put forward for their energy density, cycle performance and safety performance. In addition, due to the increasingly limited choice of cathode active materials, high-nickel cathode active materials are considered to be the best choice to meet high energy density requirements.
  • the present application has been made in view of the above-mentioned problems, and an object thereof is to provide a positive electrode active material and a method for producing the same, which can enable a secondary battery including the material to have high energy density, good cycle performance and safety performance.
  • the present application provides a positive electrode active material and a method for manufacturing the same, a secondary battery, a battery module, a battery pack and a device.
  • the cobalt-containing compound, the aluminum-containing compound and the boron-containing compound are co-coated on the surface of the positive electrode active material, and the three act synergistically, which can improve the rate performance and cycle performance of the positive electrode active material, and can also significantly improve the The interfacial side reaction between the positive active material and the electrolyte increases the capacity.
  • the cobalt-containing compound is one or more selected from cobalt oxide, cobalt salt, cobalt hydroxide, and cobalt oxyhydroxide.
  • the cobalt-containing compound can be uniformly and effectively coated on the surface of the positive electrode active material.
  • the aluminum-containing compound is one or more selected from aluminum oxide, aluminum hydroxide, aluminum salt, and aluminum halide. Thereby, the aluminum-containing compound can coat the surface of the positive electrode active material uniformly and efficiently.
  • the boron-containing compound is one or more selected from the group consisting of boron oxide, boron halide, boric acid, borate, and organoboride.
  • the boron-containing compound can coat the surface of the positive electrode active material uniformly and efficiently.
  • the thickness of the coating layer is 0.01 ⁇ m ⁇ 2 ⁇ m, optionally 0.1 ⁇ m ⁇ 1 ⁇ m.
  • the thickness of the coating layer is within the above range, side reactions at the interface between the electrolyte and the positive electrode active material can be effectively prevented, and the capacity of the positive electrode active material can be increased.
  • the weight ratio of the total coating amount of cobalt element, aluminum element and boron element in the coating layer is 1000-22000 ppm, optionally 1000-15000 ppm .
  • the weight ratio of the coating amount of cobalt element in the coating layer is 1000-20000 ppm, optionally 1000-19000 ppm, and further optionally 1000- 13000ppm.
  • the capacity, rate performance, and cycle performance of the positive electrode active material can be better improved due to an appropriate amount of coating.
  • the weight ratio of the coating amount of aluminum element in the coating layer is 100-3000 ppm, optionally 100-2900 ppm, and further optionally 500- 2000ppm.
  • the cycle, storage and safety performance of the positive electrode active material can be better improved.
  • the coating amount of boron in the coating layer is 100-2000 ppm by weight, optionally 100-1900 ppm, and further optionally 500-2000 ppm. 1500ppm.
  • the cycle, storage and safety performance of the positive electrode active material can be further improved.
  • the weight ratio of aluminum element to boron element in the coating layer is 0.5-2:1, optionally 1-2:1. Thereby, the cycle and safety performance of the positive electrode active material can be further improved.
  • a second aspect of the present application also provides a method for manufacturing a positive electrode active material
  • Step S1 providing a positive electrode active material matrix doped with M element, wherein the M is selected from one or more of Mg, Ca, Sb, Ce, Ti, Zr, Al, Zn and B;
  • Step S2 mixing and sintering the M element-doped positive electrode active material matrix with a cobalt-containing compound to obtain an intermediate;
  • Step S3 adding the intermediate, the aluminum-containing compound, and the boron-containing compound into a mixer for mixing and sintering, to obtain a positive electrode active material coated with the cobalt-containing compound, the aluminum-containing compound, and the boron-containing compound.
  • step S1 adding lithium salt, a positive electrode active material precursor containing nickel, cobalt and manganese, and a compound containing M element into a mixer for mixing to obtain a mixed material a, and the mixed material a is adding into a kiln for sintering to obtain a positive electrode active material matrix doped with M element, wherein the positive electrode active material precursor containing nickel, cobalt and manganese is [Ni x Co y Mn z ](OH) 2 , wherein 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.3, 0 ⁇ z ⁇ 0.3, optionally 0.8 ⁇ x ⁇ 1, the M element is one of Mg, Ca, Sb, Ce, Ti, Zr, Al, Zn and B more than one; Step S2: adding the M element-doped positive active material matrix and the cobalt-containing compound into a mixer for mixing to obtain a mixture b, and adding the mixture b into a kiln for sintering to obtain intermediate; and step S3
  • the M element can be uniformly doped into the positive electrode active material matrix, so as to effectively improve the structural stability of the positive electrode active material, and at the same time, the surface of the positive electrode active material matrix can be uniformly doped. It is coated with a common coating layer containing a cobalt-containing compound, a boron-containing compound, and an aluminum-containing compound.
  • a common coating layer containing a cobalt-containing compound, a boron-containing compound, and an aluminum-containing compound.
  • step S1 according to the sum of the lithium element in the lithium salt and the nickel element, cobalt element and manganese element in the positive electrode active material precursor containing nickel, cobalt and manganese
  • the M element compound is added to the mixer for mixing. Thereby, the M element can be uniformly doped, and the structural stability of the material can be effectively improved.
  • the sintering conditions in the step S1 are as follows: the sintering temperature is 700-950° C., the sintering time is 10-20 h, and the sintering atmosphere is air or oxygen. Thereby, the doping of M element can be performed efficiently.
  • the addition ratio of the cobalt-containing compound in the step S2 is relative to the total weight of the positive electrode active material matrix, and the addition amount of the cobalt element is 1000ppm-20000ppm, optionally 1000-19000ppm, and further The optional range is 1000ppm to 13000ppm.
  • the interfacial side reaction of the material can be further improved.
  • the circulation, storage and safety performance of the material can be further improved.
  • the sintering conditions in the step S2 are as follows: the sintering temperature is 500-700° C., the sintering time is 5-15 h, and the sintering atmosphere is air or oxygen. Thereby, the coating effect can be improved.
  • the addition ratio of the aluminum-containing compound is relative to the total weight of the positive electrode active material matrix, and the addition amount of the aluminum element is 100-3000 ppm, optionally 100-2900 ppm, It is further optional to be 500-2000ppm, the addition ratio of the boron-containing compound is relative to the total weight of the positive electrode active material matrix, the addition amount of boron element is 100-2000ppm, optional 100-1900ppm, and further optional 500 ⁇ 1500ppm.
  • the interfacial side reaction of the material can be further improved.
  • the circulation, storage and safety performance of the material can be further improved.
  • the sintering conditions in the step S3 are as follows: the sintering temperature is 200-500°C, optionally 200-400°C, the sintering time is 5-15h, optionally 5-10h, and the sintering atmosphere is air or oxygen.
  • the aluminum-containing compound and the boron-containing compound can be firmly coated on the surface of the positive electrode active material particles without penetrating into the inner layer of the particles, thereby improving the coating effect.
  • a third aspect of the present application provides a secondary battery comprising the positive electrode active material of the first aspect of the present application or the positive electrode active material prepared according to the method of the second aspect of the present application.
  • a fourth aspect of the present application provides a battery module including the secondary battery of the third aspect of the present application.
  • a fifth aspect of the present application provides a battery pack including the battery module of the fourth aspect of the present application.
  • a sixth aspect of the present application provides a device comprising one or more selected from the secondary battery of the third aspect of the present application, the battery module of the fourth aspect of the present application, or the battery pack of the fifth aspect of the present application.
  • FIG. 1 is a scanning electron microscope image of the positive electrode active material obtained in Example 1.
  • FIG. 1 is a scanning electron microscope image of the positive electrode active material obtained in Example 1.
  • FIG. 2 is the first charge-discharge curve of a coin-type battery made from the positive electrode active material obtained in Example 1.
  • FIG. 2 is the first charge-discharge curve of a coin-type battery made from the positive electrode active material obtained in Example 1.
  • FIG. 3 is a comparison curve of the test results of the full-electric 25° C. cycle performance of secondary batteries made from the positive electrode active materials obtained in Example 1 and Comparative Example 4, respectively.
  • FIG. 4 is a comparison curve of the test results of the full-electric 70° C. flatulence performance of secondary batteries made from the positive electrode active materials obtained in Example 1 and Comparative Example 4, respectively.
  • FIG. 5 is a schematic diagram of a secondary battery according to an embodiment of the present application.
  • FIG. 6 is an exploded view of the secondary battery according to the embodiment of the present application shown in FIG. 5 .
  • FIG. 7 is a schematic diagram of a battery module according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a battery pack according to an embodiment of the present application.
  • FIG. 9 is an exploded view of the battery pack according to the embodiment of the present application shown in FIG. 8 .
  • FIG. 10 is a schematic diagram of a device in which a secondary battery according to an embodiment of the present application is used as a power source.
  • any lower limit can be combined with any upper limit to form an unspecified range; and any lower limit can be combined with any other lower limit to form an unspecified range, and likewise any upper limit can be combined with any other upper limit to form an unspecified range.
  • each individually disclosed point or single value may itself serve as a lower or upper limit in combination with any other point or single value or with other lower or upper limits to form a range that is not expressly recited.
  • the present application proposes a positive electrode active material.
  • the M element is selected from one or more of Mg, Ca, Sb, Ce, Ti, Zr, Al, Zn and B, and the coating layer comprises a cobalt-containing compound, an aluminum-containing compound and a boron-containing compound.
  • the present application can significantly improve the rate performance and cycle performance of the positive electrode active material by co-coating the cobalt-containing compound, the aluminum-containing compound and the boron-containing compound on the surface of the positive electrode active material. At the same time, it can also significantly improve the interfacial side reactions between the positive active material and the electrolyte, and increase the capacity.
  • the present application is applied to a positive electrode active material with a high nickel content (Ni content ⁇ 80%) with poor structural stability, the positive electrode active material is doped with M element, and the surface of the positive electrode active material is co-coated at the same time.
  • Cobalt-containing compounds, aluminum-containing compounds and boron-containing compounds can not only effectively improve the structural stability of the positive electrode active material, but also can significantly improve the energy density, and improve the cycle performance and rate performance of the positive electrode active material.
  • the cobalt-containing compound is selected from cobalt oxides from the viewpoint of being able to uniformly and effectively coat the surface of the positive electrode active material and further improving the interfacial side reaction between the positive electrode active material and the electrolyte.
  • cobalt salt one or more of cobalt salt, cobalt hydroxide and cobalt oxyhydroxide.
  • oxide of cobalt CoO, Co3O4 etc.
  • cobalt salts include cobalt acetate, cobalt oxalate, and cobalt carbonate.
  • the aluminum-containing compound is selected from the group consisting of aluminum oxide, hydrogen One or more of aluminum oxide, aluminum salt and aluminum halide.
  • aluminum oxide aluminum oxide
  • aluminum salt examples include Al 2 (SO 4 ) 3 , Al(NO) 3 and the like.
  • AlCl3 etc. are mentioned.
  • the boron-containing compound is selected from the group consisting of boron oxide, halogenated One or more of boron, boric acid, borate and organoboride.
  • boron oxide include B 2 O 3 and the like.
  • a boron halide BF3 , BCl3 , BBr3 , BI3 , etc. are mentioned.
  • a boric acid H3BO3 etc. are mentioned.
  • B2( SO4 ) 3 , B( NO3 )3 , etc. are mentioned.
  • organoborides include BN, H 2 BO 5 P, C 5 H 6 B(OH) 2 , C 3 H 9 B 3 O 6 , (C 2 H 5 O) 3 B and (C 3 ). H 7 O) 3 B and the like.
  • the thickness of the cladding layer is 0.01-2 ⁇ m, optionally 0.1-1 ⁇ m. If the thickness of the coating layer is within the above range, side reactions at the interface between the electrolyte and the positive electrode active material can be effectively prevented, and the capacity of the positive electrode active material can be increased.
  • the weight ratio of the total coating amount of cobalt element, aluminum element and boron element in the coating layer is 1000-22000 ppm, optionally 1000 ppm ⁇ 15000ppm.
  • the weight ratio of the coating amount of the cobalt element in the coating layer is 1000-20000 ppm, optionally 1000-19000 ppm, and further optionally 1000 ⁇ 13000ppm.
  • the coating of the cobalt compound can improve the interfacial side reaction of the positive electrode active material, and improve the capacity, rate performance and cycle performance of the positive electrode active material.
  • the coating weight ratio of the aluminum element in the coating layer is 100-3000 ppm, optionally 100-2900 ppm, and further optionally 500 ⁇ 2000ppm. Therefore, due to the appropriate amount of coating, the coating of the aluminum-containing compound can further significantly improve the interfacial side reactions of the positive electrode active material, protect the positive electrode active material, and further improve the cycle, storage and safety performance of the positive electrode active material.
  • the coating amount of boron in the coating layer is 100-2000 ppm by weight, optionally 100-1900 ppm, and further optionally 500 ⁇ 1500ppm. Therefore, due to the appropriate amount of coating, coating the boron-containing compound can further improve the interfacial side reaction of the material, increase the capacity of the positive electrode active material, and further improve the rate performance and cycle performance of the positive electrode active material.
  • the weight ratio of aluminum element to boron element in the coating layer is 0.5-2:1, optionally 1-2:1.
  • the inventor unexpectedly found: When the weight ratio of aluminum element and boron element in the coating layer is within the above range, the capacity of the positive electrode material can be significantly improved, and the cycle performance of the positive electrode active material can be improved; and the weight ratio of the two elements is within the above specified range. When , the crystal structure of the positive electrode material can also be effectively protected, thereby further improving the safety performance of the positive electrode active material.
  • the positive electrode active material is secondary particles or single crystal particles formed by agglomeration of primary particles.
  • the average particle diameter of the primary particles in the secondary particles is 100-1000 nm. It should be noted that the average particle diameter of the primary particles in the secondary particles refers to the average value of the particle diameters of all the primary particles in the SEM image at 10K magnification.
  • the average volume distribution particle size D50 of the positive electrode active material of the secondary particles is 2-15 ⁇ m, optionally 2.5-12 ⁇ m.
  • the specific surface area of the positive active material of the secondary particles is 0.2 m 2 /g to 1.0 m 2 /g, optionally 0.3 m 2 /g to 0.8 m 2 /g.
  • the average volume distribution particle size D50 of the positive electrode active material of the single crystal particle is 1.0-8.0 ⁇ m, optionally 2.0-4.0 ⁇ m.
  • the specific surface area of the cathode active material of the single crystal particles is 0.4 m 2 /g to 2 m 2 /g, optionally 0.5 m 2 /g to 1.5 m 2 /g.
  • the positive electrode active material produced by the above-mentioned production method has a good crystal structure, which is beneficial to the transport of lithium ions, and has the effect of improving the rate performance and cycle performance.
  • the average volume distribution particle diameter D50 refers to the particle diameter corresponding to when the cumulative volume distribution percentage of the positive electrode active material reaches 50%.
  • the volume average particle diameter D50 of the positive electrode active material can be measured by a laser diffraction particle size analysis method. For example, with reference to the standard GB/T 19077-2016, use a laser particle size analyzer (such as Malvern Master Size 3000) to measure.
  • the cobalt-containing compound is, for example, the cobalt-containing compound described below, and the particle size of the cobalt-containing compound may be 0.001 ⁇ m ⁇ 10 ⁇ m, for example, 0.001 ⁇ m ⁇ 1 ⁇ m. Due to the use of the nano-scale cobalt-containing compound, the surface of the positive electrode material matrix can be uniformly and effectively coated, and the interface side reaction between the material and the electrolyte can be improved.
  • the present application also provides a method for manufacturing a positive electrode active material, comprising:
  • Step S1 adding lithium salt, a positive electrode active material precursor containing nickel, cobalt and manganese, and a compound containing M element into a mixer for mixing to obtain a mixed material a, and adding the mixed material a to a kiln for sintering , to obtain a positive electrode active material matrix doped with M element, wherein the positive electrode active material precursor containing nickel, cobalt and manganese is [Ni x Co y Mn z ](OH) 2 , where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.3, 0 ⁇ z ⁇ 0.3, optionally 0.8 ⁇ x ⁇ 1, the M element is one or more of Mg, Ca, Sb, Ce, Ti, Zr, Al, Zn and B;
  • Step S2 adding the M element-doped positive active material matrix and the cobalt-containing compound into a mixer for mixing to obtain a mixture b, and adding the mixture b into a kiln for sintering to obtain an intermediate (including Cobalt-containing compound-coated positive electrode active material); and
  • Step S3 adding the intermediate, the aluminum-containing compound and the boron-containing compound into a mixer for mixing to obtain a mixed material c, and adding the mixed material c to a kiln for sintering to obtain a coated cobalt-containing compound, a Positive electrode active materials of aluminum compounds and boron-containing compounds.
  • the M element can be uniformly doped into the core of the positive electrode active material by the above-mentioned method for producing a positive electrode active material of the present application, thereby effectively improving the positive electrode activity. Structural stability of materials.
  • the surface of the positive electrode active material core is uniformly coated with a co-coating layer containing cobalt compounds, boron compounds, and aluminum compounds, which can effectively suppress the interface side reactions between the positive electrode active material and the electrolyte, which not only improves the positive electrode active material.
  • the capacity of the cathode active material can be effectively improved, and the rate performance of the cathode active material can be effectively improved, and the cycle, storage and safety performance of the cathode active material can also be effectively improved.
  • the manufacturing method of the positive electrode active material of the present application not only the complicated manufacturing process such as wet coating in the conventional manufacturing method is avoided, but also the production cost can be reduced.
  • the step-by-step coating method is adopted in the manufacturing method of the present application, so that the prepared positive electrode active material can take into account better cycle performance and higher capacity at the same time.
  • the three (cobalt-containing compound, boron-containing compound, and aluminum-containing compound) are coated at the same time, when the coating temperature is set too high, aluminum and boron may penetrate into the inner layer of the positive electrode active material particles, and the boron-containing compound may infiltrate the inner layer of the positive electrode active material particles at high temperature. It is easy to volatilize and affect the coating effect, thereby affecting the capacity and cycle performance; when the coating temperature is set too low, the cobalt-containing compound may not be able to effectively coat the outer layer of the positive electrode active material particles, and the positive electrode active material particles cannot be coated. Therefore, by coating in steps, it can avoid affecting the coating effect when the three are coated together.
  • step S1 according to the sum of the lithium element in the lithium salt and the nickel element, cobalt element and manganese element in the positive electrode active material precursor containing nickel, cobalt and manganese A lithium salt, a positive electrode active material precursor containing nickel, cobalt, and manganese, and a lithium salt, a positive electrode active material precursor containing nickel, cobalt, and manganese, and a
  • the M element compound is added to the mixer for mixing. Thereby, the M element can be uniformly doped, and the structural stability of the material can be effectively improved.
  • the sintering conditions in the step S1 are as follows: the sintering temperature is 700-950 C, the sintering time is 10-20 h, and the sintering atmosphere is air or oxygen.
  • the doping of the M element can be performed efficiently, and the positive electrode material matrix obtained by this process has a good crystal structure, which is beneficial to the transport of lithium ions, and can improve the rate performance and cycle performance.
  • the addition ratio of the cobalt-containing compound is relative to the total weight of the positive electrode active material matrix, and the addition amount of the cobalt element is 1000ppm-20000ppm, preferably 1000-19000ppm, and further It is preferably 1000 ppm to 13000 ppm.
  • the cobalt-containing compound can be uniformly and effectively coated on the surface of the positive electrode active material matrix, thereby reducing interfacial side reactions between the positive electrode active material and the electrolyte.
  • the capacity, rate performance and cycle performance of the positive electrode active material can be improved.
  • the sintering conditions in the step S2 are as follows: the sintering temperature is 500-700 °C, the sintering time is 5-15 h, and the sintering atmosphere is air or oxygen.
  • the cobalt-containing compound can be firmly coated on the particle surfaces of the positive electrode active material without infiltrating into the inner layer of the particles, thereby improving the coating effect.
  • the addition ratio of the aluminum-containing compound is relative to the total weight of the positive electrode active material matrix, and the addition amount of the aluminum element is 100-3000 ppm, optionally 100-2900 ppm, It is further optional to be 500-2000ppm, the addition ratio of the boron-containing compound is relative to the total weight of the positive electrode active material matrix, the addition amount of boron element is 100-2000ppm, optional 100-1900ppm, and further optional 500 ⁇ 1500ppm.
  • the interfacial side reaction of the material can be further improved.
  • the circulation, storage and safety performance of the material can be further improved.
  • the sintering conditions in the step S3 are as follows: the sintering temperature is 200-500, optionally 200-400, the sintering time is 5-15h, optionally 5-10h, and the sintering atmosphere is air or oxygen .
  • the aluminum-containing compound and the boron-containing compound can be firmly coated on the surface of the positive electrode active material particles without penetrating into the inner layer of the particles, thereby effectively improving the coating effect.
  • the interfacial side reactions of the positive electrode active material can be further significantly improved, and the cycle, storage and safety performance of the positive electrode active material can be improved.
  • the nickel, cobalt, and manganese-containing cathode active material precursor is [Ni x Co y Mn z ](OH) 2 , where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.3, 0 ⁇ z ⁇ 0.3, further, 0.8 ⁇ x ⁇ 1.
  • the lithium salt may be selected from one or more of lithium carbonate and lithium hydroxide.
  • a secondary battery is provided.
  • a secondary battery typically includes a positive electrode sheet, a negative electrode sheet, an electrolyte, and a separator.
  • active ions are inserted and extracted back and forth between the positive electrode and the negative electrode.
  • the electrolyte plays the role of conducting ions between the positive electrode and the negative electrode.
  • the separator is arranged between the positive pole piece and the negative pole piece, and mainly plays the role of preventing the short circuit of the positive and negative poles, and at the same time, it can allow ions to pass through.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode film layer disposed on at least one surface of the positive electrode current collector, and the positive electrode film layer includes the positive electrode active material of the first aspect of the present application.
  • the positive electrode current collector has two opposite surfaces in its own thickness direction, and the positive electrode film layer is provided on either or both of the two opposite surfaces of the positive electrode current collector.
  • the positive electrode current collector may be a metal foil or a composite current collector.
  • the metal foil aluminum foil can be used.
  • the composite current collector may include a polymer material base layer and a metal layer formed on at least one surface of the polymer material base layer.
  • Composite current collectors can be formed by metal materials (aluminum, aluminum alloys, nickel, nickel alloys, titanium, titanium alloys, silver and silver alloys, etc.) ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE) and other substrates).
  • the positive electrode film layer also optionally includes a conductive agent.
  • a conductive agent is not specifically limited, and those skilled in the art can select them according to actual needs.
  • the conductive agent for the positive electrode film layer may be one or more selected from superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene, and carbon nanofibers.
  • the positive electrode sheet can be prepared according to methods known in the art.
  • the positive electrode active material, conductive agent and binder of the present application can be dispersed in a solvent (such as N-methylpyrrolidone (NMP)) to form a uniform positive electrode slurry; the positive electrode slurry is coated on the positive electrode collector On the fluid, after drying, cold pressing and other processes, the positive pole piece is obtained.
  • NMP N-methylpyrrolidone
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode film layer disposed on at least one surface of the negative electrode current collector, the negative electrode film layer including a negative electrode active material.
  • the negative electrode current collector has two surfaces opposite in its own thickness direction, and the negative electrode film layer is provided on either or both of the two opposite surfaces of the negative electrode current collector.
  • the negative electrode current collector may be a metal foil or a composite current collector.
  • the metal foil copper foil can be used.
  • the composite current collector may include a base layer of polymer material and a metal layer formed on at least one surface of the base material of polymer material.
  • Composite current collectors can be formed by forming metal materials (copper, copper alloy, nickel, nickel alloy, titanium, titanium alloy, silver and silver alloy, etc.) on a polymer material substrate (such as polypropylene (PP), polyethylene terephthalic acid ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE) and other substrates).
  • PP polypropylene
  • PET polyethylene terephthalic acid ethylene glycol ester
  • PBT polybutylene terephthalate
  • PS polystyrene
  • PE polyethylene
  • the negative electrode film layer usually contains negative electrode active material and optional binder, optional conductive agent and other optional auxiliary agents, and is usually formed by coating and drying the negative electrode slurry .
  • the negative electrode slurry coating is usually formed by dispersing the negative electrode active material and optional conductive agent and binder in a solvent and stirring uniformly.
  • the solvent can be N-methylpyrrolidone (NMP) or deionized water.
  • the conductive agent may be selected from one or more of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene, and carbon nanofibers.
  • the binder may be selected from styrene-butadiene rubber (SBR), polyacrylic acid (PAA), sodium polyacrylate (PAAS), polyacrylamide (PAM), polyvinyl alcohol (PVA), sodium alginate (SA), One or more of polymethacrylic acid (PMAA) and carboxymethyl chitosan (CMCS).
  • SBR styrene-butadiene rubber
  • PAA polyacrylic acid
  • PAAS sodium polyacrylate
  • PAM polyacrylamide
  • PVA polyvinyl alcohol
  • SA sodium alginate
  • PMAA polymethacrylic acid
  • CMCS carboxymethyl chitosan
  • auxiliary agents are, for example, thickeners (such as sodium carboxymethyl cellulose (CMC-Na)) and the like.
  • the negative electrode film layer may optionally include other commonly used negative electrode active materials.
  • other commonly used negative electrode active materials artificial graphite, natural graphite, soft Carbon, hard carbon, silicon-based materials, tin-based materials and lithium titanate, etc.
  • the silicon-based material can be selected from one or more of elemental silicon, silicon-oxygen compound, silicon-carbon composite, silicon-nitrogen composite and silicon alloy.
  • the tin-based material can be selected from one or more of elemental tin, tin oxide compounds and tin alloys.
  • the electrolyte plays the role of conducting ions between the positive electrode and the negative electrode.
  • the type of electrolyte in this application which can be selected according to requirements.
  • the electrolyte may be selected from at least one of solid electrolytes and liquid electrolytes (ie, electrolytes).
  • the electrolyte is an electrolyte.
  • the electrolyte solution includes an electrolyte salt and a solvent.
  • the electrolyte salt may be selected from LiPF 6 (lithium hexafluorophosphate), LiBF 4 (lithium tetrafluoroborate), LiClO 4 (lithium perchlorate), LiAsF 6 (lithium hexafluoroarsenate), LiFSI (lithium hexafluoroarsenate), LiFSI (lithium tetrafluoroborate) Lithium Imide), LiTFSI (Lithium Bistrifluoromethanesulfonimide), LiTFS (Lithium Trifluoromethanesulfonate), LiDFOB (Lithium Difluorooxalate Borate), LiBOB (Lithium Dioxalate Borate), LiPO 2 F 2 One or more of (lithium difluorophosphate), LiDFOP (lithium difluorobisoxalate phosphate) and LiTFOP (lithium tetrafluorooxalate phosphate).
  • LiPF 6
  • the solvent may be selected from ethylene carbonate (EC), propylene carbonate (PC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), dimethyl carbonate (DMC), Dipropyl carbonate (DPC), methyl propyl carbonate (MPC), ethyl propyl carbonate (EPC), butylene carbonate (BC), fluoroethylene carbonate (FEC), methyl formate (MF), methyl acetate ester (MA), ethyl acetate (EA), propyl acetate (PA), methyl propionate (MP), ethyl propionate (EP), propyl propionate (PP), methyl butyrate (MB) , one or more of ethyl butyrate (EB), 1,4-butyrolactone (GBL), sulfolane (SF), dimethyl sulfone (MSM), methyl ethyl sulfone (EMS) and diethyl s
  • EC
  • the electrolyte also optionally includes additives.
  • the additives may include negative electrode film-forming additives, positive electrode film-forming additives, and additives that can improve certain performance of the battery, such as additives to improve battery overcharge performance, additives to improve battery high temperature performance, and battery low temperature performance. additives, etc.
  • the separator is arranged between the positive pole piece and the negative pole piece, and plays the role of isolation.
  • the type of separator in the present application there is no particular limitation on the type of separator in the present application, and any well-known porous-structure separator with good chemical stability and mechanical stability can be selected.
  • the material of the separator can be selected from one or more of glass fiber, non-woven fabric, polyethylene, polypropylene and polyvinylidene fluoride.
  • the separator may be a single-layer film or a multi-layer composite film, and is not particularly limited. When the separator is a multi-layer composite film, the materials of each layer can be the same or different, and are not particularly limited.
  • the positive electrode sheet, the negative electrode sheet and the separator may be fabricated into an electrode assembly through a winding process or a lamination process.
  • the secondary battery may include an outer package.
  • the outer package can be used to encapsulate the above-mentioned electrode assembly and electrolyte.
  • the outer packaging of the secondary battery may be a hard case, such as a hard plastic case, an aluminum case, a steel case, and the like.
  • the outer package of the secondary battery may also be a soft package, such as a pouch-type soft package.
  • the material of the soft bag may be plastic, and examples of the plastic include polypropylene (PP), polybutylene terephthalate (PBT), polybutylene succinate (PBS), and the like.
  • the shape of the secondary battery is not particularly limited in the present application, and it may be cylindrical, square or any other shape.
  • FIG. 5 is a secondary battery 5 of a square structure as an example.
  • the outer package may include a housing 51 and a cover 53 .
  • the housing 51 may include a bottom plate and a side plate connected to the bottom plate, and the bottom plate and the side plate are enclosed to form a accommodating cavity.
  • the housing 51 has an opening that communicates with the accommodating cavity, and a cover plate 53 can cover the opening to close the accommodating cavity.
  • the positive pole piece, the negative pole piece and the separator may be formed into the electrode assembly 52 through a winding process or a lamination process.
  • the electrode assembly 52 is packaged in the accommodating cavity.
  • the electrolyte solution is infiltrated in the electrode assembly 52 .
  • the number of electrode assemblies 52 included in the secondary battery 5 may be one or more, and those skilled in the art may select them according to specific actual needs.
  • the secondary battery can be assembled into a battery module, and the number of secondary batteries contained in the battery module can be one or more, and the specific number can be selected by those skilled in the art according to the application and capacity of the battery module.
  • FIG. 7 shows the battery module 4 as an example.
  • the plurality of secondary batteries 5 may be arranged in sequence along the longitudinal direction of the battery module 4 .
  • the plurality of secondary batteries 5 can be fixed with fasteners.
  • the battery module 4 may further include a housing having an accommodating space in which the plurality of secondary batteries 5 are accommodated.
  • the above-mentioned battery modules can also be assembled into a battery pack, and the number of battery modules included in the battery pack can be selected by those skilled in the art according to the application and capacity of the battery pack.
  • the battery pack 1 may include a battery case and a plurality of battery modules 4 disposed in the battery case.
  • the battery box includes an upper box body 2 and a lower box body 3 .
  • the upper box body 2 can cover the lower box body 3 and form a closed space for accommodating the battery module 4 .
  • the plurality of battery modules 4 may be arranged in the battery case in any manner.
  • the present application also provides a device, which includes one or more of the secondary batteries, battery modules, or battery packs provided by the present application.
  • the secondary battery, battery module, or battery pack can be used as a power source of the device, and can also be used as an energy storage unit of the device.
  • the device may be, but is not limited to, mobile devices (eg, cell phones, laptops, etc.), electric vehicles (eg, pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, electric golf balls) vehicles, electric trucks, etc.), electric trains, ships and satellites, energy storage systems, etc.
  • a secondary battery, a battery module, or a battery pack can be selected according to its usage requirements.
  • Figure 10 is an apparatus as an example.
  • the device is a pure electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, or the like.
  • a battery pack or a battery module can be employed.
  • the device may be a mobile phone, a tablet computer, a laptop computer, and the like.
  • the device is generally required to be thin and light, and a secondary battery can be used as a power source.
  • the amount of zirconium added was 2000 ppm
  • the positive active material precursor was [Ni 0.92 Co 0.05 Mn 0.03 ](OH) 2
  • the average volume particle size D50 was 5 ⁇ m.
  • the mixture obtained above was put into a roller kiln and sintered for 20 hours at a sintering temperature of 800°C.
  • the atmosphere of the primary sintering was oxygen to obtain a positive electrode active material matrix.
  • the above-obtained positive electrode active material matrix and CoO were added to a high-mixer and mixed for 1 h to obtain a mixed material in such a manner that the amount of cobalt added was 8000 ppm relative to the total weight of the positive active material substrate.
  • the material is added into a roller kiln for secondary sintering, wherein the secondary sintering temperature is 600 °C, the secondary sintering time is 10 h, and the secondary sintering atmosphere is oxygen to obtain a positive electrode active material coated with CoO.
  • the thus obtained CoO-coated positive electrode active material was secondary particles having an average volume particle diameter D50 of 5 ⁇ m.
  • the thus obtained final coated positive electrode active material was secondary particles with an average volume particle diameter D50 of 5 ⁇ m, wherein the total thickness of the coating layer measured with a micrometer was 0.60 ⁇ m.
  • the scanning electron microscope image of the positive electrode active material obtained in Example 1 is shown in FIG. 1 . It can be seen from FIG. 1 that the above-mentioned coating is uniformly coated on the surface of the positive electrode active material particles.
  • the average volume particle size D50 of which was 2.5 ⁇ m was 2.5 ⁇ m
  • the primary sintering temperature was adjusted to 700
  • the zirconia (ZrO 2 ) was replaced with MgO
  • the primary sintering time was 10 h
  • the addition of magnesium was 5000 ppm
  • the addition of aluminum was adjusted to 1200 ppm, and other conditions were the same as in Example 1.
  • the thus obtained final coated positive electrode active material was secondary particles with an average volume particle diameter D50 of 2.5 ⁇ m, wherein the total thickness of the coating layer measured with a micrometer was 0.65 ⁇ m.
  • the primary sintering temperature is adjusted to 950
  • the zirconia (ZrO 2 ) added in the primary sintering Replaced with TiO 2
  • the primary sintering time was 15 h
  • the addition amount of titanium element was 1000 ppm
  • the addition amount of aluminum element was adjusted to 1500 ppm
  • other conditions were the same as in Example 1.
  • the thus obtained final coated positive electrode active material was secondary particles with an average volume particle diameter D50 of 12 ⁇ m, wherein the total thickness of the coating layer measured with a micrometer was 0.67 ⁇ m.
  • the primary sintering temperature was adjusted to 900
  • the secondary sintering temperature was adjusted to 500
  • the CoO added in the secondary sintering was replaced by Co(OH) 2
  • the cobalt The addition amount of the element was 13000 ppm
  • the secondary sintering time was adjusted to 5 h
  • the addition amount of the aluminum element was adjusted to be 1800 ppm
  • other conditions were the same as those in Example 1.
  • the thus obtained final coated positive electrode active material is a single crystal particle with an average volume particle diameter D50 of 2 ⁇ m, wherein the total thickness of the coating layer measured with a micrometer is 0.88 ⁇ m.
  • the primary sintering temperature was adjusted to 950
  • the secondary sintering temperature was adjusted to 700
  • the CoO added in the secondary sintering was replaced by Co 3 O 4
  • cobalt element The addition amount of aluminum element is adjusted to 1000ppm
  • the secondary sintering time is adjusted to 15h
  • the addition amount of aluminum element in the third sintering is adjusted to 1200ppm
  • the addition weight ratio of aluminum element and boron element is adjusted to 1.2:1, and other conditions are the same as in Example 1.
  • the thus obtained final coated positive electrode active material is a single crystal particle with an average volume particle diameter D50 of 4 ⁇ m, wherein the total thickness of the coating layer measured with a micrometer is 0.16 ⁇ m.
  • the thus obtained final coated positive electrode active material was secondary particles with an average volume particle diameter D50 of 5 ⁇ m, wherein the total thickness of the coating layer measured with a micrometer was 1.81 ⁇ m.
  • the third sintering temperature was adjusted to 350, the third sintering time was adjusted to 7h, the Al 2 O 3 added in the third sintering was replaced by Al 2 (SO 4 ) 3 , the addition of aluminum element The amount was adjusted to 500 ppm, the H 3 BO 3 added in the third sintering was replaced by BCl 3 , the added amount of boron was adjusted to 500 ppm, and the added weight ratio of aluminum and boron was adjusted to 1:1. Other conditions were the same as those in Example 6. same.
  • the thus obtained final coated positive electrode active material was secondary particles with an average volume particle diameter D50 of 10 ⁇ m, wherein the total thickness of the coating layer measured with a micrometer was 1.15 ⁇ m.
  • Example 8 Other conditions are the same as in Example 8, except that the addition amount of cobalt element is adjusted to 30000 ppm, the addition amount of aluminum element is adjusted to 5000 ppm, and the addition amount of boron element is adjusted to 5000 ppm.
  • the thus obtained final coated positive electrode active material was secondary particles with an average volume particle diameter D50 of 10 ⁇ m, wherein the total thickness of the coating layer measured with a micrometer was 2.85 ⁇ m.
  • the thus obtained final coated positive electrode active material is a secondary particle with an average volume particle diameter D50 of 10 ⁇ m, wherein the total thickness of the coating layer measured with a micrometer is 1.35 ⁇ m.
  • Example 8 The conditions were the same as in Example 8, except that the average volume particle diameter D50 of the positive electrode active material precursor was adjusted to 18 ⁇ m.
  • the thus obtained final coated positive electrode active material was secondary particles with an average volume particle diameter D50 of 18 ⁇ m, wherein the total thickness of the coating layer measured with a micrometer was 1.10 ⁇ m.
  • the conditions were the same as in Example 5, except that the average volume particle diameter D50 of the positive electrode active material precursor was adjusted to 9 m.
  • the thus obtained final coated positive electrode active material is a single crystal particle with an average volume particle diameter D50 of 9 ⁇ m, wherein the total thickness of the coating layer measured with a micrometer is 0.10 ⁇ m.
  • the material precursor is [Ni 0.92 Co 0.05 Mn 0.03 ](OH) 2 , and its average volume particle size D50 is 5 ⁇ m.
  • the mixed material obtained above was put into a roller kiln and sintered at a sintering temperature of 800 C for 20 hours, and the atmosphere of the primary sintering was oxygen to obtain a positive electrode active material.
  • the positive electrode active material thus obtained was secondary particles having an average volume particle diameter D50 of 5 ⁇ m.
  • the positive electrode active material matrix and AlCl 3 were added in such a way that the amount of aluminum added was 1000 ppm relative to the total weight of the positive electrode active material matrix. , add it into a high-speed mixer and mix for 1 hour to obtain a mixed material, add the mixed material into a roller kiln for secondary sintering, the secondary sintering temperature is 300°C, the secondary sintering time is 10 hours, and the secondary sintering atmosphere is oxygen to obtain Cathode active material coated with AlCl3 .
  • the thus obtained final coated positive electrode active material was secondary particles with an average volume particle diameter D50 of 5 ⁇ m, wherein the total thickness of the coating layer was 0.05 ⁇ m.
  • the thus obtained final coated positive electrode active material was secondary particles with an average volume particle diameter D50 of 5 ⁇ m, wherein the total thickness of the coating layer was 0.06 ⁇ m.
  • the thus obtained final coated positive electrode active material was secondary particles with an average volume particle diameter D50 of 5 ⁇ m, wherein the total thickness of the coating layer measured with a micrometer was 0.10 ⁇ m.
  • the positive electrode active material matrix and CoO were added according to the total weight of the positive electrode active material matrix, and the amount of cobalt added was 8000ppm. Add it into a high-speed mixer and mix for 1 hour to obtain a mixed material. The mixed material is added into a roller kiln for secondary sintering. CoO-coated cathode active material.
  • the thus obtained final coated positive electrode active material was secondary particles with an average volume particle diameter D50 of 5 ⁇ m, wherein the total thickness of the coating layer measured with a micrometer was 0.41 ⁇ m.
  • the body is [Ni 0.8 Co 0.1 Mn 0.1 ](OH) 2 , and its average volume particle diameter D50 is 2.5 ⁇ m.
  • the mixed material obtained above was put into a roller kiln and sintered at a sintering temperature of 700 C for 10 hours, and the atmosphere of the primary sintering was oxygen to obtain a positive electrode active material.
  • the positive electrode active material thus obtained was secondary particles having an average volume particle diameter D50 of 2.5 ⁇ m.
  • the amount of titanium added is 1000 ppm
  • the positive active material precursor is [Ni 0.6 Co 0.2 Mn 0.2 ](OH) 2
  • the average volume particle size D50 is 12 ⁇ m.
  • the mixture obtained above was added to a roller kiln for a sintering at a sintering temperature of 950 °C for 15 hours, and the primary sintering atmosphere was oxygen to obtain a positive electrode active material.
  • the positive electrode active material thus obtained was secondary particles having an average volume particle diameter D50 of 12 ⁇ m.
  • the positive electrode active materials obtained in the above-mentioned Examples 1 to 12 and Comparative Examples 1 to 7 were prepared into a button battery and a secondary battery, respectively, as shown below, and the performance tests were carried out.
  • the test results are shown in Table 2 below.
  • the coated positive active material finished product, polyvinylidene fluoride (PVDF), and conductive carbon in the above-mentioned embodiments and comparative examples were added to a certain amount of N-methylpyrrolidone (NMP), and the addition ratio was 90: 5:5, stir in a drying room to make slurry, coat the slurry on aluminum foil, dry and cold-press to make a positive pole piece, use a lithium piece as a negative pole, and the electrolyte is 1mol/L LiPF 6 /(ethylene carbonate Ester (EC) + diethyl carbonate (DEC) + dimethyl carbonate (DMC)) (volume ratio 1:1:1), assembled into a button battery in a button battery.
  • NMP N-methylpyrrolidone
  • the button batteries prepared above were charged to 4.3V at 0.1C at 2.8-4.3V, and then charged to a current of ⁇ 0.05mA at a constant voltage at 4.3V, and left for 2min.
  • the charging capacity at this time was recorded as C0, and then discharge to 2.8V according to 0.1C, the discharge capacity at this time is the initial discharge capacity, denoted as D0, and the first effect is D0/C0*100%.
  • the finished positive active material in the above examples and comparative examples was used as the positive active material, and was mixed with conductive agent acetylene black and binder polyvinylidene fluoride (PVDF) in a weight ratio of 94:3:3 in N-methylpyrrolidone. After fully stirring and mixing in the solvent system, it is coated on aluminum foil for drying and cold pressing to obtain a positive pole piece.
  • PVDF polyvinylidene fluoride
  • the artificial graphite, the conductive agent acetylene black, the binder styrene-butadiene rubber (SBR) and the thickener sodium carbon methyl cellulose (CMC) as the negative electrode active material were removed according to the weight ratio of 90:5:2:2:1. After fully stirring and mixing in the ionized water solvent system, it is coated on copper foil for drying and cold pressing to obtain a negative pole piece.
  • SBR styrene-butadiene rubber
  • CMC thickener sodium carbon methyl cellulose
  • a porous polymeric film made of polyethylene (PE) was used as the separator.
  • the positive electrode sheet, the separator film and the negative electrode sheet are overlapped in sequence, so that the separator film is placed between the positive electrode and the negative electrode to play a role of isolation, and is wound to obtain a bare cell.
  • the bare cell is placed in an outer package, and the electrolyte solution used for the preparation of the button battery (1) above is injected and packaged to obtain a secondary battery.
  • Each secondary battery prepared above was left for 5 minutes under a constant temperature environment of 25°C, and discharged to 2.8V according to 1/3C. After standing for 5 minutes, charged to 4.25V according to 1/3C, and then the constant voltage was maintained at 4.25V. Charge to current ⁇ 0.05mA, let stand for 5min, the charging capacity at this time is denoted as C0, and then discharge to 2.8V according to 1/3C, the discharge capacity at this time is the initial discharge capacity, denoted as D0.
  • Dividing the tested discharge capacity value (ie, the initial discharge capacity D0) by the mass of the positive electrode active material in the secondary battery is the full electric initial gram capacity of the positive electrode active material.
  • the volume of the initial cell (bare cell) before storage was measured by the drainage method, and then each of the above The secondary batteries were stored in the storage furnace at 70, and the cells were taken out of the storage furnace every 48 hours. After cooling to room temperature, the volume of the cells was measured by the drainage method again. The test was terminated after storage for 30 days, or the storage was stopped if the volume expansion exceeded 50%. .
  • the amount of flatulence after the secondary battery is stored at 70°C for 30 days [the cell volume after the secondary battery is stored at 70°C for 30 days-the initial cell volume of the secondary battery] ⁇ initial discharge capacity D0.
  • the positive electrode active materials obtained in Examples 1 to 12 are further coated with cobalt-containing compounds, aluminum-containing compounds and boron-containing compounds on the basis of doping, so that the energy density, cycle performance and safety performance are improved. In terms of improvement, good results have been achieved. And, the first effect of the positive electrode active material is also improved.
  • Comparative Example 1 is inferior in terms of cycle performance and safety performance, while Comparative Examples 6 and 7 are inferior in terms of the capacity of the cathode active material, and no effective improvement has been achieved in terms of cycle performance and safety performance improvement.
  • the positive electrode active material obtained in Comparative Example 2 was doped with zirconium, but only coated with the aluminum-containing compound.
  • the positive electrode active material obtained in Comparative Example 3 was doped with zirconium, but only coated with the boron-containing compound.
  • the positive electrode active material obtained in Comparative Example 4 was doped with zirconium, but only coated with the aluminum-containing compound and the boron-containing compound.
  • the positive electrode active material obtained in Comparative Example 5 was doped with zirconium, but only coated with the cobalt-containing compound.
  • the capacity of the positive electrode active material was better than that of the uncoated, but it did not meet the requirements of co-coating the cobalt-containing compound, the aluminum-containing compound and the boron-containing compound. There was no significant improvement in terms of performance and safety.
  • Example 9 In addition, comparing Examples 9 and 10 with Example 8, it can be seen that although these Examples all achieved good results in the improvement of energy density, cycle performance and safety performance. However, since the coating thickness of Example 9 is too thick, the coating thickness reaches 2.85 ⁇ m, which affects the capacity and tends to decrease the capacity. At the same time, it affects the lithium ion transport during the cycle, and the cycle performance tends to decrease. Since the coating ratio of Example 10 is too high, the added weight ratio of aluminum element to boron element (aluminum:boron) reaches 5:1, which tends to decrease the capacity and cycle performance.
  • Example 12 Comparing Example 12 with Example 5, and Example 11 with Example 8, it can be seen that although these examples all achieved good results in the improvement of energy density, cycle performance and safety performance.
  • the average volume particle diameter D50 of the positive electrode active materials obtained in Examples 11 and 12 is too large, it has a certain influence on the capacity, cycle and safety performance of the positive electrode active material products.
  • this application is not limited to the said embodiment.
  • the above-described embodiments are merely examples, and embodiments having substantially the same configuration as the technical idea and exhibiting the same effects within the scope of the technical solution of the present application are all included in the technical scope of the present application.
  • various modifications that can be conceived by those skilled in the art are applied to the embodiment, and other modes constructed by combining some of the constituent elements of the embodiment are also included in the scope of the present application. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种正极活性材料及其制造方法,所述正极活性材料包括正极活性材料基体和包覆层,所述包覆层包覆所述正极活性材料基体的表面,其中,所述正极活性材料基体为Li 1+a[Ni xCo yMn zM b]O 2,其中0<x<1、0≤y<0.3、0≤z<0.3、0<a<0.2、0<b<0.2,且x+y+z+b=1,优选地0.8≤x<1,所述M元素选自Mg、Ca、Sb、Ce、Ti、Zr、Al、Zn及B中的一种以上,所述包覆层包含含钴化合物、含铝化合物和含硼化合物。

Description

正极活性材料及其制造方法、二次电池、电池模块、电池包和装置 技术领域
本申请涉及锂电池技术领域,尤其涉及一种正极活性材料及其制造方法、二次电池、电池模块、电池包和装置。
背景技术
近年来,随着锂离子电池的应用范围越来越广泛,锂离子电池广泛应用于水力、火力、风力和太阳能电站等储能电源系统,以及电动工具、电动自行车、电动摩托车、电动汽车、军事装备、航空航天等多个领域。由于锂离子电池取得了极大的发展,因此对其能量密度、循环性能和安全性能等也提出了更高的要求。另外,由于正极活性材料的选择越发局限,高镍正极活性材料被认为是满足高能量密度要求的最佳选择。
但是随着镍含量的不断提高,其结构稳定性越来越差。通过包覆或掺杂等手段来改善材料的倍率性能和循环性能等是目前比较有效的手段,然而现有的方法均会导致对锂离子电池性能不同程度的破坏,例如,锂离子电池的克容量降低、循环性能变差等。因此,现有的包覆或掺杂的正极材料仍有待改进。
发明内容
本申请是鉴于上述课题而进行的,其目的在于,提供一种正极活性材料及其制造方法,可以使包含该材料的二次电池具有较高的能量密度、较好的循环性能和安全性能。
为了达到上述目的,本申请提供了一种正极活性材料及其制造方法、二次电池、电池模块、电池包和装置。
本申请的第一方面提供了一种正极活性材料,包括正极活性材料基体和包覆层,所述包覆层包覆所述正极活性材料基体的表面,其中,所述正极活性材料基体为Li 1+a[Ni xCo yMn zM b]O 2,其中0<x<1、0≤y<0.3、0≤z<0.3、0<a<0.2、0<b<0.2,且x+y+z+b=1,可选地0.8≤x<1,所述M元素选自Mg、Ca、Sb、Ce、Ti、Zr、Al、Zn及B中的一种以上,所述包覆层包含含钴化合物、含铝化合物和含硼化合物。
由此,本申请通过在正极活性材料的表面共同包覆含钴化合物、含铝化合物和含硼化合物,三者协同发挥作用,能够提高正极活性材料的倍率性能、循环性能,同时还能够明显改善正极活性材料与电解液之间的界面副反应,提高容量。
在任意实施方式中,所述含钴化合物选自氧化钴、钴盐、氢氧化钴及羟基氧化钴中的一种以上。由此,所述含钴化合物能够均匀有效地包覆在正极活性材料表面。
在任意实施方式中,所述含铝化合物选自氧化铝、氢氧化铝、铝盐及卤化铝中的一种以上。由此,所述含铝化合物能够均匀有效地包覆在正极活性材料表面。
在任意实施方式中,所述含硼化合物选自氧化硼、卤化硼、硼酸、硼酸盐及有机硼化物中的一种以上。由此,所述含硼化合物能够均匀有效地包覆在正极活性材料表面。
在任意实施方式中,所述包覆层的厚度为0.01μm~2μm、可选为0.1~1μm。所述包覆层的厚度在上述范围内,则能够有效阻止在电解液与正极活性材料的界面发生副反应,并且增加正极活性材料的容量。
在任意实施方式中,相对于所述正极活性材料基体的总重量,所述包覆层中钴元素、铝元素及硼元素的总包覆量重量比例为1000~22000ppm,可选为1000~15000ppm。由此,由于包覆量适量,能够提高正极活性材料的容量、倍率性能及循环性能。
在任意实施方式中,相对于所述正极活性材料基体的总重量,所述包覆层中钴元素的包覆量重量比例为1000~20000ppm,可选为1000~19000ppm,进一步可选为1000~13000ppm。由此,由于包覆量适量,能够更好地提高正极活性材料的容量、倍率性能及循环性能。
在任意实施方式中,相对于所述正极活性材料基体的总重量,所述包覆层中铝元素的包覆量重量比例为100~3000ppm,可选为100~2900ppm,进一步可选为500~2000ppm。由此,由于包覆量适量,能够更好地提高正极活性材料的循环、存储及安全性能。
在任意实施方式中,相对于所述正极活性材料基体的总重量,所述包覆层中硼元素的包覆量重量比例为100~2000ppm,可选为100~1900ppm,进一步可选为500~1500ppm。由此,由于包覆量适量,能够进一步更好地提高正极活性材料的循环、存储及安全性能。
在任意实施方式中,所述包覆层中铝元素与硼元素的重量比为0.5~2:1、可选为1~2:1。由此,能够进一步提高正极活性材料的循环和安全性能。
本申请的第二方面还提供一种正极活性材料的制造方法,
包括:
步骤S1:提供掺杂M元素的正极活性材料基体,其中,所述M选自Mg、Ca、Sb、Ce、Ti、Zr、Al、Zn及B中的一种以上;
步骤S2:将所述掺杂M元素的正极活性材料基体与含钴化合物混合并烧结,得到中间体;以及
步骤S3:将所述中间体与含铝化合物、含硼化合物加入混料机中进行混合并烧结,得到包覆含钴化合物、含铝化合物和含硼化合物的正极活性材料。
在任意实施方式中,步骤S1:将锂盐、含镍、钴和锰的正极活性材料前驱体、以及含M元素化合物加入混料机中进行混合,得到混合物料a,将所述混合物料a加入窑炉中进行烧结,得到掺杂M元素的正极活性材料基体,其中,所述含镍、钴和锰的正极活性材料前驱体为[Ni xCo yMn z](OH) 2,其中0<x<1,0≤y<0.3,0≤z<0.3,可选地0.8≤x<1,所述M元素为Mg、Ca、Sb、Ce、Ti、Zr、Al、Zn及B中的一种以上;步骤S2:将所述掺杂M元素的正极活性材料基体与含钴化合物加入混料机中进行混合,得到混合物料b,将所述混合物料b加入窑炉中进行烧结,得到中间体;以及步骤S3:将所述中间体与含铝化合物、含硼化合物加入混料机中进行混合,得到混合物料c, 将所述混合物料c加入窑炉中进行烧结,得到包覆含钴化合物、含铝化合物和含硼化合物的正极活性材料。
由此,通过上述本申请的正极活性材料的制造方法,能够使所述M元素均匀地掺杂在正极活性材料基体中,有效提高正极活性材料的结构稳定性,同时在正极活性材料基体表面均匀地包覆有含钴化合物、含硼化合物、含铝化合物的共同包覆层。另外,通过采用本申请的正极活性材料的制造方法,不仅避免了现有制造方法中繁杂的制造工序,而且还能够降低生产成本。
在任意实施方式中,所述步骤S1中,按照所述锂盐中的锂元素与所述含镍、钴和锰的正极活性材料前驱体中的镍元素、钴元素和锰元素三者总和的摩尔比为Li/(Ni+Co+Mn)=0.9~1.1、且M元素的掺杂量为1000~5000ppm的方式,将锂盐、含镍、钴和锰的正极活性材料前驱体、以及含M元素化合物加入混料机中进行混合。由此,能够均匀地掺杂M元素,能够有效提高材料的结构稳定性。
在任意实施方式中,所述步骤S1中的烧结条件如下:烧结温度为700~950℃,烧结时间为10~20h,烧结气氛为空气或氧气。由此,能够有效地进行M元素的掺杂。
在任意实施方式中,所述步骤S2中所述含钴化合物的添加比例为相对于所述正极活性材料基体的总重量,钴元素的加入量为1000ppm~20000ppm,可选为1000~19000ppm,进一步可选为1000ppm~13000ppm。由此,由此,能够进一步改善材料的界面副反应。而且由于包覆量适量,能够进一步更好地提高材料的循环、存储及安全性能。
在任意实施方式中,所述步骤S2中的烧结条件如下:烧结温度为500~700℃,烧结时间为5~15h,烧结气氛为空气或氧气。由此,能够提高包覆效果。
在任意实施方式中,所述步骤S3中,所述含铝化合物的添加比例为相对于所述正极活性材料基体的总重量,铝元素的加入量为100~3000ppm,可选为100~2900ppm,进一步可选为500~2000ppm,所述含硼化合物的添加比例为相对于所述正极活性材料基体的总重 量,硼元素的加入量为100~2000ppm,可选为100~1900ppm,进一步可选为500~1500ppm。由此,能够进一步改善材料的界面副反应。而且,由于包覆量适量,能够进一步更好地提高材料的循环、存储及安全性能。
在任意实施方式中,所述步骤S3中的烧结条件如下:烧结温度为200~500℃、可选为200~400℃,烧结时间为5~15h、可选为5~10h,烧结气氛为空气或氧气。由此,能够将含铝化合物和含硼化合物牢固地包覆在正极活性材料颗粒表面,并不渗入颗粒里层,改善包覆效果。
本申请的第三方面提供一种二次电池,包括本申请第一方面的正极活性材料或根据本申请第二方面的方法制备的正极活性材料。
本申请的第四方面提供一种电池模块,包括本申请的第三方面的二次电池。
本申请的第五方面提供一种电池包,包括本申请的第四方面的电池模块。
本申请的第六方面提供一种装置,包括选自本申请的第三方面的二次电池、本申请的第四方面的电池模块或本申请的第五方面的电池包中的一种以上。
附图说明
图1为实施例1中得到的正极活性材料的扫描电镜图。
图2为由实施例1中得到的正极活性材料制作成扣式电池的首次充放电曲线。
图3为分别由实施例1和对比例4中得到的正极活性材料制作成二次电池的全电25℃循环性能测试结果的比较曲线。
图4为分别由实施例1和对比例4中得到的正极活性材料制作成二次电池的全电70℃胀气性能测试结果的比较曲线。
图5是本申请一实施方式的二次电池的示意图。
图6是图5所示的本申请一实施方式的二次电池的分解图。
图7是本申请一实施方式的电池模块的示意图。
图8是本申请一实施方式的电池包的示意图。
图9是图8所示的本申请一实施方式的电池包的分解图。
图10是本申请一实施方式的二次电池用作电源的装置的示意图。
附图标记说明:
1电池包
2上箱体
3下箱体
4电池模块
5二次电池
51壳体
52电极组件
53顶盖组件
具体实施方式
以下,适当地参照附图详细说明具体公开了本申请的正极活性材料及其制造方法、正极极片、二次电池、电池模块、电池包和装置的实施方式。但是会有省略不必要的详细说明的情况。例如,有省略对已众所周知的事项的详细说明、实际相同结构的重复说明的情况。这是为了避免以下的说明不必要地变得冗长,便于本领域技术人员的理解。此外,附图及以下说明是为了本领域技术人员充分理解本申请而提供的,并不旨在限定权利要求书所记载的主题。
为了简明,本申请具体地公开了一些数值范围。然而,任意下限可以与任意上限组合形成未明确记载的范围;以及任意下限可以与其它下限组合形成未明确记载的范围,同样任意上限可以与任意其它上限组合形成未明确记载的范围。此外,每个单独公开的点或单个数值自身可以作为下限或上限与任意其它点或单个数值组合或与其它下限或上限组合形成未明确记载的范围。
正极活性材料
本申请的一个实施方式中,本申请提出了一种正极活性材料。所述正极活性材料包括正极活性材料基体和包覆所述正极活性材料基体的表面的包覆层,其中,所述正极活性材料基体为 Li 1+a[Ni xCo yMn zM b]O 2,其中0<x<1、0≤y<0.3、0≤z<0.3、0<a<0.2、0<b<0.2,且x+y+z+b=1,优选地0.8≤x<1,所述M元素选自Mg、Ca、Sb、Ce、Ti、Zr、Al、Zn及B中的一种以上,所述包覆层包含含钴化合物、含铝化合物和含硼化合物。
虽然机理尚不明确,但本申请人意外地发现:本申请通过在正极活性材料的表面共同包覆含钴化合物、含铝化合物和含硼化合物,能够显著提高正极活性材料的倍率性能、循环性能,同时还能够明显改善正极活性材料与电解液之间的界面副反应,提高容量。另外,本申请即使应用于结构稳定性较差的高镍含量(Ni含量≥80%)的正极活性材料,通过在正极活性材料中掺杂有M元素,同时在正极活性材料的表面共同包覆含钴化合物、含铝化合物和含硼化合物,不仅能够有效提高正极活性材料的结构稳定性,而且还能够显著提高能量密度,并提高正极活性材料的循环性能、倍率性能。
在一些实施方式中,例如,从能够均匀有效地包覆在正极活性材料表面,进一步改善正极活性材料与电解液之间的界面副反应的观点出发,所述含钴化合物选自钴的氧化物、钴盐、氢氧化钴及羟基氧化钴中的一种以上。作为钴的氧化物的例子,可列举出CoO、Co 3O 4等。作为钴盐的例子,可列举出醋酸钴、草酸钴及碳酸钴等。
在一些实施方式中,例如,从能够均匀有效地包覆在正极活性材料表面,进一步改善正极活性材料与电解液之间的界面副反应的观点出发,所述含铝化合物选自氧化铝、氢氧化铝、铝盐及卤化铝中的一种以上。作为氧化铝的例子,可列举出Al 2O 3等。作为铝盐的例子,可列举出Al 2(SO 4) 3、Al(NO) 3等。作为卤化铝的例子,可列举出AlCl 3等。
在一些实施方式中,例如,从能够均匀有效地包覆在正极活性材料表面,进一步改善正极活性材料与电解液之间的界面副反应的观点出发,所述含硼化合物选自氧化硼、卤化硼、硼酸、硼酸盐及有机硼化物中的一种以上。作为氧化硼的例子,可列举出B 2O 3等。作为卤化硼的例子,可列举出BF 3、BCl 3、BBr 3及BI 3等。作为硼酸的例子,可列举出H 3BO 3等。作为硼酸盐的例子,可列举出B 2(SO 4) 3、B(NO 3) 3 等。作为有机硼化物的例子,可列举出BN、H 2BO 5P、C 5H 6B(OH) 2、C 3H 9B 3O 6、(C 2H 5O) 3B及(C 3H 7O) 3B等。
在一些实施方式中,例如,所述包覆层的厚度为0.01μm~2μm、可选为0.1~1μm。若所述包覆层的厚度在上述范围内,则能有效阻止在电解液与正极活性材料的界面发生副反应,并且增加正极活性材料的容量。
在一些实施方式中,例如,相对于所述正极活性材料基体的总重量,所述包覆层中钴元素、铝元素及硼元素的总包覆量重量比例为1000~22000ppm,可选为1000~15000ppm。由此,由于包覆量适量,能够提高正极活性材料的容量、倍率性能及循环性能。
在一些实施方式中,例如,相对于所述正极活性材料基体的总重量,所述包覆层中钴元素的包覆量重量比例为1000~20000ppm,可选为1000~19000ppm,进一步可选为1000~13000ppm。由此,由于包覆量适量,包覆钴化合物能够改善正极活性材料的界面副反应,并提高正极活性材料的容量、倍率性能及循环性能。
在一些实施方式中,例如,相对于所述正极活性材料基体的总重量,所述包覆层中铝元素的包覆量重量比例为100~3000ppm,可选为100~2900ppm,进一步可选为500~2000ppm。由此,由于包覆量适量,包覆含铝化合物能够进一步明显改善正极活性材料的界面副反应,保护正极活性材料,从而进一步更好地提高正极活性材料的循环、存储及安全性能。
在一些实施方式中,例如,相对于所述正极活性材料基体的总重量,所述包覆层中硼元素的包覆量重量比例为100~2000ppm,可选为100~1900ppm,进一步可选为500~1500ppm。由此,由于包覆量适量,包覆含硼化合物能够进一步改善材料的界面副反应,提高正极活性材料的容量,此外还可以进一步更好地提高正极活性材料的倍率性能及循环性能。
在一些实施方式中,所述包覆层中铝元素与硼元素的重量比为0.5~2:1、可选为1~2:1。本发明人发现,在正极活性材料表面包覆含铝化合物虽然能够有效抑制电解液与正极活性材料表面的副反应,改 善电池的循环性能,但是,随着含铝化合物含量的不断增加,可能会降低正极材料的克容量;同时,在正极活性材料表面包覆含硼化合物,能够有效降低正极活性材料的杂锂含量,并进一步提高正极活性材料的克容量,另外,本发明人意外地发现:当包覆层中铝元素与硼元素的重量比在上述范围内,既能够显著地提升正极材料的容量,又能提高正极活性材料的循环性能;并且,二者的重量比在上述规定范围内时,还能够有效保护正极材料的晶体结构,从而进一步改善正极活性材料的安全性能。
在一些实施方式中,例如,正极活性材料为由一次颗粒物凝聚形成的二次颗粒或者单晶颗粒。
在一些实施方式中,当正极活性材料为由一次颗粒物凝聚形成的二次颗粒时,二次颗粒中一次颗粒的平均粒径为100~1000nm。需要说明的是,二次颗粒中一次颗粒的平均粒径是指10K倍的扫描电镜图中所有一次颗粒粒径大小的平均值。
在一些实施方式中,二次颗粒的正极活性材料的平均体积分布粒径D50为2~15μm,可选为2.5~12μm。
在一些实施方式中,二次颗粒的正极活性材料的比表面积为0.2m 2/g~1.0m 2/g,可选为0.3m 2/g~0.8m 2/g。
在一些实施方式中,当正极活性材料为单晶颗粒时,单晶颗粒的正极活性材料的平均体积分布粒径D50为1.0~8.0μm,可选为2.0~4.0μm。
在一些实施方式中,单晶颗粒的正极活性材料的比表面积为0.4m 2/g~2m 2/g,可选为0.5m 2/g~1.5m 2/g。
由此,通过采用上述制造方法制造的正极活性材料具有良好的晶型结构,利于锂离子传输,对倍率性能及循环性能具有改善作用。
另外,平均体积分布粒径D50是指,所述正极活性材料累计体积分布百分数达到50%时所对应的粒径。在本申请中,正极活性材料的体积平均粒径D50可采用激光衍射粒度分析法测定。例如参照标准GB/T 19077-2016,使用激光粒度分析仪(例如Malvern Master Size 3000)进行测定。
在一些实施方式中,所述含钴化合物例如为采用如下所述的含钴化合物,所述含钴化合物的粒径可以为0.001μm~10μm,例如为0.001μm~1μm。由于采用所述纳米级含钴化合物,因而能够均匀有效地包覆在正极材料基体表面,改善材料与电解液之间的界面副反应。
正极活性材料的制造方法
本申请的一个实施方式中,本申请还提供一种正极活性材料的制造方法,包括:
步骤S1:将锂盐、含镍、钴和锰的正极活性材料前驱体、以及含M元素化合物加入混料机中进行混合,得到混合物料a,将所述混合物料a加入窑炉中进行烧结,得到掺杂M元素的正极活性材料基体,其中,所述含镍、钴和锰的正极活性材料前驱体为[Ni xCo yMn z](OH) 2,其中0<x<1,0≤y<0.3,0≤z<0.3,可选地0.8≤x<1,所述M元素为Mg、Ca、Sb、Ce、Ti、Zr、Al、Zn及B中的一种以上;
步骤S2:将所述掺杂M元素的正极活性材料基体与含钴化合物加入混料机中进行混合,得到混合物料b,将所述混合物料b加入窑炉中进行烧结,得到中间体(包覆含钴化合物的正极活性材料);以及
步骤S3:将所述中间体与含铝化合物、含硼化合物加入混料机中进行混合,得到混合物料c,将所述混合物料c加入窑炉中进行烧结,得到包覆含钴化合物、含铝化合物和含硼化合物的正极活性材料。
由此,虽然机理尚不明确,但本申请人意外地发现:通过上述本申请的正极活性材料的制造方法,能够使所述M元素均匀地掺杂在正极活性材料核中,有效提高正极活性材料的结构稳定性。同时在正极活性材料核表面均匀包覆有含钴化合物、含硼化合物、含铝化合物的共同包覆层,能够有效抑制正极活性材料与电解液之间的界面副反应,既提高了正极活性材料的容量、有效提高正极活性材料的倍率性能,而且还能够有效提高正极活性材料的循环、存储及安全性能。另外,通过采用本申请的正极活性材料的制造方法,不仅避免了现有制造方法中湿法包覆等繁杂的制造工序,而且还能够降低生产成本。本申请的制造方法中采用了分步包覆法,可以 使制备的正极活性材料同时兼顾较好的循环性能及较高的容量。若将三者(含钴化合物、含硼化合物、含铝化合物)同时进行包覆,当包覆温度设置过高时,铝和硼可能渗入正极活性材料颗粒内层,并且含硼化合物在高温下容易挥发,影响包覆效果,从而影响容量及循环性能;当包覆温度设置过低时,含钴化合物可能无法有效地包覆在正极活性材料颗粒外层,起不到包覆正极活性材料颗粒的包覆效果,从而影响循环及安全性能,因此通过分步骤包覆,从而能够避免三者一同包覆时影响包覆效果。
在一些实施方式中,所述步骤S1中,按照所述锂盐中的锂元素与所述含镍、钴和锰的正极活性材料前驱体中的镍元素、钴元素和锰元素三者总和的摩尔比为Li/(Ni+Co+Mn)=0.9~1.1、且M元素的掺杂量为1000~5000ppm的方式,将锂盐、含镍、钴和锰的正极活性材料前驱体、以及含M元素化合物加入混料机中进行混合。由此,能够均匀地掺杂M元素,能够有效提高材料的结构稳定性。
在一些实施方式中,所述步骤S1中的烧结条件如下:烧结温度为700~950,烧结时间为10~20h,烧结气氛为空气或氧气。由此,能够有效地进行M元素的掺杂,通过该工序获得的正极材料基体,具有良好的晶型结构,有利于锂离子传输,能够改善倍率性能及循环性能。
在一些实施方式中,所述步骤S2中,所述含钴化合物的添加比例为相对于所述正极活性材料基体的总重量,钴元素的加入量为1000ppm~20000ppm,优选为1000~19000ppm,进一步优选为1000ppm~13000ppm。由此,能够将含钴化合物均匀有效地包覆在正极活性材料基体表面,减少正极活性材料与电解液之间的界面副反应。同时由于包覆量适量,能够提高正极活性材料的容量、倍率性能及循环性能。
在一些实施方式中,所述步骤S2中的烧结条件如下:烧结温度为500~700,烧结时间为5~15h,烧结气氛为空气或氧气。由此,能够将含钴化合物牢固地包覆在正极活性材料的颗粒表面,并不渗入颗粒里层,改善包覆效果。
在一些实施方式中,所述步骤S3中,所述含铝化合物的添加比例为相对于所述正极活性材料基体的总重量,铝元素的加入量为100~3000ppm,可选为100~2900ppm,进一步可选为500~2000ppm,所述含硼化合物的添加比例为相对于所述正极活性材料基体的总重量,硼元素的加入量为100~2000ppm,可选为100~1900ppm,进一步可选为500~1500ppm。由此,能够进一步改善材料的界面副反应。而且,由于包覆量适量,能够进一步更好地提高材料的循环、存储及安全性能。
在一些实施方式中,所述步骤S3中的烧结条件如下:烧结温度为200~500、可选为200~400,烧结时间为5~15h、可选为5~10h,烧结气氛为空气或氧气。由此,能够将含铝化合物和含硼化合物牢固地包覆在正极活性材料颗粒表面,并不渗入颗粒里层,有效改善包覆效果。而且,能进一步明显改善正极活性材料的界面副反应,提高正极活性材料的循环、存储及安全性能。
在一些实施方式中,例如,所述含镍、钴和锰的正极活性材料前驱体为[Ni xCo yMn z](OH) 2,其中0<x<1,0≤y<0.3,0≤z<0.3,进一步地,0.8≤x<1。
在一些实施方式中,例如,所述锂盐可以选自碳酸锂、氢氧化锂中的一种以上。
另外,以下适当参照附图对本申请的二次电池、电池模块、电池包和装置进行说明。
本申请的一个实施方式中,提供一种二次电池。
通常情况下,二次电池包括正极极片、负极极片、电解质和隔离膜。在电池充放电过程中,活性离子在正极极片和负极极片之间往返嵌入和脱出。电解质在正极极片和负极极片之间起到传导离子的作用。隔离膜设置在正极极片和负极极片之间,主要起到防止正负极短路的作用,同时可以使离子通过。
[正极极片]
正极极片包括正极集流体以及设置在正极集流体至少一个表面的正极膜层,所述正极膜层包括本申请第一方面的正极活性材料。
作为示例,正极集流体具有在其自身厚度方向相对的两个表面,正极膜层设置在正极集流体相对的两个表面的其中任意一者或两者上。
本申请的二次电池中,所述正极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可采用铝箔。复合集流体可包括高分子材料基层和形成于高分子材料基层至少一个表面上的金属层。复合集流体可通过将金属材料(铝、铝合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
正极膜层还可选地包括导电剂。但对导电剂的种类不做具体限制,本领域技术人员可以根据实际需求进行选择。作为示例,用于正极膜层的导电剂可以选自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的一种以上。
本申请中可按照本领域已知的方法制备正极极片。作为示例,可以将本申请的正极活性材料、导电剂和粘结剂分散于溶剂(例如N-甲基吡咯烷酮(NMP))中,形成均匀的正极浆料;将正极浆料涂覆在正极集流体上,经烘干、冷压等工序后,得到正极极片。
[负极极片]
负极极片包括负极集流体以及设置在负极集流体至少一个表面上的负极膜层,所述负极膜层包括负极活性材料。
作为示例,负极集流体具有在其自身厚度方向相对的两个表面,负极膜层设置在负极集流体相对的两个表面中的任意一者或两者上。
本申请的二次电池中,所述负极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可以采用铜箔。复合集流体可包括高分子材料基层和形成于高分子材料基材至少一个表面上的金属层。复合集流体可通过将金属材料(铜、铜合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
本申请的二次电池中,所述负极膜层通常包含负极活性材料以及可选的粘结剂、可选的导电剂和其他可选助剂,通常是由负极浆料涂布干燥而成的。负极浆料涂通常是将负极活性材料以及可选的导电剂和粘结剂等分散于溶剂中并搅拌均匀而形成的。溶剂可以是N-甲基吡咯烷酮(NMP)或去离子水。
作为示例,导电剂可选自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的一种以上。
作为示例,粘结剂可选自丁苯橡胶(SBR)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)及羧甲基壳聚糖(CMCS)中的一种以上。
其他可选助剂例如是增稠剂(如羧甲基纤维素钠(CMC-Na))等。
本申请的二次电池中,所述负极膜层除了包括负极活性材料外,还可选地包括其它常用负极活性材料,例如,作为其它常用负极活性材料,可列举出人造石墨、天然石墨、软炭、硬炭、硅基材料、锡基材料和钛酸锂等。所述硅基材料可选自单质硅、硅氧化合物、硅碳复合物、硅氮复合物以及硅合金中的一种以上。所述锡基材料可选自单质锡、锡氧化合物以及锡合金中的一种以上。
[电解质]
电解质在正极极片和负极极片之间起到传导离子的作用。本申请对电解质的种类没有具体的限制,可根据需求进行选择。例如,电解质可选自固态电解质及液态电解质(即电解液)中的至少一种。
在一些实施方式中,所述电解质采用电解液。所述电解液包括电解质盐和溶剂。
在一些实施方式中,电解质盐可选自LiPF 6(六氟磷酸锂)、LiBF 4(四氟硼酸锂)、LiClO 4(高氯酸锂)、LiAsF 6(六氟砷酸锂)、LiFSI(双氟磺酰亚胺锂)、LiTFSI(双三氟甲磺酰亚胺锂)、LiTFS(三氟甲磺酸锂)、LiDFOB(二氟草酸硼酸锂)、LiBOB(二草酸硼酸锂)、LiPO 2F 2(二氟磷酸锂)、LiDFOP(二氟二草酸磷酸锂)及LiTFOP(四氟草酸磷酸锂)中的一种以上。
在一些实施方式中,溶剂可选自碳酸亚乙酯(EC)、碳酸亚丙酯(PC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸二丙酯(DPC)、碳酸甲丙酯(MPC)、碳酸乙丙酯(EPC)、碳酸亚丁酯(BC)、氟代碳酸亚乙酯(FEC)、甲酸甲酯(MF)、乙酸甲酯(MA)、乙酸乙酯(EA)、乙酸丙酯(PA)、丙酸甲酯(MP)、丙酸乙酯(EP)、丙酸丙酯(PP)、丁酸甲酯(MB)、丁酸乙酯(EB)、1,4-丁内酯(GBL)、环丁砜(SF)、二甲砜(MSM)、甲乙砜(EMS)及二乙砜(ESE)中的一种以上。
在一些实施方式中,所述电解液中还可选地包括添加剂。例如添加剂可以包括负极成膜添加剂,也可以包括正极成膜添加剂,还可以包括能够改善电池某些性能的添加剂,例如改善电池过充性能的添加剂、改善电池高温性能的添加剂、以及改善电池低温性能的添加剂等。
[隔离膜]
采用电解液的二次电池、以及一些采用固态电解质的二次电池中,还包括隔离膜。隔离膜设置在正极极片和负极极片之间,起到隔离的作用。本申请对隔离膜的种类没有特别的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离膜。在一些实施方式中,隔离膜的材质可选自玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯中的一种以上。隔离膜可以是单层薄膜,也可以是多层复合薄膜,没有特别限制。在隔离膜为多层复合薄膜时,各层的材料可以相同或不同,没有特别限制。
在一些实施方式中,正极极片、负极极片和隔离膜可通过卷绕工艺或叠片工艺制成电极组件。
在一些实施方式中,二次电池可包括外包装。该外包装可用于封装上述电极组件及电解质。
在一些实施方式中,二次电池的外包装可以是硬壳,例如硬塑料壳、铝壳、钢壳等。二次电池的外包装也可以是软包,例如袋式软包。软包的材质可以是塑料,作为塑料,可列举出聚丙烯(PP)、聚对苯二甲酸丁二醇酯(PBT)以及聚丁二酸丁二醇酯(PBS)等。
本申请对二次电池的形状没有特别的限制,其可以是圆柱形、方 形或其他任意的形状。例如,图5是作为一个示例的方形结构的二次电池5。
在一些实施方式中,参照图6,外包装可包括壳体51和盖板53。其中,壳体51可包括底板和连接于底板上的侧板,底板和侧板围合形成容纳腔。壳体51具有与容纳腔连通的开口,盖板53能够盖设于所述开口,以封闭所述容纳腔。正极极片、负极极片和隔离膜可经卷绕工艺或叠片工艺形成电极组件52。电极组件52封装于所述容纳腔内。电解液浸润于电极组件52中。二次电池5所含电极组件52的数量可以为一个或多个,本领域技术人员可根据具体实际需求进行选择。
在一些实施方式中,二次电池可以组装成电池模块,电池模块所含二次电池的数量可以为一个或多个,具体数量本领域技术人员可根据电池模块的应用和容量进行选择。
图7是作为一个示例的电池模块4。参照图7,在电池模块4中,多个二次电池5可以是沿电池模块4的长度方向依次排列设置。当然,也可以按照其他任意的方式进行排布。进一步可以通过紧固件将该多个二次电池5进行固定。
可选地,电池模块4还可以包括具有容纳空间的外壳,多个二次电池5容纳于该容纳空间。
在一些实施方式中,上述电池模块还可以组装成电池包,电池包所含电池模块的数量本领域技术人员可以根据电池包的应用和容量进行选择。
图8和图9是作为一个示例的电池包1。参照图8和图9,在电池包1中可以包括电池箱和设置于电池箱中的多个电池模块4。电池箱包括上箱体2和下箱体3,上箱体2能够盖设于下箱体3,并形成用于容纳电池模块4的封闭空间。多个电池模块4可以按照任意的方式排布于电池箱中。
另外,本申请还提供一种装置,所述装置包括本申请提供的二次电池、电池模块、或电池包中的一种以上。所述二次电池、电池模块、或电池包可以用作所述装置的电源,也可以用作所述装置的能量存储单元。所述装置可以但不限于是移动设备(例如手机、笔记本电脑等)、 电动车辆(例如纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等。
作为所述装置,可以根据其使用需求来选择二次电池、电池模块或电池包。
图10是作为一个示例的装置。该装置为纯电动车、混合动力电动车、或插电式混合动力电动车等。为了满足该装置对二次电池的高功率和高能量密度的需求,可以采用电池包或电池模块。
作为另一个示例的装置可以是手机、平板电脑、笔记本电脑等。该装置通常要求轻薄化,可以采用二次电池作为电源。
实施例
以下,说明本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
实施例1
将正极活性材料前驱体、氢氧化锂及氧化锆(ZrO 2),按照氢氧化锂中的锂元素与正极活性材料前驱体中的镍元素、钴元素和锰元素三者总和的摩尔比为Li/(Ni+Co+Mn)=1.05的方式,加入犁刀混料机中混合1h,得到混合物料。其中,相对于所述混合物料的总重量,锆元素的加入量为2000ppm,所述正极活性材料前驱体为[Ni 0.92Co 0.05Mn 0.03](OH) 2,平均体积粒径D50为5μm。
将上述得到的混合物料加入辊道窑中在烧结温度800下进行一次烧结20h,一次烧结气氛为氧气,得到正极活性材料基体。
将上述得到的正极活性材料基体与CoO,按照相对于所述正极活性材料基体的总重量,钴元素的加入量为8000ppm的方式,加入高混机中混合1h,得到混合物料,将所述混合物料加入辊道窑中进行二次烧结,其中,二次烧结温度为600,二次烧结时间为10h,二次烧结气氛为氧气,得到包覆CoO的正极活性材料。由此得到的包覆CoO 的正极活性材料为平均体积粒径D50为5μm的二次颗粒。
将二次烧结得到的包覆CoO的正极活性材料、和AlCl 3与B 2O 3的混合物,按照相对于所述正极活性材料基体的总重量,铝元素的加入量为1000ppm、硼元素的加入量为1000ppm,以及铝元素与硼元素的加入重量比例为1:1的方式,加入高混机中混合1h,得到混合物料,将所述混合物料加入辊道窑中进行三次烧结,三次烧结温度为250,三次烧结时间为5h,三次烧结气氛为氧气,得到最终包覆后的正极活性材料。由此得到的最终包覆后的正极活性材料为平均体积粒径D50为5μm的二次颗粒,其中利用万分尺量取的包覆层的总厚度为0.60μm。实施例1中得到的正极活性材料的扫描电镜图如图1所示。由图1可以看出,上述包覆物被均匀地包覆在正极活性材料颗粒的表面。
实施例2
除了将正极活性材料前驱体替换为[Ni 0.8Co 0.1Mn 0.1](OH) 2,其平均体积粒径D50为2.5μm,将一次烧结温度调整为700,一次烧结中加入的氧化锆(ZrO 2)替换为MgO,一次烧结时间为10h,镁元素的加入量为5000ppm,铝元素的加入量调整为1200ppm以外,其他条件与实施例1相同。由此得到的最终包覆后的正极活性材料为平均体积粒径D50为2.5μm的二次颗粒,其中利用万分尺量取的包覆层的总厚度为0.65μm。
实施例3
除了将正极活性材料前驱体替换为[Ni 0.6Co 0.2Mn 0.2](OH) 2,其平均体积粒径D50为12μm,将一次烧结温度调整为950,一次烧结中加入的氧化锆(ZrO 2)替换为TiO 2,一次烧结时间为15h,钛元素的加入量为1000ppm,铝元素的加入量调整为1500ppm以外,其他条件与实施例1相同。由此得到的最终包覆后的正极活性材料为平均体积粒径D50为12μm的二次颗粒,其中利用万分尺量取的包覆层的总厚度为0.67μm。
实施例4
除了将正极活性材料前驱体的平均体积粒径D50替换为2μm, 将一次烧结温度调整为900,将二次烧结温度调整为500,二次烧结中加入的CoO替换为Co(OH) 2,钴元素的加入量为13000ppm,二次烧结时间调整为5h,铝元素的加入量调整为1800ppm以外,其他条件与实施例1相同。由此得到的最终包覆后的正极活性材料为平均体积粒径D50为2μm的单晶颗粒,其中利用万分尺量取的包覆层的总厚度为0.88μm。
实施例5
除了将正极活性材料前驱体的平均体积粒径D50替换为4μm,将一次烧结温度调整为950,将二次烧结温度调整为700,二次烧结中加入的CoO替换为Co 3O 4,钴元素的加入量调整为1000ppm,二次烧结时间调整为15h,三次烧结中铝元素的加入量调整为1200ppm,铝元素与硼元素的加入重量比调整为1.2:1,其他条件与实施例1相同。由此得到的最终包覆后的正极活性材料为平均体积粒径D50为4μm的单晶颗粒,其中利用万分尺量取的包覆层的总厚度为0.16μm。
实施例6
除了将正极活性材料前驱体替换为[Ni 0.95Co 0.02Mn 0.03](OH) 2,将一次烧结温度调整为850,一次烧结中加入的氧化锆(ZrO 2)替换为Al 2O 3,铝元素的加入量调整为2000ppm,将二次烧结温度调整为650,二次烧结中加入的CoO替换为醋酸钴,钴元素的加入量调整为20000ppm,将三次烧结温度调整为200,三次烧结时间调整为5h,三次烧结中加入的AlCl 3替换为Al 2O 3、B 2O 3替换为H 3BO 3,硼元素的加入量调整为2000ppm,铝元素与硼元素的加入重量比调整为0.5:1以外,其他条件与实施例1相同。由此得到的最终包覆后的正极活性材料为平均体积粒径D50为5μm的二次颗粒,其中利用万分尺量取的包覆层的总厚度为1.42μm。
实施例7
除了将三次烧结温度调整为400,三次烧结时间调整为10h,三次烧结中加入的Al 2O 3替换为AlCl 3,铝元素的加入量调整为3000ppm,三次烧结中加入的H 3BO 3替换为(C 2H 5O) 3B,硼元素的加入量调整为1500ppm,铝元素与硼元素的加入重量比调整为2:1以外, 其他条件与实施例6相同。由此得到的最终包覆后的正极活性材料为平均体积粒径D50为5μm的二次颗粒,其中利用万分尺量取的包覆层的总厚度为1.81μm。
实施例8
除了将正极活性材料前驱体D50替换为10μm,将三次烧结温度调整为350,三次烧结时间调整为7h,三次烧结中加入的Al 2O 3替换为Al 2(SO 4) 3,铝元素的加入量调整为500ppm,三次烧结中加入的H 3BO 3替换为BCl 3,硼元素的加入量调整为500ppm,铝元素与硼元素的加入重量比调整为1:1以外,其他条件与实施例6相同。由此得到的最终包覆后的正极活性材料为平均体积粒径D50为10μm的二次颗粒,其中利用万分尺量取的包覆层的总厚度为1.15μm。
实施例9
除了将钴元素的加入量调整为30000ppm,铝元素的加入量调整为5000ppm,硼元素的加入量调整为5000ppm以外,其他条件与实施例8相同。由此得到的最终包覆后的正极活性材料为平均体积粒径D50为10μm的二次颗粒,其中利用万分尺量取的包覆层的总厚度为2.85μm。
实施例10
除了将铝元素的加入量调整为5000ppm,硼元素的加入量调整为1000ppm,铝元素与硼元素的加入重量比调整为5:1以外,其他条件与实施例8相同。由此得到的最终包覆后的正极活性材料为平均体积粒径D50为10μm的二次颗粒,其中利用万分尺量取的包覆层的总厚度为1.35μm。
实施例11
除了将正极活性材料前驱体的平均体积粒径D50调整为18μm以外,其他条件与实施例8相同。由此得到的最终包覆后的正极活性材料为平均体积粒径D50为18μm的二次颗粒,其中利用万分尺量取的包覆层的总厚度为1.10μm。
实施例12
除了将正极活性材料前驱体的平均体积粒径D50调整为9μm以 外,其他条件与实施例5相同。由此得到的最终包覆后的正极活性材料为平均体积粒径D50为9μm的单晶颗粒,其中利用万分尺量取的包覆层的总厚度为0.10μm。
对比例1
将正极活性材料前驱体、氢氧化锂及氧化锆(ZrO 2),按照氢氧化锂中的锂与正极活性材料前驱体中的镍元素、钴元素和锰元素三者总和的摩尔比为Li/(Ni+Co+Mn)=1.05的方式,加入犁刀混料机中混合1h,得到混合物料,其中,相对于所述混合物料的总重量,锆元素的加入量为2000ppm,所述正极活性材料前驱体为[Ni 0.92Co 0.05Mn 0.03](OH) 2,其平均体积粒径D50为5μm。
将上述得到的混合物料加入辊道窑中在烧结温度800下进行一次烧结20h,一次烧结气氛为氧气,得到正极活性材料。
由此得到的正极活性材料为平均体积粒径D50为5μm的二次颗粒。
对比例2
在将对比例1中烧结得到的正极活性材料作为正极活性材料基体的基础上,将正极活性材料基体与AlCl 3,按照相对于正极活性材料基体的总重量,铝元素的加入量为1000ppm的方式,加入高混机中混合1h,得到混合物料,将所述混合物料加入辊道窑中进行二次烧结,二次烧结温度为300,二次烧结时间为10h,二次烧结气氛为氧气,得到包覆AlCl 3的正极活性材料。由此得到的最终包覆后的正极活性材料为平均体积粒径D50为5μm的二次颗粒,其中包覆层的总厚度为0.05μm。
对比例3
除了将AlCl 3替换为B 2O 3,硼元素的加入量为1000ppm以外,其他与对比例2相同。由此得到的最终包覆后的正极活性材料为平均体积粒径D50为5μm的二次颗粒,其中包覆层的总厚度为0.06μm。
对比例4
除了将AlCl 3替换为AlCl 3与B 2O 3的混合物,其中铝元素的加入量为1000ppm,硼元素的加入量为1000ppm,铝元素与硼元素的加入 重量比为1:1以外,其他与对比例2相同。由此得到的最终包覆后的正极活性材料为平均体积粒径D50为5μm的二次颗粒,其中利用万分尺量取的包覆层的总厚度为0.10μm。
对比例5
在将对比例1中烧结得到的正极活性材料作为正极活性材料基体的基础上,将正极活性材料基体与CoO,按照相对于正极活性材料基体的总重量,钴元素的加入量为8000ppm的方式,加入高混机中混合1h,得到混合物料,将所述混合物料加入辊道窑中进行二次烧结,二次烧结温度为600,二次烧结时间为10h,二次烧结气氛为氧气,得到包覆CoO的正极活性材料。由此得到的最终包覆后的正极活性材料为平均体积粒径D50为5μm的二次颗粒,其中利用万分尺量取的包覆层的总厚度为0.41μm。
对比例6
将正极活性材料前驱体、氢氧化锂及氧化镁,按照氢氧化锂中的锂金属摩尔与正极活性材料前驱体中的镍元素、钴元素和锰元素三者总金属的摩尔比为Li/(Ni+Co+Mn)=1.05的方式,加入犁刀混料机中混合1h,得到混合物料,其中,相对于所述混合物料的总重量,镁的加入量为5000ppm,所述正极活性材料前驱体为[Ni 0.8Co 0.1Mn 0.1](OH) 2,其平均体积粒径D50为2.5μm。
将上述得到的混合物料加入辊道窑中在烧结温度700下进行一次烧结10h,一次烧结气氛为氧气,得到正极活性材料。由此得到的正极活性材料为平均体积粒径D50为2.5μm的二次颗粒。
对比例7
将正极活性材料前驱体、氢氧化锂及TiO 2,按照氢氧化锂中的锂金属摩尔与正极活性材料前驱体中的镍元素、钴元素和加入锰元素三者总金属摩尔的摩尔比为Li/(Ni+Co+Mn)=1.05的方式,犁刀混料机中混合1h,得到混合物料。其中,相对于所述混合物料的总重量,钛的加入量为1000ppm,所述正极活性材料前驱体为[Ni 0.6Co 0.2Mn 0.2](OH) 2,其平均体积粒径D50为12μm。
将上述得到的混合物料加入辊道窑中在烧结温度950下进行一 次烧结15h,一次烧结气氛为氧气,得到正极活性材料。由此得到的正极活性材料为平均体积粒径D50为12μm的二次颗粒。
上述实施例1~12、对比例1~7的正极材料的相关参数如下述表1所示。
表1:实施例1~12与对比例1~7的参数结果
Figure PCTCN2020125667-appb-000001
另外,将上述实施例1~12和对比例1~7中得到的正极活性材料分别如下所示制备成扣式电池和二次电池,进行性能测试。测试结果如下表2所示。
(1)扣式电池的制备
将上述各实施例和对比例中的包覆后的正极活性材料成品、聚偏二氟乙烯(PVDF)、导电碳加入至一定量的N-甲基吡咯烷酮(NMP)中,加入比例为90:5:5,在干燥房中搅拌制成浆料,在铝箔上涂敷上述浆料,干燥、冷压制成正极极片,采用锂片作为负极,电解液为1mol/L LiPF 6/(碳酸乙烯酯(EC)+碳酸二乙酯(DEC)+碳酸二甲酯 (DMC))(体积比1:1:1),在扣电箱中组装成扣式电池。
(2)扣电初始克容量测试
将上述制备的各扣式电池,分别在2.8~4.3V下,按照0.1C充电至4.3V,然后在4.3V下恒压充电至电流≤0.05mA,静置2min,此时的充电容量记为C0,然后按照0.1C放电至2.8V,此时的放电容量为初始放电容量,记为D0,首效即为D0/C0*100%。
将测试的放电容量值(即初始放电容量D0)除以扣式电池中正极活性材料的质量,即为正极活性材料的扣电初始克容量。
(3)二次电池的制备
将上述各实施例和对比例中的正极活性材料成品作为正极活性物质,与导电剂乙炔黑、粘结剂聚偏二氟乙烯(PVDF)按重量比94:3:3在N-甲基吡咯烷酮溶剂体系中充分搅拌混合均匀后,涂覆于铝箔上烘干、冷压,得到正极极片。
将作为负极活性物质的人造石墨、导电剂乙炔黑、粘结剂丁苯橡胶(SBR)以及增稠剂碳甲基纤维素钠(CMC)按照重量比90:5:2:2:1在去离子水溶剂体系中充分搅拌混合均匀后,涂覆于铜箔上烘干、冷压,得到负极极片。
以聚乙烯(PE)制多孔聚合薄膜作为隔离膜。
将正极片、隔离膜以及负极片按顺序重叠,使隔离膜处于正负极之间起到隔离的作用,并卷绕得到裸电芯。将裸电芯置于外包装中,注入上述(1)扣式电池制备所使用的电解液并封装,得到二次电池。
(4)二次电初始克容量测试
将上述制备的各二次电池,分别在25恒温环境下,静置5min,按照1/3C放电至2.8V,静置5min后,按照1/3C充电至4.25V,然后在4.25V下恒压充电至电流≤0.05mA,静置5min,此时的充电容量记为C0,然后按照1/3C放电至2.8V,此时的放电容量为初始放电容量,记为D0。
将测试的放电容量值(即初始放电容量D0)除以二次电池中正极活性材料的质量,即为正极活性材料的全电初始克容量。
(5)二次电池在25/45 循环性能测试
将上述制备的各二次电池,分别在25或45的恒温环境下,在2.8~4.25V下,按照1C充电至4.25V,然后在4.25V下恒压充电至电流≤0.05mA,静置5min,然后按照1C放电至2.8V,容量记为D n(n=0,1,2……),重复上述操作,进行300次循环,测定容量衰减(fading)值。
(6)二次电池70 胀气性能测试
对于上述制备的100%SOC的各二次电池(保护电压范围:2.7-4.3V,标称容量2.25Ah),利用排水法测量存储前的初始电芯(裸电芯)体积,然后将上述各二次电池分别在70存储于存储炉中,每隔48h将电芯拿出存储炉,冷却至室温后再次利用排水法测量电芯体积,存储30天结束测试,或者体积膨胀超过50%停止存储。
二次电池70℃存储30天后的胀气量=[二次电池70℃存储30天后的电芯体积-二次电池的初始电芯体积]÷初始放电容量D0。
表2:实施例1~8与对比例1~7的性能测试结果
Figure PCTCN2020125667-appb-000002
根据上述结果可知,实施例1~12中得到的正极活性材料进行掺杂的基础上,进一步包覆了含钴化合物、含铝化合物和含硼化合物,因而在能量密度、循环性能和安全性能的改善方面,均取得了良好的效果。并且,还提高了正极活性材料的首效。
而相对于此,对比例1中得到的正极活性材料仅掺杂了锆,对比例6中得到的正极活性材料仅掺杂了镁,对比例7中得到的正极活性材料仅掺杂了钛,但均未进行包覆。因此,对比例1在循环性能和安全性能方面较差,而对比例6和7在正极活性材料的容量方面较差,并且在循环性能和安全性能的改善方面,也未取得有效提高。
对比例2中得到的正极活性材料掺杂了锆,但仅包覆了含铝化合物。对比例3中得到的正极活性材料掺杂了锆,但仅包覆了含硼化合物。对比例4中得到的正极活性材料掺杂了锆,但仅包覆了含铝化合物和含硼化合物。对比例5中得到的正极活性材料掺杂了锆,但仅包覆了含钴化合物。对比例2~5虽然均进行了包覆,与未包覆相比,正极活性材料的容量方面较好,但由于不满足共同包覆含钴化合物、含铝化合物和含硼化合物,因而在循环性能和安全性能的方面均没有明显地改善。
另外,实施例9和10与实施例8相比,可知,虽然这些实施例均在能量密度、循环性能和安全性能的改善方面,均取得了良好的效果。但由于实施例9包覆厚度过厚,包覆厚度达到2.85μm,因而影响了容量,有容量降低的倾向,同时会影响循环过程中的锂离子传输,有循环性能下降的倾向。由于实施例10包覆比例过高,铝元素与硼元素的加入重量比(铝:硼)达到5:1,有容量及循环性能下降的倾向。
实施例12与实施例5相比、实施例11与实施例8相比,可知,虽然这些实施例均在能量密度、循环性能和安全性能的改善方面,均取得了良好的效果。但由于实施例11、12中获得的正极活性材料的平均体积粒径D50过大,对正极活性材料产品的容量、循环及安全性能有一定影响。
需要说明的是,本申请不限定于上述实施方式。上述实施方式仅为例示,在本申请的技术方案范围内具有与技术思想实质相同的构成、发挥相同作用效果的实施方式均包含在本申请的技术范围内。此外,在不脱离本申请主旨的范围内,对实施方式施加本领域技术人员能够想到的各种变形、将实施方式中的一部分构成要素加以组合而构筑的其它方式也包含在本申请的范围内。

Claims (22)

  1. 一种正极活性材料,其特征在于,
    所述正极活性材料包括正极活性材料基体和包覆层,所述包覆层包覆所述正极活性材料基体的表面,
    其中,所述正极活性材料基体为Li 1+a[Ni xCo yMn zM b]O 2,其中0<x<1、0≤y<0.3、0≤z<0.3、0<a<0.2、0<b<0.2,且x+y+z+b=1,可选地0.8≤x<1,所述M选自Mg、Ca、Sb、Ce、Ti、Zr、Al、Zn及B中的一种以上,所述包覆层包含含钴化合物、含铝化合物和含硼化合物。
  2. 根据权利要求1所述的正极活性材料,其特征在于,
    所述包覆层中铝元素与硼元素的重量比为0.5~2:1,可选为1~2:1。
  3. 根据权利要求1或2所述的正极活性材料,其特征在于,
    相对于所述正极活性材料基体的总重量,所述包覆层中钴元素、铝元素及硼元素的总包覆量重量比例为1000~22000ppm,可选为1000~15000ppm。
  4. 根据权利要求1~3中任一项所述的正极活性材料,其特征在于,
    相对于所述正极活性材料基体的总重量,所述包覆层中钴元素的包覆量重量比例为1000~20000ppm,可选为1000~19000ppm,进一步可选为1000~13000ppm。
  5. 根据权利要求1~4中任一项所述的正极活性材料,其特征在于,
    相对于所述正极活性材料基体的总重量,所述包覆层中铝元素的包覆量重量比例为100~3000ppm,可选为100~2900ppm,进一步可选为500~2000ppm。
  6. 根据权利要求1~5中任一项所述的正极活性材料,其特征在于,
    相对于所述正极活性材料基体的总重量,所述包覆层中硼元素的包覆量为100~2000ppm,可选为100~1900ppm,进一步可选为500~1500ppm。
  7. 根据权利要求1~6中任一项所述的正极活性材料,其特征在于,所述包覆层的厚度为0.01μm~2μm、可选为0.1~1μm。
  8. 根据权利要求1~7中任一项所述的正极活性材料,其特征在于,
    所述正极活性材料的颗粒为由一次颗粒物凝聚形成的二次颗粒;
    可选地,所述二次颗粒中一次颗粒平均粒径为100~1000nm;或,
    可选地,正极活性材料的平均体积分布粒径D50为2~15μm,进一步可选为2.5~12μm;或,
    可选地,正极活性材料的比表面积为0.2m 2/g~1.0m 2/g,可选为0.3m 2/g~0.8m 2/g。
  9. 根据权利要求1~8中任一项所述的正极活性材料,其特征在于,
    所述正极活性材料的颗粒为单晶颗粒;
    可选地,所述正极活性材料的平均体积分布粒径D50为1.0~8.0μm,进一步可选为2.0~4.0μm;或,
    可选地,所述正极活性材料的比表面积为0.4m 2/g~2m 2/g,进一步可选为0.5m 2/g~1.5m 2/g。
  10. 根据权利要求1~9中任一项所述的正极活性材料,其特征在于,
    所述含钴化合物选自氧化钴、钴盐、氢氧化钴及羟基氧化钴中的一种以上;或
    所述含铝化合物选自氧化铝、氢氧化铝、铝盐及卤化铝中的一种以上;或,
    所述含硼化合物选自氧化硼、卤化硼、硼酸、硼酸盐及有机硼化物中的一种以上。
  11. 一种正极活性材料的制造方法,其特征在于,
    包括:
    步骤S1:提供正极活性材料基体,所述正极活性材料基体的化学式为Li 1+a[Ni xCo yMn zM b]O 2,其中,0<x<1、0≤y<0.3、0≤z<0.3、0<a<0.2、0<b<0.2,所述M选自Mg、Ca、Sb、Ce、Ti、Zr、Al、Zn及B中的一种以上;
    步骤S2:将所述正极活性材料基体与含钴化合物混合并烧结,得到中间体;以及
    步骤S3:将所述中间体与含铝化合物、含硼化合物进行混合并烧结,得到正极活性材料;
    其中,所述正极活性材料包括正极活性材料基体和包覆层,所述包覆层包覆所述正极活性材料基体的表面,所述正极活性材料基体为Li 1+a[Ni xCo yMn zM b]O 2,其中,0<x<1、0≤y<0.3、0≤z<0.3、0<a<0.2、0<b<0.2,可选地0.8≤x<1,所述M选自Mg、Ca、Sb、Ce、Ti、Zr、Al、Zn及B中的一种以上,所述包覆层包含含钴化合物、含铝化合物和含硼化合物。
  12. 根据权利要求11所述的正极活性材料的制造方法,其特征在于,
    步骤S1中,将锂盐、含镍、钴和锰的正极活性材料前驱体、以及含M元素化合物进行混合,得到混合物料a,将所述混合物料a进行烧结,得到所述正极活性材料基体;
    步骤S2中,将正极活性材料基体与所述含钴化合物进行混合,得到混合物料b,将所述混合物料b进行烧结,得到中间体;以及
    步骤S3中,将所述中间体与所述含铝化合物、所述含硼化合物 进行混合,得到混合物料c,将所述混合物料c进行烧结,得到所述正极活性材料。
  13. 根据权利要求12所述的正极活性材料的制造方法,其特征在于,
    在步骤S1中,按照所述锂盐中的锂元素与所述含镍、钴和锰的正极活性材料前驱体中的镍元素、钴元素和锰元素三者总和的摩尔比为Li/(Ni+Co+Mn)=0.9~1.1、且M元素的掺杂量为1000~5000ppm的方式,将所述锂盐、所述含镍、钴和锰的正极活性材料前驱体、以及所述含M元素化合物进行混合。
  14. 根据权利要求11~13中任一项所述的正极活性材料的制造方法,其特征在于,
    在步骤S1中,所述烧结的温度为700~950℃;所述烧结的时间为10~20h;所述烧结的气氛为空气或氧气。
  15. 根据权利要求11~14中任一项所述的正极活性材料的制造方法,其特征在于,
    在步骤S2中,相对于所述正极活性材料基体的总重量,所述含钴化合物中的钴元素的加入量为1000ppm~20000ppm,可选为1000~19000ppm,进一步可选为1000ppm~13000ppm。
  16. 根据权利要求11~15中任一项所述的正极活性材料的制造方法,其特征在于,
    在步骤S2中,所述烧结的温度为500~700℃;所述烧结的时间为5~15h;所述烧结的气氛为空气或氧气。
  17. 根据权利要求11~16中任一项所述的正极活性材料的制造方法,其特征在于,
    在步骤S3中,相对于所述正极活性材料基体的总重量,所述含铝化合物中的铝元素的加入量为100~3000ppm,可选为100~2900ppm, 进一步可选为500~2000ppm;或,
    在步骤S3中,相对于所述正极活性材料基体的总重量,所述含硼化合物中的硼元素的加入量为100~2000ppm,可选为100~1900ppm,进一步可选为500~1500ppm。
  18. 根据权利要求11~17中任一项所述的正极活性材料的制造方法,其特征在于,
    在步骤S3中,所述烧结的温度为200~500℃,可选为200~400℃;所述烧结的时间为5~15h、可选为5~10h;所述烧结的气氛为空气或氧气。
  19. 一种二次电池,其特征在于,
    包括权利要求1~10中任一项所述的正极材料或通过权利要求11~18中任一项所述的正极活性材料的制造方法制得的正极活性材料。
  20. 一种电池模块,其特征在于,包括权利要求19所述的二次电池。
  21. 一种电池包,其特征在于,包括权利要求20所述的电池模块。
  22. 一种装置,其特征在于,包括选自权利要求19所述的二次电池、权利要求20所述的电池模块或权利要求21所述的电池包中的一种以上。
PCT/CN2020/125667 2020-10-31 2020-10-31 正极活性材料及其制造方法、二次电池、电池模块、电池包和装置 WO2022088151A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202080104536.1A CN116802834A (zh) 2020-10-31 2020-10-31 正极活性材料及其制造方法、二次电池、电池模块、电池包和装置
EP20959312.8A EP4075547A4 (en) 2020-10-31 2020-10-31 POSITIVE ELECTRODE ACTIVE MATERIAL AND METHOD OF PRODUCTION, SECONDARY BATTERY, BATTERY MODULE, BATTERY PACK AND DEVICE
KR1020237003749A KR20230031939A (ko) 2020-10-31 2020-10-31 양극 활성재료 및 이의 제조방법, 이차 전지, 전지 모듈, 전지팩과 장치
JP2022548243A JP2023513558A (ja) 2020-10-31 2020-10-31 正極活物質、及びその製造方法、二次電池、電池モジュール、バッテリパック及び装置
PCT/CN2020/125667 WO2022088151A1 (zh) 2020-10-31 2020-10-31 正极活性材料及其制造方法、二次电池、电池模块、电池包和装置
US18/085,497 US20230119115A1 (en) 2020-10-31 2022-12-20 Positive-electrode active material and manufacturing method thereof, secondary battery, battery module, battery pack, and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/125667 WO2022088151A1 (zh) 2020-10-31 2020-10-31 正极活性材料及其制造方法、二次电池、电池模块、电池包和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/085,497 Continuation US20230119115A1 (en) 2020-10-31 2022-12-20 Positive-electrode active material and manufacturing method thereof, secondary battery, battery module, battery pack, and apparatus

Publications (1)

Publication Number Publication Date
WO2022088151A1 true WO2022088151A1 (zh) 2022-05-05

Family

ID=81381678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125667 WO2022088151A1 (zh) 2020-10-31 2020-10-31 正极活性材料及其制造方法、二次电池、电池模块、电池包和装置

Country Status (6)

Country Link
US (1) US20230119115A1 (zh)
EP (1) EP4075547A4 (zh)
JP (1) JP2023513558A (zh)
KR (1) KR20230031939A (zh)
CN (1) CN116802834A (zh)
WO (1) WO2022088151A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4293743A1 (en) * 2022-06-16 2023-12-20 Prime Planet Energy & Solutions, Inc. Positive electrode and nonaqueous electrolyte secondary battery including the same
EP4345937A1 (en) * 2022-09-30 2024-04-03 LG Energy Solution, Ltd. Positive electrode material, positive electrode and secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117878244A (zh) * 2024-03-08 2024-04-12 宁德时代新能源科技股份有限公司 电池单体、电池和用电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101234426A (zh) * 2008-02-22 2008-08-06 中南大学 纳米Fe、Mo包覆Si3N4颗粒的复合粉末及其制备方法
CN108269994A (zh) * 2016-12-30 2018-07-10 比亚迪股份有限公司 正极活性材料前驱体及其制备方法、正极活性材料及其制备方法、正极和电池
WO2019088805A2 (ko) * 2017-11-06 2019-05-09 주식회사 엘지화학 스피넬 구조의 리튬 망간계 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
CN110892565A (zh) * 2017-10-12 2020-03-17 株式会社Lg化学 锂二次电池用正极活性材料、其制备方法以及包含该正极活性材料的锂二次电池用正极和锂二次电池
CN111527630A (zh) * 2018-02-23 2020-08-11 株式会社Lg化学 二次电池用正极活性材料、其制备方法以及包含其的锂二次电池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158011A (ja) * 2000-09-25 2002-05-31 Samsung Sdi Co Ltd リチウム二次電池用正極活物質及びその製造方法
JP5704986B2 (ja) * 2011-03-24 2015-04-22 日立マクセル株式会社 非水電解質二次電池用正極材料及び非水電解質二次電池
CN112909238B (zh) * 2018-12-29 2022-04-22 宁德时代新能源科技股份有限公司 正极活性材料、正极极片及电化学储能装置
WO2020162277A1 (ja) * 2019-02-06 2020-08-13 株式会社村田製作所 二次電池用正極活物質および二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101234426A (zh) * 2008-02-22 2008-08-06 中南大学 纳米Fe、Mo包覆Si3N4颗粒的复合粉末及其制备方法
CN108269994A (zh) * 2016-12-30 2018-07-10 比亚迪股份有限公司 正极活性材料前驱体及其制备方法、正极活性材料及其制备方法、正极和电池
CN110892565A (zh) * 2017-10-12 2020-03-17 株式会社Lg化学 锂二次电池用正极活性材料、其制备方法以及包含该正极活性材料的锂二次电池用正极和锂二次电池
WO2019088805A2 (ko) * 2017-11-06 2019-05-09 주식회사 엘지화학 스피넬 구조의 리튬 망간계 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
CN111527630A (zh) * 2018-02-23 2020-08-11 株式会社Lg化学 二次电池用正极活性材料、其制备方法以及包含其的锂二次电池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4293743A1 (en) * 2022-06-16 2023-12-20 Prime Planet Energy & Solutions, Inc. Positive electrode and nonaqueous electrolyte secondary battery including the same
EP4345937A1 (en) * 2022-09-30 2024-04-03 LG Energy Solution, Ltd. Positive electrode material, positive electrode and secondary battery

Also Published As

Publication number Publication date
EP4075547A1 (en) 2022-10-19
CN116802834A (zh) 2023-09-22
EP4075547A4 (en) 2023-08-02
US20230119115A1 (en) 2023-04-20
KR20230031939A (ko) 2023-03-07
JP2023513558A (ja) 2023-03-31

Similar Documents

Publication Publication Date Title
KR102502618B1 (ko) 이차 전지, 이차 전지를 포함하는 전지 모듈, 전지 팩 및 장치
WO2022088151A1 (zh) 正极活性材料及其制造方法、二次电池、电池模块、电池包和装置
CN115133020B (zh) 锰酸锂正极活性材料及包含其的正极极片、二次电池、电池模块、电池包和用电装置
JP7483044B2 (ja) 高ニッケル正極活物質、その製造方法、それを含むリチウムイオン電池、電池モジュール、電池パック及び電力消費装置
WO2022155861A1 (zh) 正极活性材料、锂离子二次电池、电池模块、电池包和用电装置
JP2023527491A (ja) マンガン酸リチウム正極活性材料及びそれを含む正極シート、二次電池、電池モジュール、電池パック及び電気装置
WO2023070992A1 (zh) 电化学装置及包括其的电子装置
US20240170652A1 (en) Positive electrode active material, preparation method thereof, and lithium-ion battery, battery module, battery pack, and electric apparatus containing same
WO2024113942A1 (zh) 正极活性材料及其制备方法、二次电池和用电装置
WO2023040357A1 (zh) 改性的高镍三元正极材料及其制备方法,以及用电装置
WO2023236068A1 (zh) 正极活性材料及其制备方法、极片、二次电池及用电装置
US20220102788A1 (en) Secondary battery and apparatus containing the same
WO2022241712A1 (zh) 锂离子二次电池、电池模块、电池包以及用电装置
CN117461203A (zh) 二次电池用隔膜及其制备方法、二次电池、电池模块、电池包和用电装置
CN117480654A (zh) 二次电池、电池模块、电池包以及用电装置
CN117080415B (zh) 正极活性材料组合物、正极极片、电池及用电设备
WO2024113080A1 (zh) 一种正极活性材料、制法、二次电池和用电装置
WO2023130887A1 (zh) 二次电池、电池模块、电池包及其用电装置
US20240194889A1 (en) Negative electrode plate and preparation method therefor, secondary battery, battery module, battery pack and power consuming devic
WO2023115527A1 (zh) 一种尖晶石型含镍锰锂复合氧化物、其制备方法及含有其的二次电池和用电装置
WO2022257146A1 (zh) 复合正极材料及其制备方法、二次电池及包含该二次电池的电池组和用电装置
US20230420654A1 (en) Modified ternary and lithium manganese iron phosphate composite material and preparation method and application thereof
US20230420751A1 (en) Secondary battery, and battery module, battery pack, and electrical device comprising the same
US20240194873A1 (en) Secondary battery, method for preparing corresponding positive electrode active material, battery module, battery pack, and electrical apparatus
WO2022188163A1 (zh) 电解液、二次电池、电池模块、电池包和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959312

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020959312

Country of ref document: EP

Effective date: 20220714

ENP Entry into the national phase

Ref document number: 2022548243

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202080104536.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237003749

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE