WO2022086073A1 - Flow rate and water quality measurement device for river - Google Patents

Flow rate and water quality measurement device for river Download PDF

Info

Publication number
WO2022086073A1
WO2022086073A1 PCT/KR2021/014429 KR2021014429W WO2022086073A1 WO 2022086073 A1 WO2022086073 A1 WO 2022086073A1 KR 2021014429 W KR2021014429 W KR 2021014429W WO 2022086073 A1 WO2022086073 A1 WO 2022086073A1
Authority
WO
WIPO (PCT)
Prior art keywords
river
water quality
flow rate
measurement
measuring device
Prior art date
Application number
PCT/KR2021/014429
Other languages
French (fr)
Korean (ko)
Inventor
박재영
Original Assignee
주식회사 하백소프트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하백소프트 filed Critical 주식회사 하백소프트
Publication of WO2022086073A1 publication Critical patent/WO2022086073A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/002Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow wherein the flow is in an open channel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C3/00Launching or hauling-out by landborne slipways; Slipways
    • B63C3/06Launching or hauling-out by landborne slipways; Slipways by vertical movement of vessel, i.e. by crane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/17Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/143Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B2035/006Unmanned surface vessels, e.g. remotely controlled

Definitions

  • the present invention provides a flow rate for a river that can ultimately predict the flow rate and water quality change of a river (or river, lake, etc.) through measurement values such as water level, flow rate, water quality, similar amount, river bed fluctuations, precipitation and runoff It is related to the water quality measurement device.
  • a flow rate and water quality measuring device for a river that can measure the above measurement values unattended while being installed in a river at all times and autonomously traversing by natural energy and minimum supply power.
  • ADCP Acoustic Doppler Current Profiler
  • FFT Fast Fourier Transform
  • the ADCP measures the flow rate by measuring the flow velocity profile and water depth while crossing the river. For this purpose, a remotely controlled flow rate measurement information is used.
  • ADCP In ADCP, it is difficult to measure the accurate flow rate for 10% below the water level and 10% at the bottom, so the final value is derived by the flow rate calculation method based on theoretical assumptions.
  • the most accurate method for measuring the current flood volume is to calculate the flow rate by obtaining the water depth and the flow velocity profile at the point using a flow rate measuring boat crossing the river.
  • the new method of measuring the flow rate using ADCP is known to bring about an improvement in accuracy of within about 5% compared to other existing flow rate measurement methods, so the use cases are rapidly increasing in recent years.
  • the flow measurement information may be difficult to continuously measure because the operation is stopped when the power is cut off during manual operation or the driver is in a situation where the remote control cannot be operated due to, for example, bad weather or bad weather. It is pointed out that there is a problem of loss during periods of rapid flow or floods.
  • the present invention is to solve the above problems, and an object of the present invention is to automatically measure measurement values such as water level, flow rate, water quality and similarity, river bed fluctuations, precipitation, and runoff while always installed in the river. It is to provide a flow rate and water quality measuring device for rivers that can be used.
  • Another object of the present invention is to provide a flow rate and water quality measuring device for a river capable of saving energy by using natural energy to store and use natural energy in driving the flow rate measuring device.
  • Another object of the present invention is to provide a flow rate and water quality measuring device for a river capable of increasing measurement precision by repeatedly traversing a river while measuring measured values at several points in the traversing process and combining them to derive a final measured value.
  • the present invention provides a pickup electric winch for winding or unwinding a pickup rope according to a control signal of a first controller, while being installed on the edge of a river structure or river;
  • Docking station including a traction electric winch anchored in a floating state on the water surface of the river while connected to the end of the pickup rope, and winding or unwinding the traction rope according to the control signal of the second controller; and a measuring body that is connected to the end of the traction rope while floating on the water surface of the river, is anchored in the docking station according to the winding operation of the traction transmission position, and is spaced apart from the docking station by a certain distance by the water flow of the river according to the unwinding operation ; Measuring equipment mounted on the measurement body to measure measurement values such as flow rate, water quality, and similar quantity of rivers;
  • An unmanned moving measurement body including an automatic traversing means that automatically and repeatedly traverses the measuring body separated from the docking station in the width direction of the river while forming an arc
  • the structure may be a bridge.
  • the pickup electric winch may wind the pickup rope according to the bad weather information received by the first controller, so that the docking station and the unmanned moving measurement object are pulled up on the structure or avoided to the edge of the river.
  • the docking station may further include a fuel supply module for supplying electric fuel to the fuel supply and demand module of the unmanned moving measurement body.
  • the electric fuel supply from the fuel supply module to the fuel supply module may be made by a contact type or a wireless charging module.
  • the docking station is provided with an eyepiece groove in which the front of the unmanned movement measuring agent can be moved inside and docked.
  • a supply and demand pad that is electrically charged by contacting or non-contacting with the charging pad may be disposed in the region to be used.
  • the electric charging from the charging pad to the supply and demand pad may be any one of a magnetic induction method and a magnetic resonance method.
  • the fuel supply module may further include a first storage battery for supplying power to the traction electric winch and the second controller after accumulating natural energy using any part or all of sunlight, river currents, and wind power. .
  • the unmanned movement measurement body may further include a second storage battery for accumulating natural energy using any part or all of sunlight, river currents, and wind power, and supplying power to measurement equipment and automatic crossing means.
  • a second storage battery for accumulating natural energy using any part or all of sunlight, river currents, and wind power, and supplying power to measurement equipment and automatic crossing means.
  • the automatic crossing means may include a rudder for adjusting the left and right movement direction of the unmanned moving measurement object by automatically adjusting the angle in response to the flow direction of the river while being operated by the energy of the second storage battery.
  • the unmanned moving measurement body further comprises a power storage amount monitoring sensor for detecting the amount of charge of the second storage battery in real time, and when the detected value from the power storage amount detection sensor is less than or equal to a set value, the third controller requests anchoring to the second controller By sending a signal, it is possible to make the traction electric winch winding operation.
  • the measuring body may have a modular structure that can be disassembled and assembled.
  • the measuring equipment includes a measurement unit for measuring the flow rate, water quality and similarity of the river, a measurement value storage unit for storing the values measured by the measurement unit, and a measurement value transmission for transmitting the measurement values stored in the measurement value storage unit to the base station in real time It may consist of parts.
  • the present invention can prevent the occurrence of safety accidents and reduce measurement costs because the flow rate, water quality, and similar amount can be automatically measured by a flow measurement device in a rough natural environment of rivers and rivers.
  • the present invention since the present invention enables unmanned measurement, it can be measured 24/7 as long as there is no special weather event such as a natural disaster. There is convenience in use because a series of processes to perform the work are performed automatically.
  • the present invention can increase the prediction precision of river flow and water quality as the unmanned moving measurement body repeatedly crosses the river left and right while measuring several measurement points, and combining the measurement values of several places to derive the result value.
  • the present invention uses only a minimum of supplied energy as energy for the operation of the flow measurement device, and most of it can reduce charging/discharging and maintenance costs by utilizing natural energy, and controlling the charging/discharging and maintenance of electric energy. By allowing the system to automatically manage it, unattended management is possible without the intervention of an administrator.
  • FIG. 1 is an overall configuration diagram of a flow rate and water quality measuring device for a river according to the present invention supported on a bridge, in particular, a side view;
  • Figure 2 is a plan view of Figure 1
  • FIG. 3 is an evacuation state diagram of a flow rate and water quality measuring device for a river installed on a bridge
  • FIG. 4 is a state diagram in which the flow rate and water quality measuring device for a river according to the present invention is supported on the edge of the river
  • FIG. 5 is an evacuation state diagram of a flow rate and water quality measuring device for a river supported on the edge of the river
  • FIG. 6 is a control block diagram of a pickup electric winch according to the present invention.
  • FIG. 7 is a detailed view of a mooring station according to the present invention.
  • FIG. 8 is a control block diagram of a mooring station according to the present invention.
  • FIG. 9 is an exploded perspective view of an unmanned moving measurement body according to the present invention.
  • FIG. 10 is a configuration diagram of a measuring device according to the present invention.
  • FIG. 11 is a control block diagram of an unmanned moving measurement body according to the present invention.
  • first may be referred to as a second component
  • second component may also be referred to as a first component
  • FIG. 1 is an overall configuration view of a state in which the flow rate and water quality measuring device for a river according to the present invention is supported on a bridge, in particular, a side view
  • FIG. 2 is a plan view of FIG. 1
  • FIG. 3 is a flow rate for a river installed on the bridge.
  • FIG. 4 is a state diagram of the river flow rate and water quality measuring device according to the present invention supported on the edge of the river
  • FIG. 5 is a river flow rate and water quality measuring device supported on the river edge. It is an evacuation state diagram
  • FIG. 6 is a control block diagram of a pick-up electric winch according to the present invention
  • FIG. 6 is a control block diagram of a pick-up electric winch according to the present invention
  • FIG. 7 is a detailed view of a mooring station according to the present invention
  • FIG. 8 is a control block diagram of the mooring station according to the present invention
  • FIG. 9 is an exploded perspective view of an unmanned moving measurement object according to the present invention
  • FIG. 10 is a configuration diagram of a measuring device according to the present invention
  • FIG. 11 is a control block diagram of an unmanned moving measurement object according to the present invention
  • FIG. 12 is this view It is a state diagram of the transverse measurement of the unmanned moving measurement body according to the present invention.
  • the flow rate and water quality measuring device for rivers (hereinafter abbreviated as 'flow measuring device', 100) according to the present invention is always installed in a river (or lake), and the value to be measured while autonomously traversing without power. It is capable of accurately unmanned measurement of (water level, flow rate, similarity, river bed fluctuations, precipitation, runoff, etc.: hereinafter referred to as 'measured values'), and the pickup electric winch 200, docking station 300 and It may include a movement measuring body 400 .
  • the pickup electric winch 200 is installed on a river structure (for example, a bridge (b), see FIGS. ) is supported in a towing state, and the docking station 300 and the unmanned moving measurement object 400 are evacuated when the measurement operation cannot be performed due to bad weather such as flooding.
  • a river structure for example, a bridge (b), see FIGS.
  • the pickup electric winch 200 may be automatically controlled by the first controller 210, as shown in FIG. 6 .
  • the first controller 210 may include a receiver 211 for receiving a bad weather signal or a control signal from a base station transmitted from the outside.
  • the pickup electric winch 200 is driven by the first controller 210 to proceed with the evacuation operation.
  • the pickup electric winch 200 pulls up the anchoring station 300 and the unmanned moving measurement body 400 over the bridge or an evacuation groove provided at the edge of the river ( Evacuation by A) in FIGS. 4 and 5 enables evacuation from bad weather such as floods.
  • the pickup electric winch 200 is reversely driven by the first controller 210 to unwind the pickup rope 201. By doing so, the measurement operation can be resumed.
  • the pickup electric winch 200 may further include a storage battery 220 for its driving (see FIG. 6 ).
  • a storage battery 220 for its driving (see FIG. 6 ).
  • power is required to rotationally drive the rope bobbin of the pickup electric winch 200, and the required power converts natural energy (solar light, river currents, wind power, etc.) into electrical energy, and the converted electrical energy is a storage battery It can be used for rotational driving of the rope bobbin by storing electricity in 220 , and can be used simultaneously as a power source of the first controller 210 .
  • the pickup electric winch 200 is operated intermittently in case of emergency, so there is no continuous power consumption, so it is not necessary to install a power storage sensor, but may be installed as necessary.
  • a light collecting panel for collecting sunlight, a water wheel for collecting water flow power, a windmill for collecting wind power, etc. may be installed, so detailed description thereof will be omitted.
  • the docking station 300 is installed in a floating state in a river and is used to pull and support the unmanned mobile measuring body 400 and to temporarily or temporarily anchor the unmanned moving measuring body 400 .
  • the docking station 300 is connected to the end of the pickup rope 201 of the pickup electric winch 200 and is in a towing state, as in FIGS. 1-5 and 7-8, and can be installed in a floating state on the water surface of the river.
  • a station main body 310 having a floating structure so as to be able to, a traction electric winch 320 for winding or unwinding a traction rope 321 that pulls the unmanned moving measurement body 400 while installed on the station main body, and a traction electric winch may be configured as a second controller 330 for controlling the operation of
  • the traction rope 321 is preferably a floating rope floating on the water surface is applied.
  • the reason is that since the rope sinking in water is heavy, it may cause a problem of arbitrarily pulling the unmanned moving measurement body 400 connected to the end while sinking in the water, and the load is large during winding and unwinding. This is because a high-capacity electric winch 320 is required.
  • the second controller 330 receives a fuel charging request signal from a third controller (to be described later) of the unmanned movement measurement object 400, unmanned movement measurement
  • a third controller to be described later
  • the unmanned moving measurement body 400 is transferred to the station body ( 310) to enable anchoring of unmanned moving measurement objects by pulling and pulling.
  • the station body 310 may be provided with a U-shaped eyepiece groove 311 so that the front of the unmanned movement measurement body 400 enters and can be stably docked.
  • the inlet end of the eyepiece groove 311 has a flared shape to avoid collision when the unmanned moving measurement body 400 is berthed, and in addition, the inlet edge of the eyepiece groove 311 has a collision mitigation.
  • the bumper 312 is installed.
  • the docking station 300 may further include a fuel supply module 340 for supplying electric fuel to a fuel supply module (to be described later) of the unmanned movement measurement body 400 as shown in FIG. 8 .
  • the fuel supply module 340 converts natural energy such as sunlight, river currents, and wind power into electrical energy and stores power to charge the unmanned moving measurement body 400, as well as an electric winch 320 and a second controller (
  • the first storage battery 341, which serves to supply power to 330) is disposed on the inner surface of the eyepiece groove 311 of the station body 310, and is an unmanned moving measurement body in any one of a magnetic induction method and a magnetic resonance method. It may include a charging pad 342 for wirelessly charging electric fuel.
  • the docking station 300 may be provided with a power storage amount detection sensor 350 for detecting the amount of power storage of the first storage battery 341 in real time, and when the detected amount of power is less than the reference value, the second controller 330 can stop the operation of the traction electric winch until it reaches the reference value despite the time when the operation of the traction electric winch 320 is required.
  • the unmanned moving measurement body 400 is installed in a floating state on the water surface of the river, and is connected to the docking station 300 as a traction rope 321 and measured values (water level, flow rate, similar amount, river bed fluctuations, precipitation, runoff, etc.), and has a characteristic configuration that measures the measured value while automatically crossing the river.
  • the unmanned moving measurement body 400 includes a measurement body 410 connected to the end of the traction rope 321, and a measurement device 420 mounted on the measurement body to measure the measured value, as shown in FIGS. 9 to 11, It may be composed of an automatic crossing means 430 for automatically traversing the measurement body in the width direction of the river, and a third controller 440 for controlling the operation of the automatic crossing means.
  • the measurement body 410 is made of a material that can be suspended in water, and may have a streamlined boat shape for smooth flow in water.
  • the measurement body 410 may have a modular structure that can be disassembled and assembled as shown in FIG. 9 .
  • the modular structure is easier to install and collect than the integrated structure, and has the advantage of reducing maintenance costs because only damaged or damaged parts can be exchanged locally.
  • the measuring device 420 includes a measuring unit 421 that measures the measured values (water level, flow rate, similar amount, river bed variation, precipitation, runoff, etc.), and the value measured by the measuring unit. It may be composed of a measurement value storage unit 422 to store and a measurement value transmission unit 423 for wirelessly transmitting the measurement value stored in the measurement value storage unit to the base station.
  • the measuring equipment 420 may include an ultrasonic flow meter, electromagnetic wave or laser anemometer, and the part where the flow rate measurement of the water surface by the ultrasonic flow meter is impossible is supplemented by electromagnetic wave and laser anemometer, and these measured values are measured. Combining them can lead to more precise measurements.
  • the unmanned movement measurement body 400 may further include a fuel supply module 450 for receiving electric fuel from the fuel supply module 340 when anchored in the docking station 300 .
  • the fuel supply module 450 converts natural energy such as sunlight, river current, and wind power into electrical energy and stores electricity, and uses electric fuel with measuring equipment 420 and automatic crossing means 430. It may further include a second storage battery 451 to supply, and a supply and demand pad 452 that receives electric fuel by contact or non-contact with the charging pad 342 of the station body 310 and stores electricity in the second storage battery 451 .
  • a second storage battery 451 to supply
  • a supply and demand pad 452 that receives electric fuel by contact or non-contact with the charging pad 342 of the station body 310 and stores electricity in the second storage battery 451 .
  • the automatic crossing means 430 may include a rudder (431: see FIG. 12) for controlling the left and right movement direction of the unmanned moving measurement object 400 while being operated by power supplied from the second storage battery 451. .
  • the rudder 431 automatically changes the left and right angles by the third controller 440 in response to the flow direction of the river (the direction of the A arrow in FIG. 12), so that the repeating traversing of the moving measurement body 400 is possible do.
  • the unmanned moving measurement body 400 when the rudder 431 coincides with the water flow direction, the unmanned moving measurement body 400 is located in the center without a change in position, since the angle of the rudder and the water flow direction coincide, and from this, the rudder
  • the angle of (431) is turned in a counterclockwise direction, the leftward movement of the unmanned moving measurement body 400 is possible by the water current acting on the rudder, and when the angle of the rudder 431 is turned in the clockwise direction, the rudder ( 431), the rightward movement of the unmanned movement measurement body 400 is possible by the action of the water current.
  • the angle change of the rudder 431 is made automatically, and automatic traversing of the unmanned moving measurement body is possible.
  • the unmanned moving measurement object 400 may be provided with a power storage amount detection sensor 460 that detects the amount of charge of the second storage battery 451 in real time, and when the detected amount of storage is less than the reference value, the third controller 440 is By sending a mooring request signal to the second controller 330 of the mooring station 300, the mooring is accomplished by the operation of the traction electric winch 320, and charging can be performed at the same time.
  • a power storage amount detection sensor 460 that detects the amount of charge of the second storage battery 451 in real time, and when the detected amount of storage is less than the reference value, the third controller 440 is By sending a mooring request signal to the second controller 330 of the mooring station 300, the mooring is accomplished by the operation of the traction electric winch 320, and charging can be performed at the same time.
  • the unmanned moving measurement body 400 maintains a state spaced apart from the docking station 300 by the length of the tow rope 321 unwound by the water flow of the river, and the automatic crossing means 430 ), while drawing an arc-shaped trajectory (arrow B in FIG. 12) centered on the docking station 300, automatically and repeatedly traverses in the width direction of the river to measure the measured value.
  • the unmanned moving measurement object 400 can secure a lot of measurement data because it is possible to measure 24/7 except for a reason such as a special bad weather situation or a malfunction. Therefore, accurate measurement is possible, and in particular, taking into account that the measured values may differ in the central and side portions of the river, the unmanned moving measuring object derives the measured values while repeatedly traversing the river, so precise measurement is possible. Therefore, it is of great help in accurately predicting river flow.
  • the unmanned moving measurement body 400 may perform a measurement operation without a traction rope. That is, when the water flow in the river is small, the unmanned moving measurement object 400 does not float away even if the traction rope 321 is not connected. By approaching the docking station 300, it is possible to perform operations such as wireless charging.
  • the unmanned movement measurement object 400 when the unmanned movement measurement object 400 is trying to connect the traction rope 321 due to the occurrence of a water flow while performing measurement work in a rope-free state, the unmanned movement measurement object 400 is driven by the propulsion power to the docking station 300 At the same time as being docked by moving to a hook (not shown) provided at the end of the traction rope 321, the hook (not shown) of the unmanned moving measurement body 400 is caught and the traction rope 321 can be automatically connected. Thereafter, the measurement operation can be resumed while the traction rope 321 is connected.
  • the flow rate measuring device 100 for a river is another embodiment, except for the configuration of the docking station 300, and is simply composed of a pickup electric winch 200 and an unmanned movement measuring body 400.
  • the unmanned moving measurement body 400 is connected by the pickup electric winch 200 and the pickup rope 201, and can be separately connected by a strong but thin guide wire (not shown) such as a fishing line or a piano wire.
  • a strong but thin guide wire such as a fishing line or a piano wire.
  • an electric motor may be additionally installed for winding and unwinding of the guide wire.
  • the guide line guides the location of the unmanned mobile measurement body 400 or when it is picked up due to bad weather, pulls the unmanned mobile measurement object 400 until it approaches the bridge and the berth, When picking up on the bridge and at the berth, a large force is required, so the role can be divided by pulling it up by the pickup rope 201 .
  • pickup rope 210 first controller
  • receiver 220 storage battery
  • third controller 450 fuel supply module

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Ocean & Marine Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Fluid Mechanics (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

Disclosed is a flow rate and water quality measurement device for a river. The disclosed present invention can be permanently installed in the river to automatically measure measurement values, such as water level, flow rate, water quality, sediment discharge, river bed fluctuation, precipitation, and runoff, without human intervention. The measurement values can be measured without human intervention, and therefore, the occurrence of accidents can be prevented and measurement costs can also be reduced.

Description

하천용 유량 및 수질 측정장치Flow rate and water quality measuring device for rivers
본 발명은 하천(또는 강, 호수 등)의 수위, 유량, 수질, 유사량, 하상의 변동상황, 강수량 및 유출량 등의 측정값을 통해 궁극적으로 하천의 유량과 수질변화를 예측할 수 있는 하천용 유량 및 수질 측정장치에 관련한 것이다.The present invention provides a flow rate for a river that can ultimately predict the flow rate and water quality change of a river (or river, lake, etc.) through measurement values such as water level, flow rate, water quality, similar amount, river bed fluctuations, precipitation and runoff It is related to the water quality measurement device.
더 상세하게는 하천에 상시 설치된 채, 자연에너지 및 최소한의 공급동력에 의해 자율 횡단하면서 상기한 측정값들을 무인 측정할 수 있는 하천용 유량 및 수질 측정장치에 관한 것이다.In more detail, it relates to a flow rate and water quality measuring device for a river that can measure the above measurement values unattended while being installed in a river at all times and autonomously traversing by natural energy and minimum supply power.
하천(또는 호수)의 유량과 수질을 정확히 측정하는 작업은 이수, 홍수 관리, 수자원 관리, 그리고 수공구조물의 설계와 시공, 수환경 관리에 중요한 의미를 갖는다.Accurately measuring the flow rate and water quality of rivers (or lakes) has an important meaning for muddy water, flood management, water resource management, and design and construction of water structures and water environment management.
따라서, 국가는 전문기관을 통하여 국가 하천의 유량과 수질을 정확하게 측정하려는 노력을 기울여 왔으며, 이러한 노력에 따라 다양한 현장 측정 방법들이 제안 및 개발되어 왔다.Therefore, the state has made efforts to accurately measure the flow rate and water quality of national rivers through specialized agencies, and various on-site measurement methods have been proposed and developed according to these efforts.
현재, 가장 최신 기술 중 하나인 ADCP(Acoustic Doppler Current Profiler)는 초음파의 도플러 효과를 이용하여 수중에서 유속의 측정 및 교란 정도를 분석하는 것으로, 수신되는 각 공간 영역에 대한 속도 정보를 추출하기 위하여 수신 펄스 신호에 대한 자기 상관 함수나 FFT(Fast Fourier Transform) 스펙트럼을 추정하는 방식이다.Currently, ADCP (Acoustic Doppler Current Profiler), one of the latest technologies, uses the Doppler effect of ultrasound to measure the flow velocity and analyze the degree of disturbance in water. This is a method of estimating an autocorrelation function or FFT (Fast Fourier Transform) spectrum for a pulse signal.
이러한 ADCP는 하천을 횡단하면서 유속프로파일과 수심을 측정하여 유량을 측정하게 되는데, 이를 위하여 원격으로 조정되는 유량측정보트가 이용되고 있다.The ADCP measures the flow rate by measuring the flow velocity profile and water depth while crossing the river. For this purpose, a remotely controlled flow rate measurement information is used.
ADCP는 수면하 10%, 하상위 10%는 정확한 유속을 측정하기 어렵기 때문에 이론적인 가정에 근거한 유량산정방법으로 최종값을 도출하고 있다.In ADCP, it is difficult to measure the accurate flow rate for 10% below the water level and 10% at the bottom, so the final value is derived by the flow rate calculation method based on theoretical assumptions.
따라서, 최신의 유량 측정방법이라 하더라도 기본적으로 20% 정도의 유량 측정 오차를 포함할 가능성이 많고, 실제로도 5 ~ 15% 정도의 측정오차를 갖는 것이 일반적이다. 이러한 측정오차를 5% 이내로 줄일 수 있다면 보다 효율적이고 정확한 관리가 가능하게 될 것이다.Therefore, even with the latest flow measurement method, there is a high possibility that it basically includes a flow measurement error of about 20%, and in practice, it is common to have a measurement error of about 5 to 15%. If this measurement error can be reduced to less than 5%, more efficient and accurate management will be possible.
한편, 앞서 기술한 바와 같이, 현재 홍수량을 가장 정확히 측정할 수 있는 방법은 하천을 횡단하는 유량 측정용 보트를 이용하여 수심과 그 지점의 유속 프로화일을 구하여 유량을 산정하는 방법이다.Meanwhile, as described above, the most accurate method for measuring the current flood volume is to calculate the flow rate by obtaining the water depth and the flow velocity profile at the point using a flow rate measuring boat crossing the river.
특히, ADCP를 이용하여 유량을 측정하는 새로운 방법은 기존의 다른 유량 측정 방법에 비하여 약 5% 이내의 정확성의 향상을 가져오는 것으로 파악되고 있기 때문에 최근에 들어 사용예가 급격히 증가하고 있다.In particular, the new method of measuring the flow rate using ADCP is known to bring about an improvement in accuracy of within about 5% compared to other existing flow rate measurement methods, so the use cases are rapidly increasing in recent years.
이때, 하천의 유량을 보다 정확하게 측정하기 위해서는 유량 측정용 보트가 하천의 양측(출발위치와 도착위치)을 하천 유량 측정 원리에 맞도록 이동하는 것이 중요하다.At this time, in order to measure the flow rate of the river more accurately, it is important that the boat for measuring the flow moves both sides (the starting position and the arrival position) of the river to match the river flow rate measurement principle.
그러나, 상기한 ADCP를 이용한 유량 측정방법은 유량측정보트가 리모컨에 의해 수동 제어되어 왔기 때문에 숙련자라 하더라도 유속이 빠르거나 바람이 부는 등 악천후 조건에서는 유량 측정보트의 출발위치와 도착위치를 속도와 방향에 맞게 이동 제어하는 것이 어려우며, 이로 인해 측정값의 오차가 커지는 문제점이 발생하게 된다.However, in the flow measurement method using ADCP as described above, since the flow measurement boat has been manually controlled by the remote control, even a skilled person can determine the starting and arriving positions of the flow measurement boat in speed and direction in bad weather conditions such as high flow speed or windy conditions. It is difficult to control the movement to fit the
또한, 상기 유량측정보트는 전량 공급동력에 의해 운전되므로 유지 관리 비용이 많이 들고, 리모컨에 의해 수동 운전되므로 유량측정보트가 운전되는 동안에는 운전자가 현장에 상주하고 있어야 하고, 운전 정지된 유량측정보트를 수거도 해야 하므로 이를 유지 및 관리함에 있어 불편함이 존재한다.In addition, since the flow measurement boat is operated by the power supplied by the entire amount, the maintenance cost is high, and since it is manually operated by the remote control, a driver must be resident at the site while the flow measurement boat is being operated, and the stopped operation of the flow measurement boat It also has to be collected, so there is an inconvenience in maintaining and managing it.
관련하여, 상기 유량측정보트는 수동 운전도중에 동력이 차단되거나 운전자가 예컨대 악천후 또는 기상악화 등의 이유로 리모컨을 작동할 수 없는 상황에 처한 경우 운전이 정지되므로 연속 측정이 어려울 수 있고, 이로 인해 측정오차가 발생하고 유속이 빠른 시기나 홍수시 등에는 망실되는 문제점이 지적된다.In relation to this, the flow measurement information may be difficult to continuously measure because the operation is stopped when the power is cut off during manual operation or the driver is in a situation where the remote control cannot be operated due to, for example, bad weather or bad weather. It is pointed out that there is a problem of loss during periods of rapid flow or floods.
본 발명은 상기한 문제점을 해소하기 위한 것으로, 본 발명의 목적은 하천에 상시 설치된 채 하천의 수위, 유량, 수질 및 유사량, 하상의 변동상황, 강수량, 유출량 등의 측정값을 무인으로 자동 측정할 수 있는 하천용 유량 및 수질 측정장치를 제공함에 있다.The present invention is to solve the above problems, and an object of the present invention is to automatically measure measurement values such as water level, flow rate, water quality and similarity, river bed fluctuations, precipitation, and runoff while always installed in the river. It is to provide a flow rate and water quality measuring device for rivers that can be used.
본 발명의 다른 목적은 유량측정장치를 구동함에 있어서 자연에너지를 축전하여 사용함으로써 에너지 절감이 가능한 하천용 유량 및 수질 측정장치를 제공함에 있다.Another object of the present invention is to provide a flow rate and water quality measuring device for a river capable of saving energy by using natural energy to store and use natural energy in driving the flow rate measuring device.
본 발명의 또 다른 목적 하천을 반복 횡단하면서 횡단과정에서 여러 개소의 측정값을 측정하고 이를 조합하여 최종 측정값을 도출함으로써 측정 정밀도를 높일 수 있는 하천용 유량 및 수질 측정장치를 제공함에 있다.Another object of the present invention is to provide a flow rate and water quality measuring device for a river capable of increasing measurement precision by repeatedly traversing a river while measuring measured values at several points in the traversing process and combining them to derive a final measured value.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problems to be achieved in the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned above can be clearly understood by those of ordinary skill in the art to which the present invention belongs from the description below. There will be.
본 발명은 상기한 목적에 따라, 하천의 구조물 또는 하천의 가장자리에 설치된 채, 제1 컨트롤러의 제어신호에 따라 픽업로프를 와인딩 또는 언와인딩하는 픽업 전동윈치; 픽업로프의 말단에 연결된 채 하천의 수면상에 부유된 상태로 정박되며, 제2 컨트롤러의 제어신호에 따라 견인로프를 와인딩 또는 언와인딩하는 견인 전동윈치를 포함하는 도킹 스테이션; 및 하천의 수면 상에 부유된 상태에서 견인로프의 말단에 연결되며, 견인 전동위치의 와인딩 동작에 따라 도킹 스테이션에 정박되고 언와인딩 동작에 따라 하천의 수류에 의해 도킹 스테이션과 일정거리 이격되는 측정본체; 측정본체에 탑재되어 하천의 유량, 수질 및 유사량 등의 측정값을 측정하기 위한 계측장비; 제3 컨트롤러에 의해 작동되면서 도킹 스테이션과 이격된 상태의 측정본체를 도킹 스테이션을 중심으로 호형궤적을 이루면서 하천의 폭방향으로 자동 반복 횡단시켜주는 자동횡단수단을 포함하는 무인 이동측정체;로 이루어진 하천용 무인 유량측정장치가 제공된다.The present invention provides a pickup electric winch for winding or unwinding a pickup rope according to a control signal of a first controller, while being installed on the edge of a river structure or river; Docking station including a traction electric winch anchored in a floating state on the water surface of the river while connected to the end of the pickup rope, and winding or unwinding the traction rope according to the control signal of the second controller; and a measuring body that is connected to the end of the traction rope while floating on the water surface of the river, is anchored in the docking station according to the winding operation of the traction transmission position, and is spaced apart from the docking station by a certain distance by the water flow of the river according to the unwinding operation ; Measuring equipment mounted on the measurement body to measure measurement values such as flow rate, water quality, and similar quantity of rivers; An unmanned moving measurement body including an automatic traversing means that automatically and repeatedly traverses the measuring body separated from the docking station in the width direction of the river while forming an arc-shaped trajectory centering on the docking station while being operated by the third controller; An unmanned flow measurement device for use is provided.
바람직하게,상기 구조물은 교량일 수 있다.Preferably, the structure may be a bridge.
바람직하게, 픽업 전동윈치는 제1 컨트롤러로 수신된 기상악화정보에 따라 픽업로프를 와인딩하여, 도킹 스테이션 및 무인 이동측정체를 구조물 위로 끌어 올리거나 또는 하천의 가장자리로 회피되도록 할 수 있다.Preferably, the pickup electric winch may wind the pickup rope according to the bad weather information received by the first controller, so that the docking station and the unmanned moving measurement object are pulled up on the structure or avoided to the edge of the river.
바람직하게, 도킹 스테이션은 무인 이동측정체의 연료수급모듈로 전기연료를 공급하기 위한 연료공급모듈을 더 포함할 수 있다.Preferably, the docking station may further include a fuel supply module for supplying electric fuel to the fuel supply and demand module of the unmanned moving measurement body.
바람직하게, 연료공급모듈에서 연료수급모듈로의 전기연료 공급은 접촉식 또는 무선충전모듈에 의해 이루어질 수 있다.Preferably, the electric fuel supply from the fuel supply module to the fuel supply module may be made by a contact type or a wireless charging module.
바람직하게, 도킹 스테이션에는 무인 이동측정제의 전방이 내부로 전입하여 접안될 수 있는 접안홈이 마련되되, 접안홈의 내면상에는 연료공급모듈의 충전패드가 배치되고, 무인 이동특정체의 충전패드와 대응되는 부위에는 충전패드와 접촉 또는 비접촉에 의해 전기충전이 이루어지는 수급패드가 배치될 수 있다.Preferably, the docking station is provided with an eyepiece groove in which the front of the unmanned movement measuring agent can be moved inside and docked. A supply and demand pad that is electrically charged by contacting or non-contacting with the charging pad may be disposed in the region to be used.
바람직하게, 충전패드에서 수급패드로의 전기충전은 자기유도방식, 자기공진방식 중 어느 하나일 수 있다.Preferably, the electric charging from the charging pad to the supply and demand pad may be any one of a magnetic induction method and a magnetic resonance method.
바람직하게, 연료공급모듈은 태양광, 하천의 수류, 풍력 중, 어느 일부 또는 전부 이용하는 자연에너지를 축전한 후, 견인 전동윈치 및 제2 컨트롤러로 전원을 공급하는 제1 축전지를 더 포함할 수 있다.Preferably, the fuel supply module may further include a first storage battery for supplying power to the traction electric winch and the second controller after accumulating natural energy using any part or all of sunlight, river currents, and wind power. .
바람직하게, 무인 이동측정체는 태양광, 하천의 수류, 풍력 중, 어느 일부 또는 전부 이용하는 자연에너지를 축전하여, 계측장비 및 자동횡단수단으로 전원을 공급하는 제2 축전지를 더 포함할 수 있다.Preferably, the unmanned movement measurement body may further include a second storage battery for accumulating natural energy using any part or all of sunlight, river currents, and wind power, and supplying power to measurement equipment and automatic crossing means.
바람직하게, 자동횡단수단은 제2 축전지의 에너지에 의해 동작되면서 하천의 수류방향에 대응하여 각도를 자동 조절함으로써 무인 이동측정체의 좌우 이동방향을 조절하는 러더를 포함할 수 있다.Preferably, the automatic crossing means may include a rudder for adjusting the left and right movement direction of the unmanned moving measurement object by automatically adjusting the angle in response to the flow direction of the river while being operated by the energy of the second storage battery.
바람직하게, 무인 이동측정체는 제2 축전지의 충전량을 실시간으로 감지하는 축전량 감시센서를 더 포함하되, 축전량 감지센서에서의 감지값이 설정값 이하인 경우 제3 컨트롤러가 제2 컨트롤러로 정박요청신호를 송출하여 견인 전동윈치가 와인딩 동작되도록 할 수 있다.Preferably, the unmanned moving measurement body further comprises a power storage amount monitoring sensor for detecting the amount of charge of the second storage battery in real time, and when the detected value from the power storage amount detection sensor is less than or equal to a set value, the third controller requests anchoring to the second controller By sending a signal, it is possible to make the traction electric winch winding operation.
바람직하게, 측정본체는 분해 조립이 가능한 모듈구조로 될 수 있다.Preferably, the measuring body may have a modular structure that can be disassembled and assembled.
바람직하게, 계측장비는 하천의 유량, 수질 및 유사량을 측정하는 측정부, 측정부에서 측정된 값을 저장하는 측정값 저장부 및 측정값 저장부에 저장된 측정값을 기지국으로 실시간 전송하는 측정값 전송부로 구성될 수 있다.Preferably, the measuring equipment includes a measurement unit for measuring the flow rate, water quality and similarity of the river, a measurement value storage unit for storing the values measured by the measurement unit, and a measurement value transmission for transmitting the measurement values stored in the measurement value storage unit to the base station in real time It may consist of parts.
본 발명은 하천 및 강물의 거친 자연환경에서 유량, 수질 및 유사량 등을 유량측정장치에 의해 무인으로 자동 측정할 수 있으므로 안전사고 발생을 방지할 수 있고 측정비용을 절감할 수 있다.The present invention can prevent the occurrence of safety accidents and reduce measurement costs because the flow rate, water quality, and similar amount can be automatically measured by a flow measurement device in a rough natural environment of rivers and rivers.
관련하여, 본 발명은 무인 측정이 가능하므로, 자연재해 등의 특별한 기상이변이 없는 한 무휴 측정할 수 있고, 기상이변시에는 유량측정장치를 자동 피난시켜서 장치를 보호하고, 기상이 정상화 되면 다시 측정작업을 수행하는 일련의 과정이 자동으로 이루어지므로 사용상 편리점이 있다.In relation to this, since the present invention enables unmanned measurement, it can be measured 24/7 as long as there is no special weather event such as a natural disaster. There is convenience in use because a series of processes to perform the work are performed automatically.
또한, 본 발명은 무인 이동측정체가 하천을 반복적으로 좌우 횡단하면서 여러 측정개소를 측정하고, 여러 개소의 측정값을 조합하여 결과값을 도출함에 따라 하천유량 및 수질의 예측 정밀도를 높일 수 있다.In addition, the present invention can increase the prediction precision of river flow and water quality as the unmanned moving measurement body repeatedly crosses the river left and right while measuring several measurement points, and combining the measurement values of several places to derive the result value.
또한, 본 발명은 유량측정장치의 작동을 위한 에너지로 최소한의 공급에너지만을 사용하고, 대부분은 자연에너지를 활용함으로써 충방전 및 유지비용을 절감할 수 있으며, 전기에너지의 충방전 및 유지관리를 제어시스템에 의해 자동으로 관리되도록 함으로써 관리자의 개입이 필요없는 무인 관리가 가능하다.In addition, the present invention uses only a minimum of supplied energy as energy for the operation of the flow measurement device, and most of it can reduce charging/discharging and maintenance costs by utilizing natural energy, and controlling the charging/discharging and maintenance of electric energy. By allowing the system to automatically manage it, unattended management is possible without the intervention of an administrator.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.It should be understood that the effects of the present invention are not limited to the above-described effects, and include all effects that can be inferred from the configuration of the invention described in the detailed description or claims of the present invention.
도 1은 본 발명에 따른 하천용 유량 및 수질 측정장치가 교량에 지지된 상태의 전체 구성도로서, 특히 측면도1 is an overall configuration diagram of a flow rate and water quality measuring device for a river according to the present invention supported on a bridge, in particular, a side view;
도 2는 도 1의 평면도Figure 2 is a plan view of Figure 1
도 3은 교량에 설치된 하천용 유량 및 수질 측정장치의 피난 상태도3 is an evacuation state diagram of a flow rate and water quality measuring device for a river installed on a bridge
도 4는 본 발명에 따른 하천용 유량 및 수질 측정장치가 하천의 가장자리에 지지된 상태도4 is a state diagram in which the flow rate and water quality measuring device for a river according to the present invention is supported on the edge of the river
도 5는 하천의 가장자리에 지지된 하천용 유량 및 수질 측정장치의 피난 상태도5 is an evacuation state diagram of a flow rate and water quality measuring device for a river supported on the edge of the river
도 6은 본 발명에 따른 픽업 전동윈치의 제어 블록도6 is a control block diagram of a pickup electric winch according to the present invention;
도 7은 본 발명에 따른 정박 스테이션의 상세도7 is a detailed view of a mooring station according to the present invention;
도 8은 본 발명에 따른 정박 스테이션의 제어 블록도8 is a control block diagram of a mooring station according to the present invention;
도 9는 본 발명에 따른 무인 이동측정체의 분해사시도9 is an exploded perspective view of an unmanned moving measurement body according to the present invention;
도 10은 본 발명에 따른 계측장비의 구성도10 is a configuration diagram of a measuring device according to the present invention;
도 11은 본 발명에 따른 무인 이동측정체의 제어 블록도11 is a control block diagram of an unmanned moving measurement body according to the present invention;
도 12는 본 발명에 따른 무인 이동측정체의 횡단측정 상태도12 is a cross-measurement state diagram of an unmanned moving measurement body according to the present invention;
본 명세서에 기재된 실시예와 도면에 도시된 구성은 개시된 발명의 바람직한 일 예에 불과할 뿐이며, 본 출원의 출원시점에 있어서 본 명세서의 실시예와 도면을 대체할 수 있는 다양한 변형 예들이 있을 수 있다.The configuration shown in the embodiments and drawings described in this specification is only a preferred example of the disclosed invention, and there may be various modifications that can replace the embodiments and drawings of the present specification at the time of filing of the present application.
또한, 본 명세서의 각 도면에서 제시된 동일한 참조번호 또는 부호는 실질적으로 동일한 기능을 수행하는 부품 또는 구성요소를 나타낸다.In addition, the same reference numerals or reference numerals in each drawing of the present specification indicate parts or components that perform substantially the same functions.
또한, 본 명세서에서 사용한 용어는 실시예를 설명하기 위해 사용된 것으로, 개시된 발명을 제한 및 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는다.In addition, the terms used herein are used to describe the embodiments, and are not intended to limit and limit the disclosed invention. The singular expression includes the plural expression unless the context clearly dictates otherwise. In this specification, terms such as "comprises" or "have" are intended to designate that the features, numbers, steps, operations, components, parts, or combinations thereof described in the specification exist, and one or more other features It does not preclude the possibility of the presence or addition of numbers, steps, operations, components, parts, or combinations thereof.
또한, 본 명세서에서 사용한 "제1", "제2" 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않으며, 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. In addition, terms including an ordinal number, such as "first", "second", etc. used herein may be used to describe various elements, but the elements are not limited by the terms, and the terms are It is used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, a second component may also be referred to as a first component.
한편, 하기의 설명에서 사용된 용어 "전방", "후방", "상부", "하부", "전단" 및 "하단"등은 도면을 기준으로 정의한 것이며, 이 용어에 의하여 각 구성요소의 형상 및 위치가 제한되는 것은 아니다.On the other hand, the terms "front", "rear", "upper", "lower", "front" and "lower" used in the following description are defined based on the drawings, and the shape of each component by this term and location is not limited.
이하, 첨부도면을 참조하여 본 발명의 바람직한 실시예를 설명한다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
첨부된 도 1은 본 발명에 따른 하천용 유량 및 수질 측정장치가 교량에 지지된 상태의 전체 구성도로서, 특히 측면도이고, 도 2는 도 1의 평면도이며, 도 3은 교량에 설치된 하천용 유량 및 수질 측정장치의 피난 상태도이고, 도 4는 본 발명에 따른 하천용 유량 및 수질 측정장치가 하천의 가장자리에 지지된 상태도이며, 도 5는 하천의 가장자리에 지지된 하천용 유량 및 수질 측정장치의 피난 상태도이고, 도 6은 본 발명에 따른 픽업 전동윈치의 제어 블록도이며, 도 7은 본 발명에 따른 정박 스테이션의 상세도이고, 도 8은 본 발명에 따른 정박 스테이션의 제어 블록도이며, 도 9는 본 발명에 따른 무인 이동측정체의 분해사시도이고, 도 10은 본 발명에 따른 계측장비의 구성도이며, 도 11은 본 발명에 따른 무인 이동측정체의 제어 블록도이고, 도 12는 본 발명에 따른 무인 이동측정체의 횡단측정 상태도이다.1 is an overall configuration view of a state in which the flow rate and water quality measuring device for a river according to the present invention is supported on a bridge, in particular, a side view, FIG. 2 is a plan view of FIG. 1, and FIG. 3 is a flow rate for a river installed on the bridge. and an evacuation state diagram of the water quality measuring device, FIG. 4 is a state diagram of the river flow rate and water quality measuring device according to the present invention supported on the edge of the river, and FIG. 5 is a river flow rate and water quality measuring device supported on the river edge. It is an evacuation state diagram, FIG. 6 is a control block diagram of a pick-up electric winch according to the present invention, FIG. 7 is a detailed view of a mooring station according to the present invention, and FIG. 8 is a control block diagram of the mooring station according to the present invention, FIG. 9 is an exploded perspective view of an unmanned moving measurement object according to the present invention, FIG. 10 is a configuration diagram of a measuring device according to the present invention, FIG. 11 is a control block diagram of an unmanned moving measurement object according to the present invention, and FIG. 12 is this view It is a state diagram of the transverse measurement of the unmanned moving measurement body according to the present invention.
첨부도면에서 보듯이, 본 발명에 따른 하천용 유량 및 수질 측정장치(이하 '유량측정장치'라 약칭함,100)는 하천(또는 호수)에 상시 설치된 채, 무동력으로 자율 횡단하면서 측정하고자 하는 값(하천의 수위, 유량, 유사량, 하상의 변동상황, 강수량, 유출량 등:이하 '측정값'이라 함)들을 정확하게 무인 측정할 수 있는 것으로, 픽업 전동윈치(200), 도킹 스테이션(300) 및 무인 이동측정체(400)를 포함할 수 있다.As shown in the accompanying drawings, the flow rate and water quality measuring device for rivers (hereinafter abbreviated as 'flow measuring device', 100) according to the present invention is always installed in a river (or lake), and the value to be measured while autonomously traversing without power. It is capable of accurately unmanned measurement of (water level, flow rate, similarity, river bed fluctuations, precipitation, runoff, etc.: hereinafter referred to as 'measured values'), and the pickup electric winch 200, docking station 300 and It may include a movement measuring body 400 .
픽업 전동윈치(200)는 하천의 구조물(예컨대 교량(b), 도 1 내지 3 참조) 또는 하천의 가장자리(도 4 및 5 참조)에 설치된 채, 도킹 스테이션(300) 및 무인 이동측정체(400)를 견인상태로 지지하고 있으면서, 홍수 등의 기상악화로 인하여 측정작업을 수행할 수 없는 경우에 도킹 스테이션(300) 및 무인 이동측정체(400)를 피난시키기 위한 것이다.The pickup electric winch 200 is installed on a river structure (for example, a bridge (b), see FIGS. ) is supported in a towing state, and the docking station 300 and the unmanned moving measurement object 400 are evacuated when the measurement operation cannot be performed due to bad weather such as flooding.
여기서, 픽업 전동윈치(200)는 도 6에서와 같이, 제1 컨트롤러(210)에 의해 자동 제어될 수 있다. 제1 컨트롤러(210)는 외부에서 송출되어온 기상악화신호 또는 기지국의 제어신호를 수신하기 위한 수신부(211)를 포함할 수 있다. Here, the pickup electric winch 200 may be automatically controlled by the first controller 210, as shown in FIG. 6 . The first controller 210 may include a receiver 211 for receiving a bad weather signal or a control signal from a base station transmitted from the outside.
이에 따라, 수신부(211)로 기상악화신호가 수신되거나 또는 기지국의 제어신호가 수신되면 제1 컨트롤러(210)에 의해 픽업 전동윈치(200)를 구동시켜 피난 작업을 진행하게 된다.Accordingly, when a bad weather signal is received by the receiver 211 or a control signal from the base station is received, the pickup electric winch 200 is driven by the first controller 210 to proceed with the evacuation operation.
픽업 전동윈치(200)는 피난 작업시 픽업로프(201)를 와인딩(winding) 함에 따라 정박 스테이션(300) 및 무인 이동측정체(400)를 교량 위로 끌어 올리거나 또는 하천의 가장자리에 마련된 피난홈(도 4 및 5의 A)으로 대피시킴으로써 홍수 등의 악천후로부터 피난이 가능하게 된다.The pickup electric winch 200 pulls up the anchoring station 300 and the unmanned moving measurement body 400 over the bridge or an evacuation groove provided at the edge of the river ( Evacuation by A) in FIGS. 4 and 5 enables evacuation from bad weather such as floods.
반대로, 수신부(211)로 기상완화신호 또는 기지국으로부터 측정작업재개 신호를 수신하게 되면 제1 컨트롤러(210)에 의해 픽업 전동윈치(200)를 역구동시켜서 픽업로프(201)를 언와인딩(unwinding) 함으로써 측정 작업을 재개할 수 있다.Conversely, upon receiving a wake-up signal or a measurement work restart signal from the base station to the receiver 211, the pickup electric winch 200 is reversely driven by the first controller 210 to unwind the pickup rope 201. By doing so, the measurement operation can be resumed.
한편, 픽업 전동윈치(200)는 이의 구동을 위하여 축전지(220)를 더 포함할 수 있다(도 6 참조). 부연하면, 픽업 전동윈치(200)의 로프보빈을 회전구동시키기 위해서는 동력이 필요한데, 필요 동력은 자연에너지(태양광, 하천의 수류 및 풍력 등)를 전기에너지로 변환하며, 변환된 전기에너지는 축전지(220)에 축전함으로써 로프보빈의 회전구동을 위해 사용될 수 있고, 제1 컨트롤러(210)의 전원으로도 동시에 사용될 수 있다.On the other hand, the pickup electric winch 200 may further include a storage battery 220 for its driving (see FIG. 6 ). In other words, power is required to rotationally drive the rope bobbin of the pickup electric winch 200, and the required power converts natural energy (solar light, river currents, wind power, etc.) into electrical energy, and the converted electrical energy is a storage battery It can be used for rotational driving of the rope bobbin by storing electricity in 220 , and can be used simultaneously as a power source of the first controller 210 .
여기서, 픽업 전동윈치(200)는 유사시에 간헐적으로 작동되는 것이어서 지속적인 전력소모가 없으므로 축전량 감지센서를 반드시 설치할 필요는 없으나, 필요에 따라 설치할 수도 있다.Here, the pickup electric winch 200 is operated intermittently in case of emergency, so there is no continuous power consumption, so it is not necessary to install a power storage sensor, but may be installed as necessary.
참고로, 자연에너지를 이용하기 위해서는 태양광을 집광하기 위한 집광패널, 수류동력을 수집하기 위한 수차, 바람동력을 수집하기 위한 풍차 등이 부설될 수 있음은 당연할 것이므로 이에 대한 상세 설명은 생략한다.For reference, in order to use natural energy, it is natural that a light collecting panel for collecting sunlight, a water wheel for collecting water flow power, a windmill for collecting wind power, etc. may be installed, so detailed description thereof will be omitted. .
도킹 스테이션(300)은 하천에 부유상태로 설치되어 무인 이동측정체(400)를 견인 지지하는 용도와, 무인 이동측정체(400)를 임시 또는 일시 정박시키고자 할 때 사용되는 것이다.The docking station 300 is installed in a floating state in a river and is used to pull and support the unmanned mobile measuring body 400 and to temporarily or temporarily anchor the unmanned moving measuring body 400 .
도킹 스테이션(300)은 도 1~5 및 도 7~8에서와 같이, 픽업 전동윈치(200)의 픽업로프(201) 말단에 연결되어 견인상태에 있으며, 하천의 수면위에 부유상태로 설치될 수 있도록 부유구조를 갖는 스테이션 본체(310)와, 스테이션 본체에 설치된 채 무인 이동측정체(400)를 견인하고 있는 견인로프(321)를 와인딩 또는 언와인딩하는 견인 전동윈치(320)와, 견인 전동윈치의 동작을 제어하기 위한 제2 컨트롤러(330)로 구성될 수 있다.The docking station 300 is connected to the end of the pickup rope 201 of the pickup electric winch 200 and is in a towing state, as in FIGS. 1-5 and 7-8, and can be installed in a floating state on the water surface of the river. A station main body 310 having a floating structure so as to be able to, a traction electric winch 320 for winding or unwinding a traction rope 321 that pulls the unmanned moving measurement body 400 while installed on the station main body, and a traction electric winch may be configured as a second controller 330 for controlling the operation of
여기서, 견인로프(321)는 수면 위에 뜨는 부유로프가 적용되는 것이 바람직하다. 그 이유는 물에 가라 앉는 로프는 무게가 무겁기 때문에 물에 가라 앉으면서 말단에 연결된 무인 이동측정체(400)를 임의로 잡아당기는 문제를 야기할 수 있고, 와인딩 및 언와인딩시 부하가 크기 때문에 그에 맞는 고용량의 전동윈치(320)가 필요하기 때문이다.Here, the traction rope 321 is preferably a floating rope floating on the water surface is applied. The reason is that since the rope sinking in water is heavy, it may cause a problem of arbitrarily pulling the unmanned moving measurement body 400 connected to the end while sinking in the water, and the load is large during winding and unwinding. This is because a high-capacity electric winch 320 is required.
제2 컨트롤러(330)는 제1 컨트롤러(210)로부터 기상악화신호가 수신된 경우, 무인 이동측정체(400)의 제3 컨트롤러(후술함)로부터 연료충전 요청신호가 수신된 경우, 무인 이동측정체(400)의 수리를 요하는 경우 등 정박이 필요한 상황일 때, 견인 전동윈치(320)를 구동시켜서 언와인딩 되어 있던 견인로프(321)를 와인딩하여 무인 이동측정체(400)를 스테이션 본체(310)로 끌어 잡아 당김에 따라 무인 이동측정체의 정박을 가능케 한다.When a bad weather signal is received from the first controller 210, the second controller 330 receives a fuel charging request signal from a third controller (to be described later) of the unmanned movement measurement object 400, unmanned movement measurement In a situation that requires anchoring, such as when repair of the sieve 400 is required, by driving the traction electric winch 320 and winding the unwinding traction rope 321, the unmanned moving measurement body 400 is transferred to the station body ( 310) to enable anchoring of unmanned moving measurement objects by pulling and pulling.
스테이션 본체(310)는 도 7에서와 같이, 무인 이동측정체(400)의 전방이 내부로 진입하여 안정적으로 접안될 수 있도록 ㄷ자형의 접안홈(311)이 마련될 수 있다. 여기서 접안홈(311)의 입구단은 무인 이동측정체(400)의 접안시 충돌을 회피하기 위하여 나팔형으로 확개된 형태를 갖는 것이 바람직하며, 아울러 접안홈(311)의 입구측 모서리에는 충돌 완화를 위하여 범퍼(312)가 부설되는 것이 보다 바람직하다.As shown in FIG. 7 , the station body 310 may be provided with a U-shaped eyepiece groove 311 so that the front of the unmanned movement measurement body 400 enters and can be stably docked. Here, it is preferable that the inlet end of the eyepiece groove 311 has a flared shape to avoid collision when the unmanned moving measurement body 400 is berthed, and in addition, the inlet edge of the eyepiece groove 311 has a collision mitigation. For this, it is more preferable that the bumper 312 is installed.
도킹 스테이션(300)은 도 8에서와 같이, 무인 이동측정체(400)의 연료수급모듈(후술함)로 전기연료를 공급하기 위한 연료공급모듈(340)을 더 포함할 수 있다. 연료공급모듈(340)은 태양광, 하천의 수류 및 풍력 등의 자연에너지를 전기에너지로 변환하여 축전하여 무인 이동측정체(400)를 충전시키는 역할과 함께 전동윈치(320) 및 제2 컨트롤러(330)에 전원을 공급하는 역할을 하는 제1 축전지(341)와, 스테이션 본체(310)의 접안홈(311) 내면 상에 배치되어 자기유도방식, 자기공진방식 중 어느 한 방식으로 무인 이동측정체로 전기연료를 무선 충전하는 충전패드(342)를 포함할 수 있다.The docking station 300 may further include a fuel supply module 340 for supplying electric fuel to a fuel supply module (to be described later) of the unmanned movement measurement body 400 as shown in FIG. 8 . The fuel supply module 340 converts natural energy such as sunlight, river currents, and wind power into electrical energy and stores power to charge the unmanned moving measurement body 400, as well as an electric winch 320 and a second controller ( The first storage battery 341, which serves to supply power to 330), is disposed on the inner surface of the eyepiece groove 311 of the station body 310, and is an unmanned moving measurement body in any one of a magnetic induction method and a magnetic resonance method. It may include a charging pad 342 for wirelessly charging electric fuel.
자기유동방식은 패드간 접촉을 통해 충전이 이루어지고, 자기공진방식은 패드간 비접촉 상태에서 충전이 가능한 것으로 필요에 따라 취사 선택하여 적용할 수 있다.In the magnetic flow method, charging is performed through contact between the pads, and in the magnetic resonance method, charging is possible in a non-contact state between the pads.
한편, 도킹 스테이션(300)은 제1 축전지(341)의 축전량을 실시간으로 감지하는 축전량 감지센서(350)가 설치될 수 있으며, 감지된 축전량이 기준치보다 미달인 경우 제2 컨트롤러(330)는 견인 전동윈치(320)의 작동이 필요한 시점임에도 불구하고 기준치에 도달할 때까지 견인 전동윈치의 작동을 중지시킬 수 있다.On the other hand, the docking station 300 may be provided with a power storage amount detection sensor 350 for detecting the amount of power storage of the first storage battery 341 in real time, and when the detected amount of power is less than the reference value, the second controller 330 can stop the operation of the traction electric winch until it reaches the reference value despite the time when the operation of the traction electric winch 320 is required.
무인 이동측정체(400)는 하천의 수면위에 부유상태로 설치되며, 도킹 스테이션(300)에 견인로프(321)로서 연결된 채 측정값(하천의 수위, 유량, 유사량, 하상의 변동상황, 강수량, 유출량 등)을 측정하기 위한 것으로, 하천을 자동으로 횡단하면서 측정값을 측정하는 특징적 구성을 갖는다.The unmanned moving measurement body 400 is installed in a floating state on the water surface of the river, and is connected to the docking station 300 as a traction rope 321 and measured values (water level, flow rate, similar amount, river bed fluctuations, precipitation, runoff, etc.), and has a characteristic configuration that measures the measured value while automatically crossing the river.
무인 이동측정체(400)는 도 9 내지 11에서와 같이, 견인로프(321)의 말단에 연결되는 측정본체(410)와, 측정본체에 탑재되어 측정값을 측량하는 계측장비(420)와, 측정본체를 하천의 폭방향으로 자동 횡단시켜주는 자동횡단수단(430)과, 자동횡단수단의 동작을 제어하기 위한 제3 컨트롤러(440)로 구성될 수 있다.The unmanned moving measurement body 400 includes a measurement body 410 connected to the end of the traction rope 321, and a measurement device 420 mounted on the measurement body to measure the measured value, as shown in FIGS. 9 to 11, It may be composed of an automatic crossing means 430 for automatically traversing the measurement body in the width direction of the river, and a third controller 440 for controlling the operation of the automatic crossing means.
측정본체(410)는 물에 부유될 수 있는 소재로 되며, 수상에서의 원활한 유동을 위하여 유선형의 보트 형상을 가질 수 있다.The measurement body 410 is made of a material that can be suspended in water, and may have a streamlined boat shape for smooth flow in water.
여기서, 측정본체(410)는 도 9에서와 같이, 분해 조립이 가능한 모듈구조를 가질 수 있다. 모듈구조는 일체형 구조에 비해 설치 및 수거가 용이하고, 훼손되거나 파손된 부분만을 국부적으로 교환할 수 있어서 유지보수비용을 줄일 수 있는 장점을 갖는다.Here, the measurement body 410 may have a modular structure that can be disassembled and assembled as shown in FIG. 9 . The modular structure is easier to install and collect than the integrated structure, and has the advantage of reducing maintenance costs because only damaged or damaged parts can be exchanged locally.
계측장비(420)는 도 10에서와 같이, 측정값(하천의 수위, 유량, 유사량, 하상의 변동상황, 강수량, 유출량 등)을 측정하는 측정부(421)와, 측정부에서 측정된 값을 저장하는 측정값 저장부(422)와, 측정값 저장부에 저장된 측정값을 기지국으로 무선 전송하는 측정값 전송부(423)로 구성될 수 있다.As shown in FIG. 10, the measuring device 420 includes a measuring unit 421 that measures the measured values (water level, flow rate, similar amount, river bed variation, precipitation, runoff, etc.), and the value measured by the measuring unit. It may be composed of a measurement value storage unit 422 to store and a measurement value transmission unit 423 for wirelessly transmitting the measurement value stored in the measurement value storage unit to the base station.
여기서, 계측장비(420)는 초음파 유량측정계, 전자파 또는 레이저 유속계를 포함할 수 있는데, 초음파 유량측정계에 의한 수표면의 유량측정이 불가능한 부분은 전자파 및 레이저 유속계에 의해 보완 측정하고, 이들 측정값을 조합하면 보다 정밀한 측정값을 도출할 수 있다.Here, the measuring equipment 420 may include an ultrasonic flow meter, electromagnetic wave or laser anemometer, and the part where the flow rate measurement of the water surface by the ultrasonic flow meter is impossible is supplemented by electromagnetic wave and laser anemometer, and these measured values are measured. Combining them can lead to more precise measurements.
무인 이동측정체(400)는 도킹 스테이션(300)에 정박하였을 때 연료공급모듈(340)로부터 전기연료를 충전받기 위한 연료수급모듈(450)를 더 포함할 수 있다.The unmanned movement measurement body 400 may further include a fuel supply module 450 for receiving electric fuel from the fuel supply module 340 when anchored in the docking station 300 .
연료수급모듈(450)은 도 11에서와 같이, 태양광, 하천의 수류 및 풍력 등의 자연에너지를 전기에너지로 변환하여 축전하며, 계측장비(420) 및 자동횡단수단(430)으로 전기연료를 공급하는 제2 축전지(451)와, 스테이션 본체(310)의 충전패드(342)와 접촉 또는 비접촉에 의해 전기연료를 충전받아서 제2 축전지(451)로 축전하는 수급패드(452)를 더 포함할 수 있다.As shown in FIG. 11, the fuel supply module 450 converts natural energy such as sunlight, river current, and wind power into electrical energy and stores electricity, and uses electric fuel with measuring equipment 420 and automatic crossing means 430. It may further include a second storage battery 451 to supply, and a supply and demand pad 452 that receives electric fuel by contact or non-contact with the charging pad 342 of the station body 310 and stores electricity in the second storage battery 451 . can
자동횡단수단(430)은 제2 축전지(451)에서 공급되는 전력에 의해 동작되면서 무인 이동측정체(400)의 좌우 이동방향을 조절하는 러더(rudder,431:도 12 참조)를 포함할 수 있다. 여기서, 러더(431)는 하천의 수류방향(도 12의 A화살표 방향)에 대응하여 제3 컨트롤러(440)에 의해 좌우 각도가 자동으로 변경됨에 따라 이동측정체(400)의 반복횡단이 가능하게 된다.The automatic crossing means 430 may include a rudder (431: see FIG. 12) for controlling the left and right movement direction of the unmanned moving measurement object 400 while being operated by power supplied from the second storage battery 451. . Here, the rudder 431 automatically changes the left and right angles by the third controller 440 in response to the flow direction of the river (the direction of the A arrow in FIG. 12), so that the repeating traversing of the moving measurement body 400 is possible do.
예컨대, 도 12에서와 같이, 러더(431)가 수류방향과 일치하는 경우는 러더의 각도와 수류방향이 일치하기 때문에 무인 이동측정체(400)는 위치 변화없이 중앙에 위치하게 되고, 이로부터 러더(431)의 각도를 반시계방향으로 방향을 틀면 러더에 수류가 작용함으로써 무인 이동측정체(400)의 좌향 이동이 가능하며, 또한, 러더(431)의 각도가 시계방향으로 방향을 틀면 러더(431)에 수류가 작용함으로써 무인 이동측정체(400)의 우향 이동이 가능하게 된다. 이러한 러더(431)의 각도변경은 자동적으로 이루어지면서 무인 이동측정체의 자동 횡단이 가능하게 된다.For example, as in FIG. 12 , when the rudder 431 coincides with the water flow direction, the unmanned moving measurement body 400 is located in the center without a change in position, since the angle of the rudder and the water flow direction coincide, and from this, the rudder When the angle of (431) is turned in a counterclockwise direction, the leftward movement of the unmanned moving measurement body 400 is possible by the water current acting on the rudder, and when the angle of the rudder 431 is turned in the clockwise direction, the rudder ( 431), the rightward movement of the unmanned movement measurement body 400 is possible by the action of the water current. The angle change of the rudder 431 is made automatically, and automatic traversing of the unmanned moving measurement body is possible.
무인 이동측정체(400)는 제2 축전지(451)의 충전량을 실시간으로 감지하는 축전량 감지센서(460)가 설치될 수 있으며, 감지된 축전량이 기준치보다 미달인 경우 제3 컨트롤러(440)는 정박 스테이션(300)의 제2 컨트롤러(330)로 정박요청신호를 송출하여 견인 전동윈치(320)의 작동으로 정박이 이루어도록 하며, 동시에 충전이 이루어질 수 있도록 할 수 있다.The unmanned moving measurement object 400 may be provided with a power storage amount detection sensor 460 that detects the amount of charge of the second storage battery 451 in real time, and when the detected amount of storage is less than the reference value, the third controller 440 is By sending a mooring request signal to the second controller 330 of the mooring station 300, the mooring is accomplished by the operation of the traction electric winch 320, and charging can be performed at the same time.
이러한 무인 이동측정체(400)는 도 12에서와 같이, 하천의 수류에 의해 언와인딩 된 견인로프(321)의 길이만큼 도킹 스테이션(300)으로부터 이격된 상태를 유지한 채, 자동횡단수단(430)에 의해 도킹 스테이션(300)을 중심으로 호형궤적(도 12의 B화살표)을 그리면서 하천의 폭방향으로 자동 반복 횡단하여 측정값을 측정하게 된다. As shown in FIG. 12 , the unmanned moving measurement body 400 maintains a state spaced apart from the docking station 300 by the length of the tow rope 321 unwound by the water flow of the river, and the automatic crossing means 430 ), while drawing an arc-shaped trajectory (arrow B in FIG. 12) centered on the docking station 300, automatically and repeatedly traverses in the width direction of the river to measure the measured value.
특히, 무인 이동측정체(400)는 특별한 기상악화상황이나 고장 등의 이유를 제외하고는 무휴측정이 가능하므로 많은 측정데이터를 확보할 수 있다. 따라서, 정확한 측정이 가능하고, 특히, 하천의 중앙부와 사이드 부분에서는 측정값에 차이가 날 수 있음을 감안하여 무인 이동측정체가 하천을 반복적으로 횡단하면서 측정값을 도출하므로 정밀 측정이 가능하다. 따라서, 하천유량을 정확하게 예측하는데 큰 도움을 주게 된다.In particular, the unmanned moving measurement object 400 can secure a lot of measurement data because it is possible to measure 24/7 except for a reason such as a special bad weather situation or a malfunction. Therefore, accurate measurement is possible, and in particular, taking into account that the measured values may differ in the central and side portions of the river, the unmanned moving measuring object derives the measured values while repeatedly traversing the river, so precise measurement is possible. Therefore, it is of great help in accurately predicting river flow.
한편, 무인 이동측정체(400)는 견인로프 없이 측정작업을 할 수도 있다. 즉, 하천에 수류가 작은 경우에는 견인로프(321)를 연결하지 않아도 무인 이동측정체(400)가 떠내려가지 않으므로 견인로프 없이 측정작업을 할 수 있고, 필요시 GPS 유도작용 및 자체 충전동력에 의해 도킹 스테이션(300)으로 접근하여 무선충전 등의 작업을 수행할 수 있다. On the other hand, the unmanned moving measurement body 400 may perform a measurement operation without a traction rope. That is, when the water flow in the river is small, the unmanned moving measurement object 400 does not float away even if the traction rope 321 is not connected. By approaching the docking station 300, it is possible to perform operations such as wireless charging.
또 한편, 무인 이동측정체(400)가 무로프 상태로 측정작업을 하다가 수류의 발생으로 견인로프(321)를 연결하고자 할 때는 무인 이동측정체(400)가 추진동력에 의해 도킹 스테이션(300)으로 이동하여 도킹됨과 동시에, 견인로프(321)의 말단에 마련된 후크(미도시)에 무인 이동측정체(400)의 고리(미도시)가 걸리면서 견인로프(321)를 자동으로 연결할 수 있다. 이후, 견인로프(321)가 연결된 상태로 측정작업을 재개할 수 있다.On the other hand, when the unmanned movement measurement object 400 is trying to connect the traction rope 321 due to the occurrence of a water flow while performing measurement work in a rope-free state, the unmanned movement measurement object 400 is driven by the propulsion power to the docking station 300 At the same time as being docked by moving to a hook (not shown) provided at the end of the traction rope 321, the hook (not shown) of the unmanned moving measurement body 400 is caught and the traction rope 321 can be automatically connected. Thereafter, the measurement operation can be resumed while the traction rope 321 is connected.
또 한편, 본 발명에 따른 하천용 유량측정장치(100)는 다른 실시예로서 상기 도킹 스테이션(300)의 구성이 제외되고, 픽업 전동윈치(200)와 무인 이동측정체(400)로 간략 구성될 수 있다.On the other hand, the flow rate measuring device 100 for a river according to the present invention is another embodiment, except for the configuration of the docking station 300, and is simply composed of a pickup electric winch 200 and an unmanned movement measuring body 400. can
이 경우, 상기 무인 이동측정체(400)는 픽업 전동윈치(200)와 픽업로프(201)에 의해 연결됨과 아울러, 별도로 낚시줄이나 피아노선과 같은 강하지만 얇은 유도선(미도시)에 의해 연결될 수 있다. 여기서 유도선의 와인딩 및 언와인딩을 위해서 전동모터가 추가로 설치될 수 있다.In this case, the unmanned moving measurement body 400 is connected by the pickup electric winch 200 and the pickup rope 201, and can be separately connected by a strong but thin guide wire (not shown) such as a fishing line or a piano wire. there is. Here, an electric motor may be additionally installed for winding and unwinding of the guide wire.
이러한 구성에 따라, 유도선은 무인 이동측정체(400)의 위치를 유도하거나 또는 기상악화로 인해 픽업할 때 무인 이동측정체(400)를 다리 및 정박장에 근접할 때까지 잡아당기는 역할을 하고, 다리위 및 정박장에 픽업할 때는 큰 힘이 필요하므로 픽업로프(201)에 의해 끌어 올림으로써 역할을 분담할 수 있다.According to this configuration, the guide line guides the location of the unmanned mobile measurement body 400 or when it is picked up due to bad weather, pulls the unmanned mobile measurement object 400 until it approaches the bridge and the berth, When picking up on the bridge and at the berth, a large force is required, so the role can be divided by pulling it up by the pickup rope 201 .
이상에서 설명한 바와 같이, 본 발명이 속하는 기술 분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예는 모두 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모두 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.As described above, those skilled in the art to which the present invention pertains will be able to understand that the present invention may be implemented in other specific forms without changing the technical spirit or essential characteristics thereof. Therefore, it should be understood that all of the embodiments described above are illustrative and not restrictive. The scope of the present invention should be construed as being included in the scope of the present invention, rather than the above detailed description, all changes or modifications derived from the meaning and scope of the claims to be described later and their equivalent concepts.
[부호의 설명][Explanation of code]
100 : 유량측정장치 200 : 픽업 전동윈치100: flow measuring device 200: pickup electric winch
201 : 픽업로프 210 : 제1 컨트롤러201: pickup rope 210: first controller
211 : 수신부 220 : 축전지211: receiver 220: storage battery
300 : 도킹 스테이션 310 : 스테이션 본체300: docking station 310: station body
311 : 접안홈 312 : 범퍼311: eyepiece 312: bumper
320 : 견인 전동윈치 321 : 견인로프320: traction electric winch 321: traction rope
330 : 제2 컨트롤러 340 : 연료공급모듈330: second controller 340: fuel supply module
341 : 축전지 342 : 충전패드341: storage battery 342: charging pad
350 : 축전량 감지센서 400 : 무인 이동측정체350: power storage sensor 400: unmanned moving measurement object
410 : 측정본체 420 : 계측장비410: measuring body 420: measuring equipment
421 : 측정부 422 : 측정값 저장부421: measurement unit 422: measurement value storage unit
423 : 측정값 전송부 430 : 자동횡단수단423: measurement value transmission unit 430: automatic crossing means
440 : 제3 컨트롤러 450 : 연료수급모듈440: third controller 450: fuel supply module
451 : 축전지 452 : 수급패드451: storage battery 452: supply and demand pad

Claims (14)

  1. 하천의 구조물 또는 하천의 가장자리에 설치된 채, 제1 컨트롤러의 제어신호에 따라 픽업로프를 와인딩 또는 언와인딩하는 픽업 전동윈치;A pickup electric winch for winding or unwinding the pickup rope according to the control signal of the first controller while being installed on the river structure or the edge of the river;
    픽업로프의 말단에 연결된 채 하천의 수면상에 부유된 상태로 정박되며, 제2 컨트롤러의 제어신호에 따라 견인로프를 와인딩 또는 언와인딩하는 견인 전동윈치를 포함하는 도킹 스테이션; 및Docking station including a traction electric winch anchored in a floating state on the water surface of the river while connected to the end of the pickup rope, and winding or unwinding the traction rope according to the control signal of the second controller; and
    견인로프의 말단에 연결되며, 도킹 스테이션과 이격된 상태에서 하천의 폭방향으로 횡단하면서 하천의 유량, 수질 및 유사량 등의 측정값을 측정하는 무인 이동측정체;를 포함하되,It is connected to the end of the traction rope, and while traversing in the width direction of the river in a state that is spaced apart from the docking station, an unmanned mobile measuring body that measures the measurement values such as flow rate, water quality and similarity of the river;
    무인 이동측정체는, 하천의 수류에 의해, 언와인딩 된 견인로프의 길이만큼 도킹 스테이션으로부터 이격된 상태를 유지한 채, 자동횡단수단에 의해 도킹 스테이션을 중심으로 호형궤적을 그리면서 하천의 폭방향으로 자동 반복 횡단하여 측정값을 측정하는 하천용 유량 및 수질 측정장치.The unmanned moving measurement object maintains a state separated from the docking station by the length of the unwound traction rope by the flow of the river, and draws an arc-shaped trajectory around the docking station by automatic crossing means in the width direction of the river. A flow rate and water quality measuring device for rivers that automatically repeats traversing and measures the measured value.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 구조물은 교량인 것을 특징으로 하는 하천용 유량 및 수질 측정장치.The structure is a flow rate and water quality measuring device for a river, characterized in that the bridge.
  3. 청구항 1에 있어서,The method according to claim 1,
    픽업 전동윈치는 제1 컨트롤러로 수신된 기상악화정보에 따라 픽업로프를 와인딩하여, 도킹 스테이션 및 무인 이동측정체를 구조물 위로 끌어 올리거나 또는 하천의 가장자리로 회피되도록 하는 것을 특징으로 하는 하천용 유량 및 수질 측정장치.The pickup electric winch winds the pickup rope according to the bad weather information received by the first controller, and raises the docking station and the unmanned moving measurement object over the structure or avoids it to the edge of the river. Water quality measuring device.
  4. 청구항 1에 있어서,The method according to claim 1,
    도킹 스테이션은 무인 이동측정체의 연료수급모듈로 전기연료를 공급하기 위한 연료공급모듈을 더 포함하는 것을 특징으로 하는 하천용 유량 및 수질 측정장치.The docking station is a flow rate and water quality measuring device for rivers, characterized in that it further comprises a fuel supply module for supplying electric fuel to the fuel supply module of the unmanned moving measurement body.
  5. 청구항 4에 있어서,5. The method according to claim 4,
    연료공급모듈에서 연료수급모듈로의 전기연료 공급은 무선충전모듈에 의해 이루어지는 것을 특징으로 하는 하천용 유량 및 수질 측정장치.Electric fuel supply from the fuel supply module to the fuel supply module is a flow rate and water quality measuring device for a river, characterized in that it is made by a wireless charging module.
  6. 청구항 5에 있어서,6. The method of claim 5,
    도킹 스테이션에는 무인 이동측정체의 전방이 내부로 진입하여 접안될 수 있는 접안홈이 마련되되, The docking station is provided with an eyepiece groove in which the front of the unmanned moving measurement body can enter and dock;
    접안홈의 내면 상에는 연료공급모듈의 내면상에는 연료공급모듈의 충전패드가 배치되고, A charging pad of the fuel supply module is disposed on the inner surface of the fuel supply module on the inner surface of the eyepiece groove,
    무인 이동측정체의 충전패드와 대응되는 부위에는 충전패드와 접촉 또는 비접촉에 의해 전기충전이 이루어지는 수급패드가 배치된 것을 특징으로 하는 하천용 유량 및 수질 측정장치.A flow rate and water quality measuring device for rivers, characterized in that a supply/demand pad that is electrically charged by contact or non-contact with the charging pad is disposed in a portion corresponding to the charging pad of the unmanned moving measurement body.
  7. 청구항 6에 있어서,7. The method of claim 6,
    충전패드에서 수급패드로의 전기충전은 자기유도방식, 자기공진방식 중 어느 하나인 것을 특징으로 하는 하천용 유량 및 수질 측정장치.Electrical charging from the charging pad to the supply and demand pad is a flow rate and water quality measuring device for rivers, characterized in that any one of a magnetic induction method and a magnetic resonance method.
  8. 청구항 4에 있어서,5. The method according to claim 4,
    연료공급모듈은 태양광, 하천의 수류, 풍력 중, 어느 일부 또는 전부 이용하는 자연에너지를 축전한 후, 견인 전동윈치 및 제2 컨트롤러로 전원을 공급하는 제1 축전지를 더 포함하는 것을 특징으로 하는 하천용 유량 및 수질 측정장치.The fuel supply module further comprises a first storage battery for supplying power to the traction electric winch and the second controller after accumulating natural energy using any part or all of sunlight, river currents, and wind power. For flow and water quality measurement devices.
  9. 청구항 1에 있어서,The method according to claim 1,
    무인 이동측정체는, Unmanned moving measurement object,
    측정본체;measuring body;
    측정본체에 탑재되어 측정값을 측정하기 위한 계측장비; 및Measuring equipment mounted on the measuring body to measure the measured value; and
    제3 컨트롤러에 의해 작동되면서 측정본체를 하천의 폭방향으로 자동 횡단시켜주는 자동횡단수단;an automatic traversing means for automatically traversing the measuring body in the width direction of the river while being operated by the third controller;
    을 포함하는 것을 특징으로 하는 하천용 유량 및 수질 측정장치.Flow rate and water quality measurement device for rivers, characterized in that it comprises a.
  10. 청구항 9에 있어서,10. The method of claim 9,
    무인 이동측정체는 태양광, 하천의 수류, 풍력 중, 어느 일부 또는 전부를 이용하는 자연에너지를 축전하여, 계측장비 및 자동횡단수단으로 전원을 공급하는 축전지를 더 포함하는 것을 특징으로 하는 하천용 유량 및 수질 측정장치.The unmanned moving measurement object stores natural energy using any part or all of sunlight, river currents, and wind power, and further comprises a storage battery for supplying power to measuring equipment and automatic crossing means. and water quality measurement devices.
  11. 청구항 10에 있어서,11. The method of claim 10,
    자동횡단수단은 제2 축전지의 에너지에 의해 동작되면서 하천의 수류방향에 대응하여 각도를 자동 조절함으로써 무인 이동측정체의 좌우 이동방향을 조절하는 러더를 포함하는 것을 특징으로 하는 하천용 유량 및 수질 측정장치.The automatic crossing means is operated by the energy of the second storage battery and automatically adjusts the angle in response to the flow direction of the river. Device.
  12. 청구항 10에 있어서,11. The method of claim 10,
    무인 이동측정체는 제2 축전지의 충전량을 실시간으로 감지하는 축전량 감시센서를 더 포함하되, 축전량 감지센서에서의 감지값이 설정값 이하인 경우 제3 컨트롤러가 제2 컨트롤러로 정박요청신호를 송출하여 견인 전동윈치가 와인딩 동작되도록 하는 것을 특징으로 하는 하천용 유량 및 수질 측정장치.The unmanned moving measurement body further includes a power storage amount monitoring sensor that detects the amount of charge of the second storage battery in real time, and when the detected value of the power storage amount detection sensor is less than or equal to a set value, the third controller sends a berth request signal to the second controller Flow rate and water quality measuring device for rivers, characterized in that the traction electric winch is wound.
  13. 청구항 1에 있어서,The method according to claim 1,
    측정본체는 분해 조립이 가능한 모듈구조로 된 것을 특징으로 하는 하천용 유량 및 수질 측정장치.Flow rate and water quality measuring device for rivers, characterized in that the measuring body has a modular structure that can be disassembled and assembled.
  14. 청구항 1에 있어서,The method according to claim 1,
    계측장비는 하천의 유량, 수질 및 유사량을 측정하는 측정부,The measuring equipment includes a measuring unit that measures the flow rate, water quality and similar quantity of rivers;
    측정부에서 측정된 값을 저장하는 측정값 저장부 및a measurement value storage unit for storing the value measured by the measurement unit; and
    측정값 저장부에 저장된 측정값을 기지국으로 실시간 전송하는 측정값 전송부로 구성된 것을 특징으로 하는 하천용 유량 및 수질 측정장치.Flow rate and water quality measuring device for rivers, characterized in that it consists of a measured value transmitter that transmits the measured value stored in the measured value storage unit to the base station in real time.
PCT/KR2021/014429 2020-10-23 2021-10-18 Flow rate and water quality measurement device for river WO2022086073A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0138120 2020-10-23
KR1020200138120A KR102233284B1 (en) 2020-10-23 2020-10-23 Stream flow and water quality measuring apparatus

Publications (1)

Publication Number Publication Date
WO2022086073A1 true WO2022086073A1 (en) 2022-04-28

Family

ID=75250049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/014429 WO2022086073A1 (en) 2020-10-23 2021-10-18 Flow rate and water quality measurement device for river

Country Status (2)

Country Link
KR (1) KR102233284B1 (en)
WO (1) WO2022086073A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116165024A (en) * 2023-04-24 2023-05-26 北京承启通科技有限公司 Water quality testing is with from sampling device based on water velocity of flow changes
CN116777183A (en) * 2023-08-17 2023-09-19 北京海舶无人船科技有限公司 Unmanned ship cluster intelligent scheduling method and system
CN117760505A (en) * 2024-02-22 2024-03-26 上海临澜环境科技有限公司 Unmanned detection method and device for water flow

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102233284B1 (en) * 2020-10-23 2021-03-29 주식회사 하백소프트 Stream flow and water quality measuring apparatus
CN114719139B (en) * 2022-04-11 2023-09-12 四川省水利科学研究院 River channel flow velocity monitoring device convenient to withdraw
CN116973526B (en) * 2023-04-12 2024-05-03 江苏捷利达环保科技有限公司 Ammonia nitrogen on-line monitor and monitoring method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151561A (en) * 2006-12-15 2008-07-03 Hokuto Sokuryo Chosa Kk Measurement apparatus and measurement method for flow condition
KR100851467B1 (en) * 2007-04-17 2008-08-08 인제대학교 산학협력단 Measuring device of suspended sediment discharge
KR20140031498A (en) * 2012-09-03 2014-03-13 주식회사 에프나인 Life rescue system using overwater robot and life rescue method using the same
JP2018083558A (en) * 2016-11-24 2018-05-31 株式会社Ihi Storage device and recovery method for underwater vessel
JP2019089422A (en) * 2017-11-14 2019-06-13 リュル キム,ドン Seabed survey system using underwater drone
KR102233284B1 (en) * 2020-10-23 2021-03-29 주식회사 하백소프트 Stream flow and water quality measuring apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100497228B1 (en) 2004-11-30 2005-06-23 (주)오트로닉스 Automatic measurement system of river discharge using adcp
KR100687634B1 (en) 2006-08-16 2007-03-02 주식회사 도화종합기술공사 River flow measurement buoy using GPS

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151561A (en) * 2006-12-15 2008-07-03 Hokuto Sokuryo Chosa Kk Measurement apparatus and measurement method for flow condition
KR100851467B1 (en) * 2007-04-17 2008-08-08 인제대학교 산학협력단 Measuring device of suspended sediment discharge
KR20140031498A (en) * 2012-09-03 2014-03-13 주식회사 에프나인 Life rescue system using overwater robot and life rescue method using the same
JP2018083558A (en) * 2016-11-24 2018-05-31 株式会社Ihi Storage device and recovery method for underwater vessel
JP2019089422A (en) * 2017-11-14 2019-06-13 リュル キム,ドン Seabed survey system using underwater drone
KR102233284B1 (en) * 2020-10-23 2021-03-29 주식회사 하백소프트 Stream flow and water quality measuring apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116165024A (en) * 2023-04-24 2023-05-26 北京承启通科技有限公司 Water quality testing is with from sampling device based on water velocity of flow changes
CN116165024B (en) * 2023-04-24 2023-07-21 北京承启通科技有限公司 Water quality testing is with from sampling device based on water velocity of flow changes
CN116777183A (en) * 2023-08-17 2023-09-19 北京海舶无人船科技有限公司 Unmanned ship cluster intelligent scheduling method and system
CN116777183B (en) * 2023-08-17 2023-11-21 北京海舶无人船科技有限公司 Unmanned ship cluster intelligent scheduling method and system
CN117760505A (en) * 2024-02-22 2024-03-26 上海临澜环境科技有限公司 Unmanned detection method and device for water flow
CN117760505B (en) * 2024-02-22 2024-05-14 上海临澜环境科技有限公司 Unmanned detection method and device for water flow

Also Published As

Publication number Publication date
KR102233284B1 (en) 2021-03-29

Similar Documents

Publication Publication Date Title
WO2022086073A1 (en) Flow rate and water quality measurement device for river
CN104743129B (en) For being tethered at the automatic lock take-up and pay-off device of unmanned plane
CN105510624A (en) Trail-type radar wave online current measuring system based on double-track cableway
CN214475072U (en) Inspection system for underground comprehensive pipe gallery
CN107239072A (en) A kind of outdoor automatic tour inspection system
CN107014971A (en) Underwater hiding-machine with efficient charging and remote data transmission function uses buoy base station
CN105628109A (en) River flow speed auto-measuring method and device
CN215663036U (en) Automatic floating platform charging system of unmanned ship for water quality sampling
CN114827217A (en) Offshore platform personnel alarm and automatic search and rescue system that falls into water
CN113984990A (en) Water environment on-line monitoring device with movable monitoring points
CN113607234A (en) Novel intelligent inspection well cover device and system thereof
CN113092711A (en) Water quality detection system for water conservancy information-based hydraulic engineering
CN110196032A (en) A kind of railway contact line ratchet compensating device a (b) value measurement method and system
CN113281053B (en) Non-contact acoustic monitoring and LoRa transmission system and method based on stereo garage
CN214326951U (en) Hydrology remote monitoring station
CN208187462U (en) Radar wave based on single track cableway with wireless charging device intelligent flow measuring system entirely
JPH1169546A (en) Monitoring system
CN209085707U (en) A kind of rivers and canals road water level, Water flow detector
CN215524599U (en) Track section flow measuring vehicle
CN213632094U (en) Hydrological information automatic monitoring device suitable for mountain river
CN218824358U (en) Formula of sailing river course survey device
CN205333672U (en) Online current surveying system of towed radar wave based on double track cableway
CN213292637U (en) Intelligent lifting device for water navigation mark
CN220688413U (en) Pipeline detection robot applied to salty tide environment
CN209514853U (en) Empty rail road real-time monitoring system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21883144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21883144

Country of ref document: EP

Kind code of ref document: A1