WO2022085704A1 - 直動アクチュエータ - Google Patents

直動アクチュエータ Download PDF

Info

Publication number
WO2022085704A1
WO2022085704A1 PCT/JP2021/038690 JP2021038690W WO2022085704A1 WO 2022085704 A1 WO2022085704 A1 WO 2022085704A1 JP 2021038690 W JP2021038690 W JP 2021038690W WO 2022085704 A1 WO2022085704 A1 WO 2022085704A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
relief groove
linear actuator
groove portion
screw shaft
Prior art date
Application number
PCT/JP2021/038690
Other languages
English (en)
French (fr)
Inventor
玲於奈 梅井
靖巳 渡辺
祐二 下村
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to US18/026,463 priority Critical patent/US20230349453A1/en
Priority to JP2022557569A priority patent/JP7456515B2/ja
Priority to CN202180062175.3A priority patent/CN116325444A/zh
Priority to KR1020237008385A priority patent/KR20230048414A/ko
Priority to EP21882845.7A priority patent/EP4199320A4/en
Publication of WO2022085704A1 publication Critical patent/WO2022085704A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/2015Means specially adapted for stopping actuators in the end position; Position sensing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • F16H25/2204Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/24Elements essential to such mechanisms, e.g. screws, nuts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/34Reciprocating, oscillating or vibrating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/745Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on a hydraulic system, e.g. a master cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H2025/2062Arrangements for driving the actuator
    • F16H2025/2081Parallel arrangement of drive motor to screw axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/24Elements essential to such mechanisms, e.g. screws, nuts
    • F16H2025/249Special materials or coatings for screws or nuts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a linear actuator equipped with a ball screw device.
  • the linear actuator is a device equipped with a ball screw device that converts rotary motion into linear motion.
  • a linear actuator when the nut rotates, the amount of protrusion of the screw shaft protruding from the nut changes. As a result, the object attached to the end of the screw shaft is displaced in the axial direction.
  • An object attached to the end of the screw shaft is a piston.
  • Such a linear actuator is used for a brake booster, for example, as shown in Patent Document 1.
  • the linear actuator is provided with a stroke limiting mechanism. According to this stroke limiting mechanism, the movement start time point (operation start time point) of the screw shaft can be made constant.
  • a protrusion is provided on the end face of the nut.
  • a detent member is attached to the end of the screw shaft.
  • the detent member has a locking portion that projects radially outward from the end of the screw shaft.
  • the detent member is separate from the screw shaft. Further, since the detent member is attached to the screw shaft, the weight becomes an obstacle when improving the operability of the linear actuator. Further, since the detent member is attached to the end of the screw shaft, a space for arranging the screw shaft and the detent member is required.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a linear actuator capable of reducing the number of parts, reducing the weight, and reducing the size.
  • the linear actuator includes a ball screw device having a screw shaft, a nut, and a plurality of balls, a piston attached to one end of the screw shaft, and the above. It has a stroke limiting mechanism that sets the operation start time point of the screw shaft in the first direction pointed to by one end.
  • the nut has one end surface facing the first direction and a protrusion protruding from the one end surface.
  • the piston faces a second direction opposite to the first direction, has a facing surface facing the one end surface, and a relief groove portion recessed in the first direction from the facing surface and extending in the rotational direction about the screw axis.
  • a stepped surface that is arranged at one end of the relief groove portion in the rotation direction of the wall surface surrounding the relief groove portion and faces the other in the rotation direction. The protrusion and the stepped surface are in contact with each other to form the stroke limiting mechanism.
  • the piston is provided with a stepped surface instead of the detent member. Therefore, the number of parts is reduced. In addition, the operability of the linear actuator is improved by making the screw shaft lighter than before. In addition, since it does not have a detent member, the linear actuator can be miniaturized. Further, the load input to the stepped surface due to the contact with the protrusion is dispersed to the piston. Therefore, it is possible to suppress the concentration of stress on the portion where the stepped surface is provided.
  • the piston has a bottom surface surrounding the relief groove portion from the first direction of the wall surface surrounding the relief groove portion. At least a part of the bottom surface is inclined and spiral so as to be located in the first direction toward one of the rotation directions.
  • the amount of the recess in the relief groove can be reduced as compared with the case where the amount of the recess in the relief groove is constant in the circumferential direction. That is, it is suppressed that the volume of the piston becomes small. As a result, the load input to the stepped surface is easily dispersed, and the concentration of stress is suppressed.
  • the piston has a bottom surface surrounding the relief groove portion from the first direction of the wall surface surrounding the relief groove portion. At least a part of the bottom surface is gradually located in the first direction toward one of the rotation directions, and has a stepped shape.
  • the amount of the recess in the relief groove can be reduced as compared with the case where the amount of the recess in the relief groove is constant in the circumferential direction. That is, it is suppressed that the volume of the piston becomes small. As a result, the load input to the stepped surface is easily dispersed, and the concentration of stress is suppressed.
  • the piston has a bottom surface surrounding the relief groove portion from the first direction of the wall surface surrounding the relief groove portion. At least a part of the bottom surface may be a flat surface.
  • the piston may have a stopper whose surface facing the other in the rotation direction is the stepped surface.
  • the piston is located radially inside the stopper, and is provided with a fitting hole that opens in the second direction and fits one end of the screw shaft. It has an inner cylinder. The radial inner end of the stopper is connected to the inner cylinder portion.
  • the load acting on the stopper is dispersed in the inner cylinder portion. Therefore, the concentration of stress on the stopper is suppressed.
  • the piston has an outer cylinder portion that is located radially outside the stopper and whose outer peripheral surface slides on the housing. The radial outer end of the stopper is connected to the outer cylinder portion.
  • the load acting on the stopper is distributed to the outer cylinder portion. Therefore, the concentration of stress on the stopper is suppressed.
  • the piston has a first end face facing the first direction.
  • the pressing surface is provided with a ridge protruding in the first direction at a position overlapping the relief groove portion when viewed from the axial direction.
  • the amount of protrusion of the ridge corresponds to the amount of depression of the relief groove portion.
  • the thickness of the portion where the relief groove portion is formed can be made uniform in the axial direction. Further, since the stepped surface and the stopper are covered with the outer cylinder portion, the stepped surface and the stopper cannot be visually recognized when assembling to the screw shaft. Therefore, when assembling the screw shaft, it becomes difficult to determine the phase of the stepped surface and the stopper. However, the phase of the stepped surface and the stopper can be grasped from the shape of the ridge. Therefore, when assembling the screw shaft, it becomes easy to determine the phase of the stepped surface and the stopper.
  • the protrusion has a contact surface that abuts on the stepped surface.
  • the stepped surface is parallel to the first virtual line extending in the radial direction when viewed from the axial direction parallel to the screw axis, and is arranged on the other side in the rotational direction.
  • the contact surface is parallel to the second virtual line extending in the radial direction when viewed from the axial direction, and is arranged on the other side in the rotation direction.
  • the distance between the stepped surface and the first virtual line is larger than the distance between the contact surface and the second virtual line.
  • the stepped surface and the contact surface are in contact with each other at the inner portion in the radial direction. Therefore, it is difficult for the load to act on the radial outer portions of the stepped surface and the contact surface.
  • the nut is made of an iron-based material.
  • the piston is made of an aluminum alloy.
  • the stepped surface (piston) is more likely to be plastically deformed.
  • the number of parts can be reduced, the weight can be reduced, and the size can be reduced.
  • FIG. 1 is a cross-sectional view of the linear actuator of the first embodiment cut in the axial direction.
  • FIG. 2 is a perspective view of the nut of the first embodiment as viewed from the first direction.
  • FIG. 3 is a perspective view of the piston of the first embodiment as viewed from the second direction.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG.
  • FIG. 5 is a perspective view of the piston of the modified example 1 as viewed from the second direction.
  • FIG. 6 is a perspective view of the piston of the modified example 2 as viewed from the second direction.
  • FIG. 7 is a perspective view of the piston of the modified example 3 as viewed from the second direction.
  • FIG. 8 is a perspective view of the piston of the modified example 4 as viewed from the second direction.
  • FIG. 1 is a cross-sectional view of the linear actuator of the first embodiment cut in the axial direction.
  • FIG. 2 is a perspective view of the nut of the first embodiment as viewed from
  • FIG. 9 is a plan view of the piston of the modified example 5 as viewed from the second direction.
  • FIG. 10 is a cross-sectional view of the piston of the modified example 6 cut in the axial direction.
  • FIG. 11 is a plan view of the piston of the modified example 7 as viewed from the second direction.
  • FIG. 12 is a plan view of the nut of the modified example 7 as viewed from the first direction.
  • FIG. 13 is a cross-sectional view showing a state in which the stopper and the protrusion are in contact with each other in the linear actuator of the modified example 7.
  • FIG. 14 is a cross-sectional view showing a state in which the stopper and the protrusion are in contact with each other in the linear actuator of the comparative example.
  • FIG. 15 is a plan view of the piston of the modified example 8 as viewed from the first direction.
  • FIG. 16 is a cross-sectional view of the linear actuator according to the second embodiment.
  • FIG. 17 is a perspective view of the nut of the second embodiment.
  • FIG. 18 is a perspective view of the piston of the second embodiment.
  • FIG. 1 is a cross-sectional view of the linear actuator of the first embodiment cut in the axial direction.
  • FIG. 2 is a perspective view of the nut of the first embodiment as viewed from the first direction.
  • FIG. 3 is a perspective view of the piston of the first embodiment as viewed from the second direction.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG.
  • the linear actuator 100 of the first embodiment is a brake booster mounted on a vehicle and generating a hydraulic pressure corresponding to the amount of depression of the brake pedal. As shown in FIG. 1, the linear actuator 100 includes a motor 101, a transmission device 102, a housing 103, a ball screw device 110, a piston 120, and a stroke limiting mechanism 140.
  • the direction parallel to the axis O of the screw shaft 112 of the ball screw device 110 is referred to as an axial direction.
  • the direction in which the piston 120 is arranged when viewed from the nut 111 of the ball screw device 110 is referred to as a first direction X1
  • the direction opposite to the first direction X1 is referred to as a second direction X2.
  • the motor 101 includes a stator (not shown), a rotor (not shown), and an output shaft 101a.
  • the motor 101 is supplied with electric power from a power source (not shown) to rotate the rotor and the output shaft 101a.
  • the motor 101 is supported by the housing 103, and the output shaft 101a is parallel to the screw shaft 112.
  • the transmission device 102 includes a first gear 104 that fits on the output shaft 101a of the motor 101, and a second gear 105 that fits on the outer peripheral side of the nut 111.
  • the second gear 105 is a gear having a larger diameter than the first gear 104. Therefore, the transmission device 102 decelerates the rotational motion generated by the motor 101 and transmits it to the nut 111.
  • the ball screw device 110 includes a nut 111, a screw shaft 112, and a plurality of balls 113.
  • the nut 111 has a cylindrical shape centered on the axis O.
  • An inner peripheral raceway surface 111a is provided on the inner peripheral surface of the nut 111.
  • the nut 111 is supported by a bearing 106 that fits on the inner peripheral surface of the housing 103. As a result, the nut 111 is rotatable about the axis O of the screw shaft 112.
  • the rotation direction of the nut 111 will be described with reference to the case where the nut 111 is viewed from the first direction X1. Then, as shown in FIG. 2, when viewed from the first direction X1, the counterclockwise rotation direction about the axis O is referred to as the first rotation direction L1. The clockwise rotation direction around the axis O is referred to as the second rotation direction L2.
  • the nut 111 has one end surface 116 facing the first direction X1.
  • the one end surface 116 is provided with a protrusion 117 projecting in the first direction X1.
  • the protrusion 117 has a substantially trapezoidal shape when viewed from the axial direction.
  • the protrusion 117 has a contact surface 118 facing the first rotation direction L1.
  • the screw shaft 112 is a solid shaft component that penetrates the nut 111.
  • the screw shaft 112 includes a screw shaft main body 114 having an outer peripheral raceway surface 114a on the outer peripheral surface, and a mounting portion 115 extending from the end surface of the screw shaft main body 114 in the first direction X1 to the first direction X1.
  • the screw shaft main body 114 is supported by the housing 103 so as to be movable in the axial direction and non-rotatable around the axis O.
  • a spiral orbit is formed between the inner orbital plane 111a and the outer orbital plane 114a.
  • a plurality of balls 113 are arranged in this spiral orbit.
  • the inner peripheral raceway surface 111a presses the outer peripheral raceway surface 114a axially via the ball 113.
  • the screw shaft 112 moves in the axial direction.
  • the screw shaft 112 moves in the first direction X1.
  • the screw shaft 112 moves in the second direction X2.
  • the mounting portion 115 has a smaller diameter than the screw shaft main body 114. Therefore, at the boundary between the mounting portion 115 and the screw shaft main body 114, an annular step surface 115a facing the first direction X1 is provided.
  • the piston 120 is a columnar part arranged coaxially with the axis O.
  • the piston 120 is preferably manufactured by forging, but may be formed by a known processing method such as cutting.
  • the piston 120 is located inside the cylinder 107 and near the end of the second direction X2.
  • the cylinder 107 of the present embodiment is integrally provided in the housing 103, in the present disclosure, the cylinder 107 and the housing 103 may be separate bodies.
  • a brake fluid (not shown) is contained inside the cylinder 107.
  • the piston 120 includes a first end face 121 facing the first direction X1 and a second end face 122 facing the second direction X2.
  • the first end surface 121 is provided with a concave surface 121a recessed in the second direction X2.
  • the concave surface 121a faces the bottom surface 107b of the cylinder 107.
  • a coil spring (not shown) is arranged between the concave surface 121a and the bottom surface 107b.
  • the piston of the present disclosure may not be provided with the concave surface 121a.
  • a fitting hole 123 that opens in the second direction X2 is provided in the central portion of the second end surface 122.
  • a mounting portion 115 one end of the screw shaft 112 is inserted into the fitting hole 123 (see FIG. 1).
  • the inner diameter of the fitting hole 123 is slightly smaller than the outer diameter of the mounting portion 115, and a tightening allowance is provided. Therefore, the piston 120 moves in the axial direction integrally with the screw shaft 112 without being separated from the screw shaft 112.
  • the portion of the piston 120 that fits with the mounting portion 115 (the tubular wall portion that surrounds the outer peripheral side of the fitting hole 123) is referred to as the inner cylinder portion 124.
  • the end surface 124a of the inner cylinder portion 124 in the second direction X2 is in contact with the annular step surface 115a of the screw shaft 112.
  • the outer peripheral surface of the piston 120 is slidably in contact with the seal member 108 on the inner peripheral side of the cylinder 107.
  • the brake fluid (not shown) is sealed so as not to flow toward the nut 111 and the screw shaft 112.
  • the outer diameter of the piston 120 is larger than the outer diameter of the nut 111.
  • the second end surface 122 of the piston 120 is provided with an annular outer cylinder portion 125 that projects in the second direction X2 and surrounds the outer peripheral side of the nut 111. That is, the outer peripheral surface of the piston 120 is extended in the second direction X2 by the outer cylinder portion 125. Therefore, even if the piston 120 moves in the first direction X1, the outer cylinder portion 125 and the sealing member 108 are in sliding contact with each other, and the sealing property is maintained.
  • a part of the second end surface 122 of the piston 120 is a facing surface 126 facing the one end surface 116 of the nut 111.
  • the facing surface 126 is located on the radial outside of the inner cylinder portion 124 and on the radial inside of the outer cylinder portion 125.
  • a part of the facing surface 126 is provided with a relief groove portion 127 recessed in the first direction X1.
  • the relief groove portion 127 extends in the rotational direction about the axial center O and has an arc shape (C-shape) when viewed from the axial direction.
  • the relief groove portion 127 is a space for avoiding contact with the protrusion portion 117 of the nut 111.
  • the wall surface surrounding the relief groove portion 127 from the first direction X1 is referred to as a bottom surface 129.
  • the recess amount (depth) of the relief groove portion 127 gradually increases from the facing surface 126 toward the first rotation direction L1. Therefore, the bottom surface 129 of the relief groove portion 127 is also a spiral helicoid surface that is located in the first direction X1 toward the first rotation direction L1.
  • a stepped surface 130 between the facing surface 126 and the bottom surface 129 is provided at the end of the relief groove portion 127 in the first rotation direction L1.
  • a ridge line 131 which is a boundary line between the facing surface 126 and the bottom surface 129 is provided.
  • the escape groove portion 127 is a space for avoiding contact with the protrusion portion 117 as described above. Therefore, the inclination angle of the bottom surface 129 of the relief groove portion 127 is set to be the same as the inclination angle of the inner peripheral raceway surface 111a (see FIG. 1), or set to be larger than the inclination angle of the inner peripheral raceway surface 111a. ..
  • the portion of the facing surface 126 where the escape groove portion 127 is not provided is a stopper 128.
  • the stopper 128 has a stepped surface 130 on the side surface in the second rotation direction L2.
  • the stopper 128 has a substantially trapezoidal shape when viewed from the axial direction. As shown in FIG. 3, the stopper 128 has an inner end portion in the radial direction connected to the inner cylinder portion 124.
  • the stopper 128 has a radial outer end connected to the outer cylinder portion 125.
  • the operation of the linear actuator 100 of the first embodiment will be described.
  • the rotational motion is transmitted to the nut 111 via the transmission device 102.
  • the nut 111 rotates.
  • the rotation direction of the nut 111 is the second rotation direction L2
  • the screw shaft 112 moves in the first direction X1.
  • the piston 120 also moves in the first direction X1, and the hydraulic pressure of the brake fluid increases.
  • the hydraulic pressure of the brake fluid is transmitted to the external device through the through hole 107a.
  • the protrusion portion 117 After entering the relief groove portion 127, the protrusion portion 117 further rotates in the first rotation direction L1 and comes into contact with the stepped surface 130 of the stopper 128. As a result, the rotation of the nut 111 in the first rotation direction L1 is stopped. Further, since the contact surface 118 of the nut 111 and the stepped surface 130 of the piston 120 are in contact with each other after the rotation of the nut 111 is stopped (see FIG. 4), the rotation of the nut 111 in the first rotation direction L1 is restricted. Will be done. Along with this, the movement of the screw shaft 112 in the second direction X2 is also restricted.
  • the linear actuator 100 when the linear actuator 100 is operated next time, it starts from the state where the protrusion 117 and the stepped surface 130 are in contact with each other. In this way, the axial movement start time point (operation start time point) of the screw shaft 112 becomes constant. That is, the protrusion 117 (contact surface) and the stopper 128 (step surface 130) form the stroke limiting mechanism 140.
  • the stopper 128 is integrally formed with the piston 120, the load is distributed to the piston 120. Further, the stopper 128 is continuous with the inner cylinder portion 124 and the outer cylinder portion 125, and the load is easily distributed to the inner cylinder portion 124 and the outer cylinder portion 125. Therefore, the load input to the stopper 128 is dispersed in each part, and the stress is not concentrated on the stopper 128.
  • the linear actuator 100 of the first embodiment is pointed to by a ball screw device 110 having a screw shaft 112, a nut 111, and a plurality of balls 113, a piston 120 attached to one end of the screw shaft 112, and one end. It has a stroke limiting mechanism 140 that sets an operation start time point of the screw shaft 112 in the first direction X1.
  • the nut 111 has one end surface 116 facing the first direction X1 and a protrusion 117 protruding from the one end surface 116.
  • the piston 120 faces the second direction X2 opposite to the first direction X1, is recessed in the facing surface 126 facing the one end surface 116 and the facing surface 126 in the first direction X1, and extends in the rotational direction about the screw shaft 112.
  • a stepped surface that is arranged at one end of the relief groove portion 127 and one of the wall surfaces surrounding the relief groove portion 127 in the rotation direction (second rotation direction L2) and faces the other in the rotation direction (first rotation direction L1). It has 130 and.
  • the protrusion 117 and the stepped surface 130 are in contact with each other to form a stroke limiting mechanism 140.
  • the detent member becomes unnecessary. Therefore, the number of parts is reduced and the man-hours for assembly work are reduced. Further, the weight of the screw shaft 112 is reduced, and the operability of the linear actuator 100 is improved. Further, the linear actuator 100 can be miniaturized.
  • the piston 120 of the first embodiment has a stopper 128 whose surface facing the other side in the rotation direction (first rotation direction L1) is a stepped surface 130, and is located radially inside the stopper 128 in the second direction.
  • An inner cylinder portion 124 provided with a fitting hole 123 that is opened in X2 and into which one end of the screw shaft 112 is fitted, and an outer peripheral surface that is located radially outside the stopper 128 and whose outer peripheral surface slides on the housing 103. It has a cylinder portion 125 and.
  • the radial inner end of the stopper 128 is connected to the inner cylinder portion 124.
  • the radial outer end of the stopper 128 is connected to the outer cylinder portion 125.
  • the load input to the stopper 128 is distributed to the inner cylinder portion 124 and the outer cylinder portion 125. Therefore, the stress is not concentrated on the stopper 128.
  • the linear actuator 100 of the first embodiment has been described above, the present disclosure is not limited to the example shown in the embodiment.
  • the piston 120 of the first embodiment has an inner cylinder portion 124 and an outer cylinder portion 125, but in the present disclosure, a piston having only an inner cylinder portion, a piston having only an outer cylinder portion, or or It may be a piston that does not have both an inner cylinder portion and an outer cylinder portion.
  • the shape of the relief groove portion of the piston is not limited to the example shown in the embodiment.
  • a modified example in which the relief groove portion is deformed will be described.
  • the piston does not have an outer cylinder portion in order to make it easier to see the shape of the relief groove.
  • FIG. 5 is a perspective view of the piston of the modified example 1 as viewed from the second direction.
  • the amount of the recess of the relief groove portion 127A is constant in the circumferential direction. That is, the bottom surface 129A of the relief groove portion 127A is a flat flat surface that is flat in the rotation direction.
  • the detent member becomes unnecessary, the number of parts can be reduced, and the linear actuator can be downsized.
  • the end of the relief groove portion 127A in the second rotation direction L2 is a stepped surface 131A between the bottom surface 129A and the facing surface 126. Further, according to the first modification, the amount of the recess of the relief groove portion 127A is larger than that of the relief groove portion 127 of the first embodiment. That is, the piston 120 of the first embodiment is larger than the volume of the piston 120A of the first modification. Therefore, from the viewpoint of suppressing stress concentration, the shape of the relief groove portion 127 of the first embodiment is preferable.
  • FIG. 6 is a perspective view of the piston of the modified example 2 as viewed from the second direction.
  • the bottom surface 129B of the relief groove portion 127B has a spiral spiral surface 129a and a flat flat surface 129b. That is, the spiral surface 129a extends from the ridge line 131 in the first rotation direction L1, and the flat surface 129b extends from the end of the spiral surface 129a in the first rotation direction L1 in the first rotation direction L1. Even in such a modification 2, the same effect as that of the first embodiment can be obtained. That is, the bottom surface of the present disclosure may be a combination of two or more types of surfaces.
  • FIG. 7 is a perspective view of the piston of the modified example 3 as viewed from the second direction.
  • the relief groove portion 127C of the piston 120C of the modified example 3 gradually increases as the recess amount (depth) from the facing surface 126 toward the first rotation direction L1. That is, the bottom surface 129C of the relief groove portion 127C is a stepped staircase surface that is gradually located in the first direction X1 toward the first rotation direction L1. Even in such a modification 3, the same effect as that of the first embodiment can be obtained.
  • the amount of the recess of the relief groove portion 127C is substantially the same as that of the relief groove portion 127 of the first embodiment, and the volume of the piston 120B is substantially the same as that of the piston 120 of the first embodiment. Therefore, as in the first embodiment, the shape is such that the concentration of stress is easily suppressed.
  • the manufacture of the piston 120C of the second modification when the outer peripheral surface of the piston 120C is cut (cut from the outside in the radial direction) to form the relief groove portion 127C, it is formed more than the spiral bottom surface 129 of the first embodiment. Easy to do. Therefore, the cost of manufacturing the piston 120C can be reduced.
  • FIG. 8 is a perspective view of the piston of the modified example 4 as viewed from the second direction.
  • the bottom surface 129D of the relief groove portion 127D is a combination of the spiral surface 129a, the stepped surface 131A, and the flat surface 129b. That is, the amount of the recess of the relief groove portion 127D changes significantly on the way, and the stepped surface 131A is formed. According to this, a part of the thick reinforcing portion 131D remains in the first rotation direction L1 of the stopper 128. Therefore, in the modified example 4, the weight can be reduced as compared with the piston 120 of the first embodiment, while the stress concentration is suppressed as compared with the piston 120A of the modified example 1.
  • FIG. 9 is a plan view of the piston of the modified example 5 as viewed from the second direction.
  • the stepped surface 130E of the piston 120E of the modified example 5 has an arc shape when viewed from the second direction X2. That is, the radial central portion 132 of the step surface 130E projects in the second rotation direction L2. Therefore, when the protrusion 117 and the stopper 128E come into contact with each other, the contact surface 118 comes into contact with the central portion 132 of the stepped surface 130E. Then, when the contact is repeated, the central portion 132 of the stepped surface 130E is gradually crushed, and the stepped surface 130E becomes a flat surface. From the above, according to the modified example 5, the stepped surface 130E has a shape in which the contact point of the protrusion 117 with the contact surface 118 gradually increases. Further, even in the modified example 5, the same effect as that of the first embodiment can be obtained.
  • the nut 111 is made of an iron-based material and the piston 120E is made of an aluminum alloy. According to this, when the protrusion 117 and the stepped surface 130E come into contact with each other, the stepped surface 130E is more easily deformed. Therefore, the flattening (plastic deformation) of the stepped surface 130E can be accelerated. Further, by using the aluminum alloy, a damping effect (vibration absorption) is generated when the contact surface 118 of the protrusion 117 comes into contact with the contact surface 118. Therefore, the contact sound can be suppressed to be small.
  • the stepped surface 130E on an arc is mentioned in the modified example 5, but the present disclosure is not limited to this.
  • the stepped surface may be substantially flat but have a large surface roughness.
  • the stepped surface has less unevenness on the surface (the surface roughness becomes smaller) by repeating contact with the protrusion 117.
  • fine irregularities may be formed on the stepped surface 130E. According to this, the unevenness is plastically deformed only when an excessive torque is input, and the contact surfaces can be made to fit each other to disperse the stress.
  • FIG. 10 is a cross-sectional view of the piston of the modified example 6 cut in the axial direction.
  • the piston 120F of the modified example 6 has an R-shaped corner portion 133 between the stepped surface 130 and the bottom surface 129. According to this, the volume of the corner portion 133 increases, and the concentration of stress can be suppressed.
  • FIG. 11 is a plan view of the piston of the modified example 7 as viewed from the second direction.
  • FIG. 12 is a plan view of the nut of the modified example 7 as viewed from the first direction.
  • FIG. 13 is a cross-sectional view showing a state in which the stopper and the protrusion are in contact with each other in the linear actuator of the modified example 7.
  • FIG. 14 is a cross-sectional view showing a state in which the stopper and the protrusion are in contact with each other in the linear actuator of the comparative example.
  • the stepped surface 130G is a surface parallel to the surface including the axis O and the virtual line M1 extending vertically from the axis O. Therefore, when viewed from the axial direction, the edge portion of the step surface 130G in the first direction X1 and the edge portion in the second direction X2 overlap each other. Further, the stepped surface 130G of the piston 120G of the modification 7 is arranged in the second rotation direction L2 with respect to the virtual line M1 passing through the central portion 128a in the circumferential direction of the stopper 128 and the axial center O when viewed from the axial direction. Offset) and parallel to the virtual line M1. Further, the distance between the virtual line M1 and the stepped surface 130G is a.
  • the contact surface 118G is a surface parallel to the surface including the axis O and the virtual line M2 extending vertically from the axis O. .. Therefore, when viewed from the axial direction, the edge portion of the contact surface 118G in the first direction X1 and the edge portion in the second direction X2 overlap each other. Further, the contact surface 118G of the nut 111G of the modification 7 is offset in the second rotation direction with respect to the virtual line M2 passing through the axis O when viewed from the axial direction, and is parallel to the virtual line M2. There is. Further, the distance between the virtual line M2 and the contact surface 118G is b. Further, the distance a is larger than the distance b (a> b).
  • FIG. 15 is a plan view of the piston of the modified example 8 as viewed from the first direction.
  • the first end surface 121 of the piston 120H of the modified example 8 is provided with a ridge 134 protruding in the first direction X1.
  • the ridge 134 extends in the direction of rotation and has an arc shape (C shape).
  • the ridge 134 overlaps with the escape groove portion 127 (see FIG. 3) when viewed from the axial direction. Therefore, the plane 137 arranged between both ends of the ridge 134 in the rotational direction overlaps with the stopper 128 (see FIGS. 3 and 4).
  • the amount of protrusion of the ridge 134 gradually increases toward the first rotation direction L1. That is, the protruding surface 134a of the ridge 134 is a spiral helicoid surface. Therefore, a stepped surface 135 between the protruding surface 134a and the flat surface 137 is provided at the end of the ridge 134 in the first rotation direction L1. On the other hand, at the end of the ridge 134 in the second rotation direction L2, a ridge line 136 formed by a protruding surface 134a and a plane 137 is provided.
  • the amount of protrusion of the ridge 134 in the first direction X1 is equal to the amount of depression of the relief groove portion 127 in the first direction X1. That is, the thickness in the axial direction from the protruding surface 134a of the ridge 134 to the bottom surface 129 of the relief groove portion 127 is constant in the circumferential direction.
  • the thickness in the axial direction becomes uniform in the piston 120H.
  • the stopper 128 and the stepped surface 130 are covered with the outer cylinder portion 125 and cannot be visually recognized (see FIG. 1). .. Therefore, it becomes difficult to determine the phase of the stopper 128 and the stepped surface 130 at the time of assembly.
  • the stopper 128 and the stepped surface 130 can be grasped by the flat surface 137 (protrusion 134). Therefore, the phase of the stopper 128 and the stepped surface 130 can be easily determined.
  • the piston of the present disclosure may be provided with a keyway for preventing rotation on the outer peripheral surface. Then, according to this piston, the phase of the stopper and the stepped surface may be grasped with reference to the keyway.
  • a mark as a mark may be attached to the first end surface 121 or the outer peripheral surface of the piston 120.
  • FIG. 16 is a cross-sectional view of a linear actuator according to the second embodiment.
  • FIG. 17 is a perspective view of the nut of the second embodiment.
  • FIG. 18 is a perspective view of the piston of the second embodiment.
  • FIG. 1 is a cross-sectional view of the linear actuator 1 according to the embodiment.
  • the linear actuator 1 includes a ball screw device 2, a stroke limiting mechanism 3, a piston 4, a motor 5, and a housing 6.
  • the ball screw device 2 includes a screw shaft 7, a nut 8, and a plurality of balls 9.
  • the screw shaft 7 is provided with an outer peripheral raceway surface (first thread groove) 10 on the outer peripheral surface.
  • the screw shaft 7 penetrates the nut 8.
  • the nut 8 is provided with an inner peripheral raceway surface (second thread groove) 11 corresponding to the outer peripheral raceway surface (first thread groove) 10 on the inner peripheral surface.
  • a spiral track (rolling path) is formed by the outer peripheral raceway surface (first thread groove) 10 and the inner peripheral raceway surface (second thread groove) 11.
  • the plurality of balls 9 roll on an orbit (rolling path).
  • the ball screw device 2 is supported by the housing 6 via a ball bearing 12.
  • the inner ring 13 is fitted to both ends of the nut 8, and the outer ring 14 is fitted to the housing 6. As a result, the screw shaft 7 and the nut 8 can smoothly move relative to each other.
  • the inner ring 13 may be integrally molded with the nut 8.
  • the stroke limiting mechanism 3 is composed of one end surface of the nut 8 and a protrusion 15 (see FIG. 17) provided on the outer side in the radial direction, and a locking portion 16 provided on the piston 4 described later. This regulates the relative displacement between the screw shaft 7 and the nut 8 at the stroke end of the screw shaft 7 in the contraction direction.
  • the piston 4 is provided with a locking portion 16.
  • the locking portion 16 is provided in a concave shape on the end surface of the piston 4.
  • the locking portion 16 is formed from a stepped surface (contact portion) 17 and a relief groove portion 18.
  • the protruding portion 15 comes into contact with the stepped surface (contact portion) 17.
  • the relief groove portion 18 becomes deeper in accordance with the lead of the outer peripheral raceway surface (first thread groove) 10.
  • the piston 4 is connected to a mounting portion (shaft portion) 19 provided coaxially with the screw shaft 7 at one end of the screw shaft 7.
  • the piston 4 has a bottomed cylindrical shape, and the mounting portion (shaft portion) 19 is inserted into the inner diameter side.
  • the piston 4 and the mounting portion (shaft portion) 19 are coupled by serration fitting and press fitting, the piston 4 and the mounting portion (shaft portion) 19 cannot rotate, and the mounting portion (shaft portion) 19 is the piston 4. It is connected so that it does not come out in the axial direction from.
  • the material of the piston 4 is preferably an aluminum alloy or the like.
  • the depth of the entire surface of the relief groove portion 18 may be the same, or may be a constant depth so that the protrusion portion 15 does not come into contact with the relief groove portion 18.
  • the motor 5 is arranged in the housing 6.
  • the motor 5 has an output shaft (drive shaft) 20.
  • a first gear (drive gear) 21 is provided at the end of the output shaft (drive shaft) 20.
  • the first gear (drive gear) 21 meshes with the second gear (driven gear) 22 provided on the outer peripheral surface of the nut 8.
  • the first gear (drive gear) 21 transmits the rotation of the motor 5 to the nut 8 via the second gear (driven gear) 22.
  • the screw shaft 7 moves in the axial direction.
  • the ball screw device 2 converts the rotary motion into a linear motion.
  • Housing 6 is composed of a first housing 23 and a second housing 24.
  • the first housing 23 has a large-diameter first large-diameter recess 25 and a small-diameter first small-diameter recess 26.
  • a ball bearing 12 fitted to one of the nuts 8 is fitted in the first large-diameter recess 25 at both ends of the nut 8.
  • a motor 5 is arranged in the first small diameter recess 26.
  • the first large-diameter recess 25 has a second small-diameter recess 27 having a smaller diameter than the first large-diameter recess 25.
  • the piston 4 is slidably fitted in the second small diameter recess 27.
  • the second small diameter recess 27 serves as a cylinder.
  • the second housing 24 has a second large-diameter recess 28 having the same diameter as the first large-diameter recess 25 of the first housing 23.
  • a ball bearing 12 fitted to the other side of the nut 8 is fitted in the second large-diameter recess 28.
  • the stroke limiting mechanism 3 is composed of a protrusion 15 provided on one end surface of the nut 8 and a locking portion 16 provided on the piston 4, but the protrusion 15 of the nut 8 is provided. And the locking portion 16 of the piston 4 may be provided in reverse. Further, instead of directly providing the protrusion 15 on the end face of the nut 8, a hole may be made in the end face of the nut 8 and a pin may be inserted into the hole to form the protrusion 15. Further, the shape of the locking portion 16 with which the pin-shaped protrusion 15 abuts may be an arc shape in accordance with the pin-shaped protrusion 15.
  • the linear actuator 1 of the present embodiment includes a ball screw device 2, a stroke limiting mechanism 3, a piston 4, a motor 5, and a housing 6.
  • the ball screw device 2 includes a screw shaft 7, a nut 8, and a plurality of balls 9.
  • the stroke limiting mechanism 3 is composed of a protrusion 15 provided on one end surface of the nut 8 and a locking portion 16 provided on the piston 4.
  • the locking portion 16 is provided in a concave shape on the end surface of the piston 4.
  • the locking portion 16 is formed from a stepped surface (contact portion) 17 and a relief groove portion 18.
  • the strength of the locking portion 16 can be improved without increasing the size of the component. .. Therefore, it is possible to prevent excessive stress concentration from occurring in the stroke limiting mechanism 3 with a simple configuration.
  • the linear actuator 1 can be downsized by reducing the number of separate parts provided with the conventional locking portion 16.
  • the screw shaft 7 is connected to the piston 4 via a mounting portion (shaft portion) 19 provided at one end of the screw shaft 7, so that the displacement in the axial direction is guided to the piston 4. Therefore, the rattling of the ball screw device 2 is suppressed, the contact between the protrusion 15 and the step surface (contact portion) 17 in the stroke limiting mechanism 3 becomes stable, and the protrusion 15 and the step surface (contact portion) are stable. ) 17 wear can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transmission Devices (AREA)

Abstract

直動アクチュエータは、ねじ軸、ナット、及び複数のボールを有するボールねじ装置と、ねじ軸の一端部に取り付けられたピストンと、一端部が指す第1方向へのねじ軸の作動開始時点を設定するストローク制限機構と、を有する。ナットは、第1方向を向く一端面と、一端面から突出する突起部と、を有する。ピストンは、第1方向と反対の第2方向を向き、一端面と対向する対向面と、対向面から第1方向に窪み、ねじ軸を中心に回転方向に延びる逃げ溝部と、逃げ溝部を囲む壁面のうち逃げ溝部の回転方向の一方の端部に配置され、回転方向の他方を向く段差面と、を有する。突起部と段差面とが当接し、ストローク制限機構を成している。

Description

直動アクチュエータ
 本発明は、ボールねじ装置を備えた直動アクチュエータに関する。
 直動アクチュエータは、回転運動を直線運動に変換するボールねじ装置を備える装置である。直動アクチュエータにおいて、ナットが回転すると、ナットから突出するねじ軸の突出量が変わる。これにより、ねじ軸の端部に取り付けられた対象物が軸方向に変位する。ねじ軸の端部に取り付けられる対象物として、ピストンが挙げられる。このような直動アクチュエータは、例えば特許文献1に示すように、ブレーキブースタに利用される。
 直動アクチュエータは、特許文献2に示すように、ストローク制限機構を備えている。このストローク制限機構によれば、ねじ軸の移動開始時点(作動開始時点)を一定とすることができる。
 詳細に説明すると、特許文献2のストローク制限機構では、ナットの端面に、突起部が設けている。一方、ねじ軸の端部に、回り止め部材が取り付けられている。回り止め部材は、ねじ軸の端部から径方向外側に突出する係止部を有している。ナットの回転によりねじ軸の突出量が小さくなると、回り止め部材がナットに近づき、係止部が突起に接触する。これによりナットの回転が規制され、ねじ軸の軸方向の位置が位置決めされる。
特開2016-014437号公報 特開2019-113168号公報
 特許文献2のストローク制限機構は、回り止め部材がねじ軸と別体である。また、ねじ軸に回り止め部材が取り付けられるので、直動アクチュエータの作動性を向上させる際には、重量が障害となる。また、ねじ軸の端部に回り止め部材が取り付けられるため、ねじ軸と回り止め部材を配置するスペースが必要となる。
 本発明は、上記の課題に鑑みてなされたものであって、部品点数の削減と軽量化と小型化を図ることができる直動アクチュエータを提供することを目的とする。
 上記の目的を達成するため、本発明の一態様に係る直動アクチュエータは、ねじ軸、ナット、及び複数のボールを有するボールねじ装置と、前記ねじ軸の一端部に取り付けられたピストンと、前記一端部が指す第1方向への前記ねじ軸の作動開始時点を設定するストローク制限機構と、を有している。前記ナットは、前記第1方向を向く一端面と、前記一端面から突出する突起部と、を有している。前記ピストンは、前記第1方向と反対の第2方向を向き、前記一端面と対向する対向面と、前記対向面から前記第1方向に窪み、前記ねじ軸を中心に回転方向に延びる逃げ溝部と、前記逃げ溝部を囲む壁面のうち前記逃げ溝部の前記回転方向の一方の端部に配置され、前記回転方向の他方を向く段差面と、を有している。前記突起部と前記段差面とが当接し、前記ストローク制限機構を成している。
 本発明によれば、回り止め部材に代えて、ピストンに段差面が設けられている。よって、部品点数が削減する。また、ねじ軸が従来よりも軽量化することにより、直動アクチュエータの作動性が向上する。また、回り止め部材を有していないため、直動アクチュエータの小型化を図れる。また、突起部との接触により段差面に入力された荷重は、ピストンに分散する。よって、段差面が設けられた部位に応力が集中することが抑制される。
 上記の直動アクチュエータの好ましい態様として、前記ピストンは、前記逃げ溝部を囲む壁面のうち前記第1方向から前記逃げ溝部を囲む底面を有している。前記底面の少なくとも一部は、前記回転方向の一方に向かうにつれて前記第1方向に位置するように傾斜して螺旋状となっている。
 前記構成によれば、逃げ溝部の窪み量が周方向に一定となっている場合よりも、逃げ溝部の窪み量を少なくできる。つまり、ピストンの体積が小さくなることが抑制される。これにより、段差面に入力した荷重が分散し易くなり、応力の集中が抑制される。
 上記の直動アクチュエータの好ましい態様として、前記ピストンは、前記逃げ溝部を囲む壁面のうち前記第1方向から前記逃げ溝部を囲む底面を有している。前記底面の少なくとも一部は、前記回転方向の一方に向かうにつれて段階的に前記第1方向に位置し、階段状となっている。
 前記構成によれば、逃げ溝部の窪み量が周方向に一定となっている場合よりも、逃げ溝部の窪み量を少なくできる。つまり、ピストンの体積が小さくなることが抑制される。これにより、段差面に入力した荷重が分散し易くなり、応力の集中が抑制される。
 上記の直動アクチュエータの一態様として、前記ピストンは、前記逃げ溝部を囲む壁面のうち前記第1方向から前記逃げ溝部を囲む底面を有している。前記底面の少なくとも一部は、平坦面となっていてもよい。
 上記の直動アクチュエータの一態様として、前記ピストンは、前記回転方向の他方を向く面が前記段差面となっているストッパを有していてもよい。
 上記の直動アクチュエータの好ましい態様として、前記ピストンは、前記ストッパよりも径方向内側に位置し、前記第2方向に開口して前記ねじ軸の一端部が嵌合する嵌合穴が設けられた内筒部を有している。前記ストッパの径方向内側の端部は、前記内筒部と接続している。
 前記構成によれば、ストッパに作用した荷重が内筒部に分散する。よって、ストッパへの応力の集中が抑制される。
 上記の直動アクチュエータの好ましい態様として、前記ピストンは、前記ストッパよりも径方向外側に位置し、外周面がハウジングに摺動する外筒部を有している。前記ストッパの径方向外側の端部は、前記外筒部と接続している。
 前記構成によれば、ストッパに作用した荷重が外筒部に分散する。よって、ストッパへの応力の集中が抑制される。
 上記の直動アクチュエータの好ましい態様として、前記ピストンは、前記第1方向を向く第1端面を有している。前記押圧面には、前記軸方向から視て前記逃げ溝部と重なる位置に前記第1方向に突出する突条が設けられている。前記突条の突出量は、前記逃げ溝部の窪み量に対応している。
 前記構成によれば、逃げ溝部が形成された部位の軸方向の厚みを均等とすることができる。また、段差面及びストッパは外筒部に覆われているため、ねじ軸への組み付けの際、段差面及びストッパを視認できなくなる。よって、ねじ軸の組み付けの際、段差面及びストッパの位相決めが困難となる。しかしながら、突条の形状から段差面及びストッパの位相を把握することができる。よって、ねじ軸の組み付けの際、段差面及びストッパの位相決めが容易となる。
 上記の直動アクチュエータの好ましい態様として、前記突起部は、前記段差面と当接する当接面を有している。前記段差面は、前記ねじ軸と平行な軸方向から視て、径方向に延びる第1仮想線と平行であり、かつ前記回転方向の他方に配置されている。前記当接面は、前記軸方向から視て、径方向に延びる第2仮想線と平行であり、かつ前記回転方向の他方に配置されている。前記段差面と前記第1仮想線との距離は、前記当接面と前記第2仮想線との距離よりも大きい。
 前記構成によれば、段差面と当接面は、それぞれ径方向内側の部分で接触する。よって、段差面と当接面は、それぞれ径方向外側の部分に荷重が作用し難くなる。
 上記の直動アクチュエータの好ましい態様として、前記ナットは、鉄系材料製である。前記ピストンは、アルミニウム合金製である。
 前記構成によれば、突起部と段差面との接触の際、段差面(ピストン)の方が塑性変形し易くなる。
 本発明の直動アクチュエータによれば、部品点数の削減と軽量化と小型化を図ることができる。
図1は、実施形態1の直動アクチュエータを軸方向に切った断面図である。 図2は、実施形態1のナットを第1方向から斜視した斜視図である。 図3は、実施形態1のピストンを第2方向から斜視した斜視図である。 図4は、図3のIV-IV矢視断面図である。 図5は、変形例1のピストンを第2方向から斜視した斜視図である。 図6は、変形例2のピストンを第2方向から斜視した斜視図である。 図7は、変形例3のピストンを第2方向から斜視した斜視図である 図8は、変形例4のピストンを第2方向から斜視した斜視図である。 図9は、変形例5のピストンを第2方向から視た平面図である。 図10は、変形例6のピストンを軸方向に切った断面図である。 図11は、変形例7のピストンを第2方向から視た平面図である。 図12は、変形例7のナットを第1方向から視た平面図である。 図13は、変形例7の直動アクチュエータにおいてストッパと突起部とが接触した状態を示す断面図である。 図14は、比較例の直動アクチュエータにおいてストッパと突起部とが接触した状態を示す断面図である。 図15は、変形例8のピストンを第1方向から視た平面図である。 図16は、実施形態2の直動アクチュエータの断面図である。 図17は、実施形態2のナットの斜視図である。 図18は、実施形態2のピストンの斜視図である。
 以下、本発明につき図面を参照しつつ詳細に説明する。なお、下記の発明を実施するための形態(以下、実施形態という)により本発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、下記実施形態で開示した構成要素は適宜組み合わせることが可能である。
 図1は、実施形態1の直動アクチュエータを軸方向に切った断面図である。図2は、実施形態1のナットを第1方向から斜視した斜視図である。図3は、実施形態1のピストンを第2方向から斜視した斜視図である。図4は、図3のIV-IV矢視断面図である。
(実施形態1)
 実施形態1の直動アクチュエータ100は、車両に搭載され、ブレーキペダルの踏み込み量に対応した液圧を生成するブレーキブースタである。図1に示すように、直動アクチュエータ100は、モータ101と、伝達装置102と、ハウジング103と、ボールねじ装置110と、ピストン120と、ストローク制限機構140と、を備えている。
 以下、ボールねじ装置110のねじ軸112の軸心Oと平行な方向を軸方向と称する。また、軸方向のうち、ボールねじ装置110のナット111から視てピストン120が配置される方向を第1方向X1と称し、第1方向X1と反対方向を第2方向X2と称する。
 モータ101は、ステータ(不図示)と、ロータ(不図示)と、出力軸101aと、を備える。モータ101は、電源(不図示)から電力が供給されてロータ及び出力軸101aが回転する。モータ101は、ハウジング103に支持され、出力軸101aがねじ軸112と平行となっている。
 伝達装置102は、モータ101の出力軸101aに嵌合する第1歯車104と、ナット111の外周側に嵌合する第2歯車105と、を備える。第2歯車105は、第1歯車104よりも大径の歯車である。よって、伝達装置102は、モータ101で生成された回転運動を減速してナット111に伝達する。
 ボールねじ装置110は、ナット111と、ねじ軸112と、複数のボール113と、を備える。ナット111は、軸心Oを中心に円筒状を成している。ナット111の内周面には、内周軌道面111aが設けられている。ナット111は、ハウジング103の内周面に嵌合する軸受106に支持されている。これにより、ナット111は、ねじ軸112の軸心Oを中心に回転自在となっている。
 以下、ナット111の回転方向に関し、第1方向X1から視た場合を基準として説明する。そして、図2に示すように、第1方向X1から視て、軸心Oを中心に左回りの回転方向を第1回転方向L1と称する。軸心Oを中心に右回りの回転方向を第2回転方向L2と称する。
 図2に示すように、ナット111は、第1方向X1を向く一端面116を有している。一端面116には、第1方向X1に突出する突起部117が設けられている。突起部117は、軸方向から視て略台形状となっている。突起部117は、第1回転方向L1を向く当接面118を有している。
 図1に示すように、ねじ軸112は、ナット111を貫通する中実の軸部品である。ねじ軸112は、外周面に外周軌道面114aが設けられたねじ軸本体114と、ねじ軸本体114の第1方向X1の端面から第1方向X1に延出する取付部115と、を備えている。特に図示しないが、ねじ軸本体114は、軸方向に移動自在であり、かつ軸心O回りに回転不能にハウジング103に支持されている。
 内周軌道面111aと外周軌道面114aとの間は、螺旋状の軌道となっている。この螺旋状の軌道に複数のボール113が配置されている。ナット111が回転すると、内周軌道面111aは、ボール113を介して外周軌道面114aを軸方向に押圧する。これにより、ねじ軸112が軸方向に移動する。また、本実施形態では、ナット111が第2回転方向L2に回転した場合、ねじ軸112が第1方向X1に移動する。一方、ナット111が第1回転方向L1に回転した場合、ねじ軸112が第2方向X2に移動する。
 取付部115は、ねじ軸本体114よりも小径となっている。よって、取付部115とねじ軸本体114との境界には、第1方向X1を向く環状段差面115aが設けられている。
 ピストン120は、軸心Oと同軸状に配置された円柱状の部品である。ピストン120は、鍛造により製造されることが好ましいが、切削加工などの公知の加工方法で形成してもよい。ピストン120は、シリンダ107の内部であって第2方向X2の端寄りに配置されている。なお、本実施形態のシリンダ107は、ハウジング103に一体的に設けられているが、本開示においては、シリンダ107とハウジング103とが別体となっていてもよい。シリンダ107の内部には、図示しないブレーキフルードが入っている。ピストン120は、第1方向X1を向く第1端面121と、第2方向X2を向く第2端面122と、を備えている。
 第1端面121には、第2方向X2に窪む凹面121aが設けられている。凹面121aは、シリンダ107の底面107bと対向している。凹面121aと底面107bとの間には、図示しないコイルばねが配置されている。ピストン120が第1方向X1へ押圧された場合、ピストン120は、図示しないコイルばねに抗って移動する。なお、本開示のピストンは、凹面121aが設けられていないものであってもよい。
 図3に示すように、第2端面122の中央部には、第2方向X2に開口する嵌合穴123が設けられている。嵌合穴123には、取付部115(ねじ軸112の一端部)が挿入されている(図1参照)。嵌合穴123の内径は、取付部115の外径よりも僅かに小さく、締め代が設けられている。よって、ピストン120は、ねじ軸112と分離することなく、ねじ軸112と一体に軸方向に移動する。
 以下、ピストン120のうち取付部115と嵌合する部分(嵌合穴123の外周側を囲む筒状の壁部)を内筒部124と称する。図1に示すように、内筒部124の第2方向X2の端面124aは、ねじ軸112の環状段差面115aと当接している。
 図1に示すように、ピストン120の外周面は、シリンダ107の内周側のシール部材108と摺動自在に当接している。これにより、図示しないブレーキフルードがナット111やねじ軸112の方に流動しないように封止される。
 ピストン120の外径は、ナット111の外径よりも大きい。ピストン120の第2端面122には、第2方向X2に突出してナット111の外周側を囲む環状の外筒部125が設けられている。つまり、ピストン120の外周面は、外筒部125によって第2方向X2に拡張されている。よって、ピストン120が第1方向X1に移動しても、外筒部125とシール部材108とが摺接し、シール性が保持される。
 ピストン120の第2端面122の一部は、ナット111の一端面116と対向する対向面126となっている。対向面126は、内筒部124の径方向外側であり、かつ外筒部125の径方向内側に位置している。
 図3に示すように、対向面126の一部には、第1方向X1に窪む逃げ溝部127が設けられている。逃げ溝部127は、軸心Oを中心に回転方向に延び、軸方向から視て円弧状(C字状)となっている。この逃げ溝部127は、ナット111の突起部117との接触を回避するための空間である。以下、逃げ溝部127を囲む壁面のうち逃げ溝部127を第1方向X1から囲む壁面を底面129と称する。
 図3、図4に示すように、逃げ溝部127の窪み量(深さ)は、対向面126から、第1回転方向L1に向かうにつれて次第に大きくなっている。よって、逃げ溝部127の底面129も、第1回転方向L1に向かうにつれて第1方向X1に位置する、螺旋状の螺旋面となっている。そして、逃げ溝部127の第1回転方向L1の端部には、対向面126と底面129との段差面130が設けられている。一方、逃げ溝部127の第2回転方向L2の端部には、対向面126と底面129との境界線である稜線131が設けられている。
 逃げ溝部127は、上記したように突起部117との接触を回避するための空間である。よって、逃げ溝部127の底面129の傾斜角度は、内周軌道面111a(図1参照)の傾斜角度と同じに設定するか、若しくは内周軌道面111aの傾斜角度よりも大きくなるように設定する。
 対向面126のうち逃げ溝部127が設けられていない部分は、ストッパ128となっている。ストッパ128は、第2回転方向L2の側面が段差面130となっている。ストッパ128は、軸方向から視て略台形状となっている。図3に示すように、ストッパ128は、径方向内側の端部が内筒部124と接続している。ストッパ128は、径方向外側の端部が外筒部125と接続している。
 次に、実施形態1の直動アクチュエータ100の動作について説明する。モータ101が駆動すると、伝達装置102を介して、ナット111に回転運動が伝達する。これにより、ナット111が回転する。また、ナット111の回転方向が第2回転方向L2の場合、ねじ軸112は第1方向X1に移動する。これに伴い、ピストン120も第1方向X1に移動し、ブレーキフルードの液圧が高まる。この結果、ブレーキフルードの液圧が貫通孔107aを通じて外部の装置に伝達される。
 一方、ナット111が第1回転方向L1に回転すると、ねじ軸112が第2方向X2に移動する。これに伴い、ピストン120が第2方向X2に移動し、ブレーキフルードの液圧が低下する。また、ピストン120の第2端面122とナット111の一端面116との距離は、次第に小さくなる。そして、ナット111の突起部117は、第1回転方向L1に回転しながらピストン120の逃げ溝部127に入り込む。
 突起部117は、逃げ溝部127に入り込んだ後、さらに第1回転方向L1に回転し、ストッパ128の段差面130に接触する。これにより、ナット111の第1回転方向L1への回転が停止する。また、ナット111の回転の停止後、ナット111の当接面118とピストン120の段差面130が当接しているため(図4参照)、ナット111は、第1回転方向L1への回転が規制される。これに伴い、ねじ軸112も第2方向X2への移動が規制される。以上から、直動アクチュエータ100が次回作動する場合、突起部117と段差面130とが当接した状態から開始する。このようにして、ねじ軸112の軸方向の移動開始時点(作動開始時点)が一定となる。つまり、突起部117(当接面)とストッパ128(段差面130)とがストローク制限機構140を成している。
 また、突起部117が段差面130に接触すると、突起部117からストッパ128に荷重が入力される。ストッパ128は、ピストン120と一体に形成されているため、ピストン120に荷重が分散する。また、ストッパ128は、内筒部124と外筒部125と連続し、内筒部124と外筒部125に荷重が分散し易い。よって、ストッパ128に入力した荷重は各部位に分散し、ストッパ128に応力が集中しない。
 以上、実施形態1の直動アクチュエータ100は、ねじ軸112、ナット111、及び複数のボール113を有するボールねじ装置110と、ねじ軸112の一端部に取り付けられたピストン120と、一端部が指す第1方向X1へのねじ軸112の作動開始時点を設定するストローク制限機構140と、を有する。ナット111は、第1方向X1を向く一端面116と、一端面116から突出する突起部117と、を有している。ピストン120は、第1方向X1と反対の第2方向X2を向き、一端面116と対向する対向面126と、対向面126から第1方向X1に窪み、ねじ軸112を中心に回転方向に延びる逃げ溝部127と、逃げ溝部127を囲む壁面のうち逃げ溝部127の回転方向の一方(第2回転方向L2)の端部に配置され、回転方向の他方(第1回転方向L1)を向く段差面130と、を有している。突起部117と段差面130とが当接し、ストローク制限機構140を成している。
 実施形態1の直動アクチュエータ100によれば、回り止め部材が不要となる。よって、部品点数が削減され、組立作業の工数が低減する。また、ねじ軸112が軽量化し、直動アクチュエータ100の作動性が向上する。さらに、直動アクチュエータ100の小型化も図れる。
 また、実施形態1のピストン120は、回転方向の他方(第1回転方向L1)を向く面が段差面130となっているストッパ128と、ストッパ128よりも径方向内側に位置し、第2方向X2に開口してねじ軸112の一端部が嵌合する嵌合穴123が設けられた内筒部124と、ストッパ128よりも径方向外側に位置し、外周面がハウジング103に摺動する外筒部125と、を有している。ストッパ128の径方向内側の端部は、内筒部124と接続している。ストッパ128の径方向外側の端部は、外筒部125と接続している。
 実施形態1の直動アクチュエータ100によれば、ストッパ128に入力した荷重が内筒部124と外筒部125に荷重が分散する。よって、ストッパ128に応力が集中しない。
 以上、実施形態1の直動アクチュエータ100について説明したが、本開示は実施形態で示した例に限定されない。例えば、実施形態1のピストン120は、内筒部124と外筒部125を有しているが、本開示は、内筒部のみを備えるピストン、又は外筒部のみを備えたピストン、若しくは又は内筒部と外筒部の両方を備えていないピストンであってもよい。ピストンの逃げ溝部の形状についても、実施形態で示した例に限定されない。以下、逃げ溝部を変形させた変形例について説明する。なお、変形例においては、逃げ溝の形状を見易すくるため、ピストンは外筒部を有していないものを挙げる。
(変形例1)
 図5は、変形例1のピストンを第2方向から斜視した斜視図である。変形例1のピストン120Aにおいて、逃げ溝部127Aの窪み量は、周方向に一定となっている。つまり、逃げ溝部127Aの底面129Aは、回転方向に向かって平坦な平坦面となっている。この変形例1であっても、実施形態1と同様に、回り止め部材が不要となり、部品点数の削減と直動アクチュエータの小型化を図れる。
 なお、逃げ溝部127Aの第2回転方向L2の端部は、底面129Aと対向面126との段差面131Aとなっている。また、変形例1によれば、逃げ溝部127Aの窪み量は実施形態1の逃げ溝部127よりも大きい。つまり、変形例1のピストン120Aの体積よりも実施形態1のピストン120の方が大きい。よって、応力の集中を抑制するという観点からは、実施形態1の逃げ溝部127の形状の方が望ましい。
(変形例2)
 図6は、変形例2のピストンを第2方向から斜視した斜視図である。図6に示すように、変形例2のピストン120Bにおいて、逃げ溝部127Bの底面129Bは、螺旋状の螺旋面129aと、平坦な平坦面129bと、を有している。つまり、稜線131から第1回転方向L1に螺旋面129aが延在し、螺旋面129aの第1回転方向L1の端部から、第1回転方向L1に平坦面129bが延在している。このような変形例2であっても、実施形態1と同様の効果を得ることができる。つまり、本開示の底面は、2種類以上の面が組み合わせられてもよい。
(変形例3)
 図7は、変形例3のピストンを第2方向から斜視した斜視図である。図7に示すように、変形例3のピストン120Cの逃げ溝部127Cは、対向面126からの窪み量(深さ)が第1回転方向L1に向かうにつれて段階的に大きくなっている。つまり、逃げ溝部127Cの底面129Cは、第1回転方向L1に向かうにつれて段階的に第1方向X1に位置する、階段状の階段面となっている。このような変形例3であっても、実施形態1と同様の効果を得ることができる。
 また、逃げ溝部127Cの窪み量は、実施形態1の逃げ溝部127と略同等であり、ピストン120Bの体積は、実施形態1のピストン120と略等しい。よって、実施形態1と同様に応力の集中が抑制され易い形状である。そのほか、変形例2のピストン120Cの製造に関し、ピストン120Cの外周面を切削して(径方向外側から切削して)逃げ溝部127Cを形成する場合、実施形態1の螺旋状の底面129よりも形成し易い。よって、ピストン120Cの製造の低コスト化を図れる。
(変形例4)
 図8は、変形例4のピストンを第2方向から斜視した斜視図である。図8に示すように、変形例4のピストン120Dにおいて、逃げ溝部127Dの底面129Dは、螺旋面129aと、段差面131Aと、平坦面129bと、の組み合わせとなっている。つまり、逃げ溝部127Dの窪み量が途中で大きく変化し、段差面131Aが形成されている。これによれば、ストッパ128の第1回転方向L1に肉厚の補強部131Dが一部残っている。よって、変形例4においては、実施形態1のピストン120よりも軽量化が図れ、一方で変形例1のピストン120Aよりも応力の集中が抑制される形状となっている。
 以上、逃げ溝部(底面)の変形例について説明したが、次に当接面及び段差面の形状を変更した例を説明する。
(変形例5)
 図9は、変形例5のピストンを第2方向から視た平面図である。図9に示すように、変形例5のピストン120Eの段差面130Eは、第2方向X2から視て円弧状を成している。つまり、段差面130Eの径方向の中央部132は、第2回転方向L2に突出している。よって、突起部117とストッパ128Eとの接触の際、段差面130Eの中央部132に当接面118が接触する。そして、接触を繰り返すと、段差面130Eの中央部132が次第に潰れ、段差面130Eが平坦面となる。以上から、変形例5によれば、段差面130Eは、突起部117の当接面118との接触個所が次第に大きくなる形状となっている。また、変形例5であっても、実施形態1と同様の効果を得ることができる。
 なお、変形例5においては、ナット111が鉄系材料製であり、ピストン120Eがアルミニウム合金製であることが好ましい。これによれば、突起部117と段差面130Eとが接触すると、段差面130Eの方が変形し易い。よって、段差面130Eの平坦化(塑性変形)を早めることができる。また、アルミニウム合金を用いることで、突起部117の当接面118が接触する際に、ダンピング効果(振動吸収)が生じる。よって、接触音を小さく抑えることができる。
 また、段差面が塑性変形し易い形状の一例として、変形例5で円弧上の段差面130Eを挙げたが、本開示はこれに限定されない。例えば、段差面は、略平坦となっているものの表面粗さが大きいものであってもよい。この例によれば、段差面は、突起部117との接触を繰り返すことで、表面上の凹凸が少なくなる(表面粗さが小さくなる)。
 また、段差面130Eに微細な凹凸を成形してもよい。これによれば、過大なトルクが入力した場合にのみ凹凸が塑性変形し、接触面同士を馴染ませて、応力を分散させることができる。
(変形例6)
 図10は、変形例6のピストンを軸方向に切った断面図である。図10に示すように変形例6のピストン120Fは、段差面130と底面129との隅部133がR形状となっている。これによれば、隅部133の部分の体積が増え、応力の集中を抑制することができる。
(変形例7)
 図11は、変形例7のピストンを第2方向から視た平面図である。図12は、変形例7のナットを第1方向から視た平面図である。図13は、変形例7の直動アクチュエータにおいてストッパと突起部とが接触した状態を示す断面図である。図14は、比較例の直動アクチュエータにおいてストッパと突起部とが接触した状態を示す断面図である。
 図11に示すように、変形例7のピストン120Gにおいて、段差面130Gは、軸心Oと軸心Oから垂直に延びる仮想線M1とを含む面に対して、平行な面となっている。従って、軸方向から視た場合、段差面130Gの第1方向X1の縁部と第2方向X2の縁部とが重なっている。また、変形例7のピストン120Gの段差面130Gは、軸方向から視て、ストッパ128の周方向の中央部128aと軸心Oを通過する仮想線M1に対し、第2回転方向L2に配置(オフセット)され、仮想線M1と平行となっている。また、仮想線M1と段差面130Gとの距離がaとなっている。
 図12に示すように、変形例7のナット111Gにおいて、当接面118Gは、軸心Oと軸心Oから垂直に延びる仮想線M2とを含む面に対して、平行な面となっている。従って、軸方向から視た場合、当接面118Gの第1方向X1の縁部と第2方向X2の縁部とが重なっている。また、変形例7のナット111Gの当接面118Gは、軸方向から視て、軸心Oを通過する仮想線M2に対し、第2回転方向にオフセットし、かつ仮想線M2と平行となっている。また、仮想線M2と当接面118Gとの距離がbとなっている。また、距離aは距離bよりも大きい(a>b)。
 この変形例7によれば、突起部117Gとストッパ128Gの接触の際、接触部位は、突起部117Gとストッパ128Gのそれぞれの径方向内側の部分となる。よって、突起部117Gとストッパ128Gのそれぞれの径方向外側の部分に作用する荷重が低減する。
 なお、図14に示すように、仮に距離aと距離bが等しい場合(a=b)、突起部1117の当接面1118とストッパ1128の段差面1130は、互いに平行に接触(面接触)となる。よって、径方向外側の部分に作用する荷重を低減できない。次に、ピストンの第1端面を変形させた例を説明する。
(変形例8)
 図15は、変形例8のピストンを第1方向から視た平面図である。図15に示すように、変形例8のピストン120Hの第1端面121には、第1方向X1に突出する突条134が設けられている。突条134は、回転方向に延在し、円弧状(C字状)となっている。突条134は、軸方向から視て逃げ溝部127(図3参照)と重なっている。よって、突条134の回転方向の両端部の間に配置される平面137は、ストッパ128(図3、図4参照)と重なっている。
 突条134の突出量は、第1回転方向L1に向かうにつれて次第に大きくなっている。つまり、突条134の突出面134aは、螺旋状の螺旋面となっている。よって、突条134の第1回転方向L1の端部には、突出面134aと平面137との段差面135が設けられている。一方、突条134の第2回転方向L2の端部には、突出面134aと平面137とによる稜線136が設けられている。
 突条134に第1方向X1への突出量は、逃げ溝部127の第1方向X1の窪み量と等しい。つまり、突条134の突出面134aから逃げ溝部127の底面129までの軸方向の厚みは、周方向に一定となっている。
 このような変形例8によれば、ピストン120Hにおいて、軸方向の厚みが均等となる。また、外筒部125を備えるピストン120(図3参照)において、ピストン120とねじ軸112を組み立てる際、ストッパ128及び段差面130が外筒部125に覆われ、視認できなくなる(図1参照)。よって、組立の際にストッパ128及び段差面130の位相決めが困難となる。一方、変形例8によれば、平面137(突条134)によりストッパ128及び段差面130を把握することができる。よって、ストッパ128及び段差面130の位相決めが容易となる。
 なお、ストッパ128及び段差面130の位相決めを容易とする変形例は、上記したものに限定されない。例えば、本開示のピストンは、外周面に回り止め用のキー溝が設けられていてもよい。そして、このピストンによれば、キー溝を基準にストッパ及び段差面の位相を把握できるようにしてもよい。そのほか、ピストン120の第1端面121や外周面に目印となる印をつけてもよい。
(実施形態2)
 図16は、実施形態2の実施形態に係る直動アクチュエータの断面図である。図17は、実施形態2のナットの斜視図である。図18は、実施形態2のピストンの斜視図である。図1は、実施形態に係る直動アクチュエータ1の断面図である。図16に示すように、直動アクチュエータ1は、ボールねじ装置2と、ストローク制限機構3と、ピストン4と、モータ5と、ハウジング6と、を有する。
 ボールねじ装置2は、ねじ軸7と、ナット8と、複数のボール9を備える。ねじ軸7は、外周面に、外周軌道面(第1ねじ溝)10が設けられている。ねじ軸7は、ナット8を貫通している。ナット8は、内周面に、外周軌道面(第1ねじ溝)10と対応する内周軌道面(第2ねじ溝)11が設けられる。外周軌道面(第1ねじ溝)10と、内周軌道面(第2ねじ溝)11とでらせん状の軌道(転動路)が形成される。複数のボール9は、軌道(転動路)を転がる。ボールねじ装置2は、ハウジング6に玉軸受12を介して支持される。玉軸受12は、ナット8の両端に内輪13を嵌合し、ハウジング6に外輪14が嵌合される。これにより、ねじ軸7及びナット8は、滑らかに相対運動可能となっている。なお、内輪13は、ナット8に一体成形してもよい。
 ストローク制限機構3は、ナット8の一方の端面、かつ、径方向外側に設けられた突起部15(図17参照)と、後述のピストン4に設けられた係止部16とから構成される。これにより、ねじ軸7の縮み方向のストロークエンドにおいて、ねじ軸7とナット8との相対変位を規制する。
 図18に示すように、ピストン4は、係止部16が設けられている。係止部16は、ピストン4の端面に凹形状に設けられる。係止部16は、段差面(当接部)17と逃げ溝部18から形成される。段差面(当接部)17は、突起部15が接触する。逃げ溝部18は、外周軌道面(第1ねじ溝)10のリードに合わせて深さが深くなる。ピストン4は、ねじ軸7の一方の端部に、ねじ軸7と同軸に設けられた取付部(軸部)19に連結される。ピストン4は、有底筒状の形状をしており、取付部(軸部)19が内径側に挿入される。ピストン4と取付部(軸部)19とは、セレーション嵌合と圧入とにより結合し、ピストン4と取付部(軸部)19が回転不能に、かつ、取付部(軸部)19がピストン4から軸方向に抜け出さないように結合している。ピストン4の材料は、アルミ合金等が好適である。なお、逃げ溝部18は、全面の深さを同一としてもよく、突起部15が接しない程度の一定の深さとしてもよい。
 モータ5は、ハウジング6に配置される。モータ5は、出力軸(駆動軸)20を有する。出力軸(駆動軸)20の端部に、第1歯車(駆動歯車)21が設けられる。第1歯車(駆動歯車)21は、ナット8の外周面に設けられた第2歯車(従動歯車)22と噛み合う。第1歯車(駆動歯車)21は、モータ5の回転を、第2歯車(従動歯車)22を介してナット8に伝える。ナット8が回転すると、ねじ軸7が軸方向に移動する。これにより、ボールねじ装置2は、回転運動を直進運動に変換する。
 ハウジング6は、第1ハウジング23と第2ハウジング24から構成される。第1ハウジング23は、大径の第1大径凹部25と小径の第1小径凹部26を有する。第1大径凹部25は、ナット8の両端の内、ナット8の一方に嵌合された玉軸受12が嵌合される。第1小径凹部26は、モータ5が配置される。第1大径凹部25は、第1大径凹部25より小径の第2小径凹部27を有する。第2小径凹部27に、スライド可能にピストン4が嵌合される。第2小径凹部27は、シリンダの役割をする。第2ハウジング24は、第1ハウジング23の第1大径凹部25と同径の第2大径凹部28を有する。第2大径凹部28は、ナット8の他方に嵌合された玉軸受12が嵌合される。
 なお、本実施形態では、ストローク制限機構3について、ナット8の一方の端面に設けられた突起部15と、ピストン4に設けられた係止部16とから構成したが、ナット8の突起部15とピストン4の係止部16を各々逆に設けてもよい。また、直接ナット8の端面に突起部15を設けるのではなく、ナット8の端面に穴を開け、その穴にピンを挿入することで、突起部15としてもよい。さらには、ピン状の突起部15に合わせて、ピン状の突起部15が当接する係止部16の形状を円弧形状としてもよい。
 以上説明したように、本実施形態の直動アクチュエータ1は、ボールねじ装置2と、ストローク制限機構3と、ピストン4と、モータ5と、ハウジング6と、を有する。ボールねじ装置2は、ねじ軸7と、ナット8と、複数のボール9を備える。ストローク制限機構3は、ナット8の一方の端面に設けられた突起部15と、ピストン4に設けられた係止部16とから構成される。係止部16は、ピストン4の端面に凹形状に設けられる。係止部16は、段差面(当接部)17と逃げ溝部18から形成される。
 これによれば、従来のピストン4とは別体の部品に設けられていた係止部16をピストン4に設けることにより、部品を大型化せず係止部16の強度を向上することができる。したがって、簡易な構成でストローク制限機構3に過大な応力集中が発生することを防止することができる。
 また、係止部16をピストン4に設けることにより、従来の係止部16を設けていた別体の部品を削減、つまり、部品点数を削減することができる。さらには、従来の係止部16を設けていた別体の部品の削減により、直動アクチュエータ1の小型化を図ることができる。
 また、ねじ軸7は、ねじ軸7の一方の端部に設けた取付部(軸部)19を介してピストン4に連結されることで、軸方向への変位をピストン4にガイドされる。そのため、ボールねじ装置2のがたつきが抑えられ、ストローク制限機構3における突起部15と段差面(当接部)17の接触が安定することになり、突起部15と段差面(当接部)17の摩耗を低減することができる。
 1  直動アクチュエータ
 2  ボールねじ装置
 3  ストローク制限機構
 4  ピストン
 5  モータ
 6  ハウジング
 7  ねじ軸
 8  ナット
 9  ボール
 10  外周軌道面(第1ねじ溝)
 11  内周軌道面(第2ねじ溝)
 12  玉軸受
 13  内輪
 14  外輪
 15  突起部
 16  係止部
 17  段差面(当接部)
 18  逃げ溝部
 19  取付部(軸部)
 20  出力軸(駆動軸)
 21  第1歯車(駆動歯車)
 22  第2歯車(従動歯車)
 23  第1ハウジング
 24  第2ハウジング
 25  第1大径凹部
 26  第1小径凹部
 27  第2小径凹部
 28  第2大径凹部
 100  直動アクチュエータ
 101  モータ
 102  伝達装置
 103  ハウジング
 107  シリンダ
 110  ボールねじ装置
 111、111G  ナット
 111a  内周軌道面
 112  ねじ軸
 113  ボール
 116  一端面
 117、117G  突起部
 118、118G  当接面
 120、120A、120B、120C、120D、120E、120F、120G、120H  ピストン
 121  第1端面
 122  第2端面
 123  嵌合穴
 124  内筒部
 125  外筒部
 126  対向面
 127、127A、127B、127C、127D  逃げ溝部
 128、128G  ストッパ
 129、129A、129B、129C、129D  底面
 129a  螺旋面
 129b  平坦面
 130、130E、130G  段差面
 131  稜線
 131A  段差面
 133  隅部
 134  突条
 135  段差面
 136  稜線
 137  平面
 140  ストローク制限機構 

Claims (10)

  1.  ねじ軸、ナット、及び複数のボールを有するボールねじ装置と、
     前記ねじ軸の一端部に取り付けられたピストンと、
     前記一端部が指す第1方向への前記ねじ軸の作動開始時点を設定するストローク制限機構と、
     を有し、
     前記ナットは、
     前記第1方向を向く一端面と、
     前記一端面から突出する突起部と、
     を有し、
     前記ピストンは、
     前記第1方向と反対の第2方向を向き、前記一端面と対向する対向面と、
     前記対向面から前記第1方向に窪み、前記ねじ軸を中心に回転方向に延びる逃げ溝部と、
     前記逃げ溝部を囲む壁面のうち前記逃げ溝部の前記回転方向の一方の端部に配置され、前記回転方向の他方を向く段差面と、
     を有し、
     前記突起部と前記段差面とが当接し、前記ストローク制限機構を成している
     直動アクチュエータ。
  2.  前記ピストンは、前記逃げ溝部を囲む壁面のうち前記第1方向から前記逃げ溝部を囲む底面を有し、
     前記底面の少なくとも一部は、前記回転方向の一方に向かうにつれて前記第1方向に位置するように傾斜して螺旋状となっている
     請求項1に記載の直動アクチュエータ。
  3.  前記ピストンは、前記逃げ溝部を囲む壁面のうち前記第1方向から前記逃げ溝部を囲む底面を有し、
     前記底面の少なくとも一部は、前記回転方向の一方に向かうにつれて段階的に前記第1方向に位置し、階段状となっている
     請求項1又は請求項2に記載の直動アクチュエータ。
  4.  前記ピストンは、前記逃げ溝部を囲む壁面のうち前記第1方向から前記逃げ溝部を囲む底面を有し、
     前記底面の少なくとも一部は、平坦面となっている
     請求項1から請求項3のいずれか1項に記載の直動アクチュエータ。
  5.  前記ピストンは、前記回転方向の他方を向く面が前記段差面となっているストッパを有している
     請求項1から請求項4のいずれか1項に記載の直動アクチュエータ。
  6.  前記ピストンは、前記ストッパよりも径方向内側に位置し、前記第2方向に開口して前記ねじ軸の一端部が嵌合する嵌合穴が設けられた内筒部を有し、
     前記ストッパの径方向内側の端部は、前記内筒部と接続している
     請求項5に記載の直動アクチュエータ。
  7.  前記ピストンは、前記ストッパよりも径方向外側に位置し、外周面がハウジングに摺動する外筒部を有し、
     前記ストッパの径方向外側の端部は、前記外筒部と接続している
     請求項5又は請求項6に記載の直動アクチュエータ。
  8.  前記ピストンは、前記第1方向を向く第1端面を有し、
     前記第1端面には、前記ねじ軸と平行な軸方向から視て前記逃げ溝部と重なる位置に前記第1方向に突出する突条が設けられ、
     前記突条の突出量は、前記逃げ溝部の窪み量に対応している
    請求項1から請求項7のいずれか1項に記載の直動アクチュエータ。
  9.  前記突起部は、前記段差面と当接する当接面を有し、
    前記段差面は、前記ねじ軸と平行な軸方向から視て、径方向に延びる第1仮想線と平行であり、かつ前記回転方向の他方に配置され、
     前記当接面は、前記軸方向から視て、径方向に延びる第2仮想線と平行であり、かつ前記回転方向の他方に配置され、
     前記段差面と前記第1仮想線との距離は、前記当接面と前記第2仮想線との距離よりも大きい
     請求項1から請求項8のいずれか1項に記載の直動アクチュエータ。
  10.  前記ナットは、鉄系材料製であり、
     前記ピストンは、アルミニウム合金製である
     請求項1から請求項9のいずれか1項に記載の直動アクチュエータ。 
PCT/JP2021/038690 2020-10-23 2021-10-20 直動アクチュエータ WO2022085704A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/026,463 US20230349453A1 (en) 2020-10-23 2021-10-20 Linear motion actuator
JP2022557569A JP7456515B2 (ja) 2020-10-23 2021-10-20 直動アクチュエータ
CN202180062175.3A CN116325444A (zh) 2020-10-23 2021-10-20 直动式驱动器
KR1020237008385A KR20230048414A (ko) 2020-10-23 2021-10-20 직동 액추에이터
EP21882845.7A EP4199320A4 (en) 2020-10-23 2021-10-20 LINEAR ACTUATOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-177691 2020-10-23
JP2020177691 2020-10-23

Publications (1)

Publication Number Publication Date
WO2022085704A1 true WO2022085704A1 (ja) 2022-04-28

Family

ID=81290579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038690 WO2022085704A1 (ja) 2020-10-23 2021-10-20 直動アクチュエータ

Country Status (6)

Country Link
US (1) US20230349453A1 (ja)
EP (1) EP4199320A4 (ja)
JP (1) JP7456515B2 (ja)
KR (1) KR20230048414A (ja)
CN (1) CN116325444A (ja)
WO (1) WO2022085704A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023204016A1 (ja) * 2022-04-22 2023-10-26 日本精工株式会社 直動アクチュエータ
WO2023223633A1 (ja) * 2022-05-18 2023-11-23 アルプスアルパイン株式会社 操作装置および方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1078100A (ja) * 1996-09-05 1998-03-24 Delta Kogyo Co Ltd スクリュー式送り機構のストッパ構造
JP2016014437A (ja) 2014-07-03 2016-01-28 Ntn株式会社 電動アクチュエータ
WO2018015087A1 (de) * 2016-07-20 2018-01-25 Sfs Intec Holding Ag Fahrzeugbetriebsbremse mit elektromechanisch-hydraulischer bremskraftverstärkung
JP2019513206A (ja) * 2016-03-10 2019-05-23 ルーカス・オートモーティブ・ゲーエムベーハーLucas Automotive GmbH 複数の止めカムを有するスピンドルナット組立体
JP2019113168A (ja) 2017-12-26 2019-07-11 日本精工株式会社 直動アクチュエータ及びその製造方法
JP2020143693A (ja) * 2019-03-04 2020-09-10 Ntn株式会社 直動アクチュエータ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1078100A (ja) * 1996-09-05 1998-03-24 Delta Kogyo Co Ltd スクリュー式送り機構のストッパ構造
JP2016014437A (ja) 2014-07-03 2016-01-28 Ntn株式会社 電動アクチュエータ
JP2019513206A (ja) * 2016-03-10 2019-05-23 ルーカス・オートモーティブ・ゲーエムベーハーLucas Automotive GmbH 複数の止めカムを有するスピンドルナット組立体
WO2018015087A1 (de) * 2016-07-20 2018-01-25 Sfs Intec Holding Ag Fahrzeugbetriebsbremse mit elektromechanisch-hydraulischer bremskraftverstärkung
JP2019113168A (ja) 2017-12-26 2019-07-11 日本精工株式会社 直動アクチュエータ及びその製造方法
JP2020143693A (ja) * 2019-03-04 2020-09-10 Ntn株式会社 直動アクチュエータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4199320A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023204016A1 (ja) * 2022-04-22 2023-10-26 日本精工株式会社 直動アクチュエータ
US12072004B1 (en) 2022-04-22 2024-08-27 Nsk Ltd. Linear actuator
WO2023223633A1 (ja) * 2022-05-18 2023-11-23 アルプスアルパイン株式会社 操作装置および方法

Also Published As

Publication number Publication date
EP4199320A4 (en) 2024-01-17
JP7456515B2 (ja) 2024-03-27
KR20230048414A (ko) 2023-04-11
US20230349453A1 (en) 2023-11-02
EP4199320A1 (en) 2023-06-21
CN116325444A (zh) 2023-06-23
JPWO2022085704A1 (ja) 2022-04-28

Similar Documents

Publication Publication Date Title
WO2022085704A1 (ja) 直動アクチュエータ
US10683919B2 (en) Ball screw apparatus
JP5376279B2 (ja) 電動式直動アクチュエータおよび電動式ブレーキ装置
KR20010110724A (ko) 콤팩트 기어 감속 기구가 구비된 액츄에이터
EP2833022B1 (en) Ball screw device
US11525502B2 (en) Circular wave drive
JP5585865B2 (ja) 電動式直動アクチュエータおよび電動式ブレーキ装置
JP5252156B2 (ja) ディスクブレーキ
JP2008157378A (ja) 電動ディスクブレーキ
EP4012222B1 (en) Cycloidal speed reducer with preload adjustment device
WO2021002150A1 (ja) 電動ブレーキ装置
US11125301B1 (en) Circular wave drive
JP2023110266A (ja) 固定構造及び固定方法
WO2023204016A1 (ja) 直動アクチュエータ
JP7380334B2 (ja) 電動パーキングブレーキ用軸受部材
WO2023276999A1 (ja) 直動アクチュエータ
JP6339336B2 (ja) 軸受構造
WO2024135483A1 (ja) アクチュエータ
JP7196420B2 (ja) 直動アクチュエータ
WO2024162272A1 (ja) 電動制動装置
JP2023063921A (ja) ボールねじ装置及びアクチュエータ
CN115451095A (zh) 转向器
WO2023180921A1 (en) "linear actuating device of a brake caliper and brake caliper with said device"
JPH08159067A (ja) 流体圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882845

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022557569

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237008385

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021882845

Country of ref document: EP

Effective date: 20230315

NENP Non-entry into the national phase

Ref country code: DE