WO2015060517A1 - 연료전지 스택용 금속 분리판 및 이를 갖는 연료전지 스택 - Google Patents

연료전지 스택용 금속 분리판 및 이를 갖는 연료전지 스택 Download PDF

Info

Publication number
WO2015060517A1
WO2015060517A1 PCT/KR2014/006750 KR2014006750W WO2015060517A1 WO 2015060517 A1 WO2015060517 A1 WO 2015060517A1 KR 2014006750 W KR2014006750 W KR 2014006750W WO 2015060517 A1 WO2015060517 A1 WO 2015060517A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal separator
fuel cell
cell stack
protruding pattern
flow path
Prior art date
Application number
PCT/KR2014/006750
Other languages
English (en)
French (fr)
Inventor
박지용
김기정
전유택
Original Assignee
현대하이스코 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR20130126914A external-priority patent/KR101509949B1/ko
Priority claimed from KR1020130126911A external-priority patent/KR101459961B1/ko
Application filed by 현대하이스코 주식회사 filed Critical 현대하이스코 주식회사
Priority to CN201480058366.2A priority Critical patent/CN105684202B/zh
Priority to GB1607132.6A priority patent/GB2533755B/en
Priority to JP2016525538A priority patent/JP6189537B2/ja
Priority to US15/031,195 priority patent/US10186717B2/en
Publication of WO2015060517A1 publication Critical patent/WO2015060517A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a metal separator plate for a fuel cell stack and a fuel cell stack having the same, and more particularly, to design a protruding pattern having an air flow path opened in a short side direction, or air that is opened on one side and closed on the other side.
  • the protruding pattern including the flow path By designing the protruding pattern including the flow path, the cooling performance and the stack performance can be improved without installing a separate cooling plate, and the water flowing out of the closed air flow path can be blocked to prevent the membrane-electrode assembly.
  • the present invention relates to a metal separator for a fuel cell stack capable of improving humidification performance, and a fuel cell stack having the same.
  • a fuel cell is an apparatus that produces electricity electrochemically using hydrogen gas and oxygen gas, and is a device that directly converts hydrogen and air continuously supplied from the outside into electrical energy and thermal energy by an electrochemical reaction.
  • Such a fuel cell generates power by using an oxidation reaction at an anode and a reduction reaction at a cathode.
  • a membrane electrode assembly composed of a catalyst layer containing a platinum or platinum-ruthenium metal and a polymer electrolyte membrane is used to promote oxidation and reduction reactions. Separation plate is fastened to form a cell (CELL) structure.
  • a unit cell of a fuel cell has low voltage and low practicality, generally, several to hundreds of unit cells are stacked and used.
  • the metal separator is used to make electrical connections between the unit cells and to separate the reaction gases.
  • a reaction gas channel and a coolant channel are formed at the center of a rectangular metal plate, and a gasket surrounding the periphery thereof is formed. It is usually called a channel part including a reaction gas channel and a cooling water channel.
  • the reaction gas channel is formed to protrude by a stamping process from the front surface of the metal plate to the rear surface, and the cooling water channel is formed by utilizing a region between the reaction gas channels protruding from the rear surface of the metal plate.
  • the structure of the channel portion thus formed allows the reaction gas to flow on the front surface of the metal plate, and the coolant flows on the back surface of the metal plate.
  • the front surface of the metal plate may be referred to as a reaction gas flow surface
  • the rear surface of the metal plate may be referred to as a coolant flow surface.
  • the metal separator having such a structure is a water-cooled metal separator structure, in which the cooling water flowing into the cooling water inlet manifold on one side of the channel portion passes through the cooling water channel and the activation loss and anode of the fuel cell are operated. The heat generated by the reduction reaction and Joule heating (Joule heating), etc. are cooled. The cooling water that has passed through the above cooling process is then discharged to the outside of the separator through the cooling water discharge manifold on the other side of the channel part.
  • the water-cooled metal separator in order to cool the heat generated during the operation of the fuel cell, cooling water must be continuously supplied to the metal separator.
  • a pump, an ion remover, a heat exchanger, or the like for supplying the cooling water is required, which causes a rise in the manufacturing cost of the fuel cell system.
  • the air-cooled metal separator plate can reduce the system manufacturing cost.
  • the cathode layer is composed of one cathode separator for air supply, one cold plate for vertical air space and a cooling fin for smooth air supply.
  • a cooling plate is additionally required, there is a problem of increasing the total volume and manufacturing cost of the fuel cell stack.
  • An object of the present invention is to provide a metal separator plate for a fuel cell stack and an fuel cell stack having the same, having an open air flow path that can improve cooling performance and stack performance without installing a separate cooling plate.
  • Another object of the present invention is not only to install a separate cooling plate, but also to improve the stack performance by improving the reaction gas supply and cooling performance smoothly, as well as blocking the water flowing out of the closed air flow path membrane- It is to provide a fuel cell stack having a metal separator plate and a fuel cell stack having the same that can improve the humidification performance of the electrode assembly.
  • the metal separator for fuel cell stack according to the first embodiment of the present invention for achieving the above object is formed by partially projecting and spaced apart from the lower surface to form a matrix arrangement in the upper surface direction, and has an air flow path opened in the short side direction
  • a metal separation plate body having a channel part having a protruding pattern and a manifold part having a reaction gas inlet and a reaction gas outlet respectively disposed at both edges of the channel part;
  • a gasket having a first gasket formed along an edge of the manifold portion of the upper surface of the metal separator plate, and a second gasket formed on an edge of the channel portion and formed in an island structure alternately arranged with the protruding pattern. Characterized in that.
  • a fuel cell stack according to a first embodiment of the present invention for achieving the above object is at least two or more metal separator plates; And a membrane-electrode assembly interposed between the metal separator plates, wherein the two metal separator plates have a cathode metal separator plate and an anode metal separator plate, wherein the cathode metal separator plate is formed from a lower surface thereof.
  • the anode has a protruding pattern having an air flow path formed in the form of a drawbead (drawbead) so as to have a width of 3 ⁇ 5mm opened in a short side direction to form a matrix spaced apart to form a matrix arrangement in the upper direction, the anode
  • the metal separating plate protrudes from the upper surface to the lower surface, and has a reaction gas flow path formed along a long side direction intersecting with the air flow path of the protruding pattern.
  • the metal separator for fuel cell stack according to the second embodiment of the present invention for achieving the above another object is partially cut away from the bottom surface to form a matrix arrangement in the upper surface direction to form a matrix arrangement, one side along the short side or long side direction
  • a metal separating plate body having a channel portion having an opening and a protruding pattern having a closed air flow path, and a manifold portion having a reaction gas inlet and a reaction gas outlet respectively disposed at both edges of the channel part;
  • a gasket having a first gasket formed along an edge of the manifold portion of the upper surface of the metal separator plate, and a second gasket formed on an edge of the channel portion and formed in an island structure alternately arranged with the protruding pattern. Characterized in that.
  • a fuel cell stack including at least two or more metal separator plates; And a membrane-electrode assembly interposed between the metal separator plates, wherein the two metal separator plates have a cathode metal separator plate and an anode metal separator plate, wherein the cathode metal separator plate has a short side or One side is opened along the long side direction, the other side has a protruding pattern having an air flow path bridged in the form of drawbead (drawbead) to have a closed width of 3 ⁇ 5mm, the anode metal separating plate from the top surface Protruding in the direction, characterized in that it has a reaction gas flow path formed to intersect the air flow path of the protruding pattern.
  • the metal separator plate for fuel cell stack and the fuel cell stack having the same design a protrusion pattern having an air flow path opened in a short side direction, and alternately between the protrusion pattern and a gasket disposed in the channel region.
  • the staggered zigzag arrangement minimizes the disturbance of air intake by the gasket to maximize cooling performance.
  • the metal separator plate for fuel cell stack and the fuel cell stack having the same according to the present invention have a protruding pattern in which the cathode metal separator plate has an open air flow path, thereby providing excellent cooling performance and without having to install a separate cooling plate.
  • a separate cold plate can be omitted, thereby reducing manufacturing costs and reducing the overall volume.
  • the fuel cell stack for the fuel cell stack according to the present invention and the fuel cell stack having the same by designing a protruding pattern having an air flow path is opened on one side and closed on the other side, it is possible to improve the cooling performance and stack performance In addition, it is possible to improve the humidification performance of the membrane-electrode assembly by blocking the water flowing out of the closed air flow path.
  • the metal separator plate for fuel cell stack according to the present invention and the fuel cell stack having the same have a protruding pattern having a partially open air flow path, so that a smooth reaction gas supply and cooling performance can be achieved without installing a separate cooling plate.
  • the improvement not only improves stack performance, but also eliminates the need for a separate cold plate, thereby reducing manufacturing costs and reducing the overall volume.
  • FIG. 1 is a perspective view showing a metal separator for a fuel cell stack according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged view of a portion A of FIG. 1.
  • FIG 3 is an exploded perspective view showing a fuel cell stack according to a first embodiment of the present invention.
  • FIG. 4 is an enlarged perspective view illustrating a portion of a fuel cell stack according to a first exemplary embodiment of the present invention.
  • FIG. 5 is a cross-sectional view taken along the line VV ′ of FIG. 4.
  • FIG. 6 is a perspective view showing a metal separator for a fuel cell stack according to a second embodiment of the present invention.
  • FIG. 7 is an enlarged perspective view illustrating the protruding pattern portion of FIG. 6.
  • FIG. 8 is a cross-sectional view taken along the line VIII-VIII ′ of FIG. 7.
  • FIG. 9 is an enlarged perspective view illustrating a portion of a metal separator plate for a fuel cell stack according to a modification of the second exemplary embodiment of the present invention.
  • FIG. 10 is a cross-sectional view taken along the line X-X 'of FIG. 9.
  • FIG. 11 is an exploded perspective view showing a fuel cell stack according to a second embodiment of the present invention.
  • FIG. 12 is an enlarged perspective view illustrating the protrusion pattern of FIG. 11.
  • FIG. 13 is a cross-sectional view taken along the line XIII-XIII ′ of FIG. 12.
  • FIG. 1 is a plan view illustrating a metal separator plate for a fuel cell stack according to a first embodiment of the present invention
  • FIG. 2 is an enlarged perspective view of portion A of FIG. 1.
  • the metal separator plate 100 for a fuel cell stack according to the first exemplary embodiment of the present invention illustrated includes a metal separator plate body 120 and a gasket 140.
  • the metal separation plate main body 120 is formed to be spaced apart from the lower surface to form a matrix array in an upper surface direction and partially cut, and has a channel portion CH having a protruding pattern 125 having an air flow path 127 opened in a short side direction. ), And a manifold portion MA having a reaction gas inlet 160 and a reaction gas outlet 162 disposed at both edges of the channel portion CH, respectively.
  • the protrusion pattern 125 having the air flow path 127 is bridge-shaped in the form of a drawbead (drawbead) to have a width of 3 ⁇ 5mm.
  • drawbead drawbead
  • the width of the protruding pattern 125 is less than 3 mm, it may be difficult to properly exhibit the cooling performance effect because the amount of air passing through the air passage 127 is reduced.
  • the width of the protruding pattern 125 exceeds 5 mm, the design of the pattern may be difficult due to the narrow spacing between the protruding patterns 125.
  • the protruding pattern 125 has an open air structure 127 cut open in the short side direction of the metal separator body 120 and has a closed closed structure in the long side direction. Therefore, the air passing through the air flow path 127 of the protruding pattern 125 is introduced from one short side of the metal separation plate main body 120 to be discharged to the other short side.
  • the gasket 140 secures airtightness, and when stacking two or more metal separator plates, serves to strengthen the fastening force and the adhesive force between the metal separator plates. Rubber may be used as the material of the gasket 140, but is not limited thereto, and plastic may be used.
  • the gasket 140 may include a first gasket 142 and a second gasket 144.
  • the first gasket 142 is formed along the edge of the manifold portion MA on the upper surface of the metal separator body 120, and the second gasket 144 is disposed on the edge of the channel portion CH to protrude the pattern 125. It is formed of an island structure (alternatively arranged).
  • the protruding pattern 125 and the second gasket 144 are preferably arranged in a zigzag shape alternately staggered with each other in order to secure the inflow of air supplied to the air flow path 127.
  • the second gasket 144 When the second gasket 144 is disposed on a straight line overlapping the protruding pattern 125, the second gasket 144 blocks the inflow of air supplied to the air flow path 127 of the protruding pattern 125. This is because it can act as a factor that drastically degrades performance. Therefore, the second gasket 144 may be spaced apart at equal intervals along the long side direction of the metal separator body 120, but may be arranged in a zigzag form so as not to overlap each other with the protruding pattern 125.
  • the above-described metal separator for fuel cell stack according to the first embodiment of the present invention designs a protrusion pattern having an air flow path opened in a short side direction, and alternately alternates between the protrusion pattern and a gasket disposed in the channel region. Arranged in a staggered zigzag form, the cooling performance can be maximized by minimizing the disturbance of air inflow by the gasket.
  • FIG 3 is an exploded perspective view illustrating a fuel cell stack according to a first embodiment of the present invention.
  • the fuel cell stack 400 includes at least two or more metal separator plates and a membrane-electrode assembly 200 interposed between the metal separator plates. Include. At this time, the two metal separators have a cathode metal separator 100 and an anode metal separator 300.
  • the cathode metal separator plate 100 is protruded and partially cut away from the lower surface to form a matrix array in an upper surface direction, and has a protruding pattern 125 having an air flow path opened in a short side direction. At this time, the protruding pattern 125 having the air flow path is bridge-shaped in the form of a drawbead (drawbead) to have a width of 3 ⁇ 5mm.
  • the cathode metal separation plate 100 is substantially the same as the fuel cell stack metal separation plate illustrated and described with reference to FIGS. 1 and 2, and a detailed description thereof will be omitted.
  • the anode metal separating plate 300 protrudes from the upper surface to the lower surface, and has a reaction gas flow path 325 formed along a long side direction intersecting with the air flow path of the protruding pattern 125.
  • the anode metal separator 300 includes a reaction gas inlet manifold 360 disposed at a position corresponding to the reaction gas inlet 160 of the cathode metal separator 100, and the cathode metal separator 100. It may have a reaction gas discharge manifold (362) disposed at a position corresponding to the reaction gas outlet 162 of the).
  • the anode metal separator 300 may further include a gasket 340 formed along an edge of a manifold region (not shown) and a channel region (not shown).
  • the gasket 340 ensures airtightness and, when stacked with the cathode metal separator 100, enhances the fastening force and adhesion between the cathode metal separator 100 and the membrane-electrode assembly 200. Play a role.
  • the membrane-electrode assembly 200 is inserted and disposed between the cathode metal separator 100 and the anode metal separator 300, respectively.
  • the membrane-electrode assembly 200 may include a polymer electrolyte membrane and an anode and a cathode formed on both surfaces thereof.
  • FIG. 4 is an enlarged perspective view illustrating a portion of a fuel cell stack according to the first exemplary embodiment of the present invention
  • FIG. 5 is a cross-sectional view taken along the line VV ′ of FIG. 4.
  • Figure 4 is a perspective view showing a cut along the central portion of FIG.
  • the fuel cell stack 400 has a structure in which an anode metal separator plate 300, a membrane-electrode assembly 200, and a cathode metal separator plate 100 are sequentially stacked. It can be seen that. At this time, it can be seen that the reaction gas flow path 325 of the metal separator plate 300 for the anode is arranged to cross the air flow path 127 of the cathode metal separation plate 100.
  • the protruding pattern 125 of the cathode metal separating plate 100 is cut open in the short side direction and has an open structure, and has a closed structure in the long side direction. Accordingly, the protruding pattern 125 includes an air passage 127 having an open open structure cut along the short side direction.
  • the cathode metal separation plate 100 is designed with a protrusion pattern 125 having an open air flow path 127, self cooling may be possible, and thus, without a separate cooling plate installed. Excellent cooling performance and stack performance can be achieved.
  • air flowing from a cooling fan (not shown) disposed on one side of the cathode and anode metal separator plates 100 and 300 is opened along the short side direction. Pass 127.
  • the air flowing from the cooling fan may be dispersed and passed through the air flow path 127 arranged on one straight line and the air flow path 127 arranged at a position adjacent thereto.
  • the air supplied from the cooling fans disposed on one side of the cathode and anode metal separator plates 100 and 300 passes through the air flow path 127 of the protruding pattern 125 designed in an open structure along the short side direction.
  • the heat generated due to the activation loss, the reduction reaction, and Joule heating may be cooled.
  • the fuel cell stack according to the first embodiment of the present invention has a protruding pattern including an air flow path in which the cathode metal separator plate is opened, it is possible to secure excellent cooling performance and stack performance without installing a separate cooling plate. Not only can this be done, but a separate cooling plate can be omitted, thus reducing the manufacturing cost and reducing the overall volume.
  • FIG. 6 is a perspective view illustrating a metal separator plate for a fuel cell stack according to a second exemplary embodiment of the present invention
  • FIG. 7 is an enlarged perspective view of a protruding pattern of FIG. 6,
  • FIG. 8 is a VIII-VIII ′ of FIG. 7. It is sectional drawing cut along the line.
  • the metal separator plate 500 for a fuel cell stack according to the second embodiment of the present invention illustrated includes a metal separator body 520 and a gasket 540.
  • the metal separating plate main body 520 is formed to be partially spaced apart from the lower surface so as to form a matrix array in an upper surface direction, and is partially cut along the protruding portion having an air passage 527 closed at one side and a closed side along the short or long side direction. And a manifold portion MA having a channel portion CH having a pattern 525, a reaction gas inlet 560 and a reaction gas outlet 562 disposed at both edges of the channel portion CH, respectively. .
  • the protruding pattern 525 having the air flow path 527 is bridge-shaped in a drawbead (drawbead) shape to have a width of 3 ⁇ 5mm.
  • the width of the protruding pattern 525 is less than 3 mm, it may be difficult to properly exhibit the cooling performance effect because the amount of air passing through the air flow passage 527 is reduced.
  • the width of the protruding pattern 525 exceeds 5 mm, the design of the pattern may be difficult due to the narrow spacing between the protruding patterns 525.
  • the protruding pattern 525 has an opening G having one side opened along the short side or the long side direction, and a closed portion C having the other side closed on the opposite side thereof.
  • the opening G and the closed part C may be formed to form a regular pattern. Therefore, the air passing through the air flow path 527 of the protruding pattern 525 flows into the opening G of the protruding pattern 525, and then the air flow path (C) is formed by the closed part C of the protruding pattern 525. After stagnating for a predetermined time in the inside of the 527, the discharge is made to the outside of the air flow path (527).
  • the closed part C of the protruding pattern 525 serves as a blocking film to block moisture, which is air introduced through the opening G of the air flow passage 527, from flowing out of the air flow passage 527.
  • the drying phenomenon in the protruding pattern 525 may be prevented in advance, thereby improving the humidification performance of the membrane-electrode assembly (not shown).
  • the gasket 540 secures airtightness, and when stacking two or more metal separator plates, serves to strengthen the fastening force and the adhesive force between the metal separator plates. Rubber may be used as the material of the gasket 540, but is not limited thereto, and plastic may be used.
  • the gasket 540 may include a first gasket 542 and a second gasket 544.
  • the first gasket 542 is formed along the edge of the manifold portion MA on the upper surface of the metal separator body 520, and the second gasket 544 is disposed on the edge of the channel portion CH to protrude the pattern 525. It is formed of an island structure (alternatively arranged).
  • the protruding pattern 525 and the second gasket 544 are preferably arranged in a zigzag shape alternately alternately with each other in order to secure the inflow of air supplied to the air passage 527.
  • the second gasket 544 When the second gasket 544 is disposed on a straight line overlapping the protruding pattern 525, the second gasket 544 is cooled due to blocking the inflow of air supplied to the air flow path 527 of the protruding pattern 525. This is because it can act as a factor that drastically degrades performance. Accordingly, the second gasket 544 may be spaced apart at equal intervals along the long side direction of the metal separator body 520, but may be arranged in a zigzag form so as not to overlap each other with the protruding pattern 525.
  • the metal separator for fuel cell stack according to the second embodiment of the present invention described above has a protrusion pattern having an air flow path open at one side and closed at the other side, thereby improving cooling performance and stack performance.
  • FIG. 9 is an enlarged perspective view illustrating a portion of a metal separator plate for a fuel cell stack according to a modified example of the second embodiment of the present invention
  • FIG. 10 is a cross-sectional view taken along the line X-X 'of FIG. 9. to be.
  • the protruding pattern 525 has an opening G having one side opened along a short side or a long side direction, and a closed portion C having the other side closed on the opposite side thereof.
  • the protruding pattern 525 is arranged such that the openings G in the odd rows and the openings G in the even rows are opposite to each other, and the closing holes C of the odd rows and the closing holes C of the even rows are opposite to each other. It may have a symmetrical structure arranged to face. As such, when the odd rows and the even columns are arranged in a symmetrical structure, air passing through the inside of the air flow path 527 may stay in the closed part C of the protruding pattern 525 for a longer time due to the vortex phenomenon. Will be. As a result, it is possible to prevent the drying phenomenon from occurring in the protruding pattern 525, thereby further improving the humidification performance of the membrane-electrode assembly.
  • four protruding patterns 525 may form one unit cell, and all four protruding patterns 525 may face different directions. As such, when the four protruding patterns 525 are all formed in different directions, the residence time of the air can be further delayed by the vortex phenomenon, so that the humidification performance of the membrane-electrode assembly can be further improved. do.
  • FIG. 11 is an exploded perspective view showing a fuel cell stack according to a second embodiment of the present invention.
  • the fuel cell stack 800 includes at least two or more metal separator plates and a membrane-electrode assembly 600 interposed between the metal separator plates. Include. At this time, the two metal separators have a cathode metal separator 500 and an anode metal separator 700.
  • the cathode metal separating plate 500 is protruded and partially cut away from the lower surface to form a matrix array in an upper surface direction, and has a protruding pattern 525 having an air flow path opened in a short side direction. At this time, the protruding pattern 525 having the air flow path is bridge-shaped in the form of a drawbead (drawbead) to have a width of 3 ⁇ 5mm.
  • the cathode metal separator plate 500 is substantially the same as the metal separator plate for the fuel cell stack illustrated and described with reference to FIGS. 1 to 3, and a detailed description thereof will be omitted.
  • the anode metal separating plate 700 protrudes from the upper surface to the lower surface, and has a reaction gas flow path 725 formed to intersect the air flow path of the protruding pattern 525.
  • the anode metal separator 700 includes a reaction gas inlet manifold 760 disposed at a position corresponding to the reaction gas inlet 560 of the cathode metal separator 500, and the cathode metal separator 500. It may have a reaction gas discharge manifold 762 disposed at a position corresponding to the reaction gas outlet 562 of the ().
  • the anode metal separator 700 may further include a gasket 740 formed along an edge of a manifold region (not shown) and a channel region (not shown).
  • the gasket 740 ensures airtightness and, when stacked with the cathode metal separator 500, enhances the fastening force and adhesion between the cathode metal separator 500 and the membrane-electrode assembly 600. Play a role.
  • the membrane-electrode assembly 600 is inserted between the cathode metal separator 500 and the anode metal separator 700, respectively.
  • the membrane-electrode assembly 600 may include a polymer electrolyte membrane and an anode and a cathode formed on both surfaces thereof.
  • FIG. 12 is an enlarged perspective view illustrating the protrusion pattern of FIG. 11 and FIG. 13 is a cross-sectional view taken along the line XIII-XIII ′ of FIG. 12.
  • the fuel cell stack 800 has a structure in which an anode metal separator 700, a membrane-electrode assembly 600, and a cathode metal separator 500 are sequentially stacked. It can be seen that.
  • the reaction gas flow path 725 of the metal separator plate 700 for the anode may be arranged to cross the air flow path 527 of the metal separation plate 500 for the cathode.
  • the protruding pattern 525 of the cathode metal separating plate 500 has a protruding pattern 525 having an air passage 527 closed at one side of the protruding pattern 525 along the short side direction and the other side thereof.
  • the protruding pattern 525 has an opening G having one side opened along a short side or a long side direction, and a closed part C having the other side closed on the opposite side thereof. That is, the protruding pattern 525 has three of four sides having a closed structure, and only one side has an open structure.
  • the cathode metal separator plate 500 has a protrusion pattern 525 having an air passage 527 open at one side and closed at the other side thereof, so that cooling can be performed by itself, a separate cooling plate Excellent cooling performance and stack performance can be achieved without the need for mounting.
  • the cathode metal separating plate 500 includes moisture, which is air that flows through the opening G of the air flow passage 527 through the opening C of the protruding pattern 525, to the outside of the air flow passage 527. It acts as a barrier to block outflow. As a result, it is possible to prevent the drying phenomenon from occurring in the protruding pattern 525 and to improve the humidification performance of the membrane-electrode assembly 600.
  • air flowing from a cooling fan (not shown) disposed at one side of the cathode and anode metal separator plates 500 and 700 is opened at one side along a short side or a long side direction.
  • the other side passes through the partially closed air passage 527.
  • the air flowing from the cooling fan is dispersed and passed through the air passages 527 of the partially open type, and the closed part C by the vortex phenomenon in the process flowing into the closed part C of the protruding pattern 525. Hovering around will produce a discharge.
  • the fuel cell stack according to the second embodiment of the present invention described above has a protrusion pattern having an air flow path open at one side and closed at the other side, thereby improving stack performance by smoothly supplying reactive gas and improving cooling performance.
  • the fuel cell stack according to the second embodiment of the present invention has a protruding pattern having a partially open air flow path, it is possible to ensure excellent cooling performance and stack performance without installing a separate cooling plate. Since a separate cooling plate can be omitted, manufacturing cost can be reduced and the total volume is reduced.
  • the fuel cell stack according to the second embodiment of the present invention can be applied not only to an air-cooled structure but also to a water-cooled structure.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

단변 방향으로 개구된 공기 유로를 구비하는 돌출 패턴을 설계하거나, 또는 일측은 개구되고 타측은 폐구되는 공기 유로를 구비하는 돌출 패턴을 설계하여, 별도의 냉각판을 장착하는 것 없이도 냉각 성능 및 스택 성능을 향상시킬 수 있을 뿐만 아니라, 폐구된 공기 유로의 내부에서 유출되는 수분을 차단하여 막-전극 접합체의 가습 성능을 향상시킬 수 있는 연료전지 스택용 금속 분리판 및 이를 갖는 연료전지 스택에 대하여 개시한다.

Description

연료전지 스택용 금속 분리판 및 이를 갖는 연료전지 스택
본 발명은 연료전지 스택용 금속 분리판 및 이를 갖는 연료전지 스택에 관한 것으로, 보다 상세하게는 단변 방향으로 개구된 공기 유로를 구비하는 돌출 패턴을 설계하거나, 또는 일측은 개구되고 타측은 폐구되는 공기 유로를 구비하는 돌출 패턴을 설계하여, 별도의 냉각판을 장착하는 것 없이도 냉각 성능 및 스택 성능을 향상시킬 수 있을 뿐만 아니라, 폐구된 공기 유로의 내부에서 유출되는 수분을 차단하여 막-전극 접합체의 가습 성능을 향상시킬 수 있는 연료전지 스택용 금속 분리판 및 이를 갖는 연료전지 스택에 관한 것이다.
연료전지는 수소 가스와 산소 가스를 이용하여 전기 화학적으로 전기를 생산하는 장치로서, 외부에서 연속적으로 공급되는 수소 및 공기를 전기화학반응에 의하여 직접 전기에너지와 열에너지로 변환시키는 장치이다.
이러한 연료전지는 산화전극에서의 산화반응 및 환원전극에서의 환원반응을 이용하여 전력을 생성하게 된다. 이때, 산화 및 환원 반응을 촉진시키기 위해 백금 또는 백금-루테늄 금속 등을 포함하는 촉매층과 고분자 전해질막으로 구성된 막-전극 접합체(membrane electrode assembly : MEA)가 사용되며 막-전극 접합체 양단으로 전도성 물질의 분리판이 체결되어 셀(CELL) 구조를 이룬다.
연료전지의 단위 셀(Unit Cell)은 전압이 낮아 실용성이 떨어지기 때문에, 일반적으로 수개 내지 수백개의 단위 셀을 적층하여 사용한다. 단위 셀의 적층 시, 각각의 단위 셀 간에 전기적 접속이 이루어지게 하고, 반응 가스를 분리시켜주는 역할을 하는 것이 금속 분리판이다.
일반적인 연료전지용 금속 분리판은 직사각형 형태의 금속판의 중심부에 반응가스 채널 및 냉각수 채널이 형성되고, 그 주변을 둘러싸는 가스켓이 형성된다. 반응가스 채널과 냉각수 채널을 포함하여 통상 채널부라 한다. 통상 반응가스 채널은 금속판의 전면에서 배면으로 스탬핑 공정에 의해 돌출되어 형성되고, 냉각수 채널은 금속판의 배면에 돌출된 반응가스 채널 사이의 영역을 활용하여 형성된다. 이렇게 형성된 채널부의 구조는 반응가스가 금속판의 전면 상에서 유동하고, 냉각수는 금속판의 배면 상에서 유동하도록 한다. 이러한 점에서 금속판의 전면을 반응가스 유동면으로, 금속판의 배면을 냉각수 유동면이라 지칭하기도 한다.
이러한 구조를 갖는 금속 분리판은 수냉식(water-cooled) 금속 분리판 구조로서, 채널부 일측의 냉각수 유입 매니폴드로 유입되는 냉각수가 냉각수 채널을 통과하면서 연료전지 동작시 활성화 손실(activation loss), 양극에서의 환원 반응 및 주울 가열(Joule heating) 등의 원인으로 인하여 발생하는 열을 냉각시킨다. 상기의 냉각과정을 거친 냉각수는, 이후 채널부 타측의 냉각수 배출 매니폴드를 통하여 분리판 외부로 빠져나간다.
이러한, 수냉식 금속 분리판의 경우, 연료전지 동작시 발생하는 열을 냉각시키기 위하여, 냉각수를 금속 분리판에 지속적으로 공급해주어야 한다. 이 경우 냉각수 공급을 위한 펌프, 이온제거기, 열교환기 등의 장치가 필요하게 되며, 이로 인하여 연료전지 시스템 제조 비용의 상승을 초래하는 원인이 된다. 반면, 공냉식 금속 분리판은 이에 비해 시스템 제조 비용의 절감 효과가 있다.
그러나, 공냉식 금속 분리판의 경우, 공기 공급을 위한 캐소드 분리판 1 장과, 원활한 공기 공급을 위한 수직 방향의 공간 확보 및 냉각 핀의 역할을 수행하는 냉각판 1 장, 총 2장으로 캐소드 층을 제작하고 있으나, 이 경우 냉각판이 추가로 필요하기 때문에 연료전지 스택의 전체 부피 및 제조 비용을 증가시키는 문제가 있었다.
관련 선행문헌으로는 대한민국 공개특허공보 제10-2003-0042633호(2003.06.02. 공개)가 있으며, 상기 문헌에는 공기냉각 구조를 갖는 냉각판이 단위전지 사이에 적층된 연료전지 스택에 대하여 기재되어 있다.
본 발명의 목적은 별도의 냉각판을 장착하는 것 없이도 냉각 성능 및 스택 성능을 향상시킬 수 있는 개구된 공기 유로를 구비하는 연료전지 스택용 금속 분리판 및 이를 갖는 연료전지 스택을 제공하는 것이다.
본 발명의 다른 목적은 별도의 냉각판을 장착하는 것 없이도 원활한 반응 가스 공급 및 냉각 성능의 향상으로 스택 성능을 향상시킬 수 있을 뿐만 아니라, 폐구된 공기 유로의 내부에서 유출되는 수분을 차단하여 막-전극 접합체의 가습 성능을 향상시킬 수 있는 연료전지 스택용 금속 분리판 및 이를 갖는 연료전지 스택을 제공하는 것이다.
상기 목적을 달성하기 위한 본 발명의 제1 실시예에 따른 연료전지 스택용 금속 분리판은 하면으로부터 상면 방향으로 매트릭스 배열을 이루도록 이격하여 돌출 형성되어 부분 절개되며, 단변 방향으로 개구된 공기 유로를 구비하는 돌출 패턴을 갖는 채널부와, 상기 채널부의 양측 가장자리에 각각 배치된 반응가스 유입구 및 반응가스 배출구를 구비하는 매니폴드부를 갖는 금속 분리판 본체; 및 상기 금속 분리판 본체 상면의 상기 매니폴드부의 가장자리를 따라 형성된 제1 가스켓과, 상기 채널부의 가장자리에 배치되어 상기 돌출 패턴과 교번적으로 배열되는 아일랜드 구조로 형성된 제2 가스켓을 갖는 가스켓;을 포함하는 것을 특징으로 한다.
상기 목적을 달성하기 위한 본 발명의 제1 실시예에 따른 연료전지 스택은 적어도 2장 이상의 금속 분리판; 및 상기 금속 분리판의 사이에 각각 개재된 막-전극 접합체;를 포함하며, 상기 2장의 금속 분리판은 캐소드용 금속 분리판과 애노드용 금속 분리판을 갖되, 상기 캐소드용 금속 분리판은 하면으로부터 상면 방향으로 매트릭스 배열을 이루도록 이격하여 돌출 형성되어 부분 절개되며, 단변 방향으로 개구된 3 ~ 5mm의 폭을 갖도록 드로우비드(drawbead) 형태로 브리지 성형된 공기 유로를 구비하는 돌출 패턴을 갖고, 상기 애노드용 금속 분리판은 상면으로부터 하면 방향으로 돌출되어, 상기 돌출 패턴의 공기 유로와 교차하는 장변 방향을 따라 형성된 반응가스 유로를 갖는 것을 특징으로 한다.
상기 다른 목적을 달성하기 위한 본 발명의 제2 실시예에 따른 연료전지 스택용 금속 분리판은 하면으로부터 상면 방향으로 매트릭스 배열을 이루도록 이격하여 돌출 형성되어 부분 절개되며, 단변 또는 장변 방향을 따라 일측은 개구되고, 타측은 폐구된 공기 유로를 구비하는 돌출 패턴을 갖는 채널부와, 상기 채널부의 양측 가장자리에 각각 배치된 반응가스 유입구 및 반응가스 배출구를 구비하는 매니폴드부를 갖는 금속 분리판 본체; 및 상기 금속 분리판 본체 상면의 상기 매니폴드부의 가장자리를 따라 형성된 제1 가스켓과, 상기 채널부의 가장자리에 배치되어 상기 돌출 패턴과 교번적으로 배열되는 아일랜드 구조로 형성된 제2 가스켓을 갖는 가스켓;을 포함하는 것을 특징으로 한다.
상기 다른 목적을 달성하기 위한 본 발명의 제2 실시예에 따른 연료전지 스택은 적어도 2장 이상의 금속 분리판; 및 상기 금속 분리판의 사이에 각각 개재된 막-전극 접합체;를 포함하며, 상기 2장의 금속 분리판은 캐소드용 금속 분리판과 애노드용 금속 분리판을 갖되, 상기 캐소드용 금속 분리판은 단변 또는 장변 방향을 따라 일측은 개구되고, 타측은 폐구된 3 ~ 5mm의 폭을 갖도록 드로우비드(drawbead) 형태로 브리지 성형된 공기 유로를 구비하는 돌출 패턴을 갖고, 상기 애노드용 금속 분리판은 상면으로부터 하면 방향으로 돌출되어, 상기 돌출 패턴의 공기 유로와 교차하도록 형성된 반응가스 유로를 갖는 것을 특징으로 한다.
본 발명에 따른 연료전지 스택용 금속 분리판 및 이를 갖는 연료전지 스택은 단변 방향으로 개구된 공기 유로를 구비하는 돌출 패턴을 설계함과 더불어, 돌출 패턴 및 채널 영역에 배치되는 가스켓을 상호 교번적으로 엇갈리는 지그재그 형태로 배열함으로써 가스켓에 의한 공기 유입이 방해되는 것을 최소화하여 냉각 성능을 극대화할 수 있다.
또한, 본 발명에 따른 연료전지 스택용 금속 분리판 및 이를 갖는 연료전지 스택은 캐소드용 금속 분리판이 개방형 공기 유로를 구비하는 돌출 패턴을 가지므로, 별도의 냉각판을 장착하는 것 없이도 우수한 냉각 성능 및 스택 성능을 확보할 수 있을 뿐만 아니라, 별도의 냉각판이 생략될 수 있으므로 제조 비용을 절감할 수 있고, 전체 부피가 감소된다.
또한, 본 발명에 따른 연료전지 스택용 금속 분리판 및 이를 갖는 연료전지 스택은 일측은 개구되고 타측은 폐구되는 공기 유로를 구비하는 돌출 패턴을 설계하여, 냉각 성능 및 스택 성능을 향상시킬 수 있을 뿐만 아니라, 폐구된 공기 유로의 내부에서 유출되는 수분을 차단하여 막-전극 접합체의 가습 성능을 향상시킬 수 있다.
또한, 본 발명에 따른 연료전지 스택용 금속 분리판 및 이를 갖는 연료전지 스택은 부분 개방형 공기 유로를 구비하는 돌출 패턴을 가지므로, 별도의 냉각판을 장착하는 것 없이도 원활한 반응 가스 공급 및 냉각 성능의 향상으로 스택 성능을 향상시킬 수 있을 뿐만 아니라, 별도의 냉각판이 생략될 수 있으므로 제조 비용을 절감할 수 있고, 전체 부피가 감소된다.
도 1은 본 발명의 제1 실시예에 따른 연료전지 스택용 금속 분리판을 나타낸 사시도이다.
도 2는 도 1의 A 부분을 확대하여 나타낸 도면이다.
도 3은 본 발명의 제1 실시예에 따른 연료전지 스택을 나타낸 분해 사시도이다.
도 4는 본 발명의 제1 실시예에 따른 연료전지 스택의 일 부분을 확대하여 나타낸 결합 사시도이다.
도 5는 도 4의 V-V'선을 따라 절단하여 나타낸 단면도이다.
도 6은 본 발명의 제2 실시예에 따른 연료전지 스택용 금속 분리판을 나타낸 사시도이다.
도 7은 도 6의 돌출 패턴 부분을 확대하여 나타낸 사시도이다.
도 8은 도 7의 VIII-VIII'선을 따라 절단하여 나타낸 단면도이다.
도 9는 본 발명의 제2 실시예의 변형예에 따른 연료전지 스택용 금속 분리판의 일 부분을 확대하여 나타낸 사시도이다.
도 10은 도 9의 X-X'선을 따라 절단하여 나타낸 단면도이다.
도 11은 본 발명의 제2 실시예에 따른 연료전지 스택을 나타낸 분해 사시도이다.
도 12은 도 11의 돌출 패턴 부분을 확대하여 나타낸 결합 사시도이다.
도 13은 도 12의 XIII-XIII'선을 따라 절단하여 나타낸 단면도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예를 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조부호는 동일 구성 요소를 지칭한다.
이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들에 따른 연료전지 스택용 금속 분리판 및 이를 갖는 연료전지 스택에 관하여 상세히 설명하면 다음과 같다.
(제1 실시예)
도 1은 본 발명의 제1 실시예에 따른 연료전지 스택용 금속 분리판을 나타낸 평면도이고, 도 2는 도 1의 A 부분을 확대하여 나타낸 사시도이다.
도 1 및 도 2를 참조하면, 도시된 본 발명의 제1 실시예에 따른 연료전지 스택용 금속 분리판(100)은 금속 분리판 본체(120) 및 가스켓(140)을 포함한다.
금속 분리판 본체(120)는 하면으로부터 상면 방향으로 매트릭스 배열을 이루도록 이격하여 돌출 형성되어 부분 절개되며, 단변 방향으로 개구된 공기 유로(127)를 구비하는 돌출 패턴(125)을 갖는 채널부(CH)와, 채널부(CH)의 양측 가장자리에 각각 배치된 반응가스 유입구(160) 및 반응가스 배출구(162)를 구비하는 매니폴드부(MA)를 포함한다.
이때, 공기 유로(127)를 구비하는 돌출 패턴(125)은 3 ~ 5mm의 폭을 갖도록 드로우비드(drawbead) 형태로 브리지 성형된다. 돌출 패턴(125)의 폭이 3mm 미만일 경우, 공기 유로(127)의 내부로 통과하는 공기량이 줄어드는 관계로 냉각 성능 효과를 제대로 발휘하는데 어려움이 따를 수 있다. 반대로, 돌출 패턴(125)의 폭이 5mm를 초과할 경우에는 돌출 패턴(125) 상호 간의 이격 간격이 협소해지는 관계로 패턴 설계에 어려움이 따를 수 있다.
특히, 돌출 패턴(125)은 금속 분리판 본체(120)의 단변 방향으로는 절개되어 열린 개방형 구조의 공기 유로(127)를 갖고, 장변 방향으로는 닫힌 폐쇄형 구조를 갖는다. 따라서, 돌출 패턴(125)의 공기 유로(127) 내부를 통과하는 공기는 금속 분리판 본체(120)의 일측 단변으로부터 유입되어, 타측 단변으로 배출이 이루어지게 된다.
가스켓(140)은 기밀성을 확보함과 더불어, 2장 이상의 금속 분리판을 스택할 시, 금속 분리판들 간의 체결력 및 부착력을 강화시키는 역할을 한다. 이러한 가스켓(140)의 재질로는 고무가 이용될 수 있으나, 이에 한정되는 것은 아니며, 플라스틱이 이용될 수도 있다.
이러한 가스켓(140)은 제1 가스켓(142) 및 제2 가스켓(144)을 포함할 수 있다. 제1 가스켓(142)은 금속 분리판 본체(120) 상면의 매니폴드부(MA)의 가장자리를 따라 형성되고, 제2 가스켓(144)은 채널부(CH)의 가장자리에 배치되어 돌출 패턴(125)과 교번적으로 배열되는 아일랜드 구조(island structure)로 형성된다. 이때, 돌출 패턴(125) 및 제2 가스켓(144)은 공기 유로(127)로 공급되는 공기 유입의 확보를 위해, 상호 교번적으로 엇갈리는 지그재그 형태(zigzag shape)로 배열되는 것이 바람직한데, 이는 제2 가스켓(144)이 돌출 패턴(125)과 중첩되는 일 직선 상에 배치될 경우 제2 가스켓(144)이 돌출 패턴(125)의 공기 유로(127)로 공급되는 공기 유입을 차단하는데 기인하여 냉각 성능이 급격히 저하되는 요인으로 작용할 수 있기 때문이다. 따라서, 제2 가스켓(144)은 금속 분리판 본체(120)의 장변 방향을 따라 등 간격으로 이격 배치되되, 돌출 패턴(125)과 상호 중첩되지 않도록 지그재그 형태로 배열하는 것이 바람직하다.
전술한 본 발명의 제1 실시예에 따른 연료전지 스택용 금속 분리판은 단변 방향으로 개구된 공기 유로를 구비하는 돌출 패턴을 설계함과 더불어, 돌출 패턴 및 채널 영역에 배치되는 가스켓을 상호 교번적으로 엇갈리는 지그재그 형태로 배열함으로써 가스켓에 의한 공기 유입이 방해되는 것을 최소화하여 냉각 성능을 극대화할 수 있다.
한편, 도 3은 본 발명의 제1 실시예에 따른 연료전지 스택을 나타낸 분해 사시도이다.
도 3을 참조하면, 도시된 본 발명의 제1 실시예에 따른 연료전지 스택(400)은 적어도 2장 이상의 금속 분리판과, 금속 분리판의 사이에 각각 개재된 막-전극 접합체(200)를 포함한다. 이때, 2장의 금속 분리판은 캐소드용 금속 분리판(100)과 애노드용 금속 분리판(300)을 갖는다.
캐소드용 금속 분리판(100)은 하면으로부터 상면 방향으로 매트릭스 배열을 이루도록 이격하여 돌출 형성되어 부분 절개되며, 단변 방향으로 개구된 공기 유로를 구비하는 돌출 패턴(125)을 갖는다. 이때, 공기 유로를 구비하는 돌출 패턴(125)은 3 ~ 5mm의 폭을 갖도록 드로우비드(drawbead) 형태로 브리지 성형된다.
이러한 캐소드용 금속 분리판(100)은 도 1 및 도 2에 도시하고 설명한 연료전지 스택용 금속 분리판과 실질적으로 동일한 바, 이에 대한 구체적인 설명은 생략하도록 한다.
애노드용 금속 분리판(300)은 상면으로부터 하면 방향으로 돌출되어, 돌출 패턴(125)의 공기 유로와 교차하는 장변 방향을 따라 형성된 반응가스 유로(325)를 갖는다. 또한, 애노드용 금속 분리판(300)은 캐소드용 금속 분리판(100)의 반응가스 유입구(160)와 대응되는 위치에 배치되는 반응가스 유입 매니폴드(360)와, 캐소드용 금속 분리판(100)의 반응가스 배출구(162)와 대응되는 위치에 배치되는 반응가스 배출 매니폴드(362)를 가질 수 있다.
이러한 애노드용 금속 분리판(300)은 매니폴드 영역(미도시)과 채널 영역(미도시)의 가장자리를 따라 형성된 가스켓(340)을 더 포함할 수 있다. 이러한 가스켓(340)은 기밀성을 확보함과 더불어, 캐소드용 금속 분리판(100)과의 스택시, 캐소드용 금속 분리판(100)과 막-전극 접합체(200) 상호 간의 체결력 및 부착력을 강화시키는 역할을 한다.
막-전극 접합체(200)는 캐소드용 금속 분리판(100) 및 애노드용 금속 분리판(300) 사이에 각각 삽입 배치된다. 막-전극 접합체(200)는 고분자 전해질막과 그 양쪽 면에 각각 형성되는 산화전극과 환원전극을 포함할 수 있다.
도 4는 본 발명의 제1 실시예에 따른 연료전지 스택의 일 부분을 확대하여 나타낸 결합 사시도이고, 도 5는 도 4의 V-V'선을 따라 절단하여 나타낸 단면도이다. 이때, 도 4는 도 3의 중앙 부분을 따라 절단한 면을 나타낸 결합 사시도이다.
도 4 및 도 5에 도시된 바와 같이, 연료전지 스택(400)은 애노드용 금속 분리판(300), 막-전극 접합체(200) 및 캐소드용 금속 분리판(100)이 차례로 적층된 구조를 갖는 것을 알 수 있다. 이때, 애노드용 금속 분리판(300)의 반응가스 유로(325)는 캐소드용 금속 분리판(100)의 공기 유로(127)와 교차하는 형태로 배열되는 것을 알 수 있다.
이때, 캐소드용 금속 분리판(100)의 돌출 패턴(125)은 단변 방향으로는 절개되어 열린 개방형 구조를 갖고, 장변 방향으로는 닫힌 폐쇄형 구조를 갖는다. 이에 따라, 돌출 패턴(125)은 단변 방향을 따라 절개된 열린 개방형 구조의 공기 유로(127)를 구비하게 된다.
즉, 캐소드용 금속 분리판(100)은 개방형의 공기 유로(127)를 구비하는 돌출 패턴(125)이 설계되어 있기 때문에, 자체적인 냉각이 가능해질 수 있으므로, 별도의 냉각판을 장착하는 것 없이도 우수한 냉각 성능 및 스택 성능을 확보할 수 있다.
따라서, 연료전지 스택(400)의 가동시, 캐소드 및 애노드용 금속 분리판(100, 300)의 일측에 배치되는 냉각 팬(미도시)으로부터 유입되는 공기는 단변 방향을 따라 개구된 개방형의 공기 유로(127)를 통과하게 된다. 이때, 냉각 팬으로부터 유입되는 공기는 일 직선 상에 배열되는 공기 유로(127) 및 이와 인접한 위치에 배열되는 공기 유로(127)로 분산되어 통과될 수 있다. 이 결과, 캐소드 및 애노드용 금속 분리판(100, 300)의 일측에 배치되는 냉각 팬으로부터 공급되는 공기가 단변 방향을 따라 열린 개방형 구조로 설계된 돌출 패턴(125)의 공기 유로(127)를 통과하면서, 활성화 손실(activation loss), 환원 반응 및 주울 가열(Joule heating) 등의 원인으로 인하여 발생하는 열을 냉각시킬 수 있게 된다.
전술한 본 발명의 제1 실시예에 따른 연료전지 스택은 캐소드용 금속 분리판이 개구된 공기 유로를 구비하는 돌출 패턴을 가지므로, 별도의 냉각판을 장착하는 것 없이도 우수한 냉각 성능 및 스택 성능을 확보할 수 있을 뿐만 아니라, 별도의 냉각판이 생략될 수 있으므로 제조 비용을 절감할 수 있고, 전체 부피가 감소된다.
(제2 실시예)
도 6은 본 발명의 제2 실시예에 따른 연료전지 스택용 금속 분리판을 나타낸 사시도이고, 도 7은 도 6의 돌출 패턴 부분을 확대하여 나타낸 사시도이며, 도 8은 도 7의 VIII-VIII'선을 따라 절단하여 나타낸 단면도이다.
도 6 내지 도 8을 참조하면, 도시된 본 발명의 제2 실시예에 따른 연료전지 스택용 금속 분리판(500)은 금속 분리판 본체(520) 및 가스켓(540)을 포함한다.
금속 분리판 본체(520)는 하면으로부터 상면 방향으로 매트릭스 배열을 이루도록 이격하여 돌출 형성되어 부분 절개되며, 단변 또는 장변 방향을 따라 일측은 개구되고, 타측은 폐구된 공기 유로(527)를 구비하는 돌출 패턴(525)을 갖는 채널부(CH)와, 채널부(CH)의 양측 가장자리에 각각 배치된 반응가스 유입구(560) 및 반응가스 배출구(562)를 구비하는 매니폴드부(MA)를 포함한다.
이때, 공기 유로(527)를 구비하는 돌출 패턴(525)은 3 ~ 5mm의 폭을 갖도록 드로우비드(drawbead) 형태로 브리지 성형된다. 돌출 패턴(525)의 폭이 3mm 미만일 경우, 공기 유로(527)의 내부로 통과하는 공기량이 줄어드는 관계로 냉각 성능 효과를 제대로 발휘하는데 어려움이 따를 수 있다. 반대로, 돌출 패턴(525)의 폭이 5mm를 초과할 경우에는 돌출 패턴(525) 상호 간의 이격 간격이 협소해지는 관계로 패턴 설계에 어려움이 따를 수 있다.
특히, 돌출 패턴(525)은 단변 또는 장변 방향을 따라 일측이 개구된 개구부(G)와, 일측에 반대되는 타측이 폐구된 폐구부(C)를 갖는다. 이러한 개구부(G)와 폐구부(C)는 규칙 패턴을 이루도록 형성될 수 있다. 따라서, 돌출 패턴(525)의 공기 유로(527) 내부를 통과하는 공기는 돌출 패턴(525)의 개구부(G)로 유입된 후, 돌출 패턴(525)의 폐구부(C)에 의해 공기 유로(527)의 내부에 일정 시간 동안 정체하고 나서 공기 유로(527)의 외부로 배출이 이루어지게 된다. 이 결과, 돌출 패턴(525)의 폐구부(C)는 공기 유로(527)의 개구부(G)를 통과하여 유입되는 공기인 수분이 공기 유로(527)의 외부로 유출되는 것을 차단하는 차단막의 역할을 하여, 돌출 패턴(525) 부분에서 건조 현상이 미연에 방지되어 막-전극 접합체(미도시)의 가습 성능을 향상시킬 수 있게 된다.
가스켓(540)은 기밀성을 확보함과 더불어, 2장 이상의 금속 분리판을 스택할 시, 금속 분리판들 간의 체결력 및 부착력을 강화시키는 역할을 한다. 이러한 가스켓(540)의 재질로는 고무가 이용될 수 있으나, 이에 한정되는 것은 아니며, 플라스틱이 이용될 수도 있다.
이러한 가스켓(540)은 제1 가스켓(542) 및 제2 가스켓(544)을 포함할 수 있다. 제1 가스켓(542)은 금속 분리판 본체(520) 상면의 매니폴드부(MA)의 가장자리를 따라 형성되고, 제2 가스켓(544)은 채널부(CH)의 가장자리에 배치되어 돌출 패턴(525)과 교번적으로 배열되는 아일랜드 구조(island structure)로 형성된다. 이때, 돌출 패턴(525) 및 제2 가스켓(544)은 공기 유로(527)로 공급되는 공기 유입의 확보를 위해, 상호 교번적으로 엇갈리는 지그재그 형태(zigzag shape)로 배열되는 것이 바람직한데, 이는 제2 가스켓(544)이 돌출 패턴(525)과 중첩되는 일 직선 상에 배치될 경우 제2 가스켓(544)이 돌출 패턴(525)의 공기 유로(527)로 공급되는 공기 유입을 차단하는데 기인하여 냉각 성능이 급격히 저하되는 요인으로 작용할 수 있기 때문이다. 따라서, 제2 가스켓(544)은 금속 분리판 본체(520)의 장변 방향을 따라 등 간격으로 이격 배치되되, 돌출 패턴(525)과 상호 중첩되지 않도록 지그재그 형태로 배열하는 것이 바람직하다.
전술한 본 발명의 제2 실시예에 따른 연료전지 스택용 금속 분리판은 일측은 개구되고 타측은 폐구되는 공기 유로를 구비하는 돌출 패턴을 설계하여, 냉각 성능 및 스택 성능을 향상시킬 수 있을 뿐만 아니라, 폐구된 공기 유로의 내부에서 유출되는 수분을 차단하여 막-전극 접합체의 가습 성능을 향상시킬 수 있다.
한편, 도 9는 본 발명의 제2 실시예의 변형예에 따른 연료전지 스택용 금속 분리판의 일 부분을 확대하여 나타낸 사시도이고, 도 10은 도 9의 X-X'선을 따라 절단하여 나타낸 단면도이다.
도 9 및 도 10을 참조하면, 돌출 패턴(525)은 단변 또는 장변 방향을 따라 일측이 개구된 개구부(G)와, 일측에 반대되는 타측이 폐구된 폐구부(C)를 갖는다.
이때, 돌출 패턴(525)은 홀수 열의 개구부(G)와 짝수 열의 개구부(G)가 상호 반대 방향을 향하도록 배열되고, 홀수 열의 폐구부(C)와 짝수 열의 폐구부(C)가 상호 반대 방향을 향하도록 배열되는 대칭 구조를 가질 수 있다. 이와 같이, 홀수 열과 짝수 열을 대칭 구조로 배열할 경우, 와류 현상에 의해 공기 유로(527)의 내부를 통과하는 공기가 돌출 패턴(525)의 폐구부(C)에 보다 장 시간 동안 체류할 수 있게 된다. 이 결과, 돌출 패턴(525) 부분에서 건조 현상이 발생되는 것이 미연에 방지되어 막-전극 접합체의 가습 성능을 보다 향상시킬 수 있게 된다.
도면으로 도시하지는 않았지만, 돌출 패턴(525)은 4개가 1개의 단위 셀을 이루되, 4개의 돌출 패턴(525)이 모두 상이한 방향을 향하도록 형성될 수도 있다. 이와 같이, 4개의 돌출 패턴(525)을 모두 상이한 방향을 향하도록 형성할 경우, 와류 현상에 의해 공기의 체류 시간을 보다 지연시킬 수 있게 되므로, 막-전극 접합체의 가습 성능을 보다 향상시킬 수 있게 된다.
도 11은 본 발명의 제2 실시예에 따른 연료전지 스택을 나타낸 분해 사시도이다.
도 11을 참조하면, 도시된 본 발명의 제2 실시예에 따른 연료전지 스택(800)은 적어도 2장 이상의 금속 분리판과, 금속 분리판의 사이에 각각 개재된 막-전극 접합체(600)를 포함한다. 이때, 2장의 금속 분리판은 캐소드용 금속 분리판(500)과 애노드용 금속 분리판(700)을 갖는다.
캐소드용 금속 분리판(500)은 하면으로부터 상면 방향으로 매트릭스 배열을 이루도록 이격하여 돌출 형성되어 부분 절개되며, 단변 방향으로 개구된 공기 유로를 구비하는 돌출 패턴(525)을 갖는다. 이때, 공기 유로를 구비하는 돌출 패턴(525)은 3 ~ 5mm의 폭을 갖도록 드로우비드(drawbead) 형태로 브리지 성형된다.
이러한 캐소드용 금속 분리판(500)은 도 1 내지 도 3에 도시하고 설명한 연료전지 스택용 금속 분리판과 실질적으로 동일한 바, 이에 대한 구체적인 설명은 생략하도록 한다.
애노드용 금속 분리판(700)은 상면으로부터 하면 방향으로 돌출되어, 돌출 패턴(525)의 공기 유로와 교차하도록 형성된 반응가스 유로(725)를 갖는다. 또한, 애노드용 금속 분리판(700)은 캐소드용 금속 분리판(500)의 반응가스 유입구(560)와 대응되는 위치에 배치되는 반응가스 유입 매니폴드(760)와, 캐소드용 금속 분리판(500)의 반응가스 배출구(562)와 대응되는 위치에 배치되는 반응가스 배출 매니폴드(762)를 가질 수 있다.
이러한 애노드용 금속 분리판(700)은 매니폴드 영역(미도시)과 채널 영역(미도시)의 가장자리를 따라 형성된 가스켓(740)을 더 포함할 수 있다. 이러한 가스켓(740)은 기밀성을 확보함과 더불어, 캐소드용 금속 분리판(500)과의 스택시, 캐소드용 금속 분리판(500)과 막-전극 접합체(600) 상호 간의 체결력 및 부착력을 강화시키는 역할을 한다.
막-전극 접합체(600)는 캐소드용 금속 분리판(500) 및 애노드용 금속 분리판(700) 사이에 각각 삽입 배치된다. 막-전극 접합체(600)는 고분자 전해질막과 그 양쪽 면에 각각 형성되는 산화전극과 환원전극을 포함할 수 있다.
도 12은 도 11의 돌출 패턴 부분을 확대하여 나타낸 결합 사시도이고, 도 13은 도 12의 XIII-XIII'선을 따라 절단하여 나타낸 단면도이다.
도 12 및 도 13에 도시된 바와 같이, 연료전지 스택(800)은 애노드용 금속 분리판(700), 막-전극 접합체(600) 및 캐소드용 금속 분리판(500)이 차례로 적층된 구조를 갖는 것을 알 수 있다. 이때, 애노드용 금속 분리판(700)의 반응가스 유로(725)는 캐소드용 금속 분리판(500)의 공기 유로(527)와 교차하는 형태로 배열될 수 있다.
이때, 캐소드용 금속 분리판(500)의 돌출 패턴(525)은 단변 방향을 따라 일측은 개구되고, 타측은 폐구된 공기 유로(527)를 구비하는 돌출 패턴(525)을 갖는다. 이러한 돌출 패턴(525)은 단변 또는 장변 방향을 따라 일측이 개구된 개구부(G)와, 일측에 반대되는 타측이 폐구된 폐구부(C)를 갖는다. 즉, 돌출 패턴(525)은 4개의 변 중 3개의 변은 폐쇄형 구조를 갖고, 나머지 1개의 변만이 개방형 구조를 갖는다.
이러한 캐소드용 금속 분리판(500)은 일측이 개구되고 타측이 폐구된 공기 유로(527)를 구비하는 돌출 패턴(525)이 설계되어 있기 때문에, 자체적인 냉각이 가능해질 수 있으므로, 별도의 냉각판을 장착하는 것 없이도 우수한 냉각 성능 및 스택 성능을 확보할 수 있다.
이에 더불어, 캐소드용 금속 분리판(500)은 돌출 패턴(525)의 폐구부(C)가 공기 유로(527)의 개구부(G)를 통과하여 유입되는 공기인 수분이 공기 유로(527)의 외부로 유출되는 것을 차단하는 차단막의 역할을 한다. 이 결과, 돌출 패턴(525) 부분에서 건조 현상이 발생되는 것이 미연에 방지되어 막-전극 접합체(600)의 가습 성능을 향상시킬 수 있게 된다.
따라서, 연료전지 스택(800)의 가동시, 캐소드 및 애노드용 금속 분리판(500, 700)의 일측에 배치되는 냉각 팬(미도시)으로부터 유입되는 공기는 단변 또는 장변 방향을 따라 일측이 개구되고, 타측이 폐구된 부분 개방형의 공기 유로(527)를 통과하게 된다. 이때, 냉각 팬으로부터 유입되는 공기는 부분 개방형의 공기 유로(527)들로 분산되어 통과하게 되고, 돌출 패턴(525)의 폐구부(C)로 유입되는 과정에서 와류 현상에 의해 폐구부(C)의 주위를 맴돌면서 배출이 이루어지게 된다.
이 결과, 캐소드 및 애노드용 금속 분리판(500, 700)의 일측에 배치되는 냉각 팬으로부터 공급되는 공기가 돌출 패턴(525)의 공기 유로(527)를 통과하면서, 활성화 손실(activation loss), 환원 반응 및 주울 가열(Joule heating) 등의 원인으로 인하여 발생하는 열을 냉각시킴과 더불어, 돌출 패턴(525)의 폐구부(C)에 의한 와류 현상에 의해 개구부(G)를 통과한 공기가 폐구부(C)의 주위를 맴돌면서 순환하게 되어 돌출 패턴(525) 부분에서 건조 현상이 발생되는 것이 미연에 방지되어 막-전극 접합체(600)의 가습 성능을 향상시킬 수 있게 된다.
전술한 본 발명의 제2 실시예에 따른 연료전지 스택은 일측은 개구되고 타측은 폐구되는 공기 유로를 구비하는 돌출 패턴을 설계하여, 원활한 반응 가스 공급 및 냉각 성능의 향상으로 스택 성능을 향상시킬 수 있을 뿐만 아니라, 폐구된 공기 유로의 내부에서 유출되는 수분을 차단하여 막-전극 접합체의 가습 성능을 향상시킬 수 있다.
또한, 본 발명의 제2 실시예에 따른 연료전지 스택은 부분 개방형 공기 유로를 구비하는 돌출 패턴을 가지므로, 별도의 냉각판을 장착하는 것 없이도 우수한 냉각 성능 및 스택 성능을 확보할 수 있을 뿐만 아니라, 별도의 냉각판이 생략될 수 있으므로 제조 비용을 절감할 수 있고, 전체 부피가 감소된다.
또한, 본 발명의 제2 실시예에 따른 연료전지 스택은 공냉식(air-cooled) 구조에 적용할 수 있을 뿐만 아니라, 수냉식(water-cooled) 구조에도 동일하게 적용될 수 있다.
이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 기술자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형은 본 발명이 제공하는 기술 사상의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다.

Claims (12)

  1. 하면으로부터 상면 방향으로 매트릭스 배열을 이루도록 이격하여 돌출 형성되어 부분 절개되며, 단변 방향으로 개구된 공기 유로를 구비하는 돌출 패턴을 갖는 채널부와, 상기 채널부의 양측 가장자리에 각각 배치된 반응가스 유입구 및 반응가스 배출구를 구비하는 매니폴드부를 갖는 금속 분리판 본체; 및
    상기 금속 분리판 본체 상면의 상기 매니폴드부의 가장자리를 따라 형성된 제1 가스켓과, 상기 채널부의 가장자리에 배치되어 상기 돌출 패턴과 교번적으로 배열되는 아일랜드 구조로 형성된 제2 가스켓을 갖는 가스켓;을 포함하는 것을 특징으로 하는 연료전지 스택용 금속 분리판.
  2. 제1항에 있어서,
    상기 돌출 패턴 및 제2 가스켓은
    상기 공기 유로로 공급되는 공기 유입의 확보를 위해, 상호 교번적으로 엇갈리는 지그재그 형태로 배열되는 것을 특징으로 하는 연료전지 스택용 금속 분리판.
  3. 제1항에 있어서,
    상기 공기 유로를 구비하는 돌출 패턴은
    3 ~ 5mm의 폭을 갖도록 드로우비드(drawbead) 형태로 브리지 성형된 것을 특징으로 하는 연료전지 스택용 금속 분리판.
  4. 적어도 2장 이상의 금속 분리판; 및
    상기 금속 분리판의 사이에 각각 개재된 막-전극 접합체;를 포함하며,
    상기 2장의 금속 분리판은 캐소드용 금속 분리판과 애노드용 금속 분리판을 갖되,
    상기 캐소드용 금속 분리판은 하면으로부터 상면 방향으로 매트릭스 배열을 이루도록 이격하여 돌출 형성되어 부분 절개되며, 단변 방향으로 개구된 3 ~ 5mm의 폭을 갖도록 드로우비드(drawbead) 형태로 브리지 성형된 공기 유로를 구비하는 돌출 패턴을 갖고,
    상기 애노드용 금속 분리판은 상면으로부터 하면 방향으로 돌출되어, 상기 돌출 패턴의 공기 유로와 교차하는 장변 방향을 따라 형성된 반응가스 유로를 갖는 것을 특징으로 하는 연료전지 스택.
  5. 하면으로부터 상면 방향으로 매트릭스 배열을 이루도록 이격하여 돌출 형성되어 부분 절개되며, 단변 또는 장변 방향을 따라 일측은 개구되고, 타측은 폐구된 공기 유로를 구비하는 돌출 패턴을 갖는 채널부와, 상기 채널부의 양측 가장자리에 각각 배치된 반응가스 유입구 및 반응가스 배출구를 구비하는 매니폴드부를 갖는 금속 분리판 본체; 및
    상기 금속 분리판 본체 상면의 상기 매니폴드부의 가장자리를 따라 형성된 제1 가스켓과, 상기 채널부의 가장자리에 배치되어 상기 돌출 패턴과 교번적으로 배열되는 아일랜드 구조로 형성된 제2 가스켓을 갖는 가스켓;을 포함하는 것을 특징으로 하는 연료전지 스택용 금속 분리판.
  6. 제5항에 있어서,
    상기 돌출 패턴은
    상기 단변 또는 장변 방향을 따라 일측이 개구된 개구부와, 상기 일측에 반대되는 타측이 폐구된 폐구부를 갖되,
    상기 개구부와 폐구부는 규칙 패턴을 이루도록 형성된 것을 특징으로 하는 연료전지 스택용 금속 분리판.
  7. 제6항에 있어서,
    상기 돌출 패턴은
    상기 단변 또는 장변 방향을 따라 배열되는 홀수 열과 짝수 열의 개구부 및 폐구부가 모두 동일한 방향을 향하도록 배열된 것을 특징으로 하는 연료전지 스택용 금속 분리판.
  8. 제6항에 있어서,
    상기 돌출 패턴은
    상기 홀수 열의 개구부와 짝수 열의 개구부가 상호 반대 방향을 향하도록 배열되고, 상기 홀수 열의 폐구부와 짝수 열의 폐구부가 상호 반대 방향을 향하도록 배열되는 대칭 구조를 갖는 것을 특징으로 하는 연료전지 스택용 금속 분리판.
  9. 제6항에 있어서,
    상기 돌출 패턴은
    4개가 1개의 단위 셀을 이루되, 상기 4개의 돌출 패턴이 모두 상이한 방향을 향하도록 형성된 것을 특징으로 하는 연료전지 스택용 금속 분리판.
  10. 제5항에 있어서,
    상기 돌출 패턴 및 제2 가스켓은
    상기 공기 유로로 공급되는 공기 유입의 확보를 위해, 상호 교번적으로 엇갈리는 지그재그 형태로 배열되는 것을 특징으로 하는 연료전지 스택용 금속 분리판.
  11. 적어도 2장 이상의 금속 분리판; 및
    상기 금속 분리판의 사이에 각각 개재된 막-전극 접합체;를 포함하며,
    상기 2장의 금속 분리판은 캐소드용 금속 분리판과 애노드용 금속 분리판을 갖되,
    상기 캐소드용 금속 분리판은 단변 또는 장변 방향을 따라 일측은 개구되고, 타측은 폐구된 3 ~ 5mm의 폭을 갖도록 드로우비드(drawbead) 형태로 브리지 성형된 공기 유로를 구비하는 돌출 패턴을 갖고,
    상기 애노드용 금속 분리판은 상면으로부터 하면 방향으로 돌출되어, 상기 돌출 패턴의 공기 유로와 교차하도록 형성된 반응가스 유로를 갖는 것을 특징으로 하는 연료전지 스택.
  12. 제11항에 있어서,
    상기 연료전지 스택은
    공냉식(air-cooled) 구조 또는 수냉식(water-cooled) 구조를 갖는 것을 특징으로 하는 연료전지 스택.
PCT/KR2014/006750 2013-10-24 2014-07-24 연료전지 스택용 금속 분리판 및 이를 갖는 연료전지 스택 WO2015060517A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480058366.2A CN105684202B (zh) 2013-10-24 2014-07-24 用于燃料电池堆叠的金属分隔板以及具有该金属分隔板的燃料电池堆叠
GB1607132.6A GB2533755B (en) 2013-10-24 2014-07-24 Metal separation plate for fuel cell stack and fuel cell stack having same
JP2016525538A JP6189537B2 (ja) 2013-10-24 2014-07-24 燃料電池スタック用金属分離板及びこれを有する燃料電池スタック
US15/031,195 US10186717B2 (en) 2013-10-24 2014-07-24 Metal separation plate for fuel cell stack and fuel cell stack having the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0126911 2013-10-24
KR20130126914A KR101509949B1 (ko) 2013-10-24 2013-10-24 반응 가스 공급 및 가습 성능을 향상시킨 연료전지 스택용 금속 분리판 및 이를 구비하는 연료전지 스택
KR1020130126911A KR101459961B1 (ko) 2013-10-24 2013-10-24 개방형 공기 유로를 구비하는 공냉식 연료전지 스택용 금속 분리판 및 이를 구비하는 공냉식 연료전지 스택
KR10-2013-0126914 2013-10-24

Publications (1)

Publication Number Publication Date
WO2015060517A1 true WO2015060517A1 (ko) 2015-04-30

Family

ID=52993083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/006750 WO2015060517A1 (ko) 2013-10-24 2014-07-24 연료전지 스택용 금속 분리판 및 이를 갖는 연료전지 스택

Country Status (5)

Country Link
US (1) US10186717B2 (ko)
JP (1) JP6189537B2 (ko)
CN (1) CN105684202B (ko)
GB (1) GB2533755B (ko)
WO (1) WO2015060517A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK181150B1 (en) * 2021-05-27 2023-03-01 Blue World Technologies Holding ApS Fuel cell stack, assembly of a bipolar plate and a gasket, and method of providing a sealing around a bipolar plate
WO2023111060A2 (en) * 2021-12-17 2023-06-22 Danfoss A/S Cassette for electrolyzer of a four plate construction
AU2022410316A1 (en) * 2021-12-17 2024-02-01 Danfoss A/S Cassette for electrolyzer with gas barrier
WO2023111051A2 (en) * 2021-12-17 2023-06-22 Danfoss A/S Cassette for electrolyzer with porous electrolyte plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6299999B1 (en) * 1996-09-04 2001-10-09 Siemens Aktiengesellschaft Intermediate element for thermal, electrical and mechanical connection of two parts
JP2005340179A (ja) * 2004-04-28 2005-12-08 Equos Research Co Ltd セパレータ及びそれを用いた燃料電池装置
JP2006179404A (ja) * 2004-12-24 2006-07-06 Ebara Corp 空冷式燃料電池発電装置
KR100658289B1 (ko) * 2005-11-29 2006-12-14 삼성에스디아이 주식회사 가열기체 유입부를 갖는 분리판 및 이를 구비한 연료전지시스템
KR100938023B1 (ko) * 2009-07-31 2010-01-21 현대하이스코 주식회사 연료 전지용 공냉식 금속 분리판 및 이를 이용한 연료 전지 스택

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002303134A1 (en) * 2001-03-16 2002-10-03 Creare Inc. Lightweight direct methanol fuel cell and supporting systems
KR20030042633A (ko) 2001-11-23 2003-06-02 (주)세티 공기냉각 구조를 갖는 냉각판이 단위전지 사이에 적층된연료전지스택
JP4747486B2 (ja) * 2003-10-09 2011-08-17 トヨタ自動車株式会社 燃料電池
US20050244689A1 (en) * 2004-04-28 2005-11-03 Munehisa Horiguchi Separator and fuel cell system using that separator
JP4639744B2 (ja) * 2004-10-07 2011-02-23 トヨタ自動車株式会社 燃料電池
IL173539A0 (en) * 2006-02-05 2006-07-05 Rami Noach Flow distributor plate
JP2009104922A (ja) * 2007-10-24 2009-05-14 Toyota Motor Corp 燃料電池および燃料電池の製造方法
ES2598167T3 (es) * 2008-06-23 2017-01-25 Nuvera Fuel Cells, LLC Diseño de célula de combustible basado en una placa bipolar con bastidor
JP5286070B2 (ja) * 2008-12-25 2013-09-11 株式会社日立製作所 燃料電池セパレータ
JP5549478B2 (ja) * 2010-08-26 2014-07-16 トヨタ紡織株式会社 燃料電池
JP5811439B2 (ja) 2011-05-30 2015-11-11 日産自動車株式会社 燃料電池ユニット及び燃料電池スタック

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6299999B1 (en) * 1996-09-04 2001-10-09 Siemens Aktiengesellschaft Intermediate element for thermal, electrical and mechanical connection of two parts
JP2005340179A (ja) * 2004-04-28 2005-12-08 Equos Research Co Ltd セパレータ及びそれを用いた燃料電池装置
JP2006179404A (ja) * 2004-12-24 2006-07-06 Ebara Corp 空冷式燃料電池発電装置
KR100658289B1 (ko) * 2005-11-29 2006-12-14 삼성에스디아이 주식회사 가열기체 유입부를 갖는 분리판 및 이를 구비한 연료전지시스템
KR100938023B1 (ko) * 2009-07-31 2010-01-21 현대하이스코 주식회사 연료 전지용 공냉식 금속 분리판 및 이를 이용한 연료 전지 스택

Also Published As

Publication number Publication date
CN105684202A (zh) 2016-06-15
JP6189537B2 (ja) 2017-08-30
JP2016534500A (ja) 2016-11-04
GB2533755B (en) 2021-05-05
CN105684202B (zh) 2018-04-20
GB2533755A (en) 2016-06-29
US10186717B2 (en) 2019-01-22
US20160372761A1 (en) 2016-12-22

Similar Documents

Publication Publication Date Title
WO2011013868A1 (ko) 연료 전지용 공냉식 금속 분리판 및 이를 이용한 연료 전지 스택
US5230966A (en) Coolant flow field plate for electrochemical fuel cells
WO2016068551A1 (ko) 단위 전지 팩
WO2012148160A2 (ko) 배터리팩 수납장치 및 이를 이용한 전력 저장용 배터리팩의 냉각 장치
WO2015060517A1 (ko) 연료전지 스택용 금속 분리판 및 이를 갖는 연료전지 스택
WO2018225919A1 (ko) 배터리 팩
WO2011034325A2 (ko) 신규한 구조의 방열부재를 포함하는 전지모듈 및 중대형 전지팩
WO2018080182A1 (ko) 전지 모듈
WO2019078456A1 (ko) 누설 냉매 유입 방지 기능을 갖는 배터리 팩
WO2021221339A1 (ko) 전지 팩 및 이를 포함하는 디바이스
WO2022065650A1 (ko) 전지 모듈, 전지팩 및 이를 포함하는 자동차
WO2014168330A1 (ko) 우수한 체결력을 갖는 연료전지
WO2016105034A1 (ko) 냉각 기능을 구비하는 전해액 분배블럭 및 이를 포함하는 스택 분할형 레독스 흐름 전지
WO2011013870A1 (ko) 연료전지용 금속 분리판 및 이를 구비하는 연료전지 스택
WO2022097943A1 (ko) 전기 차량용 공냉식 배터리 팩
US9960434B2 (en) Fuel cell
CN214013020U (zh) 水冷板及电池模组
KR101459961B1 (ko) 개방형 공기 유로를 구비하는 공냉식 연료전지 스택용 금속 분리판 및 이를 구비하는 공냉식 연료전지 스택
WO2013100554A1 (ko) 분기유로를 이용한 연료전지 스택
WO2014104732A1 (ko) 연료전지용 분리판 및 이를 포함하는 연료전지
WO2012091463A2 (ko) 연료 전지 시스템 및 스택
WO2022059936A1 (ko) 냉각성능이 향상된 전지 모듈 및 이를 포함하는 전지 팩
WO2022270778A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2017146359A1 (ko) 연료전지 분리판 및 이를 갖는 연료전지 스택
WO2020101354A1 (ko) 냉각 부재를 포함하는 전지팩 및 이를 포함하는 디바이스

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14855657

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016525538

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201607132

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20140724

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15031195

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14855657

Country of ref document: EP

Kind code of ref document: A1