WO2022085423A1 - 水素生成装置、水素生成システム、原料カートリッジ、及び水素生成方法 - Google Patents

水素生成装置、水素生成システム、原料カートリッジ、及び水素生成方法 Download PDF

Info

Publication number
WO2022085423A1
WO2022085423A1 PCT/JP2021/036737 JP2021036737W WO2022085423A1 WO 2022085423 A1 WO2022085423 A1 WO 2022085423A1 JP 2021036737 W JP2021036737 W JP 2021036737W WO 2022085423 A1 WO2022085423 A1 WO 2022085423A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
reaction vessel
flow rate
hydrogen
pressure
Prior art date
Application number
PCT/JP2021/036737
Other languages
English (en)
French (fr)
Inventor
一雄 阿部
譲二 江口
徹 白須
鉄水 中川
Original Assignee
昭和飛行機工業株式会社
国立大学法人 琉球大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和飛行機工業株式会社, 国立大学法人 琉球大学 filed Critical 昭和飛行機工業株式会社
Publication of WO2022085423A1 publication Critical patent/WO2022085423A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a hydrogen generation device, a hydrogen generation system, a raw material cartridge, and a hydrogen generation method.
  • ammonia borane is a hydride that produces hydrogen by thermal decomposition, and has a higher molecular weight than organic hydride, so it has a high hydrogen storage capacity. Since it has a melting point of about 104 ° C and is non-flammable, it is also advantageous in that it is easy to store and transport.
  • Non-Patent Document 1 a method has been proposed in which an aqueous solution of ammonia borane is brought into contact with a catalyst such as Pt at room temperature to generate hydrogen by hydrolysis.
  • a device has been proposed in which a flexible reservoir containing ammonia borane water is urged by a spring or the like to introduce ammonia borane water into a reaction chamber in which the catalyst is housed and bring it into contact with the catalyst to generate hydrogen.
  • Patent Document 2 This device adjusts the valve opening of the microvalve provided between the reservoir and the reaction chamber according to the stack voltage of the fuel cell to which hydrogen is supplied, and the ammonia borane supplied from the reservoir to the reaction chamber. The amount of water is adjusted.
  • the method of obtaining hydrogen by hydrolyzing ammonia borane as in Patent Document 2 is easy to miniaturize and carry because hydrogen can be generated without pressurization at room temperature if there is water, ammonia borane and a catalyst. , Expected as an outdoor power source for leisure and disasters. On the other hand, since the users of outdoor power sources are assumed to be general consumers who do not have knowledge of ammonia borane, the operation of hydrogen generation is simple and the function of stably producing hydrogen is required. However, in the technique of Patent Document 2, the standard for determining the supply amount of ammonia borane water is the stack voltage of the fuel cell to which hydrogen is supplied, and the progress of the reaction in the reaction vessel is not taken into consideration.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a hydrogen generator capable of producing hydrogen stably by simple operation in a hydrogen generator that generates hydrogen by hydrolysis of ammonia borane. ..
  • one aspect of the present invention is a hydrogen generating apparatus for producing hydrogen by contacting an aqueous ammonia borane solution with a catalyst that promotes a reaction for producing hydrogen by hydrolysis of ammonia borane.
  • a reaction vessel that is detachably provided on a raw material cartridge that is a container filled with an aqueous ammonia borane and holds the catalyst, and a reaction vessel that is provided in the reaction vessel and supplied from the raw material cartridge to the reaction vessel. It is a connection part between a hydrogen discharge pipe from which hydrogen generated by hydrolysis of an ammonia borane aqueous solution is discharged, a pressure detection unit for detecting the pressure in the reaction vessel, and the raw material cartridge in the reaction vessel.
  • a flow control valve is provided in the raw material supply pipe that supplies the ammonia borane aqueous solution into the reaction vessel, and the flow rate can be adjusted by adjusting the valve opening, based on the pressure detected by the pressure detection unit.
  • the flow rate of the ammonia borane aqueous solution flowing from the raw material cartridge into the reaction vessel is adjusted so that the internal pressure of the reaction vessel is maintained at a predetermined target pressure, and the reaction is carried out after the supply of the ammonia borane aqueous solution. If the internal pressure of the container drops below the target pressure and the opening of the flow control valve is 100% but the target pressure cannot be maintained, it is determined that the raw material cartridge is empty and the flow rate is adjusted. It is characterized by comprising a flow rate adjusting means for closing the valve.
  • a hydrogen generating device that is easy to operate and can stably generate hydrogen in a hydrogen generating device that generates hydrogen by hydrolyzing ammonia borane.
  • FIG. 1 is a schematic view showing a hydrogen generation system including a hydrogen generation device according to the present embodiment, and a raw material cartridge, a reaction vessel, and a waste liquid storage vessel are shown in a vertical sectional view.
  • FIG. 2 is a diagram showing a modified example of the raw material cartridge of FIG. 3A and 3B are modified examples of the hydrogen generating apparatus of FIG. 1, in which FIG. 3A shows an example in which a catalyst is arranged in a conical shape, and FIG. 3B shows an example in which a shower is attached to a raw material supply pipe.
  • FIG. 4 is a diagram showing a procedure of hydrogen generation using the hydrogen generation system of FIG. 1, and shows a step of connecting a raw material cartridge to a reaction vessel to generate hydrogen.
  • FIG. 1 is a schematic view showing a hydrogen generation system including a hydrogen generation device according to the present embodiment, and a raw material cartridge, a reaction vessel, and a waste liquid storage vessel are shown in a vertical sectional view.
  • FIG. 2 is a diagram
  • FIG. 5 is a flow chart showing the operation of the flow rate control unit in the state of FIG.
  • FIG. 6 is a diagram showing a procedure of a hydrogen generation method using a hydrogen generation system including a hydrogen generation device according to the present embodiment, and shows a step of removing a raw material cartridge from a reaction vessel.
  • FIG. 7 is a diagram showing a procedure of a hydrogen generation method using a hydrogen generation system including a hydrogen generation device according to the present embodiment, and shows a step of connecting a waste liquid storage container to a reaction container.
  • FIG. 8 is a diagram showing a procedure of a hydrogen generation method using a hydrogen generation system including a hydrogen generation device according to the present embodiment, and shows a step of discharging waste liquid into a waste liquid storage container.
  • FIGS. 1 to 3 a schematic configuration of a hydrogen generation system 100 including a hydrogen generation device 1 according to the present embodiment will be described with reference to FIGS. 1 to 3.
  • the hydrogen generation system 100 includes a raw material cartridge 3, a hydrogen generation device 1, and a waste liquid storage container 5.
  • the raw material cartridge 3 is a container for storing the ammonia borane aqueous solution 51a, which is a raw material for hydrogen.
  • Ammonia borane aqueous solution 51a is a solution in which ammonia borane is dissolved in water.
  • the raw material cartridge 3 includes a raw material storage container 51, a raw material side connecting pipe 53, a raw material side valve 55, and a raw material side fixed flange 53a.
  • the raw material storage container 51 is a hollow container, and the inside is filled with an aqueous ammonia borane solution 51a and, if necessary, an atmospheric gas 51b.
  • the pressure of the atmospheric gas 51b is preferably higher than the internal pressure of the hydrogen generator 1. This is because the aqueous ammonia borane solution 51a can be supplied to the hydrogen generator 1 at the pressure of the atmospheric gas 51b.
  • the atmospheric gas 51b can be appropriately selected as long as it is a gas that does not decompose during the reaction in which the aqueous ammonia borane solution 51a produces hydrogen by hydrolysis, does not react with other materials, and does not interfere with the operation of the fuel cell. In terms of cost, air from which nitrogen (N 2 ) gas or carbon dioxide has been removed is preferable, but argon may also be used.
  • the ammonia borane concentration of the ammonia borane aqueous solution 51a is preferably such that the boric acid concentration in the waste liquid does not exceed the solubility, and specifically, about 1 mol / liter is preferable.
  • the dimensions of the raw material storage container 51 are set according to the volume of the aqueous ammonia borane solution 51a to be stored.
  • the shape of the raw material storage container 51 is preferably such that the stress due to the internal pressure of the atmospheric gas 51b and the weight of the aqueous ammonia borane solution 51a is not concentrated in a specific place.
  • FIG. 1 illustrates a vertically long cylindrical container having both ends spherical.
  • the raw material side connecting pipe 53 is a pipe for injecting / discharging the ammonia borane aqueous solution 51a and the atmospheric gas 51b between the inside and the outside of the raw material storage container 51, and is hollow connected to the lower end of the raw material storage container 51 in FIG. It penetrates to the inside of the part.
  • the raw material side valve 55 is a valve body that opens / closes the raw material side connecting pipe 53, and is provided in the middle of the raw material side connecting pipe 53.
  • the raw material side fixing flange 53a is a member for fixing the raw material side connecting pipe 53 in a state of being connected to the hydrogen generating device 1, and is provided around the outer periphery of the lower end of the raw material side connecting pipe 53 in FIG. It is a disk-shaped member having a hole for insertion.
  • the fixing means may be a clamp or the like instead of a bolt.
  • a material having a strength that does not corrode with the aqueous ammonia borane solution 51a and does not deform during use may be selected. For example, stainless steel is used.
  • the raw material storage container 51 of the raw material cartridge 3 shown in FIG. 1 is arranged above the hydrogen generating device 1, and supplies the ammonia borane aqueous solution 51a to the hydrogen generating device 1 by gravity and the pressure of the atmospheric gas 51b.
  • the raw material cartridge 3 may be provided with a mechanism for assisting the supply by pressurizing the ammonia borane aqueous solution 51a from the outside when supplying the ammonia borane aqueous solution 51a to the hydrogen generating apparatus 1. Examples of such a configuration include the configurations shown in FIGS. 2 (a) to 2 (c).
  • the raw material cartridge 3a shown in FIG. 2A has the same structure as the raw material cartridge 3, but a fluid injection pipe 71, which is a pipe different from the raw material side connecting pipe 53, is provided in the raw material storage container 51 of the raw material cartridge 3.
  • the point is different.
  • the fluid injection pipe 71 is a pipe for injecting a fluid for pressurizing the ammonia borane aqueous solution 51a from the outside when the ammonia borane aqueous solution 51a is pressurized and supplied to the hydrogen generator 1, and includes an injection flange 75 and an injection valve 73. ..
  • the injection flange 75 is a member for fixing the fluid supply source and the fluid injection pipe 71 in a connected state.
  • the injection flange 75 is provided around the outer periphery of the upper end of the fluid injection pipe 71, and a fixing bolt or the like is provided. It is a disk-shaped member having a hole for insertion.
  • FIG. 2A illustrates a syringe 77 as a fluid source.
  • the syringe 77 is provided with a syringe-side flange 79 that can be fixed to the tip of the fluid injection port in a state of being connected to the injection flange 75.
  • the structure of the syringe-side flange 79 is a disk-shaped member having a hole through which a fixing bolt or the like is inserted, similar to the injection flange 75.
  • the syringe-side flange 79 is connected to and fixed to the injection flange 75, and fluid is injected from the syringe 77 using an electric syringe pump or the like.
  • the fluid to be injected is a gas or liquid that does not decompose during the reaction in which the aqueous ammonia borane 51a hydrolyzes to generate hydrogen, does not react with other materials, and does not interfere with the operation of the fuel cell. Yes, for example, it is the same gas as the atmosphere gas 51b.
  • the injection valve 73 is a valve body that opens / closes the fluid injection pipe 71, and is provided in the middle of the fluid injection pipe 71. It is preferable that the injection valve 73 is a check valve because the atmospheric gas 51b and the ammonia borane aqueous solution 51a in the raw material storage container 51 do not flow back into the syringe 77. However, when the syringe 77 is provided with a check valve, the injection valve 73 does not have to be a check valve.
  • the ammonia borane aqueous solution 51a can be pressurized with the fluid from the outside through the fluid injection pipe 71. Therefore, the ammonia borane aqueous solution 51a can be supplied to the hydrogen generation device 1 regardless of the positional relationship between the raw material cartridge 3a and the hydrogen generation device 1 and their postures. Further, in this configuration, the pressure at the time of pressurizing the ammonia borane aqueous solution 51a can be adjusted by the amount and pressure of the fluid injected from the syringe 77 into the raw material cartridge 3a. Therefore, the pressure can be finely adjusted as compared with the known configuration in which the ammonia borane aqueous solution 51a is pressurized by an urging member such as a spring.
  • the raw material cartridge 3c shown in FIG. 2B is provided with the fluid injection pipe 71 like the raw material cartridge 3a, except that the bag body 81 is provided.
  • the bag 81 is provided in the raw material cartridge 3c and is connected to the fluid injection pipe 71. Here, it is provided in the raw material storage container 51.
  • the bag 81 is made of a material such as rubber that expands with the fluid injected from the fluid injection pipe 71, and pressurizes the ammonia borane aqueous solution 51a by expanding. In this configuration, the ammonia borane aqueous solution 51a is not directly pressurized by the fluid injected from the outside, but is pressurized through the bag 81.
  • Both the raw material cartridge 3a and the raw material cartridge 3c have the common effect that the pressure can be finely adjusted as compared with the known configuration in which the ammonia borane aqueous solution 51a is pressurized by an urging member such as a spring. Therefore, which structure should be adopted may be appropriately determined in consideration of the advantages of each. For example, since the raw material cartridge 3a does not require a bag 81, it is advantageous in terms of cost of the raw material cartridge 3a.
  • the raw material storage container 51 has a cylindrical outer shape, and the peripheral surface 83 of the cylinder has a bellows-like shape that can be expanded and contracted in the axial direction of the cylinder.
  • the crease of the bellows is bent and the raw material storage container 51 contracts in the axial direction of the cylinder to reduce the volume.
  • the filling pressure of the atmospheric gas 51b filled in the raw material storage container 51 becomes higher, so that the ammonia borane aqueous solution 51a is pressurized.
  • the mechanism for pressurizing the aqueous ammonia borane solution 51a is not a mechanism for injecting a fluid from the outside to pressurize it, but a mechanism for increasing the filling pressure of the filled fluid by contracting the raw material cartridge 3b to reduce the volume. But it may be.
  • This configuration is advantageous in that a fluid supply source is not required because the fluid is not injected from the outside when the ammonia borane aqueous solution 51a is pressurized. It is also advantageous that a known urging member such as a spring is not required.
  • the bellows-shaped portion contracts due to the weight of the raw material storage container 51 and the ammonia borane aqueous solution 51a, and the ammonia borane aqueous solution 51a is supplied to the hydrogen generation device 1. Will be done. In this case, it is also advantageous that the pressurization itself becomes unnecessary.
  • the hydrogen generation device 1 is a device that brings the ammonia borane aqueous solution 51a supplied from the raw material cartridge 3 into contact with the catalyst 41 to generate hydrogen and supply it to the fuel cell.
  • the hydrogen generation device 1 includes a reaction vessel 31, a raw material supply pipe 33, a generation side fixed flange 33a, a hydrogen discharge pipe 9, a pressure detection unit 11, a flow rate adjusting means 13, a hydrogen valve 9a, and a catalyst holding unit 38. , A watering means 35, and a float 61.
  • the hydrogen generation device 1 also includes a waste liquid discharge pipe 46, a waste liquid valve 48, a waste liquid container fixing flange 46a, a vent pipe 45, and a relief valve 47.
  • the reaction vessel 31 is a hollow vessel that holds the catalyst 41 and causes the supplied ammonia borane aqueous solution 51a to come into contact with the catalyst 41 to generate hydrogen.
  • the reaction vessel 31 in FIG. 1 exemplifies a vertically elongated cylindrical vessel having both ends spherical.
  • a cylindrical neck portion 29 having a diameter smaller than that of the reaction vessel 31 is provided at the upper end of the reaction vessel 31.
  • the neck portion 29 is a portion to which the hydrogen discharge pipe 9 and the vent pipe 45 are attached.
  • the raw material supply pipe 33 is a connection portion with the raw material cartridge 3 in the reaction vessel 31, and is a pipe for supplying the ammonia borane aqueous solution 51a from the raw material cartridge 3 into the reaction vessel 31 via the raw material side connection pipe 53.
  • the raw material supply pipe 33 is fixed to the upper end surface of the neck portion 29 in FIG.
  • the lower end of the raw material supply pipe 33 is arranged inside the reaction vessel 31, and the upper end protrudes upward from the neck portion 29.
  • the aqueous ammonia borane solution 51a can be supplied into the reaction vessel 31 by gravity from the raw material cartridge 3.
  • the generation side fixing flange 33a is a member for fixing the raw material side connecting pipe 53 in a state of being connected to the raw material supply pipe 33, and is provided around the outer periphery of the upper end of the raw material supply pipe 33 in FIG.
  • the generation-side fixing flange 33a has the same structure as the raw material-side fixing flange 53a, and can be fixed to each other by inserting bolts into the holes of each other and fastening them with nuts.
  • the pressure detection unit 11 is a pressure sensor that detects the pressure inside the reaction vessel 31, and if the pressure inside the reaction vessel 31 can be detected with a desired accuracy and does not corrode in the atmosphere inside the reaction vessel 31, the structure and material are appropriate. You can choose.
  • a pressure detecting unit 11 is provided in the middle of the hydrogen discharge pipe 9. This is to prevent the pressure detection unit 11 from coming into contact with the ammonia borane aqueous solution 51a that has flowed into the reaction vessel 31. However, if the contact with the aqueous ammonia borane solution 51a can be prevented, or if the pressure can be detected with a desired accuracy even if the contact is made, the pressure detecting unit 11 may be provided in the reaction vessel 31.
  • the flow rate adjusting means 13 is a means for controlling the rate of hydrogen generation by adjusting the flow rate of the ammonia borane aqueous solution 51a flowing into the reaction vessel 31.
  • the flow rate adjusting means 13 it is possible to prevent a state in which hydrogen is not generated due to an underspeed or a state in which the internal pressure of the reaction vessel 31 may be excessively increased due to an overspeed and the reaction vessel 31 may be damaged.
  • the flow rate adjusting means 13 is an aqueous ammonia borane solution that flows into the reaction vessel 31 from the raw material cartridge 3 so that the internal pressure of the reaction vessel 31 is maintained at a predetermined target pressure based on the pressure detected by the pressure detection unit 11. Adjust the flow rate of 51a.
  • the flow rate adjusting means 13 sets the flow rate of the aqueous ammonia borane solution 51a flowing from the raw material cartridge 3 into the reaction vessel 31 to 0 when the internal pressure is equal to or lower than the target pressure even at the maximum flow rate and the target pressure cannot be maintained.
  • the case where the internal pressure is equal to or lower than the target pressure even when the flow rate is maximum is the case where the entire amount of the aqueous ammonia borane solution 51a flowing into the reaction vessel 31 is hydrolyzed to exhaust the hydrogen.
  • the raw material cartridge 3 is empty and it is necessary to remove the raw material cartridge 3 from the reaction vessel 31, so the flow rate is set to 0.
  • the hydrogen generation system 100 when the aqueous ammonia borane solution 51a is supplied to the reaction vessel 31, hydrogen is generated in a state where the internal pressure of the reaction vessel 31 is maintained at the target pressure. Therefore, since the internal pressure at the time of reaction is automatically controlled only by the operation of supplying the aqueous ammonia borane solution 51a to the reaction vessel 31, the operation at the time of hydrogen generation is simple and stable hydrogen can be generated. Further, the hydrogen generation system 100 stops the supply of the aqueous ammonia borane solution 51a when the internal pressure of the reaction vessel 31 drops and cannot maintain the target pressure. Therefore, the control of the end of hydrogen generation can be automated, and the operation at the time of hydrogen generation can be automated. Is simple and can stably generate hydrogen.
  • the lower limit of the target pressure is the pressure at which the hydrogen production rate can supply the minimum amount of hydrogen required for the operation of the fuel cell to which hydrogen is supplied.
  • the upper limit of the target pressure is the upper limit of the internal pressure that does not damage the reaction vessel 31 or the fuel cell.
  • the flow rate adjusting means 13 shown in FIG. 1 includes a flow rate adjusting valve 15, a flow rate control unit 17, and a solution valve actuator 19.
  • the flow rate adjusting valve 15 is a valve body whose valve opening degree can be adjusted, and is provided in the middle of the raw material supply pipe 33.
  • the flow rate control unit 17 is a control unit that adjusts the flow rate of the ammonia borane aqueous solution 51a passing through the flow rate adjusting valve 15 according to the internal pressure of the reaction vessel 31, and is connected to the pressure detection unit 11 to input the internal pressure.
  • the flow rate control unit 17 sets the flow rate of the ammonia borane aqueous solution 51a supplied from the raw material cartridge 3 to the reaction vessel 31 so that the internal pressure of the reaction vessel 31 is maintained at a predetermined target pressure.
  • the valve opening degree of the flow rate adjusting valve 15 is adjusted.
  • the solution valve actuator 19 is an actuator that adjusts the valve opening degree of the flow rate control valve 15, is connected to the flow rate control unit 17 and the flow rate control valve 15, and drives the flow rate control valve 15 based on the command of the flow rate control unit 17 to drive the valve. Actually set the opening.
  • the flow rate control unit 17 controls the solution valve actuator 19 so that the internal pressure of the reaction vessel 31 is maintained at a predetermined target pressure, and adjusts the valve opening degree. Therefore, during the hydrogen generation reaction, the internal pressure of the reaction vessel 31 is maintained at the target pressure and the pressure during the reaction does not change, so that the reaction can proceed stably and rapidly.
  • the operation method of the flow rate adjusting means 13 in FIG. 1 exemplifies an electronic method using an electronic circuit.
  • the flow rate control unit 17 is a control unit equipped with an electronic PIC (Pressure Indicating Control)
  • the pressure detection unit 11 is a system that outputs the internal pressure of the reaction vessel 31 as an electric signal.
  • the solution valve actuator 19 is also electronic.
  • the internal pressure of the reaction vessel 31 detected by the pressure detection unit 11 is input to the flow rate control unit 17 as an electric signal, and the flow control unit 17 maintains the internal pressure of the reaction vessel 31 at the target pressure based on the input value.
  • a control signal indicating the degree is transmitted to the solution valve actuator 19.
  • the operation method of the flow rate adjusting means 13 may be an pneumatic method using an air circuit.
  • the pressure detection unit 11 is configured to output an air pressure signal indicating the detected internal pressure of the reaction vessel 31, and the flow rate adjusting means 13 is used as a control signal to the solution valve actuator 19 based on the air pressure signal input from the pressure detection unit 11. It is configured to output a pneumatic signal.
  • the solution valve actuator 19 is also an air-driven actuator.
  • the flow rate adjusting means 13 is an electronic type or an pneumatic type is appropriately set in consideration of the use of the hydrogen generating device 1 and the advantages of each.
  • the electronic type has a faster response speed than the pneumatic type because the information transmission medium is an electron, and it is easy to miniaturize. Therefore, when the installation space of the hydrogen generation device 1 is narrow or the hydrogen generation device 1 is portable. It is advantageous in some cases.
  • the pneumatic type does not require a power source for operation and can supply hydrogen even when a power source cannot be secured in the event of a disaster, which is advantageous when the hydrogen generation device 1 is used in the event of a disaster.
  • the flow rate control unit 17 is a control unit that adjusts the valve opening degree of the flow rate adjusting valve 15 according to the internal pressure of the reaction vessel 31, the internal pressure of the reaction vessel 31 rises / falls by how much the valve opening degree should be. You need to know what to do. Therefore, it is preferable that the flow rate control unit 17 stores in advance a valve opening degree-pressure mapping 17a showing the relationship between the valve opening degree of the flow rate adjusting valve 15 and the pressure in the reaction vessel 31. The flow rate control unit 17 can adjust the flow rate by referring to the valve opening degree-pressure mapping 17a and adjusting the valve opening degree so that the reaction vessel 31 is maintained at the target pressure.
  • mapping the one obtained in the previous experiment conducted using the ammonia borane aqueous solution 51a having the same concentration may be used.
  • the flow rate is adjusted under the condition that the target pressure is surely maintained, so that hunting and overshoot can be prevented.
  • a mapping showing the relationship between the flow rate and the pressure in the reaction vessel 31 may be obtained in advance and the mapping may be referred to.
  • the flow rate adjusting means 13 of FIG. 1 is a device that performs feedback control for adjusting the valve opening degree based on the internal pressure of the reaction vessel 31, but cascade control may also be performed.
  • the detection target of the primary regulator may be one of the valve opening degree or the flow rate
  • the detection target of the secondary regulator may be the other of the valve opening degree or the flow rate. If the flow rate adjusting valve 15 cannot detect the flow rate, a flow meter is provided in the raw material supply pipe 33.
  • the hydrogen generation device 1 is a device that hydrolyzes the aqueous ammonia borane solution 51a at room temperature to obtain hydrogen, and it is not necessary to control the reaction to be promoted by an operation such as raising the temperature.
  • a structure for keeping the reaction vessel 31 warm may be provided. In this case, the structure for keeping the heat is controlled.
  • the temperature of the reaction vessel 31 may be maintained at about room temperature.
  • the aqueous ammonia borane solution 51a may boil if the reaction amount increases and too much heat is generated. Therefore, a cooling mechanism may be provided to keep the aqueous ammonia borane solution 51a at least below the boiling point.
  • the flow rate adjusting means 13 adjusts the flow rate of the ammonia borane aqueous solution 51a in order to suppress the fluctuation of the internal pressure due to hydrogen generation, so that the internal pressure rises as the flow rate increases, and as a result, the reaction vessel 31 is pressurized.
  • a pressurizing means other than the flow rate adjusting means 13 is unnecessary. This is because the hydrogen production reaction by hydrolysis of the aqueous ammonia borane solution 51a proceeds even at normal pressure.
  • the start condition is basically set manually. However, the start condition may be automated by configuring the raw material side valve 55 so that the flow rate adjusting means 13 can automatically open and close.
  • the target for the termination condition of hydrogen generation that is, the condition for determining that the raw material cartridge 3 is emptied due to the hydrolysis of all the ammonia borane aqueous solution 51a and the exhaustion of hydrogen, is the internal pressure of the reaction vessel 31 after the supply of the ammonia borane aqueous solution 51a. This is a case where the pressure drops below the pressure and the target pressure cannot be maintained even though the opening degree of the flow control valve 15 is 100% (fully open).
  • the present embodiment is characterized in that the internal pressure of the reaction vessel 31 is used not only for controlling the reaction but also for determining whether or not the raw material cartridge 3 is empty. Is.
  • the following examples are given as more specific conditions for the termination condition of hydrogen production.
  • the internal pressure of the reaction vessel 31 becomes lower than the target pressure in a state where the flow rate of the aqueous ammonia borane solution 51a flowing from the raw material cartridge 3 into the reaction vessel 31 is maximized, that is, in a state where the valve opening of the flow rate adjusting valve 15 is fully opened.
  • the end condition can be the case where it decreases (Condition A).
  • the opening degree of the flow rate adjusting valve 15 is fully opened, the flow rate of the aqueous ammonia borane solution 51a supplied to the reaction vessel 31 becomes maximum and the hydrogen generation reaction proceeds, so that the pressure should increase. Therefore, if the pressure is equal to or lower than the target pressure in this state, it can be determined that the raw material cartridge 3 is emptied and hydrogen is also generated.
  • the flow rate may be reduced to 0 by closing the flow rate adjusting valve 15 to end hydrogen generation.
  • the internal pressure in the reaction vessel may rise below the target pressure, but under condition A, the internal pressure in the reaction vessel “decreases” below the target pressure. Therefore, the condition A is not satisfied even if the internal pressure is lower than the target pressure while the pressure is rising.
  • the raw material cartridge 3 can be quickly removed after the reaction is completed, and waste liquid can be treated or a new raw material cartridge can be treated. 3 can be installed quickly.
  • Condition B is different from Condition A in that it is determined that hydrogen production has been completed when a predetermined time has elapsed from the state in which it is determined that hydrogen production has been completed under Condition A.
  • the reason for waiting for the elapse of a predetermined time under condition B is due to the rate of hydrogen generation and the unreacted ammonia borane aqueous solution 51a even after the flow rate of the ammonia borane aqueous solution 51a is maximum and the internal pressure of the reaction vessel 31 becomes equal to or less than the target pressure. This is because the production of hydrogen may continue. Even when the maximum flow rate becomes equal to or lower than the target pressure, it is possible to prevent the unreacted ammonia borane aqueous solution 51a from being discarded as a waste liquid by waiting until a predetermined time elapses.
  • the predetermined time referred to here is a time at which hydrogen is predicted to be generated after the maximum flow rate becomes equal to or lower than the target pressure, and may be actually measured by an experiment.
  • condition B does not satisfy the condition even if the internal pressure is equal to or less than the target pressure while the pressure is rising.
  • the end condition may be set based on the filling pressure of the atmospheric gas 51b of the raw material cartridge 3 (condition C). .. Specifically, the flow rate control unit 17 applies the internal pressure when the internal pressure of the reaction vessel 31 is lower than the filling pressure by a predetermined value, that is, when the internal pressure of the reaction vessel 31 is close to the filling pressure. It may be determined that the target pressure cannot be maintained. In this case, the flow rate of the flow rate adjusting valve 15 is set to 0, and hydrogen generation is terminated.
  • the predetermined predetermined value is the difference pressure between the filling pressure of the atmospheric gas 51b and the internal pressure of the reaction vessel 31 when the aqueous ammonia borane solution 51a in the raw material cartridge 3 is empty and hydrogen is completely released. It can be obtained by experiment. In this way, the end condition may be set based on the filling pressure of the atmospheric gas 51b of the raw material cartridge 3. In this configuration, it is not always necessary to refer to the valve opening degree and the flow rate of the flow rate adjusting valve 15, so that the control is simpler than the condition A and the condition B.
  • the termination condition may be determined by the worker (condition D).
  • the solution valve actuator 19 may be provided with a switching mechanism 21 for switching the adjustment of the flow rate by the solution valve actuator 19 from one of manual and automatic to the other.
  • the flow rate adjustment by the solution valve actuator 19 is automatically switched by the switching mechanism 21, and when the worker determines that the hydrogen generation reaction is completed, the flow rate adjustment is switched to manual and manually.
  • the flow rate adjusting valve 15 may be closed at.
  • the raw material cartridge 3 can be removed when the worker visually recognizes that the raw material cartridge 3 is empty, so that workability is improved.
  • the hydrogen discharge pipe 9 is a pipe that supplies the hydrogen generated by the hydrogen generation device 1 to the fuel cell.
  • One end of the hydrogen discharge pipe 9 penetrates the cylindrical surface of the neck portion 29 and is exposed inside the reaction vessel 31, and the other end is connected to a fuel cell (not shown).
  • the hydrogen discharge pipe 9 is provided with a porous material called an ammonia filter for collecting ammonia or an ammonia absorbing material of a metal salt such as NiCl 2 or copper sulfate inside. This is because when hydrogen is produced by the hydrolysis of the aqueous ammonia borane solution 51a, ammonia may be produced as a by-product, and the ammonia may interfere with the operation of the fuel cell.
  • the hydrogen valve 9a is a valve body that opens / closes the hydrogen discharge pipe 9, and is provided in the middle of the hydrogen discharge pipe 9.
  • FIG. 1 illustrates a structure in which a valve opening degree can be automatically set as a hydrogen valve 9a.
  • a hydrogen valve actuator 9b that electrically adjusts the valve opening degree of the hydrogen valve 9a is connected.
  • the hydrogen valve actuator 9b is electrically connected to the flow rate control unit 17.
  • the flow control unit 17 drives the hydrogen valve actuator 9b so as to supply hydrogen at a pressure within the operating range of a fuel cell or the like connected to the hydrogen discharge pipe 9 based on the pressure detected by the pressure detection unit 11. Then, the valve opening degree of the hydrogen valve 9a is adjusted.
  • the hydrogen valve 9a is opened at a valve opening that can supply hydrogen with a pressure within the operating range. If the pressure is other than the above, the hydrogen valve 9a is closed.
  • the operation method does not have to be a method of electrically controlling the hydrogen valve actuator 9b.
  • a self-supporting pressure reducing valve may be used to supply hydrogen at a pressure within the operating range of a fuel cell or the like.
  • the pressure detection unit 11 is provided with a meter that allows the worker to visually recognize the detected pressure, and the worker manually operates the hydrogen valve 9a so as to refer to the meter and supply hydrogen at a pressure within the operating range of the fuel cell or the like. It may be a method.
  • the catalyst holding portion 38 is a pair of porous plate-shaped members that hold the catalyst 41 by sandwiching it up and down, and is provided further below the lower end of the raw material supply pipe 33, which is the outlet of the raw material supply pipe 33.
  • the member on the upper side with respect to the catalyst 41 is referred to as a dispersion plate 37
  • the member on the lower side is referred to as a holding plate 39.
  • the reason why the catalyst holding portion 38 is porous is that the ammonia borane aqueous solution 51a and the waste liquid after the reaction for generating hydrogen from the ammonia borane aqueous solution 51a are passed therethrough.
  • the catalyst holding portion 38 has a strength capable of holding the catalyst 41, and the structure can be appropriately set as long as the diameter of the porous pores is smaller than the diameter of the catalyst 41. It may be a plate with holes such as punching metal, or it may be a wire mesh.
  • the material and shape of the catalyst 41 can be appropriately selected as long as it is a material that can promote the hydrolysis reaction of ammonia borane at room temperature, normal pressure, specifically, about 20 ° C. and 101325 Pa. Specifically, a granular material in which a catalyst metal is supported on activated carbon can be exemplified.
  • the catalyst metal platinum (Pt) is preferable in terms of accelerating the production rate of hydrogen, but Ti, Rh, Pd and the like may be used.
  • the catalyst metal may be used alone or as a mixture of a plurality of metals. Alternatively, an alloy containing these metals may be used.
  • the particle size is smaller than the pores of the catalyst holding portion 38, the catalyst 41 will flow out from the pores, so that it needs to be larger than the pores of the catalyst holding portion 38.
  • the amount of the catalyst 41 is appropriately set in consideration of the volume of the reaction vessel 31, the load capacity of the holding plate 39, and the target of the amount of hydrogen produced per unit time.
  • the amount of the catalyst metal supported on the activated carbon may be constant, but the catalyst metal is supported per unit mass of the activated carbon from the holding plate 39 which is the lower catalyst holding portion 38 toward the dispersion plate 37 which is the upper catalyst holding portion 38. It may be laminated so that the mass of the catalyst metal is large. In this configuration, the amount of catalyst metal is larger in the upper catalyst 41, which is more likely to come into contact with the unreacted ammonia borane aqueous solution 51a. Is provided. As a result, the hydrogen generation rate is made uniform as a whole, boiling of the solution due to excessive heat of reaction can be prevented, and unreacted ammonia borane can be prevented from flowing into the waste liquid storage container 5. ..
  • the dispersion plate 37 may be a porous plate having a conical or pyramidal shape.
  • the peripheral surface of the dispersion plate 37 is connected to the holding plate 39, and the tip of the cone faces the outlet of the raw material supply pipe 33.
  • the laminated structure of the catalyst 41 held in the space also becomes a cone.
  • the surface area of the uppermost surface of the laminated body of the catalyst 41 is larger than that in the case where the dispersion plate 37 is a disk-shaped member as shown in FIG. Therefore, the area of the catalyst 41 in contact with the aqueous ammonia borane solution 51a supplied into the reaction vessel 31 can be increased in a short time, and the rate of hydrogen generation can be increased.
  • the watering means 35 is a means for evenly sprinkling the ammonia borane aqueous solution 51a supplied from the raw material supply pipe 33 onto the catalyst 41 in a range wider than the cross-sectional area of the outlet of the raw material supply pipe 33. Since the raw material supply pipe 33 is a pipe, if there is no sprinkling means 35, the ammonia borane aqueous solution 51a supplied into the reaction vessel 31 comes into contact with the catalyst 41 only in the range of the cross-sectional area of the outlet of the raw material supply pipe 33. In this case, since the catalyst 41 that does not come into contact with the aqueous ammonia borane solution 51a does not contribute to the hydrolysis reaction, it is preferable to provide the watering means 35.
  • FIG. 1 illustrates a storage dish 35a as a watering means 35.
  • the storage dish 35a is provided below the outlet of the raw material supply pipe 33 and above the dispersion plate 37, and is a circular dish-shaped member that temporarily stores the ammonia borane aqueous solution 51a supplied from the raw material supply pipe 33.
  • the edge of the reservoir 35a is a horizontal circle. In this structure, the ammonia borane aqueous solution 51a supplied from the raw material supply pipe 33 into the reaction vessel 31 first accumulates in the storage dish 35a.
  • the ammonia borane aqueous solution 51a overflowing from the edge of the storage dish 35a is radially and evenly flowed down to the dispersion plate 37 and flows into the catalyst 41.
  • the watering means 35 does not have to be the storage dish 35a as long as the aqueous ammonia borane solution 51a can be sprinkled over a wider range than the cross-sectional area of the outlet of the raw material supply pipe 33.
  • the shower 35b shown in FIG. 3B may be used as the watering means 35.
  • the shower 35b is a hollow conical component whose open upper end is connected to the outlet of the raw material supply pipe 33.
  • the lower end surface is a plate having an area larger than the cross-sectional area of the outlet of the raw material supply pipe 33, and has a plurality of pores.
  • the ammonia borane aqueous solution 51a supplied into the reaction vessel 31 from the outlet of the raw material supply pipe 33 is uniformly and widely sprayed from the pores of the shower 35b toward the catalyst 41. Therefore, the injection range and the injection amount can be easily adjusted by the number and size of the pores.
  • the float 61 shown in FIG. 1 is a float that can move up and down according to the water level in the reaction vessel 31 of the aqueous ammonia borane solution 51a and the waste liquid after hydrogen generation. It is composed of a material having a lower density than 51a or waste liquid. If the float 61 does not restrain the horizontal movement, it will move horizontally in the reaction vessel 31 according to the fluctuation of the water level, and the position will be difficult to understand. Therefore, it is preferable to restrain the horizontal movement by fixing it to a slide provided on the inner wall of the reaction vessel 31 that allows only vertical movement.
  • the float 61 can be visually recognized from the outside of the reaction vessel 31 by, for example, forming the reaction vessel 31 in the moving range of the float 61 with a transparent material such as glass.
  • the float 61 does not necessarily have to be visible from the outside if the water level in the reaction vessel 31 can be known to an outside worker. For example, an electric signal may be transmitted or a buzzer may be sounded according to the water level.
  • the water level of the aqueous ammonia borane solution 51a in the reaction vessel 31 can be seen from the outside of the reaction vessel 31 by looking at the position of the float 61.
  • the hydrogen generation reaction in one raw material cartridge 3 is completed after the entire amount of the aqueous ammonia borane solution 51a in the raw material cartridge 3 has been supplied into the reaction vessel 31. Therefore, if the remaining amount of the ammonia borane aqueous solution 51a in the raw material cartridge 3 can be grasped from the position of the float 61, the progress of the hydrogen generation reaction can also be known.
  • the worker determines whether or not hydrogen generation has been completed, if the water level indicated by the position of the float 61 becomes the water level corresponding to the case where the ammonia borane aqueous solution 51a in the raw material cartridge 3 becomes empty, hydrogen is generated. It can be determined that the formation reaction has been completed. It may be determined that the hydrogen generation reaction is completed after a predetermined time has elapsed from reaching this water level. As shown in FIG. 1, the float 61 may be provided in the raw material cartridge 3 instead of in the reaction vessel 31. This is because the water level in the reaction vessel 31 rises as the water level in the raw material cartridge 3 decreases, so that if the water level in the raw material cartridge 3 is known, the water level in the reaction vessel 31 can also be known.
  • the waste liquid discharge pipe 46 is a pipe that serves as a flow path for discharging the waste liquid after hydrogen generation from the reaction vessel 31, and is provided below the catalyst holding portion 38 in FIG. 1 and connected to the lower end surface of the reaction vessel 31.
  • the waste liquid valve 48 is a valve body that opens / closes the waste liquid discharge pipe 46, and is provided in the middle of the waste liquid discharge pipe 46.
  • the waste liquid container fixing flange 46a is a member for fixing the waste liquid discharge pipe 46 in a state of being connected to the waste liquid storage container 5, and is provided around the outer periphery of the lower end of the waste liquid discharge pipe 46 like the raw material side fixing flange 53a for fixing.
  • An example is a disk-shaped member having a hole through which a bolt or the like is inserted.
  • the vent tube 45 is a tube that discharges the gas in the reaction vessel 31 to the outside when the internal pressure of the reaction vessel 31 becomes too high and the reaction vessel 31 may be damaged.
  • One end of the vent tube 45 penetrates the cylindrical surface of the neck portion 29 and is exposed inside the reaction vessel 31, and the other end is open to the atmosphere.
  • the relief valve 47 is a valve body that opens / closes the vent pipe 45, but is closed when the differential pressure between the internal pressure and the atmospheric pressure of the reaction vessel 31 is less than a predetermined set pressure, and the differential pressure exceeds the set pressure. It is a valve body that opens automatically.
  • the set pressure is a differential pressure corresponding to the internal pressure at which the reaction vessel 31 may be damaged.
  • the vent pipe 45 and the relief valve 47 When the vent pipe 45 and the relief valve 47 are provided, when the differential pressure rises above the set pressure, the relief valve 47 automatically opens and the gas in the reaction vessel 31 is automatically vented until the differential pressure becomes less than the set pressure. It is discharged from 45. Therefore, even if the internal pressure of the reaction vessel 31 cannot be controlled due to a failure of the flow rate adjusting means 13 during hydrogen generation and the pressure rises, the internal pressure can be maintained to such an extent that the reaction vessel 31 is not damaged.
  • a known material can be selected as long as the material of the hydrogen generating apparatus 1 is not corroded by the aqueous ammonia borane solution 51a and is not deformed by the internal pressure of the generated hydrogen and the weight of the aqueous ammonia borane 51a.
  • stainless steel may be used.
  • the waste liquid storage container 5 is a hollow container for storing the waste liquid, and the structure and material can be appropriately set as long as it can be connected to the reaction container 31 to store the waste liquid.
  • the raw material cartridge 3 is also a waste liquid storage container 5
  • a structure in which the waste liquid discharge pipe 46 is connected to the raw material cartridge 3 and the waste liquid can be stored in the raw material cartridge 3 is preferable.
  • the raw material supply pipe 33 and the waste liquid discharge pipe 46 preferably have the same inner and outer diameters at the ends serving as outlets to the outside, and can be connected to the raw material side connection pipe 53.
  • the generation side fixing flange 33a and the waste liquid container fixing flange 46a have the same shape and position of the holes through which the bolts are inserted, and it is preferable that both of them have a structure that can be fixed to the raw material side fixing flange 53a.
  • an empty raw material cartridge 3 that has completely supplied the ammonia borane aqueous solution 51a to the reaction vessel 31 is connected to the waste liquid discharge pipe 46, and the waste liquid is stored in the raw material cartridge 3, so that the empty raw material cartridge 3 is stored in the waste liquid. It is used as a container 5. Therefore, the manufacturing cost and workability are excellent as compared with the case where the raw material cartridge 3 and the waste liquid storage container 5 are designed separately. Moreover, since the empty raw material cartridge 3 can be used without being discarded, the environmental load is small. Further, when the peripheral surface 83 of the cylinder of the raw material storage container 51 has a bellows shape that can be expanded and contracted as in the raw material cartridge 3b shown in FIG.
  • the raw material side valve 55 is opened, the aqueous ammonia borane solution 51a is supplied from the raw material cartridge 3 to the reaction vessel 31 and brought into contact with the catalyst 41 to generate hydrogen by hydrolysis (hydrogen generation step).
  • the flow rate adjusting means 13 is also activated.
  • the generated hydrogen opens the hydrogen valve 9a and supplies it to the fuel cell.
  • the flow rate adjusting means 13 controls the internal pressure of the reaction vessel 31 according to the flow shown in FIG. 5, and if the termination is not performed manually, the termination is determined.
  • FIG. 5 illustrates the cases of condition A and condition B.
  • the flow rate control unit 17 of the flow rate adjusting means 13 determines whether or not the internal pressure of the reaction vessel 31 detected by the pressure detection unit 11 is the target pressure, and if it is the target pressure, returns. If the pressure is not the target pressure, the process proceeds to S2 (S1 in FIG. 5). When it is determined that the internal pressure in S1 is not the target pressure, the flow rate control unit 17 refers to the valve opening-pressure mapping 17a, etc., so that the reaction vessel 31 is maintained at the target pressure.
  • the flow rate is adjusted by adjusting the opening degree (S2 in FIG. 5).
  • the flow rate control unit 17 determines whether or not the internal pressure of the reaction vessel 31 drops below the target pressure even when the flow rate is maximum, specifically, whether or not the valve opening of the flow rate adjusting valve 15 drops below the target pressure at the maximum. To judge. If it is determined that the pressure has dropped below the target pressure, the process proceeds to S4, and if it is determined that the pressure has not dropped below the target pressure, the pressure returns (S3 in FIG. 5). In the case of condition B, the process proceeds to S4 when the valve opening is maximum and the target pressure or less has elapsed for a predetermined time.
  • the flow rate control unit 17 determines that the production of hydrogen has been completed, closes the flow rate adjusting valve 15 and returns (FIG. 5). S4).
  • the raw material side valve 55 and the hydrogen valve 9a are closed, and as shown in FIG. 6, the raw material side connecting pipe 53 of the empty raw material cartridge 3 after supplying the ammonia borane aqueous solution 51a is exhausted. Remove from the raw material supply pipe 33. Next, as shown in FIG. 7, the raw material side fixing flange 53a of the removed empty raw material cartridge 3 and the waste liquid container fixing flange 46a are fastened and fixed with bolts or the like. As a result, the raw material side connecting pipe 53 of the empty raw material cartridge 3 is fixed in a state of being connected to the waste liquid discharge pipe 46. In this state, the waste liquid valve 48 and the raw material side valve 55 are opened, and as shown in FIG. 8, the waste liquid remaining in the reaction vessel 31 after hydrogen generation is discharged to the empty raw material cartridge 3 and recovered (waste liquid recovery step). ).
  • the hydrolysis reaction of ammonia borane can be described by the following reaction formula (1).
  • the waste liquid contains an aqueous solution of ammonium metaborate, but changes from metaboric acid to boric acid over time. This waste liquid may be discarded or may be used if there is a use. Alternatively, the dissolved component such as boric acid may be separated and recovered from the waste liquid.
  • the hydrogen generation apparatus 1 of the present embodiment when the aqueous ammonia borane solution 51a is supplied to the reaction vessel 31, the hydrogen generation apparatus 1 of the present embodiment generates hydrogen in a state where the internal pressure of the reaction vessel 31 is maintained at the target pressure. If the internal pressure of the reaction vessel 31 drops below the target pressure after the supply of the ammonia borane aqueous solution 51a and the opening of the flow rate adjusting valve 15 is 100% but the target pressure cannot be maintained, the raw material cartridge 3 is empty. The flow rate adjusting valve 15 is closed. Therefore, since the internal pressure at the time of reaction is automatically controlled only by the operation of supplying the aqueous ammonia borane solution 51a to the reaction vessel 31, the operation is simple and stable hydrogen can be generated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

水素生成装置1は、アンモニアボラン水溶液51aが充填された原料カートリッジ3に脱着可能に設けられ、触媒41を保持する反応容器31と、反応容器31に設けられ、アンモニアボラン水溶液51aの加水分解で生成した水素が排出される水素排出管9と、反応容器31内の圧力を検出する圧力検出部11と、圧力検出部11が検出した圧力を基に、反応容器31の内圧が予め定められた所定の目標圧力に維持されるように原料カートリッジ3から反応容器31に流入するアンモニアボラン水溶液51aの流量を調整し、反応容器31の内圧が目標圧力以下に低下し、かつ流量調整弁15の開度が100%でも目標圧力に維持できない場合、原料カートリッジが空と判断して流量調整弁15を閉鎖する流量調整手段13を備える。これによりアンモニアボランの加水分解で水素を生成する水素生成装置において、操作が簡便で、安定して水素を生成できる水素生成装置1を提供する。

Description

水素生成装置、水素生成システム、原料カートリッジ、及び水素生成方法
 本発明は水素生成装置、水素生成システム、原料カートリッジ、及び水素生成方法に関する。
 水素は燃焼時に二酸化炭素を生成しないため、化石燃料より環境負荷が小さい燃料であるが、化石燃料より融点が低いので、液体や気体で貯蔵する場合は専用の高圧タンクが必要になる。高圧タンクは金属製なので水素が拡散して脆化する問題もある。
 水素の拡散を利用して水素を貯蔵する水素吸蔵合金のような貯蔵手段もあるが、水素吸蔵合金は密度が合金の中では大きい希少金属なので重くてコストが高い問題がある。
 メチルシクロヘキサンのような有機ハイドライドに水素を貯蔵する方法もあるが、有機ハイドライドは水素発生に加熱が必要であり、かつ材料の蒸気圧が高いため発生した水素の純度が低下する問題がある。
 そこで、水素を貯蔵する手段としてアンモニアボラン(NH3BH3)が検討されている(特許文献1)。アンモニアボランは熱分解で水素を生成する水素化物で、有機ハイドライドよりも分子量が小さいため、水素貯蔵能が高い。融点が104℃程度で非可燃性なので貯蔵、運搬し易い点も有利である。一方で、熱分解には熱源が必要であり、また反応が多段階で制御も複雑になりやすく、装置が大型化する問題がある。
 そこで、アンモニアボラン水溶液をPt等の触媒に常温で接触させ、加水分解で水素を生成する方法が提案されている(非特許文献1)。
 またアンモニアボラン水を含有する可撓性の貯蔵器をバネ等で付勢することで触媒が収納された反応室にアンモニアボラン水を導入して触媒に接触させて水素を発生させる装置も提案されている(特許文献2)。この装置は貯蔵器と反応室の間に設けられたマイクロバルブのバルブ開度を水素の供給対象である燃料電池のスタック電圧に応じて調整することで貯蔵器から反応室に供給されるアンモニアボラン水の量を調整している。
米国特許出願公開第2007/0253894号明細書 日本出願特開2004-87470号公報
Manish Chandra, Qiang Xu, "A high-performance hydrogen generation system: Transition metal-catalyzed dissociation hydrolysis of ammonia-borane", Journal of Power Sources 156(2006), p190-194
 特許文献2のようにアンモニアボランの加水分解で水素を得る方法は、水とアンモニアボランと触媒があれば常温で加圧せずに水素を生成できるため、小型化や可搬化が容易であり、レジャーや災害時のアウトドア電源として期待される。
 一方でアウトドア電源の使用者はアンモニアボランの知識がない一般消費者も想定されるため、水素生成の操作が簡便で、安定して水素を生成できる機能が求められる。しかしながら特許文献2の技術はアンモニアボラン水の供給量を決める基準が水素の供給対象である燃料電池のスタック電圧であり、反応容器内の反応の進行を考慮していない。そのため、反応容器内での水素の生成量が多すぎたり少なすぎたりした場合に供給量を調整できず、安定して水素を生成できない可能性があった。
 本発明は上記課題に鑑みてなされたものであり、アンモニアボランの加水分解で水素を生成する水素生成装置において、操作が簡便で、安定して水素を生成できる水素生成装置の提供を目的とする。
 上記の課題を解決するため、本発明の一態様は、アンモニアボランの加水分解で水素を生成する反応を促進する触媒にアンモニアボラン水溶液を接触させて水素を生成する水素生成装置であって、前記アンモニアボラン水溶液が充填された容器である原料カートリッジに脱着可能に設けられ、前記触媒を保持する容器である反応容器と、前記反応容器に設けられ、前記原料カートリッジから前記反応容器に供給された前記アンモニアボラン水溶液の加水分解で生成した水素が排出される水素排出管と、前記反応容器内の圧力を検出する圧力検出部と、前記反応容器における前記原料カートリッジとの接続部であり、前記原料カートリッジから前記反応容器内に前記アンモニアボラン水溶液を供給する原料供給管に設けられ、バルブ開度を調整することで流量を調整可能な流量調整弁を備え、前記圧力検出部が検出した圧力を基に、前記反応容器の内圧が予め定められた所定の目標圧力に維持されるように前記原料カートリッジから前記反応容器に流入する前記アンモニアボラン水溶液の流量を調整し、前記アンモニアボラン水溶液の供給後に前記反応容器の内圧が目標圧力以下に低下し、かつ前記流量調整弁の開度が100%であるにも関わらず、目標圧力に維持できない場合、前記原料カートリッジが空になったと判断して前記流量調整弁を閉鎖する流量調整手段と、を備えることを特徴とする。
 この構成では、反応容器にアンモニアボラン水溶液が供給されると反応容器の内圧が目標圧に保持された状態で水素が生成する。反応容器の内圧が目標圧力以下に低下し、かつ流量調整弁の開度が100%であるにも関わらず、目標圧力に維持できない場合は原料カートリッジが空になったと判断して流量調整弁を閉鎖する。
 そのため、反応容器にアンモニアボラン水を供給する操作のみで反応時の内圧の制御が自動で行えるので、操作が簡便で、かつ安定して水素を生成できる。
 本発明によれば、アンモニアボランの加水分解で水素を生成する水素生成装置において、操作が簡便で、安定して水素を生成できる水素生成装置を提供できる。
図1は本実施形態に係る水素生成装置を備える水素生成システムを示す概略図であり、原料カートリッジ、反応容器、及び廃液貯留容器は縦断面図で図示している。 図2は図1の原料カートリッジの変形例を示す図である。 図3は図1の水素生成装置の変形例であって、(a)は触媒を円錐状に配置した例、(b)は原料供給管にシャワーを取り付けた例を示す。 図4は図1の水素生成システムを用いた水素生成の手順を示す図であって、原料カートリッジを反応容器に接続して水素を生成する工程を示す。 図5は図4の状態における流量制御部の動作を示すフロー図である。 図6は本実施形態に係る水素生成装置を備える水素生成システムを用いた水素生成方法の手順を示す図であって、原料カートリッジを反応容器から取り外す工程を示す。 図7は本実施形態に係る水素生成装置を備える水素生成システムを用いた水素生成方法の手順を示す図であって、廃液貯留容器を反応容器に接続する工程を示す。 図8は本実施形態に係る水素生成装置を備える水素生成システムを用いた水素生成方法の手順を示す図であって、廃液貯留容器に廃液を排出する工程を示す。
 以下、図面に基づき本発明に好適な実施形態を詳細に説明する。
 最初に図1~図3を参照して本実施形態に係る水素生成装置1を備える水素生成システム100の概略構成を説明する。
 図1では水素生成装置1として、アンモニアボランの加水分解で水素を生成する反応を促進する触媒41にアンモニアボラン水溶液51aを接触させて水素を生成して燃料電池に供給する装置が例示されている。
 図1に示すように水素生成システム100は原料カートリッジ3、水素生成装置1、及び廃液貯留容器5を備える。
 原料カートリッジ3は水素の原料となるアンモニアボラン水溶液51aを貯留する容器である。アンモニアボラン水溶液51aはアンモニアボランを水に溶解させた溶液である。図1に示すように原料カートリッジ3は原料貯留容器51、原料側接続管53、原料側バルブ55、及び原料側固定フランジ53aを備える。
 原料貯留容器51は中空容器であり、内部にアンモニアボラン水溶液51a及び必要に応じて雰囲気ガス51bが充填される。
 雰囲気ガス51bの圧力は水素生成装置1の内圧よりも高いのが好ましい。アンモニアボラン水溶液51aを雰囲気ガス51bの圧力で水素生成装置1に供給できるためである。雰囲気ガス51bはアンモニアボラン水溶液51aが加水分解で水素を生成する反応の際に分解せず、他の材料と反応もせず、燃料電池の動作の妨げにならない気体であれば適宜選択できる。費用の面で窒素(N2)ガスや二酸化炭素を除去した空気が好ましいが、アルゴンでもよい。
 アンモニアボラン水溶液51aのアンモニアボラン濃度は高いほど単位体積当たりの水素生成量が増えるが、水素生成後の残留物である廃液中のホウ酸濃度も高くなり、溶解度を超えてホウ酸が析出すると触媒41に付着して水素生成の妨げになる。そのためアンモニアボラン濃度は、廃液中のホウ酸濃度が溶解度を超えない程度が好ましく、具体的には1mol/リットル程度が好ましい。
 原料貯留容器51の寸法は貯蔵するアンモニアボラン水溶液51aの体積に応じて設定する。原料貯留容器51の形状は雰囲気ガス51bの内圧とアンモニアボラン水溶液51aの重量による応力が特定箇所に集中しない形状が好ましい。図1では両端が球形の縦長の円筒状の容器を例示している。
 原料側接続管53は原料貯留容器51の内部と外部との間でアンモニアボラン水溶液51aや雰囲気ガス51bの注入/排出を行う管であり、図1では原料貯留容器51の下端に接続されて中空部の内部まで貫通している。
 原料側バルブ55は原料側接続管53を開放/閉鎖する弁体であり、原料側接続管53の中途に設けられる。
 原料側固定フランジ53aは原料側接続管53を水素生成装置1に接続した状態で固定する部材であり、図1では原料側接続管53の下端の外周回りに設けられ、固定用のボルト等が挿通する孔を備えた円盤状の部材である。固定手段はボルトではなく、クランプ等でもよい。
 原料カートリッジ3を構成する材料はアンモニアボラン水溶液51aで腐食せず、使用時に変形しない強度の材料を選択すればよく、例えばステンレス鋼を用いる。
 図1に示す原料カートリッジ3の原料貯留容器51は水素生成装置1の上方に配置されており、アンモニアボラン水溶液51aを重力及び雰囲気ガス51bの圧力で水素生成装置1に供給する。
 ただし原料カートリッジ3は、アンモニアボラン水溶液51aを水素生成装置1に供給する際に外部からアンモニアボラン水溶液51aを加圧して供給を補助する機構を備えてもよい。
 このような構成としては図2(a)~(c)に示す構成が挙げられる。
 図2(a)に示す原料カートリッジ3aは、原料カートリッジ3と同様の構造であるが、原料側接続管53と別の管である流体注入管71を原料カートリッジ3の原料貯留容器51に設けた点が異なる。
 流体注入管71はアンモニアボラン水溶液51aを加圧して水素生成装置1に供給する際にアンモニアボラン水溶液51aを加圧する流体を外部から注入する管であり、注入用フランジ75及び注入用バルブ73を備える。
 注入用フランジ75は流体の供給源と流体注入管71を接続した状態で固定する部材であり、図2(a)では流体注入管71の上端の外周回りに設けられ、固定用のボルト等が挿通する孔を備えた円盤状の部材である。
 図2(a)では流体の供給源としてシリンジ77を例示している。シリンジ77は流体注入口先端に注入用フランジ75と連結した状態で固定できるシリンジ側フランジ79を備えている。シリンジ側フランジ79の構造は注入用フランジ75と同様に固定用のボルト等が挿通する孔を備えた円盤状の部材である。この構造ではシリンジ側フランジ79を注入用フランジ75と連結して固定し、電気式のシリンジポンプ等を利用してシリンジ77から流体を注入する。注入する流体は雰囲気ガス51bと同様にアンモニアボラン水溶液51aが加水分解で水素を生成する反応の際に分解せず、他の材料と反応もせず、燃料電池の動作の妨げにならない気体や液体であり、例えば雰囲気ガス51bと同じ気体である。
 注入用バルブ73は流体注入管71を開放/閉鎖する弁体であり、流体注入管71の中途に設けられる。
 注入用バルブ73は逆止弁であると、原料貯留容器51内の雰囲気ガス51bやアンモニアボラン水溶液51aがシリンジ77に逆流しないので好ましい。ただしシリンジ77に逆止弁を設ける場合は注入用バルブ73が逆止弁でなくてもよい。
 このように原料カートリッジ3aが流体注入管71を備えることで、外部から流体注入管71を介して流体でアンモニアボラン水溶液51aを加圧できる。
 そのため、原料カートリッジ3aと水素生成装置1の位置関係やこれらの姿勢によらず、アンモニアボラン水溶液51aを水素生成装置1に供給できる。
 また、この構成ではシリンジ77から原料カートリッジ3aに注入する流体の量や圧力でアンモニアボラン水溶液51aを加圧する際の圧力を調整できる。そのため、バネのような付勢部材でアンモニアボラン水溶液51aを加圧する公知の構成と比べて圧力を細かく調整できる。
 図2(b)に示す原料カートリッジ3cは、原料カートリッジ3aと同様に流体注入管71を備えるが、袋体81を備える点が異なる。
 袋体81は原料カートリッジ3c内に設けられて流体注入管71と接続される。ここでは、原料貯留容器51内に設けられる。袋体81は流体注入管71から注入された流体で膨張するゴム等の材料で構成されており、膨張することでアンモニアボラン水溶液51aを加圧する。この構成では外部から注入した流体でアンモニアボラン水溶液51aを直接加圧するのではなく、袋体81を介して加圧している。
 原料カートリッジ3aと原料カートリッジ3cはいずれもバネのような付勢部材でアンモニアボラン水溶液51aを加圧する公知の構成と比べて圧力を細かく調整できるという効果は共通する。よって、いずれの構造を採用するかは、各々の利点を考慮して適宜決定すればよい。
 例えば原料カートリッジ3aは袋体81が不要であるため、原料カートリッジ3aのコスト面で有利である。
 一方で原料カートリッジ3cは加圧用の流体とアンモニアボラン水溶液51aが接触しないので、アンモニアボラン水溶液51aと反応する流体を用いることができ、流体の選択の幅が広い点で有利である。
 図2(c)に示す原料カートリッジ3bは、原料貯留容器51が円筒状の外形を有し、円筒の周面83が円筒の軸方向に伸縮可能な蛇腹状の形状を有する。
 この構造では原料カートリッジ3bの上端を下方に向けて例えば電気式のアクチュエータ等で押圧することで蛇腹の折り目が曲げられて原料貯留容器51が円筒の軸方向に収縮して容積が小さくなる。容積が小さくなると原料貯留容器51に充填された雰囲気ガス51bの充填圧が高くなるため、アンモニアボラン水溶液51aを加圧する。
 このようにアンモニアボラン水溶液51aを加圧する機構は、流体を外部から注入して加圧する機構ではなく、原料カートリッジ3bを収縮させて容積を小さくすることで充填された流体の充填圧を高くする機構でもよい。
 この構成ではアンモニアボラン水溶液51aを加圧する際に外部から流体を注入しないので、流体の供給源が不要である点で有利である。またバネのような公知の付勢部材が不要である点も有利である。
 また、この構成では外部から気体の流入がなければ、原料貯留容器51及びアンモニアボラン水溶液51aの重量によってはこれらの自重で蛇腹状の部分が収縮してアンモニアボラン水溶液51aが水素生成装置1に供給される。この場合は加圧自体が不要となる点も有利である。
 水素生成装置1は原料カートリッジ3から供給されたアンモニアボラン水溶液51aを触媒41と接触させて水素を生成して燃料電池に供給する装置である。
 図1に示すように水素生成装置1は、反応容器31、原料供給管33、生成側固定フランジ33a、水素排出管9、圧力検出部11、流量調整手段13、水素バルブ9a、触媒保持部38、散水手段35、及びフロート61を備える。
 水素生成装置1は、廃液排出管46、廃液バルブ48、廃液容器固定フランジ46a、ベント管45、及びリリーフバルブ47も備える。
 反応容器31は触媒41を保持し、供給されたアンモニアボラン水溶液51aと触媒41を接触させて水素を発生させる中空容器である。図1の反応容器31は、両端が球形の縦長の円筒状の容器を例示している。
 反応容器31の上端には反応容器31よりも径が小さい円筒状のネック部29が設けられる。ネック部29は水素排出管9やベント管45が取り付けられる部分である。
 原料供給管33は反応容器31における原料カートリッジ3との接続部であり、原料カートリッジ3から原料側接続管53を介して反応容器31内にアンモニアボラン水溶液51aを供給する管である。原料供給管33は図1ではネック部29の上端面に固定される。原料供給管33の下端は反応容器31に内に配置され、上端はネック部29から上方に突出する。これにより、原料カートリッジ3からアンモニアボラン水溶液51aを重力で反応容器31内に供給できる。
 生成側固定フランジ33aは原料側接続管53を原料供給管33に接続した状態で固定する部材であり、図1では原料供給管33に上端の外周回りに設けられる。生成側固定フランジ33aは原料側固定フランジ53aと同様の構造であり、互いの孔にボルトを挿通してナットで締結することで互いを固定できる。
 圧力検出部11は反応容器31内の圧力を検出する圧力センサであり、反応容器31内の圧力を所望の精度で検出でき、反応容器31内の雰囲気で腐食しないのであれば構造や材料は適宜選択できる。図1では水素排出管9の中途に圧力検出部11を設けている。これは反応容器31内に流入したアンモニアボラン水溶液51aに圧力検出部11が接触するのを防ぐためである。ただしアンモニアボラン水溶液51aとの接触を防止できる場合や、接触しても圧力を所望の精度で検出できるのであれば反応容器31内に圧力検出部11を設けてもよい。
 流量調整手段13は反応容器31内に流入するアンモニアボラン水溶液51aの流量を調整することで水素が生成する速度を制御する手段である。水素の生成時は、生成した水素の分圧で反応容器31内の圧力が変動する。よって流量調整手段13を設けることで、速度過小で水素が生成されない状態や、速度過多で反応容器31の内圧が上昇し過ぎて反応容器31が損傷する可能性がある状態を防ぐことができる。
 流量調整手段13は圧力検出部11が検出した圧力を基に、反応容器31の内圧が予め定められた所定の目標圧力に維持されるように原料カートリッジ3から反応容器31に流入するアンモニアボラン水溶液51aの流量を調整する。
 一方で流量調整手段13は、流量が最大でも内圧が目標圧力以下で、目標圧力に維持できない場合は原料カートリッジ3から反応容器31に流入するアンモニアボラン水溶液51aの流量を0にする。
 流量が最大でも内圧が目標圧力以下の場合とは、反応容器31に流入したアンモニアボラン水溶液51aの全量が加水分解されて水素を出し尽くした場合である。この場合は原料カートリッジ3が空になっており、反応容器31から原料カートリッジ3を取り外す必要があるため、流量を0にする。
 このように水素生成システム100は、反応容器31にアンモニアボラン水溶液51aが供給されると反応容器31の内圧が目標圧力に維持された状態で水素が生成する。
 そのため、反応容器31にアンモニアボラン水溶液51aを供給する操作のみで反応時の内圧の制御が自動で行われるので、水素生成の際の操作が簡便で、かつ安定して水素を生成できる。
 さらに水素生成システム100は、反応容器31の内圧が低下して目標圧力に維持できない場合はアンモニアボラン水溶液51aの供給を停止するため、水素生成の終了の制御も自動化でき、水素生成の際の操作が簡便で、かつ安定して水素を生成できる。
 目標圧力の下限は、水素が供給される対象である燃料電池の動作に必要な最低限の水素量を供給できる水素生成速度となる圧力である。目標圧力の上限は、反応容器31や燃料電池が損傷しない内圧の上限である。
 図1に示す流量調整手段13は、流量調整弁15、流量制御部17、溶液バルブアクチュエータ19を備える。
 流量調整弁15はバルブ開度を調整可能な弁体であり、原料供給管33の中途に設けられる。
 流量制御部17は、反応容器31の内圧に応じて流量調整弁15を通過するアンモニアボラン水溶液51aの流量を調整する制御部であり、圧力検出部11に接続されて内圧が入力される。具体的には流量制御部17は、原料カートリッジ3から反応容器31に供給されるアンモニアボラン水溶液51aの流量が反応容器31の内圧が予め定められた所定の目標圧力に維持される流量となるように、流量調整弁15のバルブ開度を調整する。
 溶液バルブアクチュエータ19は流量調整弁15のバルブ開度を調整するアクチュエータであり、流量制御部17及び流量調整弁15に接続されて流量制御部17の指令に基づき流量調整弁15を駆動してバルブ開度を実際に設定する。
 この構成では、流量制御部17は、反応容器31の内圧が予め定められた所定の目標圧力に維持されるように溶液バルブアクチュエータ19を制御してバルブ開度を調整する。
 よって水素生成反応中は反応容器31の内圧が目標圧力に維持されて反応中の圧力が変わらないので反応を安定して速やかに進行させられる。
 図1の流量調整手段13の動作方式は電子回路を用いた電子式を例示している。
 例えば流量制御部17は電子式のPIC(Pressure Indicating Control、圧力指示調節計)を備えた制御部であり、圧力検出部11は反応容器31の内圧を電気信号として出力する方式である。溶液バルブアクチュエータ19も電子式である。
 この構成では圧力検出部11が検出した反応容器31の内圧が電気信号として流量制御部17に入力され、入力値に基づき流量制御部17が反応容器31の内圧が目標圧力に維持されるバルブ開度を示す制御信号を溶液バルブアクチュエータ19に送信する。
 ただし、流量調整手段13の動作方式はエア回路を用いた空気式でもよい。
 例えば圧力検出部11は検出した反応容器31の内圧を示す空気圧信号を出力するように構成し、流量調整手段13は圧力検出部11から入力された空気圧信号に基づき溶液バルブアクチュエータ19に制御信号として空気圧信号を出力するように構成する。溶液バルブアクチュエータ19もエア駆動アクチュエータとする。
 流量調整手段13を電子式とするか、空気式とするかは、水素生成装置1の用途と各々の利点を考慮して適宜設定する。
 例えば電子式は情報の伝達媒体が電子であるため応答速度が空気式よりも早く、小型化が容易であるため、水素生成装置1の設置スペースが狭い場合や水素生成装置1を携帯用にする場合に有利である。
 一方で空気式は動作に電源が不要であり、災害時に電源が確保できない場合でも水素を供給できるため、災害時に水素生成装置1を用いる場合は有利である。
 流量制御部17が反応容器31の内圧に応じて流量調整弁15のバルブ開度を調整する制御部である場合、バルブ開度をどの程度にすれば反応容器31の内圧がどの程度上昇/下降するかを把握する必要がある。そこで流量制御部17には、流量調整弁15のバルブ開度と反応容器31内の圧力の関係を示すバルブ開度―圧力マッピング17aが予め記憶されているのが好ましい。流量制御部17はこのバルブ開度―圧力マッピング17aを参照して、反応容器31が目標圧力に維持されるようにバルブ開度を調整することで、流量を調整できる。マッピングは同一濃度のアンモニアボラン水溶液51aを用いて行った事前の実験で求めたものを用いればよい。
 このようにバルブ開度―圧力マッピング17aに基づき流量を調整することで、流量が目標圧力に確実に維持される条件で調整するのでハンチングやオーバーシュートを防止できる。流量を直接計測する場合、流量と反応容器31内の圧力の関係を示すマッピングを予め求めて該マッピングを参照すればよい。
 なお、反応容器31の内圧を目標圧力に維持する具体的な制御方式は公知の方式を用いればよい。図1の流量調整手段13は反応容器31の内圧に基づきバルブ開度を調整するフィードバック制御を行う装置であるが、カスケード制御を行ってもよい。
 カスケード制御を行う場合、一次調節計の検出対象をバルブ開度又は流量の一方とし、二次調節計の検出対象をバルブ開度又は流量の他方とすればよい。流量調整弁15が流量を検出できない場合、流量計を原料供給管33に設ける。
 反応容器31内の温度制御は原則として不要である。水素生成装置1は常温でアンモニアボラン水溶液51aを加水分解して水素を得る装置であり、温度を上昇させる等の操作で反応を促進させる制御を行う必要がないためである。
 ただし真夏や真冬に水素生成装置1を設置した場所が室温と比べて著しく高温又は低温である場合は、反応容器31を保温する構造を設けてもよく、この場合は保温する構造を制御して、反応容器31の温度を室温程度に維持してもよい。あるいは、アンモニアボラン水溶液51aの加水分解反応は発熱反応であるため、反応量が増えて熱が発生し過ぎるとアンモニアボラン水溶液51aが沸騰する可能性がある。そのため、アンモニアボラン水溶液51aを少なくとも沸点未満に保持する冷却機構を設けてもよい。
 反応容器31は、水素生成に伴う内圧の変動を抑制するために流量調整手段13がアンモニアボラン水溶液51aの流量を調整するため、流量が増えると内圧が上昇し、結果として加圧される。ただし流量調整手段13以外の加圧手段は不要である。アンモニアボラン水溶液51aの加水分解による水素生成反応は常圧でも進行するためである。
 水素生成が開始されるのは作業員が原料側バルブ55を開放した時点であるため、開始条件は基本的に手動で設定される。ただし原料側バルブ55を流量調整手段13が自動で開閉できる構成にする等して開始条件を自動化してもよい。
 水素生成の終了条件、つまりアンモニアボラン水溶液51aがすべて加水分解して水素を放出し尽くして原料カートリッジ3が空になったと判断する条件は、アンモニアボラン水溶液51aの供給後に反応容器31の内圧が目標圧力以下に低下し、かつ流量調整弁15の開度が100%(全開)であるにも関わらず、目標圧力に維持できない場合である。このように、本実施形態では公知の水素生成システムと異なり、反応容器31の内圧を反応の制御に用いるだけでなく、原料カートリッジ3が空になったか否かの判定に用いているのが特徴である。水素生成の終了条件の、より具体的な条件としては、以下の例が挙げられる。
 まず、原料カートリッジ3から反応容器31に流入するアンモニアボラン水溶液51aの流量を最大にした状態、つまり流量調整弁15のバルブ開度を全開にした状態で、反応容器31の内圧が目標圧力以下に低下した場合を終了条件にできる(条件A)。
 流量調整弁15の開度が全開の場合は、反応容器31に供給されるアンモニアボラン水溶液51aの流量が最大となり水素生成反応が進むので圧力が上昇するはずである。そのため、この状態で圧力が目標圧力以下の場合、原料カートリッジ3が空になり、水素も生成され尽くしたと判断できる。
 よってこの状態で反応容器31の内圧を目標圧力に維持できないと判断して、流量調整弁15を閉鎖することで流量を0にして水素生成を終了してよい。なお、アンモニアボラン水溶液51aの流入直後はバルブ開度を最大にしても、反応容器内の内圧が目標圧力以下で上昇する場合があるが、条件Aは反応容器の内圧が目標圧力以下に「低下した」場合なので、圧力が上昇中は、内圧が目標圧力以下でも条件Aを満たさない。
 この構成では原料カートリッジ3内のアンモニアボラン水溶液51aが空になった時点で流量調整弁15を閉鎖するので、反応終了後に速やかに原料カートリッジ3を取り外すことができ、廃液の処理や、新しい原料カートリッジ3の取り付けを速やかに行える。
 次に、反応容器31に流入するアンモニアボラン水溶液51aの流量を最大にした状態で所定時間経過しても反応容器31の内圧が目標圧力以下の場合も終了条件にできる(条件B)。
 条件Bは、条件Aで水素生成が終了したと判断する状態が所定時間経過した場合に水素生成が終了したと判断する点で条件Aと異なる。
 条件Bで所定時間の経過を待つ理由は、アンモニアボラン水溶液51aの流量が最大で反応容器31の内圧が目標圧力以下になった後でも水素生成の速度や未反応のアンモニアボラン水溶液51aに起因して水素の生成が続く場合があるためである。
 流量最大で目標圧力以下になった場合も所定時間が経過するまで待つことで、未反応のアンモニアボラン水溶液51aが廃液として捨てられるのを防ぐことができる。
 ここでいう所定時間とは、流量最大で目標圧力以下になってから水素が生成すると予測される時間であり、実験で実測すればよい。なお、条件Bは条件Aと同様に、圧力が上昇中は、内圧が目標圧力以下でも条件は満たさない。
 さらに、原料カートリッジ3内の雰囲気ガス51bの充填圧よりも目標圧力を低く設定している場合、終了条件は原料カートリッジ3の雰囲気ガス51bの充填圧を基準に設定してもよい(条件C)。具体的には流量制御部17は、反応容器31の内圧が充填圧よりも予め定められた所定の値だけ低い値になった場合、つまり反応容器31の内圧が充填圧に近い場合に内圧を目標圧力に維持できないと判断してもよい。この場合、流量調整弁15の流量を0にして、水素生成を終了する。
 これは、原料カートリッジ3内のアンモニアボラン水溶液51aが空になって水素生成も終了した場合、原料カートリッジ3から雰囲気ガス51bが反応容器31に流入して内圧が充填圧に近づくためである。
 予め定められた所定の値とは、原料カートリッジ3内のアンモニアボラン水溶液51aが空で、水素も放出され尽くした場合の雰囲気ガス51bの充填圧と反応容器31の内圧の差圧であり、予め実験で求めればよい。
 このように、原料カートリッジ3の雰囲気ガス51bの充填圧を基準に終了条件を設定してもよい。この構成では流量調整弁15のバルブ開度や流量を必ずしも参照しなくてもよいので条件Aや条件Bよりも制御が単純になる。
 終了条件は作業員が決定してもよい(条件D)。
 具体的には、溶液バルブアクチュエータ19による流量の調節を手動と自動の一方から他方に切り替える切替機構21を溶液バルブアクチュエータ19に設ければよい。
 この場合、水素の生成開始時は溶液バルブアクチュエータ19による流量の調節を切替機構21で自動に切り替え、水素生成反応が終了したと作業員が判断した時点で流量の調節を手動に切り替えて、手動で流量調整弁15を閉鎖すればよい。
 切替機構21を設けて作業員が終了条件を決定することで、原料カートリッジ3が空になったことを作業員が視認した時点で原料カートリッジ3を取り外せるので作業性が向上する。
 水素排出管9は水素生成装置1で生成された水素を燃料電池に供給する管である。水素排出管9は一端がネック部29の円筒面を貫通して反応容器31の内部に露出し、他端が図示しない燃料電池に接続される。水素排出管9はアンモニアを捕集するアンモニアフィルタと呼ばれる多孔質材やNiCl2か硫酸銅のような金属塩のアンモニア吸収材が内部に設けられるのが好ましい。アンモニアボラン水溶液51aの加水分解で水素が生成する際には、アンモニアが副生成される場合があり、アンモニアは燃料電池の動作の妨げになる場合があるためである。
 水素バルブ9aは水素排出管9を開放/閉鎖する弁体であり、水素排出管9の中途に設けられる。
 図1では水素バルブ9aとして自動でバルブ開度を設定可能な構造を例示している。具体的には水素バルブ9aのバルブ開度を電動で調整する水素バルブアクチュエータ9bが接続されている。水素バルブアクチュエータ9bは流量制御部17に電気的に接続されている。この構成では流量制御部17は圧力検出部11が検出した圧力を基に、水素排出管9に接続された燃料電池等の動作範囲内の圧力の水素を供給するように水素バルブアクチュエータ9bを駆動して水素バルブ9aのバルブ開度を調整する。具体的には、圧力検出部11が検出した圧力が燃料電池等の動作範囲内の圧力よりも高い場合に、動作範囲内の圧力の水素を供給できるバルブ開度で水素バルブ9aを開き、それ以外の圧力の場合は水素バルブ9aを閉じる。
 ただし、水素バルブ9aは水素排出管9に接続された装置が必要とする圧力の水素を供給できるのであれば、動作方式は水素バルブアクチュエータ9bを電動で制御する方式でなくてもよい。例えば自立式の減圧弁を用いて、燃料電池等の動作範囲内の圧力の水素を供給する方式でもよい。あるいは圧力検出部11に検出圧を作業員が視認できるメータを設け、作業員がメータを参照して燃料電池等の動作範囲内の圧力の水素を供給するように手動で水素バルブ9aを操作する方式でもよい。
 触媒保持部38は触媒41を上下に挟んで保持する一対の多孔質の板状部材であり、原料供給管33の出口である原料供給管33の下端の、さらに下方に設けられる。ここでは触媒41に対して上側の部材を分散板37、下側の部材を保持板39と称す。
 触媒保持部38が多孔質である理由はアンモニアボラン水溶液51aや、アンモニアボラン水溶液51aから水素を生成する反応が生じた後の廃液を通すためである。
 触媒保持部38は触媒41を保持できる強度を備え、多孔質の孔の径が触媒41の径よりも小さい板状であれば、構造は適宜設定できる。パンチングメタルのような孔の空いた板でもよいし、金網でもよい。
 触媒41の材料と形状は、室温、常圧、具体的には20℃、101325Pa程度でアンモニアボランの加水分解反応を促進できる材料であれば適宜選択できる。
 具体的には活性炭に触媒金属が担持された粒状物を例示できる。触媒金属としては水素の生成速度を速める点で白金(Pt)が好ましいが、Ti、Rh、Pd等を用いてもよい。触媒金属は単体で用いてもよいし、複数の金属の混合物でもよい。あるいはこれらの金属を含む合金でもよい。
 触媒41の粒径は小さいほど体積に対する表面積の割合が大きくなり、アンモニアボラン水溶液51aと触媒41が接触しやすくなるため、水素が生成する速度が速くなる。一方で粒径が触媒保持部38の孔部よりも小さくなると触媒41が孔部から流出してしまうため、触媒保持部38の孔部より大きい必要がある。
 触媒41の量は反応容器31の容積、保持板39の耐荷重、及び単位時間当たりの水素生成量の目標を考慮して適宜設定する。
 活性炭への触媒金属の担持量は一定でもよいが、下側の触媒保持部38である保持板39から上側の触媒保持部38である分散板37に向けて、活性炭の単位質量当たりの担持された触媒金属の質量が大きくなるように積層されてもよい。
 この構成では、未反応のアンモニアボラン水溶液51aと接触する可能性が高い上方の触媒41の方が触媒金属の量が多くなるため、下部になるほど触媒量を増やし水素が生成する速度を促進する機構を設ける。これにより全体的に水素発生速度が均一化され、かつ過度な反応熱による溶液の沸騰も防ぐことが可能であり、さらに未反応のアンモニアボランが廃液貯留容器5に流入するのを防ぐことができる。
 水素が生成する速度を向上させる方法としては、活性炭への触媒金属の担持量を変えずに、触媒41の積層構造を変える方法もある。
 例えば図3(a)に示すように分散板37を、円錐状又は角錐状の錐体の多孔質板にすればよい。分散板37の周面は保持板39に連結され、錐体の先端が原料供給管33の出口を向いている。この構造では分散板37と保持板39に挟まれた空間が錐体になるため、その空間に保持された触媒41の積層構造も錐体になる。
 この場合、図1のように分散板37が円盤状の部材の場合よりも触媒41の積層体の最上面の表面積が大きくなる。そのため、反応容器31内に供給されたアンモニアボラン水溶液51aと接触する触媒41の面積を短時間で大面積にでき、水素が生成する速度を早くできる。
 散水手段35は、原料供給管33から供給されたアンモニアボラン水溶液51aを原料供給管33の出口の断面積よりも広い範囲の触媒41に均等に散水する手段である。
 原料供給管33は管であるため、散水手段35がない場合、反応容器31内に供給されたアンモニアボラン水溶液51aは原料供給管33の出口の断面積程度の範囲の触媒41にしか接触しない。この場合、アンモニアボラン水溶液51aと接触しない触媒41は加水分解反応に寄与しないため、散水手段35を設けるのが好ましい。
 図1では散水手段35として貯留皿35aを例示している。
 貯留皿35aは原料供給管33の出口の下方で分散板37の上方に設けられ、原料供給管33から供給されたアンモニアボラン水溶液51aを一時的に貯留する円形の皿状の部材である。貯留皿35aの縁部は水平な円形である。
 この構造では原料供給管33から反応容器31内に供給されたアンモニアボラン水溶液51aは、まず貯留皿35aに溜まる。溜まったアンモニアボラン水溶液51aの水位が貯留皿35aの深さを超えると、貯留皿35aの縁部から溢れたアンモニアボラン水溶液51aは放射状に均等に分散板37に流れ落ちて触媒41に流れ込む。
 このように円形の貯留皿35aから溢れたアンモニアボラン水溶液51aが触媒41に流れ込む構造とすることで、簡易な構造でアンモニアボラン水溶液51aを触媒41の広範囲に均等に接触させられる。
 アンモニアボラン水溶液51aを原料供給管33の出口の断面積より広い範囲に散水できるのであれば、散水手段35は貯留皿35aでなくてもよい。
 例えば図3(b)に示すシャワー35bを散水手段35として用いてもよい。
 シャワー35bは中空の円錐状の部品であり、開放された上端が原料供給管33の出口に接続される。下端面は原料供給管33の出口の断面積よりも大きい面積の板であり、細孔を複数有する。
 この構成では、原料供給管33の出口から反応容器31内に供給されたアンモニアボラン水溶液51aは、シャワー35bの細孔から触媒41に向けて均等に広範囲に噴射される。よって細孔の数と大きさで噴射される範囲と噴射量を容易に調整できる。
 図1に示すフロート61はアンモニアボラン水溶液51aや水素生成後の廃液の反応容器31内の水位に応じて上下動可能な浮であり、反応容器31内に上下動可能に設けられ、アンモニアボラン水溶液51aや廃液よりも密度が小さい材料で構成される。
 フロート61は水平移動を拘束しないと水位の変動に応じて反応容器31内で水平移動してしまい、位置が分かりにくくなる。そのため、反応容器31の内壁に設けた上下動のみを許容するスライドに固定する等して、水平移動を拘束するのが好ましい。
 また、反応容器31が不透明な材料の場合、フロート61の移動範囲の反応容器31をガラス等の透明な材料で構成する等して、反応容器31の外部からフロート61を視認可能にする。
 ただしフロート61は反応容器31内の水位を外部の作業員に知得させられるのであれば必ずしも外部から視認できる必要はない。例えば水位に応じて電気信号を送信したり、ブザーを鳴らしたりする構成でもよい。
 この構成ではフロート61の位置を見れば反応容器31内のアンモニアボラン水溶液51aの水位が反応容器31の外部からわかる。
 1つの原料カートリッジ3での水素生成反応が終了するのは、原料カートリッジ3内のアンモニアボラン水溶液51aの全量が反応容器31に内に供給された後である。
 そのため、原料カートリッジ3内のアンモニアボラン水溶液51aの残量をフロート61の位置から把握できれば、水素生成反応の進行状況も分かる。
 また、水素生成が終了したか否かを作業員が判断する場合、フロート61の位置が示す水位が、原料カートリッジ3内のアンモニアボラン水溶液51aが空になった場合に対応する水位になれば水素生成反応が終了したと判断できる。この水位になってから所定の時間が経過した後で水素生成反応が終了したと判断してもよい。
 なお、図1に示すようにフロート61は反応容器31内ではなく原料カートリッジ3に設けてもよい。原料カートリッジ3内の水位が下がるほど反応容器31内の水位が上がるため、原料カートリッジ3内の水位が分かれば反応容器31内の水位も分かるためである。
 廃液排出管46は水素生成後の廃液を反応容器31から排出する際の流路となる管であり、図1では触媒保持部38の下方に設けられ反応容器31の下端面に接続される。
 廃液バルブ48は廃液排出管46を開放/閉鎖する弁体であり、廃液排出管46の中途に設けられる。
 廃液容器固定フランジ46aは廃液排出管46を廃液貯留容器5に接続した状態で固定する部材であり、原料側固定フランジ53aと同様に廃液排出管46の下端の外周回りに設けられ、固定用のボルト等が挿通する孔を備えた円盤状の部材を例示できる。
 ベント管45は反応容器31の内圧が高くなり過ぎて反応容器31が損傷する恐れがある場合に反応容器31内の気体を外部に放出する管である。ベント管45は一端がネック部29の円筒面を貫通して反応容器31の内部に露出し、他端が大気開放される。
 リリーフバルブ47はベント管45を開放/閉鎖する弁体であるが、反応容器31の内圧と大気圧の差圧が予め定められた設定圧未満では閉鎖されており、差圧が設定圧以上になると自動で開く弁体である。
 設定圧は、反応容器31が損傷する恐れがある内圧に対応した差圧である。
 ベント管45とリリーフバルブ47を設けると、差圧が設定圧以上に上昇した場合、リリーフバルブ47が自動で開き、差圧が設定圧未満になるまで反応容器31内の気体が自動でベント管45から排出される。そのため、水素生成中に流量調整手段13の故障等が原因で反応容器31の内圧が制御できなくなり圧力が上昇した場合でも反応容器31が損傷しない程度の内圧に維持できる。
 水素生成装置1の材料はアンモニアボラン水溶液51aで腐食せず、かつ生成した水素の内圧とアンモニアボラン水溶液51aの重量で変形しない材料であれば、公知の材料を選択できる。例えばステンレス鋼を用いればよい。
 廃液貯留容器5は廃液を貯蔵する中空容器であり、反応容器31に接続して廃液を貯留できるのであれば構造や材料は適宜設定できる。
 ただし原料カートリッジ3が廃液貯留容器5でもある構造が好ましい。つまり廃液排出管46を原料カートリッジ3に接続して廃液を原料カートリッジ3内に貯留できる構造が好ましい。具体的には原料供給管33と廃液排出管46は外部への出口となる端部の内外径が同じで、原料側接続管53に接続できる構造が好ましい。生成側固定フランジ33aと廃液容器固定フランジ46aもボルトが挿通する孔の形状や位置が同じで、いずれも原料側固定フランジ53aに固定できる構造が好ましい。
 この構造ではアンモニアボラン水溶液51aを反応容器31に供給し尽くした空の原料カートリッジ3を廃液排出管46に接続して、廃液を原料カートリッジ3に貯蔵することで、空の原料カートリッジ3を廃液貯留容器5として利用する。
 よって原料カートリッジ3と廃液貯留容器5を別々に設計する場合と比べて製造コストや作業性に優れる。また空の原料カートリッジ3を廃棄せずに利用できるため、環境負荷も小さい。また、図2(c)に示す原料カートリッジ3bのように原料貯留容器51の円筒の周面83が伸縮可能な蛇腹状の場合、蛇腹状の部分を畳んだ状態で原料カートリッジ3に接続すれば、廃液が流入するに従い、廃液の重量で蛇腹が開く。そのため、原料カートリッジ3を廃液貯留容器5として用いる際に、原料貯留容器51内の気体を廃液と置換するために排出する工程が不要な点で有利である。
 以上が水素生成装置1を備える水素生成システム100の概略構成の説明である。
 次に図4~図8を参照して、水素生成システム100を用いた水素生成方法の手順の一例を説明する。
 まず水素バルブ9a、流量調整弁15、及び廃液バルブ48を閉鎖した状態で、図4に示すようにアンモニアボラン水溶液51aが充填された原料カートリッジ3の原料側固定フランジ53aと生成側固定フランジ33aをボルトで締結する等して固定する。これにより原料カートリッジ3の原料側接続管53が反応容器31の原料供給管33に接続された状態で固定される。
 次に図4に示すように原料側バルブ55を開いて原料カートリッジ3から反応容器31にアンモニアボラン水溶液51aを供給して触媒41と接触させ加水分解で水素を生成する(水素生成工程)。この際、流量調整手段13も起動しておく。
 生成した水素は水素バルブ9aを開いて燃料電池に供給する。
 水素生成中は流量調整手段13が図5に示すフローに従い、反応容器31の内圧を制御し、かつ終了を手動で行わない場合は終了の判断を行う。なお、図5は条件A及び条件Bの場合を例示している。
 具体的にはまず流量調整手段13の流量制御部17は圧力検出部11が検出した反応容器31の内圧が目標圧力であるか否かを判断し、目標圧力の場合はリターンする。目標圧力でない場合はS2に進む(図5のS1)。
 S1での内圧が目標圧力でないと判断した場合、流量制御部17はバルブ開度―圧力マッピング17aを参照する等して、反応容器31が目標圧力に維持されるように流量調整弁15のバルブ開度を調整することで、流量を調整する(図5のS2)。
 次に流量制御部17は流量が最大でも反応容器31の内圧が目標圧力以下に低下したか否か、具体的には流量調整弁15のバルブ開度が最大で目標圧力以下に低下したか否かを判断する。目標圧力以下に低下したと判断した場合はS4に進み、目標圧力以下に低下していないと判断した場合はリターンする(図5のS3)。なお、条件Bの場合、バルブ開度が最大で目標圧力以下の状態が所定時間経過した場合にS4に進む。
 S3で流量調整弁15のバルブ開度が最大で目標圧力以下と判断した場合、流量制御部17は水素の生成が終了したと判断し、流量調整弁15を閉鎖してリターンする(図5のS4)。
 水素の生成が終了した場合、原料側バルブ55及び水素バルブ9aを閉鎖して、図6に示すようにアンモニアボラン水溶液51aを供給し尽くした後の空の原料カートリッジ3の原料側接続管53を原料供給管33から取り外す。次に図7に示すように、取り外した空の原料カートリッジ3の原料側固定フランジ53aと廃液容器固定フランジ46aをボルト等で締結して固定する。これにより、空の原料カートリッジ3の原料側接続管53が廃液排出管46に接続された状態で固定される。この状態で廃液バルブ48及び原料側バルブ55を開放して、図8に示すように水素生成後に反応容器31内に残留した廃液を、空の原料カートリッジ3に排出して回収する(廃液回収工程)。
 アンモニアボランの加水分解反応は以下の反応式(1)で記載できる。
 NH3BH3+2H2O→NH4 ++BO2 -+3H2 …(1)
 よって廃液はメタホウ酸アンモニウム水溶液を含むが、時間経過と共にメタホウ酸からホウ酸へ変化する。この廃液は廃棄してもよいし、用途がある場合は利用してもよい。あるいは廃液からホウ酸等の溶存成分を分離して回収してもよい。
 反応容器31内の廃液がすべて原料カートリッジ3に排出されると廃液バルブ48と原料側バルブ55を閉鎖して、原料カートリッジ3の原料側接続管53を反応容器31の廃液排出管46から取り外す。
 以上が水素生成システム100を用いた水素生成方法の手順の一例の説明である。
 このように本実施形態の水素生成装置1は反応容器31にアンモニアボラン水溶液51aが供給されると反応容器31の内圧が目標圧に維持された状態で水素を生成する。アンモニアボラン水溶液51aの供給後に反応容器31の内圧が目標圧力以下に低下し、かつ流量調整弁15の開度が100%であるにも関わらず、目標圧力に維持できない場合は原料カートリッジ3が空になったと判断して流量調整弁15を閉鎖する。
 よって反応容器31にアンモニアボラン水溶液51aを供給する操作のみで反応時の内圧の制御が自動で行われるので、操作が簡便で、かつ安定して水素を生成できる。
 以上、実施形態を参照して本発明を説明したが、本発明は実施形態に限定されない。当業者であれば、本発明の技術思想の範囲内において各種変形例及び改良例に想到するのは当然のことであり、これらも本発明に含まれる。
1   :水素生成装置
3、3a、3b、3c:原料カートリッジ
5   :廃液貯留容器
9   :水素排出管
9a  :水素バルブ
9b  :水素バルブアクチュエータ
11  :圧力検出部
13  :流量調整手段
15  :流量調整弁
17  :流量制御部
17a :圧力マッピング
19  :溶液バルブアクチュエータ
21  :切替機構
29  :ネック部
31  :反応容器
33  :原料供給管
33a :生成側固定フランジ
35  :散水手段
35a :貯留皿
35b :シャワー
37  :分散板
38  :触媒保持部
39  :保持板
41  :触媒
45  :ベント管
46  :廃液排出管
46a :廃液容器固定フランジ
47  :リリーフバルブ
48  :廃液バルブ
51  :原料貯留容器
51a :アンモニアボラン水溶液
51b :雰囲気ガス
53  :原料側接続管
53a :原料側固定フランジ
55  :原料側バルブ
61  :フロート
71  :流体注入管
73  :注入用バルブ
75  :注入用フランジ
77  :シリンジ
79  :シリンジ側フランジ
81  :袋体
83  :周面
100 :水素生成システム

Claims (21)

  1.  アンモニアボランの加水分解で水素を生成する反応を促進する触媒にアンモニアボラン水溶液を接触させて水素を生成する水素生成装置であって、
     前記アンモニアボラン水溶液が充填された容器である原料カートリッジに脱着可能に設けられ、前記触媒を保持する容器である反応容器と、
     前記反応容器に設けられ、前記原料カートリッジから前記反応容器に供給された前記アンモニアボラン水溶液の加水分解で生成した水素が排出される水素排出管と、
     前記反応容器内の圧力を検出する圧力検出部と、
     前記反応容器における前記原料カートリッジとの接続部であり、前記原料カートリッジから前記反応容器内に前記アンモニアボラン水溶液を供給する原料供給管に設けられ、バルブ開度を調整することで流量を調整可能な流量調整弁を備え、前記圧力検出部が検出した圧力を基に、前記反応容器の内圧が予め定められた所定の目標圧力に維持されるように前記原料カートリッジから前記反応容器に流入する前記アンモニアボラン水溶液の流量を調整し、前記アンモニアボラン水溶液の供給後に前記反応容器の内圧が目標圧力以下に低下し、かつ前記流量調整弁の開度が100%であるにも関わらず、目標圧力に維持できない場合、前記原料カートリッジが空になったと判断して前記流量調整弁を閉鎖する流量調整手段と、
     を備えることを特徴とする水素生成装置。
  2.  前記流量調整手段は、
     前記圧力検出部に接続され、前記圧力検出部が検出した前記反応容器内の内圧が前記目標圧力に維持されるように前記流量調整弁のバルブ開度を調整し、前記目標圧力に維持できないと判断すると前記流量調整弁を閉鎖する流量制御部と、
     前記流量制御部及び前記流量調整弁に接続されて前記流量制御部の指令に基づき前記流量調整弁を駆動するバルブアクチュエータを備える請求項1に記載の水素生成装置。
  3.  前記流量調整手段は空気式であり、
     前記圧力検出部は検出した前記反応容器の内圧を示す空気圧信号を前記流量制御部に出力するよう構成され、
     前記流量制御部は、前記流量調整弁のバルブ開度と前記反応容器内の内圧の関係を基に前記反応容器の内圧が前記目標圧力に維持されるように制御信号として空気圧信号をエア駆動アクチュエータである前記バルブアクチュエータに出力するように構成される請求項2に記載の水素生成装置。
  4.  前記流量制御部には、前記流量調整弁の前記バルブ開度と、前記反応容器内の圧力の関係を示すバルブ開度―圧力マッピングが予め記憶されており、前記バルブ開度―圧力マッピングを参照して、前記反応容器が前記目標圧力に維持されるように前記バルブ開度を調整することで流量を調整する請求項2又は3に記載の水素生成装置。
  5.  前記流量制御部は、
     前記反応容器に流入する前記アンモニアボラン水溶液の流量を最大にした状態で、前記反応容器の内圧が前記目標圧力以下の場合に内圧を前記目標圧力に維持できないと判断して前記流量を0にする請求項2~4のいずれか一項に記載の水素生成装置。
  6.  前記流量制御部は、
     前記反応容器に流入する前記アンモニアボラン水溶液の流量を最大にした状態で、予め定められた所定の時間が経過しても前記反応容器の内圧が前記目標圧力以下の場合に内圧を前記目標圧力に維持できないと判断して前記流量を0にする請求項2~4のいずれか一項に記載の水素生成装置。
  7.  前記原料カートリッジは二酸化炭素を除去した雰囲気ガスが充填されており、
     前記目標圧力は前記原料カートリッジ内の前記雰囲気ガスの充填圧よりも低く設定されており、
     前記流量制御部は、
     前記反応容器の内圧が前記充填圧よりも予め定められた所定の値だけ低い値になった場合に前記目標圧力に維持できないと判断して前記流量を0にする請求項2~4のいずれか一項に記載の水素生成装置。
  8.  前記流量調整手段は流量の調節を手動と自動の一方から他方に切り替える切替機構を備える請求項2~7のいずれか一項に記載の水素生成装置。
  9.  前記反応容器内において前記原料供給管の出口の下方に設けられ、前記触媒を上下に挟んで保持する一対の多孔質の触媒保持部と、
     1対の前記触媒保持部の下方に設けられ加水分解後の廃液を排出する廃液排出管と、
     前記原料供給管から供給された前記アンモニアボラン水溶液を前記原料供給管の出口の断面積よりも広い範囲の前記触媒に均等に散水する散水手段を備える請求項2~8のいずれか一項に記載の水素生成装置。
  10.  前記散水手段は、
     前記原料供給管の出口の下方で前記触媒保持部の上方に設けられ、前記原料供給管から供給された前記アンモニアボラン水溶液を一時的に貯留する貯留皿を備え、
     前記貯留皿から溢れた前記アンモニアボラン水溶液が上方の前記触媒保持部を介して前記触媒に流れ込むように構成した請求項9に記載の水素生成装置。
  11.  前記散水手段は、前記原料供給管の出口に設けられたシャワーである請求項9に記載の水素生成装置。
  12.  前記触媒は、活性炭に触媒金属が担持された粒状であり、
     下側の前記触媒保持部から上側の前記触媒保持部に向けて、前記活性炭の単位質量当たりの担持された前記触媒金属の質量が大きくなるように積層されている請求項9~11のいずれか一項に記載の水素生成装置。
  13.  上側の前記触媒保持部である分散板は、円錐状又は角錐状の多孔質板であり先端が前記原料供給管の出口を向く請求項9~11のいずれか一項に記載の水素生成装置。
  14.  前記反応容器内には、
     前記アンモニアボラン水溶液の水位に応じて上下動可能で前記反応容器の外部から視認可能なフロートが設けられる請求項9~13のいずれか一項に記載の水素生成装置。
  15.  前記原料供給管と前記廃液排出管は出口の形状が同じであり、
     前記アンモニアボラン水溶液を供給し尽くした空の前記原料カートリッジを前記廃液排出管に接続して、水素生成後の廃液を空の前記原料カートリッジに貯蔵するように構成した請求項9~14のいずれか一項に記載の水素生成装置。
  16.  請求項1~15のいずれか一項に記載の前記反応容器と前記原料カートリッジを備えることを特徴とする水素生成システム。
  17.  請求項1~15のいずれか一項に記載の水素生成装置の前記反応容器に接続される原料側接続管を有し、前記アンモニアボラン水溶液と雰囲気ガスが充填されることを特徴とする原料カートリッジ。
  18.  前記アンモニアボラン水溶液や前記雰囲気ガスの注入/排出を行う、前記反応容器に接続可能な原料側接続管と、
     前記アンモニアボラン水溶液を加圧して前記水素生成装置に供給する際にする流体を外部から注入する管であって、原料側接続管と別の管である流体注入管と、
     を備える請求項17に記載の原料カートリッジ。
  19.  前記原料カートリッジは、内部に設けられて前記流体注入管と接続され、注入された前記流体で膨張することで前記アンモニアボラン水溶液を加圧する袋体を備える請求項18に記載の原料カートリッジ。
  20.  前記原料カートリッジは円筒状の外形を有し、
     前記円筒の周面が円筒の軸方向に伸縮可能な蛇腹状の形状を有する請求項19に記載の原料カートリッジ。
  21.  請求項15に記載の水素生成装置を用いた水素生成方法であって、
     前記アンモニアボラン水溶液が充填された前記原料カートリッジを前記反応容器の前記原料供給管に接続して前記原料カートリッジから前記反応容器に前記アンモニアボラン水溶液を供給して前記触媒と接触させ、加水分解で水素を生成する水素生成工程と、
     前記原料カートリッジ内の前記アンモニアボラン水溶液が供給され尽くした後の空の前記原料カートリッジを前記原料供給管から取り外して前記廃液排出管に接続し、前記反応容器内の廃液を、空の前記原料カートリッジに排出して回収する廃液回収工程と、
     を実施することを特徴とする水素生成方法。
PCT/JP2021/036737 2020-10-23 2021-10-05 水素生成装置、水素生成システム、原料カートリッジ、及び水素生成方法 WO2022085423A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020177760A JP6989879B1 (ja) 2020-10-23 2020-10-23 水素生成装置、水素生成システム、原料カートリッジ、及び水素生成方法
JP2020-177760 2020-10-23

Publications (1)

Publication Number Publication Date
WO2022085423A1 true WO2022085423A1 (ja) 2022-04-28

Family

ID=80808944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036737 WO2022085423A1 (ja) 2020-10-23 2021-10-05 水素生成装置、水素生成システム、原料カートリッジ、及び水素生成方法

Country Status (2)

Country Link
JP (1) JP6989879B1 (ja)
WO (1) WO2022085423A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114883610A (zh) * 2022-05-23 2022-08-09 安徽青木子德慧能源发展有限公司 一种撬装分布式燃料电池发电系统的控制系统
CN115624927A (zh) * 2022-10-27 2023-01-20 河南科技大学 适用于移动式氢燃料电池的在线制氢-供氢系统及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114634157A (zh) * 2022-03-28 2022-06-17 西安交通大学 一种控制水解产氢速度的系统及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008528430A (ja) * 2005-01-28 2008-07-31 ミレニアム セル インコーポレイテッド 水素の発生を制御するためのシステム及び方法
JP2010215484A (ja) * 2009-03-13 2010-09-30 Ind Technol Res Inst 固体水素燃料並びにその製造方法及びその使用方法
JP2011121856A (ja) * 2009-12-10 2011-06-23 Ind Technol Res Inst 水素化合物から放出される水素のオン−オフおよび調整方法
JP2013534501A (ja) * 2010-06-01 2013-09-05 ノヴァユーシーディー 水素の製造方法
JP2019098328A (ja) * 2017-12-01 2019-06-24 公立大学法人兵庫県立大学 水素製造用触媒及びその製造方法、並びに水素製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008528430A (ja) * 2005-01-28 2008-07-31 ミレニアム セル インコーポレイテッド 水素の発生を制御するためのシステム及び方法
JP2010215484A (ja) * 2009-03-13 2010-09-30 Ind Technol Res Inst 固体水素燃料並びにその製造方法及びその使用方法
JP2011121856A (ja) * 2009-12-10 2011-06-23 Ind Technol Res Inst 水素化合物から放出される水素のオン−オフおよび調整方法
JP2013534501A (ja) * 2010-06-01 2013-09-05 ノヴァユーシーディー 水素の製造方法
JP2019098328A (ja) * 2017-12-01 2019-06-24 公立大学法人兵庫県立大学 水素製造用触媒及びその製造方法、並びに水素製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114883610A (zh) * 2022-05-23 2022-08-09 安徽青木子德慧能源发展有限公司 一种撬装分布式燃料电池发电系统的控制系统
CN115624927A (zh) * 2022-10-27 2023-01-20 河南科技大学 适用于移动式氢燃料电池的在线制氢-供氢系统及方法
CN115624927B (zh) * 2022-10-27 2024-05-03 河南科技大学 适用于移动式氢燃料电池的在线制氢-供氢系统及方法

Also Published As

Publication number Publication date
JP6989879B1 (ja) 2022-02-03
JP2022068928A (ja) 2022-05-11

Similar Documents

Publication Publication Date Title
WO2022085423A1 (ja) 水素生成装置、水素生成システム、原料カートリッジ、及び水素生成方法
US9669371B2 (en) Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials
US9845239B2 (en) Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials
TWI381572B (zh) 自動調節之氣體產生器和方法
US8323364B2 (en) Control system for an on-demand gas generator
JP4800319B2 (ja) 水素製造装置およびそれを用いた燃料電池システム
US20070217972A1 (en) Apparatus for production of hydrogen
KR20050103489A (ko) 수소 가스 생성 시스템
JP5186824B2 (ja) 水素発生装置
JP4822158B2 (ja) 水素発生装置及び燃料電池設備及び水素発生方法
US20130195729A1 (en) On-Demand Gas Generator
US7832433B2 (en) Hydrogen generating fuel cell cartridges
JP5112310B2 (ja) 燃料電池再充填器
JP2015505529A (ja) ナトリウムシリサイドおよびナトリウムシリカゲル物質を利用する水素発生システムおよび方法
JP2007317496A (ja) 燃料電池発電システム
JP2004281393A (ja) 燃料電池発電システム
RU2733200C1 (ru) Компактная система стабилизации давления водорода в портативном источнике питания на основе химического реактора
CN217444446U (zh) 一种快速启动型甲醇重整燃料电池系统
JP2005298300A (ja) 水素改質装置
JP2008041414A (ja) 燃料電池システム及びその駆動方法
JP2004107110A (ja) 水素発生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21882564

Country of ref document: EP

Kind code of ref document: A1