WO2022085936A1 - 배터리 및 연료전지스택용 열교환기 - Google Patents

배터리 및 연료전지스택용 열교환기 Download PDF

Info

Publication number
WO2022085936A1
WO2022085936A1 PCT/KR2021/012061 KR2021012061W WO2022085936A1 WO 2022085936 A1 WO2022085936 A1 WO 2022085936A1 KR 2021012061 W KR2021012061 W KR 2021012061W WO 2022085936 A1 WO2022085936 A1 WO 2022085936A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
flow path
battery
fuel cell
cell stack
Prior art date
Application number
PCT/KR2021/012061
Other languages
English (en)
French (fr)
Inventor
고우종
이광용
김영일
류재윤
Original Assignee
주식회사 고산
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 고산 filed Critical 주식회사 고산
Publication of WO2022085936A1 publication Critical patent/WO2022085936A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6566Means within the gas flow to guide the flow around one or more cells, e.g. manifolds, baffles or other barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a heat exchanger for a battery and fuel cell stack, and more particularly, a flow path formed in a depression in the central region of the upper surface, and a dispersing projection protruding in a zigzag type with respect to the longitudinal direction of the flow path and covering the upper portion of the flow path plate
  • It includes a finishing plate for finishing, and is bent and extended at a predetermined interval on the periphery of the euro plate, and is fixed to the periphery of the euro plate and the finishing plate through a fixing means in which the end is bent and fixed around the lower surface of the finishing plate Since the flow of the cooling fluid is delayed for a certain period of time through the dispersion protrusion in the flow path of the flow plate by being closely fixed, the flow of the fluid for cooling is guided so that the flow is evenly distributed throughout the flow path, optimizing the contact time for cooling and at the same time placing the battery or fuel on a flat upper surface.
  • the finishing plate, the inlet pipe and the outlet pipe through press molding and brazing, the euro plate, the finishing plate, the inlet pipe and the outlet pipe are assembled and manufactured through fixing means while injection molding the euro plate.
  • the degree of freedom in line design can be increased, the mold cost according to the injection process can be reduced compared to the press process, the man-hours can be reduced by assembling different materials for the euro plate and the finish plate, and also the equipment for manufacturing compared to the press process It relates to a heat exchanger for battery and fuel cell stacks that can be applied to injection and assembly equipment and realize investment cost reduction according to equipment investment.
  • the hydrogen fuel cell vehicle and hybrid electric vehicle (hereinafter, collectively referred to as an electric vehicle) as described above are generally manufactured with a plurality of lithium-ion cells, and thus a rechargeable high-voltage battery or fuel cell is applied.
  • a high-voltage battery is one of the key components constituting an electric vehicle, and generates high-temperature heat during charging and discharging.
  • a cooling system is provided in the battery pack to manage the heat of the battery by forced air cooling through the cooling system.
  • the cooling system using the blower motor has a problem in that it occupies the second largest volume after the battery among high voltage battery electronic components, and there is a limit in increasing the air volume due to structural limitations in capacity increase.
  • a system capable of cooling the heat of the battery is essential because the amount of heat generated by the battery is large during vehicle charging (especially, rapid charging), and driving wind does not occur when the vehicle is stationary.
  • the electric vehicle has a problem in that a battery cooling system must be provided to prepare for heat generation such as when charging the vehicle.
  • a heat exchange pipe that flows in and out so that a cooling fluid is circulated through the inner space, and a heat exchange pipe that is formed by bending a number of bends, and an insertion groove are formed on the bottom so that the upper outer surface of the heat exchange pipe is in close contact and an upper plate facing the upper plate and assembled through a coupling member, and a lower plate having an insertion groove formed on the upper surface so that the lower outer surface of the heat exchange pipe is in close contact.
  • the cooling of the battery in close contact with the upper plate or the lower plate from the heat exchange pipe through the upper plate and the lower plate by the cooling fluid circulating inside the heat exchange pipe This can be done more efficiently.
  • the heat exchange pipe is interposed between the upper plate and the lower plate and combined with a coupling member to complete the product through mechanical assembly, and the manufacturing process is complicated. There was a problem.
  • a baffle 11 is fixed at the center to divide the flow path on the upper side of the extruded cooling plate 20 in which a plurality of flow paths are formed through, and the inlet 30 and the outlet port are provided on both sides.
  • the configuration in which the first header pipe 10 to which the 40 is assembled is fixed by brazing, and the second header pipe 10' is assembled and fixed by brazing to return the fluid flowing to the flow path below the cooling plate 20 am.
  • the battery B is in close contact with the cooling plate 20 with a flat surface by extrusion molding, so cooling of the heat generated from the battery is easy, but cooling for the manufacture of the heat exchanger 1
  • each part is temporarily assembled and brazing is performed.
  • the fluid in order to maximize cooling efficiency, the fluid must be accurately distributed in the first header pipe 10 to be introduced and discharged, and mixing of the fluid must be prevented in the process of circulating through the flow path of the cooling plate to maximize cooling efficiency.
  • precise processing and assembling by brazing are required for the separate baffle 11 fixed to the first header pipe 10, so there is a problem in that the production cost is reduced as well as the manufacturing cost is increased.
  • the contact time for cooling is optimized by guiding the flow to be evenly distributed throughout the flow path, and at the same time, one side of the battery or fuel cell stack is placed on a flat upper surface. Direct contact allows to maximize the cooling efficiency of the heat generated in the battery or fuel cell stack, while simplifying the fixing means and improving productivity through simple manufacturing.
  • Research and development is required for a heat exchanger for a battery and fuel cell stack that is fixed to an outlet pipe in a bent structure so that an inlet pipe or an outlet pipe can be easily fixedly installed.
  • Patent Document 1 Korean Patent Publication No. 2016-0048564 published on May 4, 2016.
  • Patent Document 2 Republic of Korea Patent Publication No. 10-2020-0082567 published on August 8, 2020.
  • Patent Document 3 Registered Republic of Korea Patent No. 10-1995582 2019.06.26.
  • Patent Document 4 Registered Republic of Korea Patent No. 10-1986238 2019.05.30.
  • Patent Document 5 Korean Patent Laid-Open No. 10-2014-0026961 published on March 6, 2014.
  • the present invention includes a flow path plate in which a flow path is recessed in the central region of the upper surface and dispersing projections are formed to protrude in a zigzag type with respect to the longitudinal direction of the flow path, and a finishing plate covering the upper part of the flow path plate to finish.
  • the end of the euro plate is bent and extended at a certain interval at the circumferential part of the euro plate and fixed to the circumferential part of the euro plate and the finish plate through a fixing means that is fixed to the circumference of the lower surface of the finish plate, and is fixed in close contact with each other.
  • An object of the present invention is to provide a heat exchanger for batteries and fuel cell stacks that maximizes the cooling efficiency of heat generated in the battery or fuel cell stack while being closely attached.
  • Another object of the technology according to the present invention is to include a flow path plate in which a flow path is recessed in the central region of the upper surface and a dispersion projection is formed to protrude in a zigzag type with respect to the longitudinal direction of the flow path, and a finishing plate for covering and closing the upper part of the flow path plate.
  • Another object of the technology according to the present invention is that the inlet pipe or the outlet pipe is fixed to the inlet hole or the outlet hole through the bending structure of the end, so that the inlet pipe or the outlet pipe is easily fixed and installed and the fixed state is maintained and the device accordingly
  • the purpose is to significantly improve the durability of
  • Another object of the technology according to the present invention is that the flow plate, the finish plate, the inlet pipe and the outlet pipe are manufactured by injection molding the flow plate, unlike the production of the flow plate, the finish plate, the inlet pipe and the outlet pipe through press molding and brazing.
  • the degree of freedom in designing the flow line can be increased, the mold cost according to the injection process compared to the press process can be reduced, and the man-hours can be reduced by assembling different materials for the flow plate and the finishing plate.
  • it is applied as injection and assembly equipment for the equipment for manufacturing compared to the press process, so that the investment cost can be reduced according to the equipment investment.
  • the present invention for achieving the above object is as follows. That is, the heat exchanger for a battery and fuel cell stack according to the present invention is installed in close contact with one surface of an electric vehicle to cool the battery or fuel cell stack. Provided, a flow path through which the cooling fluid moves is recessed in the upper surface, and the top is the same as the top of the peripheral part in a zigzag type with respect to the longitudinal direction of the flow path so that the flow of the fluid is dispersed over a certain time and flowed while being delayed.
  • a flow path plate in which the dispersing projections protrude upward; It is provided as a plate corresponding to the flow path plate so that one side of the battery or fuel cell stack is in close contact with one side of the battery or fuel cell stack and heat exchange is performed by covering the flow path open upward to the upper side of the flow path plate, and an inlet hole is formed through one side, and the other A finishing plate through which the outlet hole is formed on the side and the open part of the flow path is sealed; Fixing the peripheral part in a state in which the finishing plate is in close contact with the upper part of the euro plate is formed with a certain distance between the euro plate and the peripheral part of the finishing plate, and through a bending structure with respect to the peripheral part of the euro plate and the finishing plate fixing means to be mutually fixed; an inlet pipe to which the lower end is fixed so as to supply a fluid to the inlet hole of the finishing plate; and an outlet pipe to which a lower end portion is fixed so that the fluid can be discharged into the outlet hole of the finishing plate.
  • the fixing means has a predetermined width and depth inward from the side outer surface at a predetermined interval along the perimeter of the flow plate so that the peripheral portion in a state in which the finishing plate is in close contact with the top of the flow plate can be fixed to each other through a bending structure.
  • the lower portion is bent vertically for a certain length, and the bottom is It is composed of a bending piece that is bent inwardly on the lower surface of the flow plate and fixes the flow plate and the finish plate in close contact with each other through a bending structure.
  • the bending piece is fixed by bending to the lower surface of the flow path plate while the downwardly protruding end is bent inwardly in a state in which the bending piece is inserted and adhered into the fixing groove by a predetermined length downward from the upper end when the finishing plate is in close contact with the upper portion of the flow path plate.
  • dispersing protrusion of the flow path plate may be provided in a cylindrical type.
  • the dispersion projection of the flow path plate is provided in a droplet-shaped column type, while the side corresponding to one side of the flow path, which is the side through which the fluid for cooling flows through the inflow pipe, is hemispherical, and the side opposite to the hemispherical shape is pointed in the shape of an inequality sign. It may be formed to protrude upward in the flow path in the shape of a water droplet.
  • the dispersion projection of the flow path plate is provided in a rhombus-shaped column type, while the opposite side is longer than one side of the flow path, which is the side where the fluid for cooling flows through the inflow pipe based on the central center of the rhombus shape. It may be formed to protrude upward in the flow path in a rhombus shape to be formed.
  • the lower part of the inlet pipe is fixed by bending to the lower periphery of the inlet hole, while when fixed to the outlet hole for the outlet pipe, the lower part of the outlet pipe is fixed by banding to the lower periphery of the outlet hole It is preferable to be
  • the flow path plate is provided as a plate having a certain thickness, and is provided as a 'C'-shaped plate in plan view so that the flow path is recessed into a 'C' shape on the upper surface, while the finishing plate is a flow path plate It is provided as a plate corresponding to , and is provided as a 'U'-shaped plate in plan view to correspond to the flow path plate, the inlet hole is formed through the bent portion of one side, and the outlet hole is formed through the bent portion of the other side it is good to be
  • the flow path is recessed in the central region of the upper surface and includes a flow path plate in which dispersion projections are formed protruding in a zigzag type with respect to the longitudinal direction of the flow path, and a finishing plate that covers and finishes the upper part of the flow path plate.
  • the fluid for cooling through the dispersing protrusion in the flow path of the flow path by being bent and extended and fixed to the circumferential part of the flow path plate and the finishing plate through a fixing means in which the end is bent and fixed around the lower surface of the finishing plate.
  • Battery or fuel cell stack generated by direct contact of one side of the battery or fuel cell stack on a flat top surface while optimizing the contact time for cooling by guiding the flow to be evenly distributed throughout the flow path as the flow is delayed for a certain period of time It is possible to maximize the cooling efficiency of the heat generated in the
  • the flow path is recessed in the central region of the upper surface and includes a flow path plate in which dispersion projections are formed protruding in a zigzag type with respect to the longitudinal direction of the flow path, and a finishing plate that covers and finishes the upper part of the flow path plate.
  • the inlet pipe or the outlet pipe is fixedly installed through the bending structure of the end in the inlet hole or outlet hole, so that the inlet pipe or outlet pipe is easily fixed and installed and maintained in a fixed state, and thus the durability of the device can be significantly improved.
  • the euro plate, finish plate, inlet pipe, and outlet pipe are assembled and manufactured through fixing means while injection molding the euro plate, unlike when the euro plate, finishing plate, inlet pipe and outlet pipe were manufactured through press molding and brazing.
  • it is possible to increase the design freedom of the flow line reduce the mold cost according to the injection process compared to the press process, reduce the man-hours by assembling different materials for the flow plate and the finish plate, and also reduce the manufacturing process compared to the press process.
  • As it is applied as injection and assembly equipment for the equipment for the purpose it is possible to reduce the investment cost according to the equipment investment.
  • FIG. 1 is an exploded perspective view showing a heat exchanger for a battery and fuel cell stack according to the present invention
  • 2A and 2B are a planar combined perspective view and a bottom combined perspective view showing a heat exchanger for a battery and fuel cell stack according to the present invention.
  • FIG 3 is a cross-sectional view illustrating a combination of a heat exchanger for a battery and a fuel cell stack according to the present invention.
  • FIGS. 4A and 4B are exploded and combined perspective configuration views showing a state applied for battery cooling to a heat exchanger for a battery and a fuel cell stack according to the present invention.
  • FIG. 5 is a plan view showing the flow of a fluid for cooling in the heat exchanger for a battery and fuel cell stack according to the present invention.
  • FIG. 6 is a perspective view showing another embodiment of a flow plate, which is a main part of a heat exchanger for a battery and fuel cell stack according to the present invention.
  • FIG. 7 is a perspective view showing another embodiment of a flow plate, which is a main part of the heat exchanger for a battery and fuel cell stack according to the present invention.
  • FIG. 8 is a cross-sectional view showing another embodiment of the heat exchanger for a battery and fuel cell stack according to the present invention.
  • FIGS. 2A and 2B are a planar combined perspective view and a bottom combined perspective view showing a heat exchanger for a battery and a fuel cell stack according to the present invention.
  • 3 is a cross-sectional view illustrating a combination of a heat exchanger for a battery and a fuel cell stack according to the present invention.
  • FIGS. 4A and 4B are exploded and combined perspective views showing a state applied for battery cooling to a heat exchanger for a battery and a fuel cell stack according to the present invention.
  • FIG. 5 is a plan view showing the flow of a fluid for cooling in the heat exchanger for a battery and fuel cell stack according to the present invention.
  • the heat exchanger for a battery and fuel cell stack according to a preferred embodiment of the present invention is installed in close contact with one surface of the electric vehicle to cool or heat the battery (B) or the fuel cell stack.
  • Refrigerant, cold water, or hot water can be applied to the circulating fluid for this purpose, and through this, the temperature of the battery (B) or fuel cell stack used in electric vehicles, etc. is maintained constant. It will be described based on a case in which the battery B can be cooled by application.
  • the heat exchanger for a battery and fuel cell stack according to a preferred embodiment of the present invention is installed in close contact with one surface of the electric vehicle to cool the battery or fuel cell stack. 300), fixing means, and an inlet pipe 710 and an outlet pipe 720 are included.
  • the flow path plate 100 is provided as a plate having a certain thickness, and the flow path 110 through which the fluid for cooling moves is recessed in the upper surface, and the flow of the fluid is dispersed over a certain time and delayed while being delayed.
  • the dispersing protrusion 130 having the same upper end as the upper end of the peripheral portion is formed to protrude upward.
  • the flow path plate 100 as described above is provided as a plate having a certain thickness, and as shown in the drawing, it is provided as a 'C'-shaped plate when viewed in a plan view so that the flow path 110 on the upper surface has a 'C' shape. It is preferable to be recessed into
  • the flow path plate 100 is a zigzag type with respect to the longitudinal direction of the straight portion except for the bent portions on both sides of the flow path 110 so that the flow of the fluid is dispersed over a certain time and flows while being delayed.
  • the same dispersion protrusion 130 as the top of the is formed to protrude upward.
  • the flow path plate 100 as described above is a rectangular plate or a 'L' shape that is alternately bent outwardly on one side and the other side in the longitudinal direction of the rectangle when viewed in a plan view, and the horizontal part of the 'L' shape is continuous. It can be variously deformed into a plate of a shape or the like.
  • the flow path plate 100 as described above is preferably provided in a cylindrical type with respect to the dispersing protrusion 130 .
  • the dispersion protrusions 130 of the flow path plate 100 are provided in a cylindrical shape, a certain resistance is generated when the fluid for cooling moves along the circumferential portion of the circular cross section, and the flow of the fluid is delayed for a certain time, and the flow of the fluid as a whole is It can be guided to flow evenly distributed.
  • the closing plate 300 covers and closes the flow path 110 that is opened to the upper side of the flow path plate 100 so that one surface of the battery B or the fuel cell stack is in close contact with each other to perform heat exchange. It is provided as a plate corresponding to (100), the inlet hole 310 is formed through one side, and the outlet hole 320 is formed through the other side.
  • the closing plate 300 covers and closes the flow path 110 opened to the upper side of the flow path plate 100 so that the open part of the flow path 110 is sealed.
  • finishing plate 300 as described above is preferably provided as a plate made of an aluminum alloy that is thinner than the euro plate 100, and in this case, the aluminum alloy material is made of an aluminum-containing material of the "A60" series in consideration of high rigidity. It is desirable to apply.
  • finishing plate 300 is provided as a plate corresponding to the flow path plate 100 , and preferably provided as a plate corresponding to the flow path plate 100 and having a 'C' shape in plan view.
  • the finishing plate 300 as described above is a rectangular plate or a horizontal portion of a 'L' shape and a 'L' shape that are alternately bent outwardly on one side and the other side in the longitudinal direction of the rectangular shape when viewed in a plan view. It can be variously deformed into a plate of a continuous shape.
  • the fixing means fix the peripheral portion in a state in which the closing plate 300 is in close contact with the upper portion of the flow path plate 100 , and have a predetermined interval between the flow path plate 100 and the closing plate 300 .
  • the circumferential portion of the flow path plate 100 and the peripheral portion of the finishing plate 300 are fixed to each other through a bending structure.
  • the fixing means as described above can be fixed to each other through the bending structure of the circumferential portion in a state in which the finishing plate 300 is in close contact with the upper portion of the flow path plate 100 .
  • the fixing means have a predetermined interval along the periphery of the flow path plate 100 and have a predetermined width and depth inward from the side outer surface, and are formed at predetermined intervals along the circumference of the fixing groove 102 and the finishing plate 300 . It has a width corresponding to the width of the fixing groove 102 and is bent and extended vertically down a certain length, and the lower end of the euro plate 100 is in a state in which the finishing plate 300 is in close contact with the upper part of the euro plate 100. It is composed of a bending piece 302 that is bent inwardly and fixes the flow path plate 100 and the finishing plate 300 in close contact with each other through a bending structure.
  • the bending piece 302 is inserted and adhered into the fixing groove 102 by a predetermined length downward from the top when the finishing plate 300 is in close contact with the flow path plate 100, and the downwardly protruding end is bent inward. It is preferable that the band is fixed to the lower surface of the plate 100 .
  • the bending piece 302 is inserted into the fixing groove 102 while in close contact with the finishing plate 300 on the upper portion of the flow path plate 100 in a state of being initially provided in a 'L' shape, and then protruding downward. It is preferable to bend and fix the end portion to be in close contact with the lower surface of the flow path plate 100 for a certain length.
  • the bending piece 302 applied as one of the fixing means as a bending structure as described above is not specifically shown in the drawings, but it is preferable to be bent by pressing through a plate-shaped member for separate bending.
  • the inlet pipe 710 has a lower end fixed to supply a fluid to the inlet hole 310 of the finishing plate 300 .
  • outlet pipe 720 is to have a lower end portion is fixed to allow the fluid to flow out to the outlet hole 320 of the finish plate (300).
  • the lower end of the inlet pipe 710 is the inlet hole 310 lower end. It is preferable to be fixed by banding around the circumference.
  • the lower end of the outlet pipe 720 is fixed to the lower peripheral portion of the outlet hole 320 by bending even when it is fixed to the outlet hole 320 for the outlet pipe 720 .
  • FIG. 6 is a perspective view showing another embodiment of a flow plate, which is a main part of the heat exchanger for a battery and fuel cell stack according to the present invention.
  • the embodiment of the flow path plate as shown in FIG. 6 differs from the flow path plate described with reference to FIGS. 1 to 5 only in the shape of the dispersing protrusion, and detailed descriptions of the components having the same reference numerals will be omitted. do.
  • the dispersing protrusions 130 may be provided in a droplet-shaped pillar type.
  • the dispersing protrusion 130 has a hemispherical side and a hemispherical side opposite to one side of the flow path 110 , which is the side through which the fluid for cooling flows through the inlet pipe 710 , and the side opposite to the hemispherical shape is a sharp droplet shape. It is preferable to protrude upward in the flow path 110 .
  • the delay may proceed with dispersion of the fluid for cooling in the hemispherical part, and after the inequality sign shape is partially accelerated from the sharp part, it is again guided to the hemispherical part while repeating the dispersion , it is possible to optimize the contact time of the fluid for cooling of the battery B through the flow of the fluid for cooling in which retardation and acceleration are alternately performed.
  • FIG. 7 is a perspective view showing another embodiment of a flow path plate, which is a main part of the heat exchanger for a battery and fuel cell stack according to the present invention.
  • the embodiment of the flow path plate as shown in FIG. 7 differs from the flow path plate described with reference to FIGS. 1 to 5 only in the shape of the dispersing protrusion, and detailed descriptions of the components having the same reference numerals will be omitted. do.
  • the dispersing protrusions 130 may be provided in a rhombus-shaped pillar type.
  • the dispersing protrusion 130 has a longer opposite side compared to one side of the flow path 110, which is the side through which the fluid for cooling flows through the inlet pipe 710 based on the central center of the rhombus shape. It is preferable to protrude upward in the flow path 110 in a rhombus shape.
  • the dispersion projection 130 is a flow path in a rhombus shape having an angle smaller than the angle between the inequality sign portion of the inflow side, which is one side with respect to the center, and the inequality sign portion of the outlet side, which is the other side with respect to the center. It can be formed to protrude upward in the (110).
  • the delay may proceed with the dispersion of the fluid for cooling in the portion where the angle between the inequality sign shapes is relatively large, and after partial acceleration in the portion where the angle between the inequality sign shapes is relatively small, the It is possible to optimize the contact time of the fluid for cooling the battery (B) through the flow to the fluid for cooling in which dispersion, retardation, and acceleration alternately proceed while repeating that the angle between the inequality signs is guided to a relatively large part.
  • FIG. 8 is a cross-sectional view showing another embodiment of the heat exchanger for a battery and fuel cell stack according to the present invention.
  • FIG. 8 shows an example of a cross-section treated with respect to the center of the dispersion protrusion of the flow path.
  • FIG. 8 differs from the embodiment described with reference to FIGS. 1 to 5 of the groove, the binding hole, and the binding hook for the dispersing protrusion part to maintain close contact with the finishing plate over the entire flow path area of the flow path plate.
  • FIGS. 1 to 5 will be referred to together, and detailed descriptions of the components having the same reference numerals will be omitted.
  • the flow path plate 100 and the finishing plate 300 are fixed in close contact with each other through a fixing means, and the finishing plate 300 and It is important to ensure that close contact can be maintained.
  • the dispersing protrusion 130 of the flow path plate 100 has a predetermined area from the center of the lower surface, and the recess 131a is depressed upward to a predetermined depth, and the fastening hole 131b upward from the center of the recess 131a is formed through. do.
  • finishing plate 300 has downward binding hooks 331 protruding from the lower surface corresponding to the dispersing protrusions 130 of the flow path plate 100 .
  • the binding hook 331 is the binding hole ( 131b), it is more preferable that the hook portion of the binding hook 331 is caught and fixed on the concave groove 131a.
  • the flow path is recessed in the central region of the upper surface, and the flow path in which the dispersion projections are formed to protrude in a zigzag type with respect to the longitudinal direction of the flow path. It includes a finish plate that covers and finishes the upper part of the plate and the euro plate, and is bent and extended at a predetermined interval on the periphery of the euro plate, and the end is bent and fixed around the lower surface of the finish plate.
  • the flow of the cooling fluid is delayed for a certain period of time through the dispersion protrusion in the flow path of the flow plate by being fixed to the part and tightly fixed to each other, and it guides the flow evenly throughout the flow path to optimize the contact time for cooling. At the same time, it is possible to maximize the cooling efficiency of the heat generated in the battery or fuel cell stack by making the one surface of the battery or fuel cell stack in direct contact with the flat top surface.
  • the flow path is recessed in the central region of the upper surface and includes a flow path plate in which dispersion projections are formed protruding in a zigzag type with respect to the longitudinal direction of the flow path, and a finishing plate that covers and finishes the upper part of the flow path plate.
  • a fixing means that is bent and extended and the end is fixed to the circumference of the bottom of the finishing plate by bending, it is fixed to the periphery of the flow plate and the finishing plate and closely fixed to each other, thereby simplifying the fixing means in the bending fixing method and making it simple through manufacturing. productivity can be improved.
  • the inlet pipe or the outlet pipe is fixedly installed through the bending structure of the end in the inlet hole or the outlet hole, so that the inlet pipe or outlet pipe can be easily fixed and installed and maintained in a fixed state, and thus the durability of the device can be significantly improved.
  • the euro plate, the finishing plate, the inlet pipe and the outlet pipe are assembled and manufactured through fixing means while injection molding the euro plate.
  • it is applied as injection and assembly equipment to the equipment for the purpose it is possible to reduce the investment cost according to the equipment investment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)

Abstract

본 발명은 배터리 및 연료전지스택용 열교환기에 관한 것으로, 유로플레이트의 유로 내에 분산돌기를 통해 냉각을 위한 유체의 흐름이 일정시간 지체되면서 유로에 대해 전체적으로 고르게 분산되어 흐르도록 안내하여 냉각을 위한 접촉시간을 최적화함과 동시에 평평한 상면에 배터리나 연료전지스택의 일면이 직접 밀착되게 하면서 발생하는 배터리나 연료전지스택에 발생하는 열의 냉각효율을 극대화시킬 수 있으며, 밴딩 고정 방식으로 고정수단을 단순화하여 간단한 제조를 통해 생산성을 향상시킬 수 있는 것이다.

Description

배터리 및 연료전지스택용 열교환기
본 발명은 배터리 및 연료전지스택용 열교환기에 관한 것으로서, 더욱 상세하게는 상면 중앙영역에 유로가 함몰형성되어 유로의 길이방향에 대하여 지그재그 타입으로 분산돌기가 돌출형성된 유로플레이트와 유로플레이트의 상부를 덮어 마감하는 마감플레이트를 포함하고 유로플레이트의 둘레부분에 일정간격을 가지고 절곡 연장되어 단부가 마감플레이트의 하면 둘레에 밴딩 고정되는 고정수단을 통해 유로플레이트와 마감플레이트의 둘레부분에 대하여 고정되면서 상호 긴밀하게 밀착고정됨으로써 유로플레이트의 유로 내에 분산돌기를 통해 냉각을 위한 유체의 흐름이 일정시간 지체되면서 유로에 대해 전체적으로 고르게 분산되어 흐르도록 안내하여 냉각을 위한 접촉시간을 최적화함과 동시에 평평한 상면에 배터리나 연료전지스택의 일면이 직접 밀착되게 하면서 발생하는 배터리나 연료전지스택에 발생하는 열의 냉각효율을 극대화시킬 수 있으며, 밴딩 고정 방식으로 고정수단을 단순화하여 간단한 제조를 통해 생산성을 향상시킬 수 있도록 하는 한편, 유로플레이트와 마감플레이트, 유입구파이프 및 유출구파이프 등을 프레스 성형 및 브레이징을 통해 제작하던 것과 달리 유로플레이트를 사출성형하면서 유로플레이트, 마감플레이트, 유입구파이프 및 유출구파이프 등을 고정수단을 통해 조립 제작함으로써 유로라인의 설계 자유도를 증대시킬 수 있고, 프레스공정 대비 사출공정에 따른 금형비를 절감할 수 있으며, 유로플레이트와 마감플레이트에 대해 이종재질의 조립으로 공수 절감시킬 수 있고, 아울러 프레스공정 대비 제작을 위한 설비에 대하여 사출과 조립 설비로 적용되면서 설비 투자에 따른 투자비 절감을 구현할 수 있도록 한 배터리 및 연료전지스택용 열교환기에 관한 것이다.
최근 환경문제와 고유가 등으로 인해 전기를 적용한 환경차량에 대한 관심이 높아지고 있으며, 이러한 환경차량은 예를 들어 수소연료전지차(Hydrogen Fuel Cell Vehicle) 및 하이브리드 전기차(Hybrid Electronic Vehicles)로 개발되어 상용화되고 있다.
상기와 같은 수소연료전지차 및 하이브리드 전기차(이하, 전기차량이라 통칭함)는 통상 다수의 리튬-이온 셀로 제조되어 재충전 가능한 고전압의 배터리 또는 연료전지가 적용되고 있다.
이하에서는 배터리를 예로 하여 설명하기로 한다.
고전압 배터리는 전기차량을 구성하는 핵심 부품 중 하나로서, 충전, 방전시에 고온의 열이 발생하는데, 이는 배터리의 성능 및 효율에 상당한 영향을 미치는 주요 요인으로써 필수적으로 관리할 필요성이 있다.
이에, 대부분의 전기차량에서는 배터리팩에 냉각시스템이 마련되어 상기 냉각시스템을 통해 강제공랭식으로 배터리의 열을 관리하고 있다.
즉, 차량 내부의 공기를 블로워 모터를 통해 덕트로 유입하여 배터리팩 내부에 통과시키므로, 배터리팩의 열을 냉각시키는 구조이다.
그러나 이처럼 블로워 모터를 이용한 냉각시스템은 고전압 배터리 전장품 중에서 배터리 다음으로 큰 부피를 차지하는 것은 물론, 용량 증대에 구조적인 제한이 있어 풍량을 증대하는 데에 한계가 있는 문제가 있다.
또한, 차량 실내 공기를 통해 냉각이 이루어짐으로써 냉각 공기의 온도를 최적의 온도로 조절하여 공급할 수 없는 한계가 있으며, 아울러 차량 내부로부터 먼지 또는 물 등이 덕트 내부로 유입되면 배터리팩의 고장 원인으로 작용할 수 있는 치명적인 문제도 있다.
한편, 차량의 주행 중에는 배터리의 방전으로 인한 열 발생이 크지 않으며, 차량의 주행속도에 따라 주행 풍이 발생하여 이러한 주행 풍만으로 배터리의 열을 냉각시킬 수 있게 된다. 따라서, 주행 중에는 냉각시스템의 필요성이 떨어지게 된다.
그러나 차량의 충전(특히, 급속충전)시에는 배터리의 발열량이 크며, 차량이 정지상태에는 주행 풍이 발생하지 않기 때문에 배터리의 열을 냉각시킬 수 있는 시스템이 필수적이다.
따라서, 전기차량에는 상기한 냉각시스템의 문제에도 불구하고 차량의 충전시와 같은 발열에 대비하기 위해 배터리 냉각시스템이 마련되어야 하는 문제가 있다.
전술한 바와 같은 문제를 개선하기 위하여, 냉각 유체의 순환에 따른 배터리용 열교환기가 개발되어 사용되고 있는 실정이다.
예컨대, 종래의 배터리용 열교환기는 냉각을 위한 유체가 내부공간을 통해 순환되도록 유입, 유출되며, 굴절 타입으로 다수 벤딩 형성되는 열교환파이프와, 상기 열교환파이프의 상부 외면이 밀착되도록 저면에 삽입홈이 형성되는 상판 및 상기 상판과 대향되어 결합부재를 통해 조립되며 상기 열교환파이프의 하부 외면이 밀착되도록 상면에 삽입홈이 형성되는 하판을 포함한다.
상기와 같은 열교환파이프와 상판 및 하판으로 구성된 배터리용 열교환기에 의하면, 열교환파이프의 내부를 순환하는 냉각을 위한 유체에 의해 상기 열교환 파이프로부터 상판 및 하판을 통해 상기 상판 또는 하판과 밀착되는 배터리에 대한 냉각이 더욱 효율적으로 이루어질 수 있게 되는 것이다.
그러나 전술한 바와 같은 배터리용 열교환기는 상판과 하판 및 열교환파이프를 가공한 후에 열교환파이프가 상판과 하판 사이에 개재되도록 하여 결합부재로 결합하여 기계적 조립을 통해 제품을 완성하는 것으로, 제작공정이 복잡하다는 문제점이 있었다.
아울러, 열교환파이프 내부로 순환하는 냉각을 위한 유체로부터 상판 또는 하판을 거쳐 배터리 측과 열교환이 이루어지므로, 배터리의 냉각효율이 저하되는 문제가 있었다.
상기와 같은 문제점 등을 해결하기 위하여 종래에는 본 출원인이 출원한 특허문헌 1(대한민국 공개특허 제2016-0048564호 2016.05.04.공개.)에서 보는 바와 같은 배터리용 열교환기(1)가 개발되어 사용되고 있다.
이때, 상기 배터리용 열교환기(1)는 다수의 유로가 관통형성된 압출형의 냉각판(20) 상측에는 유로를 분할할 수 있도록 중앙에 배플(11)이 고정되고 양측에는 유입구(30)와 유출구(40)가 조립된 제1 헤더파이프(10)가 브레이징 고정되고, 냉각판(20) 하측에는 유로로 흐르는 유체를 리턴 할 수 있도록 제2 헤더파이프(10')가 브레이징에 의해 조립 고정되는 구성이다.
그러나 상기와 같은 열교환기의 경우에는 압출성형되어 표면이 평평한 냉각판(20)에 배터리(B)가 긴밀하게 접촉되어 배터리에서 발생하는 열의 냉각은 용이하나, 열교환기(1)의 제작을 위하여 냉각판(20) 및 제1, 2 헤더파이프(10)(10'), 배플(11), 유입구(30), 유출구(40)등을 각각 가공하여 구비한 후, 각 부품을 가 조립하여 브레이징을 통해 제품을 완성하는 것으로 제작이 복잡하다는 문제점이 야기되었다.
또한, 유체가 제1 헤더파이프(10)에서 정확하게 분배되어 유입, 유출이 되어야 하고 냉각판의 유로를 통하여 순환하는 과정에서 유체의 혼합됨이 방지되어야 냉각효율을 극대화 시키게 되는데, 상기와 같은 분할을 위하여 제1 헤더파이프(10)에 고정되는 별도의 배플(11)에 대해 정확한 가공 및 브레이징에 의한 조립이 요구되어 생산량 감소는 물론 제작단가가 상승 되는 문제점이 있었다.
그러므로 유로 내에 분산돌기를 통해 냉각을 위한 유체의 흐름이 일정시간 지체되면서 유로에 대해 전체적으로 고르게 분산되어 흐르도록 안내하여 냉각을 위한 접촉시간을 최적화함과 동시에 평평한 상면에 배터리나 연료전지스택의 일면이 직접 밀착되게 함으로써 발생하는 배터리나 연료전지스택에 발생하는 열의 냉각효율을 극대화시킬 수 있도록 하는 한편, 고정수단을 단순화하여 간단한 제조를 통해 생산성을 향상시킬 수 있으며, 유입구공 또는 유출구공에 유입구 파이프 또는 유출구 파이프에 대하여 밴댕구조로 고정됨으로써 유입구 파이프 또는 유출구 파이프에 대한 간편한 고정설치가 이루어질 수 있도록 한 배터리 및 연료전지스택용 열교환기에 대한 연구 및 개발이 요구되는 실정이다.
[선행기술문헌]
(특허문헌 1) 대한민국 공개특허 제2016-0048564호 2016.05.04.공개.
(특허문헌 2) 대한민국 공개특허 10-2020-0082567호 2020.07.08.공개.
(특허문헌 3) 대한민국 등록특허 제10-1995582호 2019.06.26.등록.
(특허문헌 4) 대한민국 등록특허 제10-1986238호 2019.05.30.등록.
(특허문헌 5) 대한민국 공개특허 10-2014-0026961호 2014.03.06.공개.
상기와 같은 문제점을 해결하기 위하여, 본 발명은 상면 중앙영역에 유로가 함몰형성되어 유로의 길이방향에 대하여 지그재그 타입으로 분산돌기가 돌출형성된 유로플레이트와 유로플레이트의 상부를 덮어 마감하는 마감플레이트를 포함하고 유로플레이트의 둘레부분에 일정간격을 가지고 절곡 연장되어 단부가 마감플레이트의 하면 둘레에 밴딩 고정되는 고정수단을 통해 유로플레이트와 마감플레이트의 둘레부분에 대하여 고정되면서 상호 긴밀하게 밀착고정됨으로써 유로플레이트의 유로 내에 분산돌기를 통해 냉각을 위한 유체의 흐름이 일정시간 지체되면서 유로에 대해 전체적으로 고르게 분산되어 흐르도록 안내하여 냉각을 위한 접촉시간을 최적화함과 동시에 평평한 상면에 배터리나 연료전지스택의 일면이 직접 밀착되게 하면서 발생하는 배터리나 연료전지스택에 발생하는 열의 냉각효율을 극대화시킬 수 있도록 한 배터리 및 연료전지스택용 열교환기를 제공하는 것을 목적으로 한다.
본 발명에 따른 기술의 다른 목적은 상면 중앙영역에 유로가 함몰형성되어 유로의 길이방향에 대하여 지그재그 타입으로 분산돌기가 돌출형성된 유로플레이트와 유로플레이트의 상부를 덮어 마감하는 마감플레이트를 포함하고 유로플레이트의 둘레부분에 일정간격을 가지고 절곡 연장되어 단부가 마감플레이트의 하면 둘레에 밴딩 고정되는 고정수단을 통해 유로플레이트와 마감플레이트의 둘레부분에 대하여 고정되면서 상호 긴밀하게 밀착고정됨으로써 밴딩 고정 방식으로 고정수단을 단순화하여 간단한 제조를 통해 생산성을 향상시킬 수 있도록 함에 있다.
본 발명에 따른 기술의 또 다른 목적은 유입구공 또는 유출구공에 단부의 밴딩 구조를 통해 유입구 파이프 또는 유출구 파이프가 고정설치됨으로써 유입구 파이프 또는 유출구 파이프에 대한 간편한 고정설치 및 고정상태의 유지와 이에 따른 장치의 내구성이 현격히 향상될 수 있도록 함에 있다.
본 발명에 따른 기술의 또 다른 목적은 유로플레이트와 마감플레이트, 유입구파이프 및 유출구파이프 등을 프레스 성형 및 브레이징을 통해 제작하던 것과 달리 유로플레이트를 사출성형하면서 유로플레이트, 마감플레이트, 유입구파이프 및 유출구파이프 등을 고정수단을 통해 조립 제작함으로써 유로라인의 설계 자유도를 증대시킬 수 있고, 프레스공정 대비 사출공정에 따른 금형비를 절감할 수 있으며, 유로플레이트와 마감플레이트에 대해 이종재질의 조립으로 공수 절감시킬 수 있고, 아울러 프레스공정 대비 제작을 위한 설비에 대하여 사출과 조립 설비로 적용되면서 설비 투자에 따른 투자비 절감을 구현할 수 있도록 함에 있다.
전술한 목적을 달성하기 위한 본 발명은 다음과 같다. 즉, 본 발명에 따른 배터리 및 연료전지스택용 열교환기는 전기 차량의 일면에 밀착되게 설치하여 배터리나 연료전지스택을 냉각시킬 수 있도록 한 배터리 및 연료전지스택용 열교환기에 있어서, 일정두께를 갖는 플레이트로 제공되되, 상면에 냉각을 위한 유체가 이동하는 유로가 함몰형성되며, 유체의 흐름이 일정시간에 걸쳐 분산됨과 동시에 지체되면서 흐르도록 유로의 길이방향에 대하여 지그재그 타입으로 상단이 둘레부분의 상단과 동일한 분산돌기가 상향 돌출형성되는 유로플레이트; 상기 유로플레이트의 상측으로 개방된 유로를 덮어 마감하여 배터리나 연료전지스택의 일면이 평평하게 밀착되어 열교환이 이루어지도록, 유로플레이트와 대응되는 플레이트로 제공되어, 일 측에 유입구공이 관통형성되고, 타 측에 유출구공이 관통형성되며, 유로의 개방부분이 밀폐되도록 하는 마감플레이트; 유로플레이트의 상부에 마감플레이트가 밀착된 상태에서의 둘레부분을 고정시키되, 유로플레이트와 마감플레이트의 둘레부분에 일정간격을 가지고 형성되면서 유로플레이트 둘레부분과 마감플레이트의 둘레부분에 대하여 밴딩 구조를 통해 상호 고정되도록 하는 고정수단; 상기 마감플레이트의 유입구공에 유체를 공급할 수 있도록 하단부분이 고정되는 유입파이프; 및 상기 마감플레이트의 유출구공에 유체를 유출시킬 수 있도록 하단부분이 고정되는 유출파이프를 포함하는 구성으로 이루어진다.
여기서, 상기 고정수단은 유로플레이트의 상부에 마감플레이트가 밀착된 상태에서의 둘레부분을 밴딩 구조를 통해 상호 고정시킬 수 있도록, 유로플레이트의 둘레를 따라 일정간격을 가지고 측부 외면으로부터 내향 일정 폭과 깊이를 가지고 함몰 형성되는 고정홈 및 마감플레이트의 둘레를 따라 일정간격을 가지고 고정홈의 폭과 대응되는 폭을 가지고 하향 일정길이 수직으로 절곡 연장되며, 유로플레이트 상부에 마감플레이트가 밀착된 상태에서 하단이 유로플레이트의 하면 내측으로 절곡되면서 유로플레이트와 마감플레이트를 밴딩 구조를 통해 상호 밀착된 상태로 고정시키는 밴딩편으로 구성된다.
이때, 상기 밴딩편은 유로플레이트 상부에 마감플레이트의 밀착시 상단으로부터 하향 일정길이만큼 고정홈 내에 삽입 밀착된 상태에서, 하향 돌출되는 단부가 내향 절곡되면서 유로플레이트의 하면에 밴딩 고정되는 것이 바람직하다.
또한, 상기 유로플레이트의 분산돌기는 원기둥 타입으로 제공될 수 있다.
더욱이, 상기 유로플레이트의 분산돌기는 물방울 모양 기둥 타입으로 제공되는 한편, 유입파이프를 통해 냉각을 위한 유체가 유입되는 측인 유로의 일 측과 대응되는 측이 반구형이면서 반구형과 반대 측이 부등호 형상으로 뾰족한 물방울 모양으로 유로 내에 상향 돌출형성될 수 있다.
또한, 상기 유로플레이트의 분산돌기는 마름모 모양 기둥 타입으로 제공되는 한편, 마름모형상의 정중앙을 기준으로 유입파이프를 통해 냉각을 위한 유체가 유입되는 측인 유로의 일 측에 비하여 대향되는 타 측이 더 길게 형성되는 마름모 모양으로 유로 내에 상향 돌출형성될 수도 있다.
그리고 유입파이프에 대한 유입구공에 고정시 유입파이프의 하단 부분이 유입구공 하단 둘레부분에 밴딩고정되는 한편, 유출파이프에 대한 유출구공에 고정시 유출파이프의 하단 부분이 유출구공 하단 둘레부분에 밴딩고정되는 것이 바람직하다.
또한, 상기 유로플레이트는 일정두께를 갖는 플레이트로 제공되되, 평면에서 봤을 때 'ㄷ'자 형상의 플레이트로 제공되어 상면에 유로가 'ㄷ'자 형상으로 함몰형성되는 한편, 상기 마감플레이트는 유로플레이트와 대응되는 플레이트로 제공되되, 유로플레이트와 대응되어 평면에서 봤을 때 'ㄷ'자 형상의 플레이트로 제공되고, 유입구공이 일 측의 절곡 부분에 관통형성되며, 유출구공이 타 측의 절곡 부분에 관통형성되는 것이 양호하다.
본 발명에 따른 배터리 및 연료전지스택용 열교환기의 효과를 설명하면 다음과 같다.
첫째, 상면 중앙영역에 유로가 함몰형성되어 유로의 길이방향에 대하여 지그재그 타입으로 분산돌기가 돌출형성된 유로플레이트와 유로플레이트의 상부를 덮어 마감하는 마감플레이트를 포함하고 유로플레이트의 둘레부분에 일정간격을 가지고 절곡 연장되어 단부가 마감플레이트의 하면 둘레에 밴딩 고정되는 고정수단을 통해 유로플레이트와 마감플레이트의 둘레부분에 대하여 고정되면서 상호 긴밀하게 밀착고정됨으로써 유로플레이트의 유로 내에 분산돌기를 통해 냉각을 위한 유체의 흐름이 일정시간 지체되면서 유로에 대해 전체적으로 고르게 분산되어 흐르도록 안내하여 냉각을 위한 접촉시간을 최적화함과 동시에 평평한 상면에 배터리나 연료전지스택의 일면이 직접 밀착되게 하면서 발생하는 배터리나 연료전지스택에 발생하는 열의 냉각효율을 극대화시킬 수 있다.
둘째, 상면 중앙영역에 유로가 함몰형성되어 유로의 길이방향에 대하여 지그재그 타입으로 분산돌기가 돌출형성된 유로플레이트와 유로플레이트의 상부를 덮어 마감하는 마감플레이트를 포함하고 유로플레이트의 둘레부분에 일정간격을 가지고 절곡 연장되어 단부가 마감플레이트의 하면 둘레에 밴딩 고정되는 고정수단을 통해 유로플레이트와 마감플레이트의 둘레부분에 대하여 고정되면서 상호 긴밀하게 밀착고정됨으로써 밴딩 고정 방식으로 고정수단을 단순화하여 간단한 제조를 통해 생산성을 향상시킬 수 있다.
셋째, 유입구공 또는 유출구공에 단부의 밴딩 구조를 통해 유입구 파이프 또는 유출구 파이프가 고정설치됨으로써 유입구 파이프 또는 유출구 파이프에 대한 간편한 고정설치 및 고정상태의 유지와 이에 따른 장치의 내구성이 현격히 향상될 수 있다.
넷째, 유로플레이트와 마감플레이트, 유입구파이프 및 유출구파이프 등을 프레스 성형 및 브레이징을 통해 제작하던 것과 달리 유로플레이트를 사출성형하면서 유로플레이트, 마감플레이트, 유입구파이프 및 유출구파이프 등을 고정수단을 통해 조립 제작함으로써 유로라인의 설계 자유도를 증대시킬 수 있고, 프레스공정 대비 사출공정에 따른 금형비를 절감할 수 있으며, 유로플레이트와 마감플레이트에 대해 이종재질의 조립으로 공수 절감시킬 수 있고, 아울러 프레스공정 대비 제작을 위한 설비에 대하여 사출과 조립 설비로 적용되면서 설비 투자에 따른 투자비 절감을 구현할 수 있다.
도 1은 본 발명에 따른 배터리 및 연료전지스택용 열교환기를 나타낸 분리 사시구성도.
도 2a 및 2b는 본 발명에 따른 배터리 및 연료전지스택용 열교환기를 나타낸 평면 결합 사시구성도 및 저면 결합 사시구성도.
도 3은 본 발명에 따른 배터리 및 연료전지스택용 열교환기를 나타낸 결합 단면예시도.
도 4a 및 4b는 본 발명에 따른 배터리 및 연료전지스택용 열교환기에 대한 배터리 냉각을 위해 적용되는 상태를 나타낸 분해 및 결합 사시구성도.
도 5는 본 발명에 따른 배터리 및 연료전지스택용 열교환기에서, 냉각을 위한 유체의 흐름을 나타낸 사용상태 평면예시도.
도 6은 본 발명에 따른 배터리 및 연료전지스택용 열교환기의 요부인 유로플레이트의 다른 실시예를 나타낸 사시구성도.
도 7은 본 발명에 따른 배터리 및 연료전지스택용 열교환기의 요부인 유로플레이트의 또 다른 실시예를 나타낸 사시구성도.
도 8은 본 발명에 따른 배터리 및 연료전지스택용 열교환기의 다른 실시예를 나타낸 단면예시도.
이하, 첨부된 도면을 참조하여 본 발명에 따른 배터리 및 연료전지스택용 열교환기의 바람직한 실시예를 상세히 설명한다.
도 1은 본 발명에 따른 배터리 및 연료전지스택용 열교환기를 나타낸 분리 사시구성도이고, 도 2a 및 2b는 본 발명에 따른 배터리 및 연료전지스택용 열교환기를 나타낸 평면 결합 사시구성도 및 저면 결합 사시구성도이며, 도 3은 본 발명에 따른 배터리 및 연료전지스택용 열교환기를 나타낸 결합 단면예시도이다.
도 4a 및 4b는 본 발명에 따른 배터리 및 연료전지스택용 열교환기에 대한 배터리 냉각을 위해 적용되는 상태를 나타낸 분해 및 결합 사시구성도이다.
도 5는 본 발명에 따른 배터리 및 연료전지스택용 열교환기에서, 냉각을 위한 유체의 흐름을 나타낸 사용상태 평면예시도이다.
도 1 내지 5에서 보는 바와 같이, 본 발명의 바람직한 실시예에 따른 배터리 및 연료전지스택용 열교환기는 전기 차량의 일면에 밀착되게 설치하여 배터리(B)나 연료전지스택을 냉각 또는 가열시킬 수 있도록 하기 위하여 순환하는 유체를 냉매나 냉수 또는 온수를 적용할 수 있는 것으로, 이를 통하여 전기차량 등에 사용되는 배터리(B)나 연료전지스택의 온도를 일정하게 유지시키기 위한 것이며, 이하에서는 냉각을 위한 냉매 유체를 적용하여 배터리(B)를 냉각시킬 수 있도록 하는 경우를 기준으로 하여 설명하기로 한다.
본 발명의 바람직한 실시예에 따른 배터리 및 연료전지스택용 열교환기는 전기 차량의 일면에 밀착되게 설치하여 배터리나 연료전지스택을 냉각시킬 수 있도록 한 것으로서, 크게 분류하면 유로플레이트(100), 마감플레이트(300), 고정수단, 유입파이프(710) 및 유출파이프(720)를 포함하여 이루어진다.
구체적으로, 상기 유로플레이트(100)는 일정두께를 갖는 플레이트로 제공되되, 상면에 냉각을 위한 유체가 이동하는 유로(110)가 함몰형성되며, 유체의 흐름이 일정시간에 걸쳐 분산됨과 동시에 지체되면서 흐르도록 유로(110)의 길이방향에 대하여 지그재그 타입으로 상단이 둘레부분의 상단과 동일한 분산돌기(130)가 상향 돌출형성된다.
상기와 같은 유로플레이트(100)는 일정두께를 갖는 플레이트로 제공되되, 도면에서 보는 바와 같이, 평면에서 봤을 때 'ㄷ'자 형상의 플레이트로 제공되어 상면에 유로(110)가 'ㄷ'자 형상으로 함몰형성되는 것이 바람직한 것이다.
다시 말하면, 상기 유로플레이트(100)는 상기 유체의 흐름이 일정시간에 걸쳐 분산됨과 동시에 지체되면서 흐르도록 유로(110)의 양측 절곡된 부분을 제외한 직선부의 길이방향에 대하여 지그재그 타입으로 상단이 둘레부분의 상단과 동일한 분산돌기(130)가 상향 돌출형성되는 것이다.
물론, 상기와 같은 유로플레이트(100)는 평면에서 봤을 때 직사각형상의 플레이트 또는 직사각형상의 길이방향 일 측과 타 측에 외향 엇갈리게 절곡되는 'ㄴ'자 형상과 'ㄱ'자 형상의 수평부분이 연이어진 형상의 플레이트 등으로 다양하게 변형될 수 있는 것이다.
더욱이, 상기와 같은 유로플레이트(100)는 분산돌기(130)에 대하여 원기둥 타입으로 제공되는 것이 바람직하다.
즉, 상기 유로플레이트(100)의 분산돌기(130)가 원기둥 타입으로 제공됨으로써 원형 단면의 둘레부분을 따라 냉각을 위한 유체의 이동시 일정한 저항이 생기면서 유체의 흐름이 일정시간 지체되면서 유로에 대해 전체적으로 고르게 분산되어 흐르도록 안내될 수 있는 것이다.
다시 말하면, 상기와 같은 원기둥 타입의 분산돌기(130)를 통해 냉각을 위한 유체의 이동시 일정한 저항이 생기면서 유체의 흐름이 일정시간 지체되면서 유로에 대해 전체적으로 고르게 분산되어 흐르도록 안내됨에 따라, 배터리(B)의 냉각을 위한 유체의 접촉시간이 최적화되도록 하면서 배터리(B)의 냉각 효율을 극대화시킬 수 있게 되는 것이다.
한편, 상기 마감플레이트(300)는 상기 유로플레이트(100)의 상측으로 개방된 유로(110)를 덮어 마감하여 배터리(B)나 연료전지스택의 일면이 평평하게 밀착되어 열교환이 이루어지도록, 유로플레이트(100)와 대응되는 플레이트로 제공되어, 일 측에 유입구공(310)이 관통형성되고, 타 측에 유출구공(320)이 관통형성된다.
다시 말하면, 상기 마감플레이트(300)는 상기 유로플레이트(100)의 상측으로 개방된 유로(110)를 덮어 마감하면서 유로(110)의 개방부분이 밀폐되도록 하는 것이다.
또한, 상기와 같은 마감플레이트(300)는 유로플레이트(100)보다 두께가 얇은 알루미늄합금재질의 플레이트로 제공됨이 바람직하며, 이때 알루미늄함금재질은 높은 강성을 고려하여 "A60"계열의 알루미늄함급재질로 적용됨이 바람직한 것이다.
더욱이, 상기 마감플레이트(300)는 유로플레이트(100)와 대응되는 플레이트로 제공되되, 유로플레이트(100)와 대응되어 평면에서 봤을 때 'ㄷ'자 형상의 플레이트로 제공되는 것이 바람직하다.
물론, 전술한 바와 같은 마감플레이트(300)는 평면에서 봤을 때 직사각형상의 플레이트 또는 직사각형상의 길이방향 일 측과 타 측에 외향 엇갈리게 절곡되는 'ㄴ'자 형상과 'ㄱ'자 형상의 수평부분이 연이어진 형상의 플레이트 등으로 다양하게 변형될 수 있는 것이다.
한편, 상기 고정수단은 유로플레이트(100)의 상부에 마감플레이트(300)가 밀착된 상태에서의 둘레부분을 고정시키되, 유로플레이트(100)와 마감플레이트(300)의 둘레부분에 일정간격을 가지고 형성되면서 유로플레이트(100) 둘레부분과 마감플레이트(300)의 둘레부분에 대하여 밴딩 구조를 통해 상호 고정되도록 하는 것이다.
상기와 같은 고정수단은 특히, 유로플레이트(100)의 상부에 마감플레이트(300)가 밀착된 상태에서의 둘레부분을 밴딩 구조를 통해 상호 고정시킬 수 있도록 하는 것이 중요하다.
이를 위하여, 상기 고정수단은 유로플레이트(100)의 둘레를 따라 일정간격을 가지고 측부 외면으로부터 내향 일정 폭과 깊이를 가지고 함몰 형성되는 고정홈(102) 및 마감플레이트(300)의 둘레를 따라 일정간격을 가지고 고정홈(102)의 폭과 대응되는 폭을 가지고 하향 일정길이 수직으로 절곡 연장되며, 유로플레이트(100) 상부에 마감플레이트(300)가 밀착된 상태에서 하단이 유로플레이트(100)의 하면 내측으로 절곡되면서 유로플레이트(100)와 마감플레이트(300)를 밴딩 구조를 통해 상호 밀착된 상태로 고정시키는 밴딩편(302)으로 구성된다.
이때, 상기 밴딩편(302)은 유로플레이트(100) 상부에 마감플레이트(300) 밀착시 상단으로부터 하향 일정길이만큼 고정홈(102) 내에 삽입 밀착된 상태에서, 하향 돌출되는 단부가 내향 절곡되면서 유로플레이트(100)의 하면에 밴딩 고정되는 것이 바람직하다.
다시 말하면, 상기 밴딩편(302)은 최초 'ㄱ'자 형상으로 구비된 상태에서, 유로플레이트(100) 상부에 마감플레이트(300) 밀착시키면서 고정홈(102) 내에 삽입 밀착되도록 한 후에 하향 돌출된 단부 일정길이에 대하여 유로플레이트(100)의 하면에 밀착되도록 밴딩 고정하는 것이 바람직한 것이다.
이때, 상기와 같은 밴딩 구조로서의 고정수단 중 하나로 적용되는 밴딩편(302)은 도면으로 구체적으로 도시하지는 않았으나, 별도의 밴딩을 위한 판형 부재를 통해 가압을 통해 밴딩됨이 바람직하다.
한편, 상기 유입파이프(710)는 상기 마감플레이트(300)의 유입구공(310)에 유체를 공급할 수 있도록 하단부분이 고정되는 것이다.
또한, 상기 유출파이프(720)는 상기 마감플레이트(300)의 유출구공(320)에 유체를 유출시킬 수 있도록 하단부분이 고정되는 것이다.
전술한 바와 같은 구성으로 이루어진 본 발명에 따른 배터리 및 연료전지스택용 열교환기는 유입파이프(710)에 대한 유입구공(310)에 고정시에는 유입파이프(710)의 하단 부분이 유입구공(310) 하단 둘레부분에 밴딩고정되는 것이 바람직한 것이다.
아울러, 유출파이프(720)에 대한 유출구공(320)에 고정시에도 유출파이프(720)의 하단 부분이 유출구공(320) 하단 둘레부분에 밴딩고정되는 것이 바람직하다.
도 6은 본 발명에 따른 배터리 및 연료전지스택용 열교환기의 요부인 유로플레이트의 다른 실시예를 나타낸 사시구성도이다.
도 6에서 보는 바와 같은 유로플레이트의 실시예는 도 1 내지 5를 참고하여 설명한 유로플레이트와는 분산돌기의 형상에 대하여서만 차이를 가지는 것으로, 이하 동일부호를 갖는 구성에 대한 상세한 설명은 생략하기로 한다.
도 6을 참고하면, 다른 실시예에 따른 유로플레이트(100)는 분산돌기(130)가 물방울 모양 기둥 타입으로 제공될 수 있다.
이때, 상기 분산돌기(130)는 유입파이프(710)를 통해 냉각을 위한 유체가 유입되는 측인 유로(110)의 일 측과 대응되는 측이 반구형이면서 반구형과 반대 측이 부등호 형상으로 뾰족한 물방울 모양으로 유로(110) 내에 상향 돌출형성되는 것이 바람직한 것이다.
상기와 같은 분산돌기(130)에 의하면, 반구형 부분에서의 냉각을 위한 유체에 대한 분산과 함께 지체가 진행될 수 있으며, 부등호 형상을 뾰족한 부분에서 일부 가속된 후에 다시 반구형 부분으로 안내되는 것을 반복하면서 분산, 지체와 가속이 교번하여 진행되는 냉각을 위한 유체에 대한 흐름을 통하여 배터리(B)의 냉각을 위한 유체의 접촉시간이 최적화되도록 할 수 있게 된다.
아울러, 상기와 같이 배터리(B)의 냉각을 위한 유체의 접촉시간이 최적화됨으로써 배터리(B)의 냉각 효율을 극대화시킬 수 있게 되는 것이다.
도 7은 본 발명에 따른 배터리 및 연료전지스택용 열교환기의 요부인 유로플레이트의 또 다른 실시예를 나타낸 사시구성도이다.
도 7에서 보는 바와 같은 유로플레이트의 실시예는 도 1 내지 5를 참고하여 설명한 유로플레이트와는 분산돌기의 형상에 대하여서만 차이를 가지는 것으로, 이하 동일부호를 갖는 구성에 대한 상세한 설명은 생략하기로 한다.
도 7을 참고하면, 또 다른 실시예에 따른 유로플레이트(100)는 분산돌기(130)가 마름모 모양 기둥 타입으로 제공될 수도 있다.
*이때, 상기 분산돌기(130)는 마름모형상의 정중앙을 기준으로 유입파이프(710)를 통해 냉각을 위한 유체가 유입되는 측인 유로(110)의 일 측에 비하여 대향되는 타 측이 더 길게 형성되는 마름모 모양으로 유로(110) 내에 상향 돌출형성되는 것이 바람직한 것이다.
다시 말하면, 상기 분산돌기(130)는 정중앙을 기준으로 일 측인 유입 측의 부등호 부분의 사이 각도보다 정중앙을 기준으로 타 측인 유출 측의 부등호 부분의 사이 각도가 일정각도 작은 각도를 갖는 마름모 모양으로 유로(110) 내에 상향 돌출형성될 수 있는 것이다.
상기와 같은 분산돌기(130)에 의하면, 부등호 형상 사이 각도가 비교적 큰 부분에서의 냉각을 위한 유체에 대한 분산과 함께 지체가 진행될 수 있으며, 부등호 형상 사이 각도가 비교적 작은 부분에서 일부 가속된 후에 다시 부등호 형상 사이 각도가 비교적 큰 부분으로 안내되는 것을 반복하면서 분산, 지체와 가속이 교번하여 진행되는 냉각을 위한 유체에 대한 흐름을 통하여 배터리(B)의 냉각을 위한 유체의 접촉시간이 최적화되도록 할 수 있게 된다.
아울러, 상기와 같이 배터리(B)의 냉각을 위한 유체의 접촉시간이 최적화됨으로써 배터리(B)의 냉각 효율을 극대화시킬 수 있게 되는 것이다.
도 8은 본 발명에 따른 배터리 및 연료전지스택용 열교환기의 다른 실시예를 나타낸 단면예시도이다.
특히, 도 8은 유로의 분산돌기 중앙을 기준으로 단면 처리된 단면예시를 나타낸 것이다.
이러한 도 8에서 보는 바와 같은 실시예는 도 1 내지 5를 참고하여 설명한 실시예와는 유로플레이트의 유로 전체영역에 걸쳐 분산돌기 부분이 마감플레이트와 밀착이 유지되도록 하는 요홈과 결착공 및 결착후크의 구조가 더 적용되는 점에서만 차이를 가지는 것으로, 도 1 내지 5를 함께 참고하기로 하며, 이하 동일부호를 갖는 구성에 대한 상세한 설명은 생략하기로 한다.
도 8을 참고하면, 고정수단을 통해 유로플레이트(100)와 마감플레이트(300)가 상호 밀착된 상태로 고정되되, 유로플레이트(100)의 유로(110) 전체영역에 걸쳐 마감플레이트(300)와 긴밀한 밀착이 유지될 수 있도록 하는 것이 중요하다.
이를 위하여, 먼저 상기 유로플레이트(100)의 분산돌기(130)는 하면 중앙으로부터 일정면적을 가지고 상향 일정깊이 요홈(131a)이 함몰되며, 요홈(131a) 중앙으로부터 상향 결착공(131b)이 관통형성된다.
아울러, 상기 마감플레이트(300)는 유로플레이트(100)의 분산돌기(130)와 대응되는 하면에 각각 하향 결착후크(331)가 돌출형성된다.
즉, 상기와 같은 요홈(131a)과 결착공(131b) 및 결착후크(331)의 구조가 적용되면서 유로플레이트(100) 상부에 마감플레이트(300)의 밀착시 결착후크(331)가 결착공(131b)을 관통하여 결착후크(331)의 후크부분이 요홈(131a) 상에 걸림고정되는 것이 더욱 바람직한 것이다.
다시 말하면, 단순화된 고정홈(102)과 밴딩편(302)으로 구성된 밴딩 구조와 함께 보조로 유로(110)의 전체영역에 걸쳐 밀착고정을 시키는 요홈(131a)과 결착공(131b) 및 결착후크(331)의 구조가 적용됨으로써 고정홈(102)과 밴딩편(302)으로 구성되는 고정수단과 함께 보조로 결착력을 통해 고정하면서 유로플레이트(100)와 마감플레이트(300)에 대한 둘레부분 및 유로 전체영역과 대응되는 중앙영역에 대한 고정상태를 더욱 안정적으로 유지시킬 수 있게 되는 것이다.
전술한 바와 같은 구성으로 이루어진 본 발명에 따른 배터리 및 연료전지스택용 열교환기의 실시예들에 의하면, 상면 중앙영역에 유로가 함몰형성되어 유로의 길이방향에 대하여 지그재그 타입으로 분산돌기가 돌출형성된 유로플레이트와 유로플레이트의 상부를 덮어 마감하는 마감플레이트를 포함하고 유로플레이트의 둘레부분에 일정간격을 가지고 절곡 연장되어 단부가 마감플레이트의 하면 둘레에 밴딩 고정되는 고정수단을 통해 유로플레이트와 마감플레이트의 둘레부분에 대하여 고정되면서 상호 긴밀하게 밀착고정됨으로써 유로플레이트의 유로 내에 분산돌기를 통해 냉각을 위한 유체의 흐름이 일정시간 지체되면서 유로에 대해 전체적으로 고르게 분산되어 흐르도록 안내하여 냉각을 위한 접촉시간을 최적화함과 동시에 평평한 상면에 배터리나 연료전지스택의 일면이 직접 밀착되게 하면서 발생하는 배터리나 연료전지스택에 발생하는 열의 냉각효율을 극대화시킬 수 있다.
또한, 상면 중앙영역에 유로가 함몰형성되어 유로의 길이방향에 대하여 지그재그 타입으로 분산돌기가 돌출형성된 유로플레이트와 유로플레이트의 상부를 덮어 마감하는 마감플레이트를 포함하고 유로플레이트의 둘레부분에 일정간격을 가지고 절곡 연장되어 단부가 마감플레이트의 하면 둘레에 밴딩 고정되는 고정수단을 통해 유로플레이트와 마감플레이트의 둘레부분에 대하여 고정되면서 상호 긴밀하게 밀착고정됨으로써 밴딩 고정 방식으로 고정수단을 단순화하여 간단한 제조를 통해 생산성을 향상시킬 수 있게 된다.
더욱이, 유입구공 또는 유출구공에 단부의 밴딩 구조를 통해 유입구 파이프 또는 유출구 파이프가 고정설치됨으로써 유입구 파이프 또는 유출구 파이프에 대한 간편한 고정설치 및 고정상태의 유지와 이에 따른 장치의 내구성이 현격히 향상될 수 있다.
아울러, 유로플레이트와 마감플레이트, 유입구파이프 및 유출구파이프 등을 프레스 성형 및 브레이징을 통해 제작하던 것과 달리 유로플레이트를 사출성형하면서 유로플레이트, 마감플레이트, 유입구파이프 및 유출구파이프 등을 고정수단을 통해 조립 제작함으로써 유로라인의 설계 자유도를 증대시킬 수 있고, 프레스공정 대비 사출공정에 따른 금형비를 절감할 수 있으며, 유로플레이트와 마감플레이트에 대해 이종재질의 조립으로 공수 절감시킬 수 있고, 아울러 프레스공정 대비 제작을 위한 설비에 대하여 사출과 조립 설비로 적용되면서 설비 투자에 따른 투자비 절감을 구현할 수 있는 것이다.
이상에서 본 발명의 구체적인 실시예를 상세히 설명하였으나, 본 발명은 이에 한정되는 것은 아니며, 본 발명은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형의 실시가 가능하며, 이러한 변형은 본 발명의 범위에 포함된다.
[부호의 설명]
100: 유로플레이트
102: 고정홈
110: 유로
130: 분산돌기
131a: 요홈
131b: 결착공
300: 마감플레이트
302: 밴딩편
310: 유입구공
320: 유출구공
331: 결착후크
710: 유입파이프
720: 유출파이프
B: 배터리

Claims (9)

  1. 전기 차량의 일면에 밀착되게 설치하여 배터리(B)나 연료전지스택을 냉각시킬 수 있도록 한 배터리 및 연료전지스택용 열교환기에 있어서,
    일정두께를 갖는 플레이트로 제공되되, 상면에 냉각을 위한 유체가 이동하는 유로(110)가 함몰형성되며, 유체의 흐름이 일정시간에 걸쳐 분산됨과 동시에 지체되면서 흐르도록 유로(110)의 길이방향에 대하여 지그재그 타입으로 상단이 둘레부분의 상단과 동일한 분산돌기(130)가 상향 돌출형성되는 유로플레이트(100);
    상기 유로플레이트(100)의 상측으로 개방된 유로(110)를 덮어 마감하여 배터리(B)나 연료전지스택의 일면이 평평하게 밀착되어 열교환이 이루어지도록, 유로플레이트(100)와 대응되는 플레이트로 제공되어, 일 측에 유입구공(310)이 관통형성되고, 타 측에 유출구공(320)이 관통형성되며, 유로(110)의 개방부분이 밀폐되도록 하는 마감플레이트(300);
    유로플레이트(100)의 상부에 마감플레이트(300)가 밀착된 상태에서의 둘레부분을 고정시키되, 유로플레이트(100)와 마감플레이트(300)의 둘레부분에 일정간격을 가지고 형성되면서 유로플레이트(100) 둘레부분과 마감플레이트(300)의 둘레부분에 대하여 밴딩 구조를 통해 상호 고정되도록 하는 고정수단;
    상기 마감플레이트(300)의 유입구공(310)에 유체를 공급할 수 있도록 하단부분이 고정되는 유입파이프(710); 및
    상기 마감플레이트(300)의 유출구공(320)에 유체를 유출시킬 수 있도록 하단부분이 고정되는 유출파이프(720)를 포함하여 이루어진 배터리 및 연료전지스택용 열교환기.
  2. 제1항에 있어서,
    상기 고정수단은 유로플레이트(100)의 상부에 마감플레이트(300)가 밀착된 상태에서의 둘레부분을 밴딩 구조를 통해 상호 고정시킬 수 있도록,
    유로플레이트(100)의 둘레를 따라 일정간격을 가지고 측부 외면으로부터 내향 일정 폭과 깊이를 가지고 함몰 형성되는 고정홈(102) 및
    마감플레이트(300)의 둘레를 따라 일정간격을 가지고 고정홈(102)의 폭과 대응되는 폭을 가지고 하향 일정길이 수직으로 절곡 연장되며, 유로플레이트(100) 상부에 마감플레이트(300)가 밀착된 상태에서 하단이 유로플레이트(100)의 하면 내측으로 절곡되면서 유로플레이트(100)와 마감플레이트(300)를 밴딩 구조를 통해 상호 밀착된 상태로 고정시키는 밴딩편(302)으로 구성되는 것을 특징으로 하는 배터리 및 연료전지스택용 열교환기.
  3. 제2항에 있어서,
    상기 밴딩편(302)은 유로플레이트(100) 상부에 마감플레이트(300) 밀착시 상단으로부터 하향 일정길이만큼 고정홈(102) 내에 삽입 밀착된 상태에서, 하향 돌출되는 단부가 내향 절곡되면서 유로플레이트(100)의 하면에 밴딩 고정되는 것을 특징으로 하는 배터리 및 연료전지스택용 열교환기.
  4. 제1항에 있어서,
    상기 유로플레이트(100)의 분산돌기(130)는 원기둥 타입으로 제공되는 것을 특징으로 하는 배터리 및 연료전지스택용 열교환기.
  5. 제1항에 있어서,
    상기 유로플레이트(100)의 분산돌기(130)는 물방울 모양 기둥 타입으로 제공되는 한편,
    유입파이프(710)를 통해 냉각을 위한 유체가 유입되는 측인 유로의 일 측과 대응되는 측이 반구형이면서 반구형과 반대 측이 부등호 형상으로 뾰족한 물방울 모양으로 유로 내에 상향 돌출형성되는 것을 특징으로 하는 배터리 및 연료전지스택용 열교환기.
  6. 제1항에 있어서,
    상기 유로플레이트(100)의 분산돌기(130)는 마름모 모양 기둥 타입으로 제공되는 한편,
    마름모형상의 정중앙을 기준으로 유입파이프(710)를 통해 냉각을 위한 유체가 유입되는 측인 유로의 일 측에 비하여 대향되는 타 측이 더 길게 형성되는 마름모 모양으로 유로 내에 상향 돌출형성되는 것을 특징으로 하는 배터리 및 연료전지스택용 열교환기.
  7. 제1항에 있어서,
    유입파이프(710)에 대한 유입구공(310)에 고정시 유입파이프(710)의 하단 부분이 유입구공(310) 하단 둘레부분에 밴딩고정되는 한편,
    유출파이프(720)에 대한 유출구공(320)에 고정시 유출파이프(720)의 하단 부분이 유출구공(320) 하단 둘레부분에 밴딩고정되는 것을 특징으로 하는 배터리 및 연료전지스택용 열교환기.
  8. 제1항에 있어서,
    상기 유로플레이트(100)는 일정두께를 갖는 플레이트로 제공되되, 평면에서 봤을 때 'ㄷ'자 형상의 플레이트로 제공되어 상면에 유로(110)가 'ㄷ'자 형상으로 함몰형성되는 한편,
    상기 마감플레이트(300)는 유로플레이트(100)와 대응되는 플레이트로 제공되되, 유로플레이트(100)와 대응되어 평면에서 봤을 때 'ㄷ'자 형상의 플레이트로 제공되고, 유입구공(310)이 일 측의 절곡 부분에 관통형성되며, 유출구공(320)이 타 측의 절곡 부분에 관통형성되는 것을 특징으로 하는 배터리 및 연료전지스택용 열교환기.
  9. 제1항에 있어서,
    상기 유로플레이트(100)의 유로(110) 전체영역에 걸쳐 마감플레이트(300)와 긴밀한 밀착이 유지될 수 있도록,
    상기 유로플레이트(100)의 분산돌기(130)는 하면 중앙으로부터 일정면적을 가지고 상향 일정깊이 요홈(131a)이 함몰되며, 요홈(131a) 중앙으로부터 상향 결착공(131b)이 관통형성되며,
    상기 마감플레이트(300)는 유로플레이트(100)의 분산돌기(130)와 대응되는 하면에 각각 하향 결착후크(331)가 돌출형성되는 한편,
    유로플레이트(100) 상부에 마감플레이트(300)의 밀착시 결착후크(331)가 결착공(131b)을 관통하여 결착후크(331)의 후크부분이 요홈(131a) 상에 걸림고정되는 것을 특징으로 하는 배터리 및 연료전지스택용 열교환기.
PCT/KR2021/012061 2020-10-19 2021-09-06 배터리 및 연료전지스택용 열교환기 WO2022085936A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0135500 2020-10-19
KR1020200135500A KR102378898B1 (ko) 2020-10-19 2020-10-19 배터리 및 연료전지스택용 열교환기

Publications (1)

Publication Number Publication Date
WO2022085936A1 true WO2022085936A1 (ko) 2022-04-28

Family

ID=80996998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/012061 WO2022085936A1 (ko) 2020-10-19 2021-09-06 배터리 및 연료전지스택용 열교환기

Country Status (2)

Country Link
KR (1) KR102378898B1 (ko)
WO (1) WO2022085936A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100214427B1 (ko) * 1991-10-14 1999-08-02 안자이 이치로 열교환기용 튜브 및 그 제조방법
KR20130122741A (ko) * 2010-10-04 2013-11-08 다나 캐나다 코포레이션 배터리를 위한 순응형 유체-냉각된 열교환기
KR20150034918A (ko) * 2013-09-27 2015-04-06 한라비스테온공조 주식회사 전기소자 냉각용 열교환기
JP5742664B2 (ja) * 2011-10-26 2015-07-01 トヨタ自動車株式会社 組電池及び車両
KR20180085534A (ko) * 2017-01-19 2018-07-27 주식회사 고산 배터리 및 연료전지스택용 열교환기

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140026961A (ko) 2012-08-24 2014-03-06 주식회사 한국쿨러 배터리용 열교환기
KR101619449B1 (ko) 2014-10-24 2016-05-10 주식회사 고산 배터리용 압출타입 열교환기
KR20170112813A (ko) * 2016-04-01 2017-10-12 신수철 냉각핀이 형성된 히트싱크
KR101995582B1 (ko) 2017-02-23 2019-07-02 엘지전자 주식회사 전기자동차 배터리 냉각용 열교환기
KR20180124403A (ko) * 2017-05-11 2018-11-21 전남대학교산학협력단 이종재질로 이루어진 배터리 히트싱크
KR101986238B1 (ko) 2017-10-17 2019-06-07 엠에이치기술개발 주식회사 배터리 열교환용 냉각 플레이트
KR102210929B1 (ko) 2018-12-31 2021-02-02 주식회사 고산 배터리 냉각용 열교환기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100214427B1 (ko) * 1991-10-14 1999-08-02 안자이 이치로 열교환기용 튜브 및 그 제조방법
KR20130122741A (ko) * 2010-10-04 2013-11-08 다나 캐나다 코포레이션 배터리를 위한 순응형 유체-냉각된 열교환기
JP5742664B2 (ja) * 2011-10-26 2015-07-01 トヨタ自動車株式会社 組電池及び車両
KR20150034918A (ko) * 2013-09-27 2015-04-06 한라비스테온공조 주식회사 전기소자 냉각용 열교환기
KR20180085534A (ko) * 2017-01-19 2018-07-27 주식회사 고산 배터리 및 연료전지스택용 열교환기

Also Published As

Publication number Publication date
KR102378898B1 (ko) 2022-03-28

Similar Documents

Publication Publication Date Title
WO2016043441A1 (ko) 냉매 유로의 절곡이 최소화된 냉각 구조를 포함하는 전지모듈
WO2019112125A1 (ko) 셀 에지 직접 냉각 방식의 배터리 모듈 및 이를 포함하는 배터리 팩
WO2021071071A1 (ko) 배터리 팩 및 이를 포함하는 자동차
WO2015126209A1 (ko) 배터리팩
WO2010067944A1 (en) Middle or large-sized battery pack of novel air cooling structure
WO2013119028A1 (ko) 신규한 공냉식 구조의 전지팩
WO2013048060A2 (ko) 신규한 냉각구조를 가진 전지팩
WO2011034325A2 (ko) 신규한 구조의 방열부재를 포함하는 전지모듈 및 중대형 전지팩
WO2011034324A2 (ko) 온도 센서가 장착된 전지모듈 및 이를 포함하는 중대형 전지팩
WO2010002139A9 (ko) 열 교환기를 가지고 있는 전지셀 어셈블리를 포함하는 전지모듈
WO2019027150A1 (ko) 배터리 셀용 카트리지 및 이를 포함하는 배터리 모듈
WO2013133636A1 (ko) 신규한 공냉식 구조의 전지팩
WO2019117449A1 (ko) 배터리 팩
WO2016204518A1 (ko) 전지 팩
WO2021206383A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2021206514A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2018080182A1 (ko) 전지 모듈
WO2022085936A1 (ko) 배터리 및 연료전지스택용 열교환기
WO2015060517A1 (ko) 연료전지 스택용 금속 분리판 및 이를 갖는 연료전지 스택
WO2022085935A1 (ko) 배터리 및 연료전지스택용 열교환기
WO2019017573A1 (ko) 배터리 냉각용 열교환기
WO2015037824A1 (ko) 전기소자 냉각용 열교환기
WO2022059936A1 (ko) 냉각성능이 향상된 전지 모듈 및 이를 포함하는 전지 팩
WO2022065700A1 (ko) 전지셀의 수명이 향상된 전지 팩 및 이를 포함하는 디바이스
WO2022149965A1 (ko) 배터리 팩 및 이를 포함하는 자동차

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21883009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21883009

Country of ref document: EP

Kind code of ref document: A1