WO2022083743A1 - 无线通信方法、装置、中继设备、远端设备和基站 - Google Patents

无线通信方法、装置、中继设备、远端设备和基站 Download PDF

Info

Publication number
WO2022083743A1
WO2022083743A1 PCT/CN2021/125751 CN2021125751W WO2022083743A1 WO 2022083743 A1 WO2022083743 A1 WO 2022083743A1 CN 2021125751 W CN2021125751 W CN 2021125751W WO 2022083743 A1 WO2022083743 A1 WO 2022083743A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay device
interface
wireless communication
information
time information
Prior art date
Application number
PCT/CN2021/125751
Other languages
English (en)
French (fr)
Inventor
刘进华
杨晓东
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to JP2023522465A priority Critical patent/JP2023546844A/ja
Priority to KR1020237013511A priority patent/KR20230073287A/ko
Priority to EP21882155.1A priority patent/EP4236426A4/en
Publication of WO2022083743A1 publication Critical patent/WO2022083743A1/zh
Priority to US18/132,537 priority patent/US20230247572A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2656Frame synchronisation, e.g. packet synchronisation, time division duplex [TDD] switching point detection or subframe synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/34Flow control; Congestion control ensuring sequence integrity, e.g. using sequence numbers

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a wireless communication method, a wireless communication apparatus, a relay device, a remote device, a base station, and a readable storage medium.
  • a relay device (relay user equipment, relay UE) can communicate with the base station (gNB), thereby reducing the power consumption of the remote device.
  • gNB base station
  • communication can be performed through the Uu interface (the interface between the user equipment and the base station) and the PC5 interface (the interface between the user equipment and the user equipment).
  • the link is a sidelink, the wireless link between the sidelinks is also called a PC5 link, and the link between the relay device and the base station is called a Uu link (Uulink).
  • the remote device when the remote device performs relay communication, it is necessary to combine the serving cell system message and the single sideband (Single side band, SSB) physical signal to determine the specific time of the Uu interface of the relay device.
  • the external remote device cannot obtain information such as the system frame number of the Uu interface through the system message forwarded by the relay device. This will cause the remote device to be unable to accurately predict the transmission time window position of the broadcast signal sent by the Uu interface, such as SSB signal, physical broadcast channel (PBCH) signal, system information signal (SIB), etc., which makes the remote device blindly detect In a wireless cell, not only the delay is large, but also the power consumption is high.
  • the base station cannot configure a measurement gap (MG) for the remote device that is out of coverage, so that the remote device cannot find the target cell in time according to the measurement gap, and cannot guarantee the continuity of communication services.
  • MG measurement gap
  • Embodiments of the present application provide a wireless communication method, apparatus, relay device, remote device, and base station, which can solve the technical problem in the related art of how to obtain system time information for a remote device outside the coverage of a cell.
  • an embodiment of the present application provides a wireless communication method, including:
  • the relay device receives the configuration parameters of the Uu interface of the base station
  • the relay device determines the time information of the cell corresponding to the relay device according to the configuration parameter
  • the relay device sends a packet carrying time information to the remote device.
  • an embodiment of the present application provides a wireless communication method, including:
  • the remote device receives the message sent by the relay device
  • the remote device determines, according to the time information of the cell corresponding to the relay device in the message, the location of the time window for sending the discovery signal of the cell and/or the neighboring cells of the cell; and/or
  • the remote device parses the cell measurement configuration information according to the time information of the cell corresponding to the relay device in the packet.
  • an embodiment of the present application provides a wireless communication method, including:
  • the base station sends the configuration parameters of the Uu interface of the base station to the relay device.
  • an embodiment of the present application provides a wireless communication device, including:
  • a receiving module for receiving configuration parameters of the Uu interface of the base station
  • a determining module configured to determine the time information of the cell corresponding to the relay device according to the configuration parameter
  • the sending module is used to send the message carrying the time information to the remote device.
  • an embodiment of the present application provides a wireless communication device, including:
  • the receiving module is used to receive the message sent by the relay device
  • a determination module used for determining the location of the time window for sending the cell and/or the adjacent cell discovery signal of the cell according to the time information of the cell corresponding to the relay device in the message; and/or according to the cell corresponding to the relay device in the message time information, and parse the cell measurement configuration information.
  • an embodiment of the present application provides a wireless communication device, including:
  • the sending module is used for sending the configuration parameters of the Uu interface of the base station to the relay device.
  • an embodiment of the present application provides a relay device, including a processor, a memory, and a program or instruction stored on the memory and running on the processor, and the program or instruction is executed by the processor to achieve the An aspect provides steps of a wireless communication method.
  • an embodiment of the present application provides a remote device, including a processor, a memory, and a program or instruction stored on the memory and running on the processor, and the program or instruction is executed by the processor to achieve the The steps of the wireless communication method provided by the second aspect.
  • an embodiment of the present application provides a base station, including a processor, a memory, and a program or instruction stored in the memory and running on the processor, and the program or instruction is executed by the processor to implement the third aspect Provided are the steps of a wireless communication method.
  • an embodiment of the present application provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the first aspect or the second aspect or the third aspect provides steps of a wireless communication method.
  • an embodiment of the present application provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a program or an instruction to implement the first aspect or the second aspect or the third aspect Aspects provide steps of a wireless communication method.
  • the relay device receives the configuration parameters of the Uu interface of the base station; the relay device determines the time information of the cell corresponding to the relay device according to the configuration parameters; the relay device sends a message carrying the time information to the remote device . Therefore, during the relay communication process of the remote device, the relay device can provide the time information of the cell to the remote device through the side link.
  • the remote device outside the cell coverage can still determine the cell time window or understand the measurement configuration through the time information sent by the relay device, so as to facilitate the implementation of measurement gap configuration and cell reselection, and save the measurement power and measurement of the remote device. time and improve business continuity of remote devices under mobile conditions.
  • FIG. 1 shows one of the flowcharts of a wireless communication method according to an embodiment of the present application
  • FIG. 2 shows the second flowchart of a wireless communication method according to an embodiment of the present application
  • FIG. 3 shows a third flowchart of a wireless communication method according to an embodiment of the present application
  • FIG. 4 shows a fourth flowchart of a wireless communication method according to an embodiment of the present application
  • FIG. 5 shows a fifth flowchart of a wireless communication method according to an embodiment of the present application
  • FIG. 6 shows a sixth flowchart of a wireless communication method according to an embodiment of the present application.
  • FIG. 7 shows a schematic diagram of a communication scenario according to an embodiment of the present application.
  • FIG. 8 shows a schematic diagram of a backhaul link control plane protocol stack of a layer 2 relay device according to an embodiment of the present application
  • FIG. 9 shows a schematic diagram of a backhaul link control plane protocol stack of a layer 3 relay device according to an embodiment of the present application.
  • FIG. 10 shows one of the structural block diagrams of a wireless communication apparatus according to an embodiment of the present application.
  • FIG. 11 shows the second structural block diagram of a wireless communication apparatus according to an embodiment of the present application.
  • FIG. 12 shows the seventh flowchart of a wireless communication method according to an embodiment of the present application.
  • Fig. 13 shows the eighth flow chart of the wireless communication method according to an embodiment of the present application.
  • FIG. 14 shows a ninth flow chart of a wireless communication method according to an embodiment of the present application.
  • FIG. 15 shows a tenth flowchart of a wireless communication method according to an embodiment of the present application.
  • FIG. 16 shows the third structural block diagram of a wireless communication apparatus according to an embodiment of the present application.
  • FIG. 17 shows the fourth structural block diagram of a wireless communication apparatus according to an embodiment of the present application.
  • FIG. 18 shows eleventh flowchart of a wireless communication method according to an embodiment of the present application.
  • FIG. 19 shows a twelfth flowchart of a wireless communication method according to an embodiment of the present application.
  • FIG. 20 shows the fifth structural block diagram of a wireless communication apparatus according to an embodiment of the present application.
  • FIG. 21 shows the sixth structural block diagram of a wireless communication apparatus according to an embodiment of the present application.
  • FIG. 22 shows one of the structural block diagrams of a relay device according to an embodiment of the present application.
  • FIG. 23 shows a structural block diagram of a remote device according to an embodiment of the present application.
  • FIG. 24 shows a structural block diagram of a base station according to an embodiment of the present application.
  • FIG. 25 shows the second structural block diagram of a relay device according to an embodiment of the present application.
  • the wireless communication method, wireless communication apparatus, relay device, remote device, base station, and readable storage medium according to some embodiments of the present application are described below with reference to FIGS. 1 to 25 .
  • FIG. 1 shows one of the flowcharts of the wireless communication method in the embodiment of the present application, including:
  • Step 102 the relay device receives the configuration parameters of the Uu interface of the base station
  • FIG. 7 shows a schematic diagram of a communication scenario of an embodiment of the present application.
  • New Radio New Radio, NR
  • Long Term Evolution Long Term Evolution
  • LTE Long Term Evolution
  • the side link runs the PC5 interface protocol.
  • the side link radio interface control plane has the PC5RRC protocol, and the side link runs on the Packet Data Convergence Protocol (PDCP) layer and the Radio Link Control (Radio Link Control, RLC) layer.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • the wireless interface user plane of side link includes Service Data Adaptation Protocol (SDAP) layer, PDCP layer, RLC layer, MAC layer from top to bottom layer and physical layer.
  • SDAP Service Data Adaptation Protocol
  • the Uu link runs the Uulink protocol.
  • OSI Open System Interconnection Reference Model
  • the Physical Layer is used to define the physical structure of the network, the electromagnetic standard of transmission, the encoding of the Bit stream, and the time principle of the network, such as time-division multiplexing and frequency-division multiplexing, which determine the type of network connection (end-to-end terminal or multi-terminal connections) and physical topology.
  • the Data Link Layer is used to establish a data link connection between two devices, transmit data signals to the physical layer, and process the signals to make them error-free and reasonably transmitted.
  • the data link Layers include MAC (Media Access Control, Media Access Control) layer, RLC (Radio Link Control, Radio Link Control), BMC (Broadcast/Multicast Control, Broadcast/Multicast Communication Control) layer and PDCP (Packet Data Convergence Protocol, packet Data Aggregation Protocol) layer, through the transport channel, the MAC layer and the physical layer can send and receive data.
  • MAC Media Access Control, Media Access Control
  • RLC Radio Link Control
  • BMC Broadcast/Multicast Control
  • PDCP Packet Data Convergence Protocol, packet Data Aggregation Protocol
  • the network layer (Network Layer) is used to select an appropriate path and perform functions such as congestion control.
  • the network layer includes a Radio Resource Control (RRC) layer for processing logical channels, transport channels, and physical channels. .
  • RRC Radio Resource Control
  • FIG. 8 shows a schematic diagram of a backhaul link control plane protocol stack of a layer 2 relay device according to an embodiment of the present application.
  • the remote device 1800 has an RRC connection of PC5 for controlling the sidelink connection, and an RRC connection with the base station 1900, which is used to control the communication with the base station 1900. connection and service provision.
  • the backhaul link of the layer 2 side link relay device 1700 is not limited to the RRC protocol stack of Uu given in FIG. 8 .
  • FIG. 9 shows a schematic diagram of a backhaul link control plane protocol stack of a layer 3 relay device according to an embodiment of the present application.
  • the remote device 1800 For the backhaul link of the layer 3 side link relay device 1700 , the remote device 1800 only has an RRC connection with PC5 of the relay device 1700 , and has no RRC connection with Uu of the base station 1900 .
  • the backhaul link refers to a wireless link used by a remote device to communicate with its superior base station, including links for uplink transmission and downlink transmission.
  • Step 104 the relay device determines the time information of the cell corresponding to the relay device according to the configuration parameter
  • the cell corresponding to the relay device includes: a serving cell when the relay device is in an active state or a camping cell in which the relay device is in an inactive state.
  • the time information includes at least one of the following: identification information of the cell (cell ID), the system frame number (System Frame Number, SFN) of the Uu interface, the time slot number of the Uu interface, and the OFDM (orthogonal frequency) of the Uu interface. division multiplexing) symbol sequence number, the subcarrier spacing of the Uu interface, the offset between the system frame number of the Uu interface and the frame number of the PC5 interface of the relay device.
  • the sub-carrier spacing used for low-frequency (below 6GHz) data and control channels is 15KHz and 30KHz, while the sub-carrier spacing used for high-frequency data channels is 60KHz and 120KHz.
  • the slot and symbol lengths are different. Therefore, the time length of the time slot/symbol of the Uu interface can be determined by the subcarrier spacing.
  • the system frame number is the system frame number where the transmission of the time information of the Uu interface is currently carried, and the OFDM symbol sequence number is related to this transmission, for example, the beginning or the end.
  • the remote device When the remote device establishes the PC5 link with the relay device, the remote device can read the relevant parameters of the PC5 interface, such as the time slot number and frame number (Direct Frame Number, DFN) of the PC5 interface, through the DFN
  • the offset between the SFN of the Uu interface of the relay device and the DFN of the PC5 interface of the relay device can be used to obtain the system frame number of the Uu interface. Error caused by time offset.
  • the relay device According to the parameters of the communication protocol or the configuration from the cell, the relay device generates the time information of the cell according to the time-related information obtained from the Uu interface, that is, the time information of the side link Uu interface.
  • the information indicates the time information of the Uu interface corresponding to the selected sidelink reference time position. Before a remote device accesses a cell, it needs to obtain the time information of the cell.
  • the time information can be used to predict the possible time position of the SSB transmission in the cell where the relay device is located and the relay device The possible time position of the SSB transmission of the neighboring cells of the cell where it is located, so as to facilitate measurement and cell reselection.
  • the time-related configuration in the Radio Resourse Control (RRC) message can be parsed by time information, such as measurement configuration, measurement gap (measurement gap) and measurement reports.
  • Step 106 the relay device sends a packet carrying time information to the remote device.
  • the relay device when the remote device performs relay communication, can provide time information of the cell to the remote device through the side link.
  • the remote device outside the cell coverage can still determine the cell time window or understand the measurement configuration through the time information sent by the relay device, so as to facilitate the implementation of measurement gap configuration and cell reselection, and save the measurement power and measurement of the remote device. time and improve business continuity of remote devices under mobile conditions.
  • the SFN parameter of the Master Information Block (MIB) in the message indicates the upper 6 bits of the system frame number
  • the channel encoding of the physical broadcast channel (PBCH) in the message indicates that the system frame number is low 4 bits
  • the timing relationship, sending time position and sequence number of SSB transmission are pre-defined in the message, so that the remote device can obtain the time slot number and symbol sequence number in the system frame.
  • the relay device automatically sends the time information of the side-link Uu interface to the remote device through the side link, that is, the remote device and the intermediate device After the device establishes a communication link, the relay device will actively provide corresponding time information to the remote device.
  • FIG. 2 shows the second flowchart of the wireless communication method according to the embodiment of the present application, including:
  • Step 202 the relay device determines the initialization mode of the frame number of the PC5 interface of the relay device
  • Step 204 the relay device configures the frame number of the PC5 interface according to the initialization mode.
  • step 204 specifically includes the following two ways:
  • the first method is to configure the initial value of the frame number of the PC5 interface as the value of the system frame number of the Uu interface.
  • the relay device assigns value to the frame number of the PC5 interface through the initialization operation, and initializes the frame number of the PC5 interface to the same value as the Uu interface system frame number.
  • the remote device can directly obtain the system frame number of the Uu interface from the frame number of the PC5 interface, thereby avoiding the direct transmission of the system frame number of the Uu interface in the message, saving transmission resources and improving the configuration efficiency of the remote device.
  • the frame number of the PC5 interface is initialized according to a preset offset between the system frame number of the Uu interface and the frame number of the PC5 interface.
  • the relay device presets a preset offset between the Uu interface system frame number and the PC5 interface frame number, that is, the correspondence between the Uu interface system frame number and the PC5 interface frame number.
  • the frame number of the PC5 interface is reassigned according to the preset offset and the system frame number of the Uu interface.
  • the remote device obtains the frame number and preset offset of the PC5 interface, it can calculate the system frame number of the Uu interface. Therefore, it is avoided to directly transmit the system frame number of the Uu interface in the message, which saves transmission resources and improves the configuration efficiency of the remote device.
  • the process of acquiring the preset offset specifically includes the following steps:
  • the relay device receives the first input to the relay device, and the relay device determines the preset offset in response to the first input; or the relay device receives the first configuration information sent by the base station, and the relay device determines the preset offset according to the first configuration information Determines the preset offset.
  • the relay device may determine the preset offset according to the user's operation, and may also obtain the preset offset from the first configuration information sent by the base station.
  • the first configuration information includes system information (SIB) or dedicated radio resource management (RRC) information.
  • FIG. 3 shows the third flowchart of a wireless communication method according to an embodiment of the present application, including:
  • Step 302 the relay device configures the subcarrier spacing of the PC5 interface of the relay device as the subcarrier spacing of the Uu interface.
  • the side link of the relay device can be preset to use the same subcarrier spacing (SubCarrier Sapacing, SCS) as the Uu interface, so that The time slot number of the PC5 interface is the same as that of the Uu interface, and the frame number of the PC5 interface is the same as the system frame number of the Uu interface.
  • the remote device can directly obtain the system frame number and time slot number of the Uu interface from the frame number and time slot number of the PC5 interface, so there is no need to separately propagate the system frame number and time slot number of the Uu interface, saving transmission resources.
  • the relay device may receive the configuration parameters of the Uu interface of the base station in the following form.
  • Mode 1 The relay device reads the configuration parameters of the Uu interface.
  • the relay device can read the configuration parameters of the Uu interface through the Uu link with the base station, and the relay device can determine the base station through the configuration parameters Time information of the cell. The relay device then sends the message carrying the time information to the remote device, so as to provide the remote device outside the coverage of the cell with the time information of the turnaround, so that the remote device can perform measurement gap configuration and cell configuration according to the time information.
  • the reselection operation can effectively reduce the limitation of the cell coverage and ensure the business continuity of the remote equipment.
  • the relay device can read the relevant parameters of the Uu interface, and then notify the remote through PC5 Radio Resource Management (RRC) or PC5 Media Access Control Control Element (MAC CE).
  • RRC Radio Resource Management
  • MAC CE PC5 Media Access Control Control Element
  • Manner 2 The relay device receives the configuration parameters of the Uu interface sent by the base station.
  • the base station after the base station establishes a communication link with the relay device, the base station actively sends the configuration parameters of the Uu interface to the relay device. After receiving the configuration parameters, the relay device generates a packet including corresponding time information through the configuration parameters, so as to forward the time information to the remote device.
  • the remote device perform measurement gap configuration and cell reselection operations based on time information, effectively reducing the limitations of the remote device's cell coverage and ensuring the service continuity of the remote device.
  • the base station can The time information is forwarded to the remote device through the relay device in the form of RRC signaling, and the remote device obtains the time information based on the received RRC signaling.
  • FIG. 4 shows the fourth flowchart of the wireless communication method according to the embodiment of the present application, step 106, which specifically includes:
  • Step 402 the relay device sends first request information of time information to the base station
  • the first request information includes user information of the remote device and the relay device, and the like.
  • Step 404 the relay device sends a packet to the remote device according to the second configuration information returned by the base station.
  • the second configuration information includes at least one of the following: a time configuration message, permission information, and rejection information; the time configuration message includes time configuration parameters related to the remote device. For example, if the base station confirms the configuration, the second configuration information includes a time configuration message and permission information; if the base station rejects the configuration, the second configuration information includes rejection information.
  • the relay device before sending a message carrying time information to the remote device, the relay device first sends first request information about time information to the corresponding base station to ask the base station whether the remote device provides time information. If the base station confirms the configuration, it will feed back the configuration permission information. The relay device performs transmission to the remote device according to the permission information returned by the base station. If the base station rejects the configuration, it will feed back configuration rejection information. The relay device will not send time information to the remote device according to the rejection information returned by the base station. Therefore, the access authority of the remote device can be further set through the first request information, and the security of the communication system can be improved.
  • the relay device has an RRC connection channel with the base station.
  • the relay device may be pre-defined to send the Uu interface time information through the side link after receiving the permission configuration from the serving base station. Further, the base station may send the relevant configuration using dedicated RRC signaling or system messages.
  • FIG. 5 shows the fifth flowchart of the wireless communication method according to the embodiment of the present application, step 106, which specifically includes:
  • Step 502 the relay device receives the second request information for time information sent by the remote device;
  • Step 504 the relay device sends the message to the remote device according to the second request information.
  • the second request information includes user information of the remote device and required time information.
  • the remote device before a remote device needs to access a cell, at least time information of the cell needs to be obtained, which is convenient for measurement and cell reselection.
  • the remote device can send the second request information of the time information to the relay device.
  • the relay device After receiving the second request information, the relay device sends the message carrying the time information to the remote device. Therefore, the problem of resource occupation caused by the relay device continuously sending time information to the remote device is avoided, which is beneficial to the allocation of transmission resources and improves the communication efficiency and stability.
  • FIG. 6 shows the sixth flowchart of the wireless communication method according to the embodiment of the present application, step 106, which specifically includes:
  • Step 602 the relay device determines the transmission mode of the message
  • the dissemination method includes a unicast method or a broadcast method.
  • Step 604 the relay device sends the message to the remote device according to the propagation mode.
  • the relay device after receiving the second request information sent by the remote device, the relay device can send a message to the remote device in the response information for the remote device, so that the message can be broadcast periodically.
  • the relay device receives the third configuration information sent by the network device, and configures the broadcast message identifier according to the third configuration information. That is, the network device configures independent broadcast message identifiers for the relay device and the remote device, so as to perform broadcast transmission of the time information of the Uu interface.
  • the message includes at least one of the following: sidelink master information block (SL-MIB), sidelink signaling radio bearers (SL-SRB) ), find the signal.
  • SL-MIB sidelink master information block
  • S-SRB sidelink signaling radio bearers
  • the side link management information includes update indication information of the time information, and the update indication information is used for the remote device to determine the time information.
  • the relay device indicates in the SL-MIB message whether there is a Uu interface time update. If the update indication information indicates that there is another Uu interface time message, the remote device will receive another Uu interface time message to determine the time information of the Uu interface. If the update indication information indicates that there is no other Uu interface time message, the remote device obtains the Uu interface time information carried in the current SL-MIB message from the SL-MIB message. Therefore, the remote device can receive the latest time information according to the update indication information.
  • a reserved bit can be used as the update indication information in the SL-MIB message
  • the v2x (Vehicle to X, vehicle-to-specific target communication) SL-MIB contains a time slot number, and only the time information other than the time slot number needs to be put into the SL-MIB. in the MIB.
  • the sidelink signaling radio bearer can be the radio bearers when the RRC connection is established, such as SL-SRB0, SL-SRB1, Any one of SL-SRB2 and SL-SRB3; a new side-link signaling radio bearer, such as SL-SRB4, SL-SRB5, etc., can also be configured through the relay device.
  • a cell includes at least one of the following: a primary cell, a secondary cell, and a primary and secondary cell.
  • CA Carrier Aggregation
  • CC Component Carriers
  • PCC Primary Component Carrier
  • SCC Secondary Component Carrier
  • Pcell Primary Cell
  • a cell on the secondary component carrier is called a secondary cell (Secondary Cell, Scell), that is, a cell operating on a secondary frequency band.
  • Scell Secondary Cell
  • MCG Master Cell group, primary cell group
  • SCG Secondary Cell group, secondary cell group
  • a cell on the component carrier is called a primary secondary cell (PScell)
  • PScell primary secondary cell
  • the user equipment can obtain time information of different cells as required.
  • the relay device sends at least the time information of the Uu interface of its PCell on the side link.
  • the relay device when the relay device is configured as a single connection, the primary cell and the secondary cell are aggregated and combined together, and when the PC5 link uses the resources of the secondary cell, the relay device determines the time information of the primary cell and/or the secondary cell according to the configuration parameters , and send it to the remote device.
  • the relay device is configured with dual connectivity, and the relay device determines the time information of the primary cell and/or the primary and secondary cells according to the configuration parameters, and sends it to the remote device. For example, when the relay device is in the EN-DC connection state, only the time information of the Uu interface of the PSCell is sent on the side link.
  • the relay device obtains time-related information from the Uu interface according to the predefined protocol or configuration from the cell, generates time information of the Uu interface, and sends the time information to the remote device through the side link.
  • the time information includes one or more of the following: cell ID, system frame number, time slot number, and OFDM symbol sequence number; optionally, the Uu interface time information also includes SCS information corresponding to the Uu interface of the cell, to help The remote device determines the time length of one slot/symbol of the Uu interface.
  • the sidelink Uu interface time information indicates the Uu interface time information corresponding to the selected sidelink reference time position.
  • the cell ID is a cell ID of the current relay device
  • the system frame number is the system frame number where the transmission of the time information of the Uu interface is currently carried
  • the OFDM symbol sequence number is based on the frame corresponding to this transmission, for example, the beginning or the end.
  • the base station sends the offset between the SFN of the Uu interface of the PCell/PSCell and the DFN of the PC5 interface of the relay device to the remote device through RRC signaling.
  • the device calculates the SFN of the relay device's cell based on the DFN received from the PC5 interface and this offset.
  • the relay device passes the offset between the SFN of the Uu interface of the PCell/PSCell and the DFN of the PC5 interface of the relay device through the PC5 RRC or PC5 MAC Control Element (control element) to notify the remote device that the remote device calculates the SFN of the relay device's cell PCell/PSCell based on the DFN received from the PC5 interface and the offset.
  • PC5 RRC or PC5 MAC Control Element control element
  • the time information of the side link Uu interface can be sent to the remote device by one of the following methods:
  • the time information is placed in the SL-MIB and sent to the remote device. Specifically, if there is a time slot number in the current v2xSL-MIB, the Uu interface system frame number can be further included; or the above offset can be included in the SL-MIB broadcast in the message.
  • SL-SRB Use the SL-SRB to send to the remote device, for example, any one of SL-SRB0, 1, 2, and 3; of course, a new SL-SRB can also be defined for sending time information on the side-link Uu interface.
  • the relay device may send the time information to the remote device in the response information, or periodically broadcast the time information.
  • the relay device predefine the relay device to send the side-link Uu interface time information on the side-link, so that the remote device can obtain the intermediate Follow the time information sent by the device.
  • the relay device sends the side-link Uu interface time information on the side-link only after receiving the permitted configuration from the base station.
  • the base station may send the relevant configuration using dedicated RRC signaling or system messages.
  • the DFN is initialized to the same value as the frame number of the Uu interface, so that the remote device can directly obtain the system frame number of the Uu interface from the DFN, so that it does not need to broadcast the Uu interface.
  • System frame number the side link of the relay device can be predefined to use the same SCS as the Uu interface, so that the time slot number of the PC5 interface is the same as the time slot number of the Uu interface, and the remote device can directly obtain the Uu interface from the DFN.
  • the interface system frame number also does not need to broadcast the system frame number and time slot number of the Uu interface.
  • the relay device when the relay device indicates in the SL-MIB message whether there is Uu interface time indication information to send, for example, a reserved bit is used to indicate. If it indicates that there is another Uu interface time message, the remote device needs to receive the Uu interface time message to determine the time of the Uu interface; if it indicates that there is no other Uu interface time message, then the remote device obtains the Uu interface from the SL-MIB message. Interface time information.
  • the relay device sends at least the time information of the Uu interface of its PCell on the side link.
  • the base station can configure the relay device to send the time information of the PCell or the time information of the Uu interface of the secondary cell on the side link. time information.
  • the time information of the Uu interface of the PCell and/or PSCell can be sent on the side link.
  • the relay device is in the EN-DC connection state, only the time information of the Uu interface of the PSCell is sent on the side link.
  • the remote device can acquire system time-related information from the detection of the MIB and the SSB of the Uu interface. After receiving the sidelink Uu interface time information, the remote device determines the Uu interface time information of the corresponding cell, and then determines the cell measurement window or performs the received measurement gap configuration, which saves the measurement power and measurement time of the remote device and improves the Business continuity under mobile conditions of remote equipment.
  • the upper layer configures a special group ID for broadcast transmission of the time information of the side link Uu interface.
  • FIG. 10 shows one of the structural block diagrams of a wireless communication apparatus according to an embodiment of the present application.
  • the wireless communication apparatus 1400 includes: a receiving module 1402, and the receiving module 1402 is configured to receive the data of the Uu interface of the base station. Configuration parameters; the determining module 1404, the determining module 1404 is used to determine the time information of the cell corresponding to the relay device according to the configuration parameters; the sending module 1406, the sending module 1406 is used to send a message carrying the time information to the remote device.
  • the time information includes at least one of the following: identification information of the cell, the system frame number of the Uu interface, the time slot number of the Uu interface, the OFDM symbol sequence number, the subcarrier spacing, the system frame number of the Uu interface, and the relay device.
  • the message includes at least one of the following: a side link main information block, a side link signaling radio bearer, and a discovery signal.
  • the side link management information includes update indication information of the time information, so that the remote device can determine the time information according to the update indication information.
  • the cells include at least one of the following: a primary cell, a secondary cell, and a primary and secondary cell.
  • FIG. 11 shows the second structural block diagram of a wireless communication apparatus according to an embodiment of the present application.
  • the wireless communication apparatus 1400 further includes: a configuration module 1408, and the configuration module 1408 is configured to determine the frame number of the PC5 interface of the relay device.
  • the initialization method ; configure the frame number of the PC5 interface according to the initialization method; wherein, the initialization method includes: configuring the initial value of the frame number of the PC5 interface as the system frame number value of the Uu interface, or according to the system frame number of the Uu interface and the PC5 interface.
  • the preset offset between frame numbers initializes the frame number of the PC5 interface.
  • the sending module 1406 is specifically configured to send the first request information of the time information to the base station, and the receiving module 1402 is further configured to receive the second configuration information returned by the base station; the sending module 1406 is specifically configured to receive the second configuration information returned by the base station according to the Send the message to the remote device.
  • the second configuration information includes at least one of the following: a time configuration message, permission information, and rejection information.
  • the receiving module 1402 is further configured to receive second request information of time information sent by the remote device; the sending module 1406 is specifically configured to send a message to the remote device according to the second request information.
  • the determining module 1404 is specifically configured to determine the time information of the primary cell and/or the secondary cell according to the configuration parameters.
  • the determining module 1404 is specifically configured to determine the time information of the primary cell and/or the primary and secondary cells according to the configuration parameters.
  • the determining module 1404 is further configured to determine a transmission mode of the message; the sending module 1406 is specifically configured to send the message to the remote device according to the transmission mode; wherein the transmission mode includes a unicast mode or a broadcast mode.
  • each module of the wireless communication apparatus 1400 implements the steps of the wireless communication method in any of the above embodiments when performing their respective functions. Therefore, the wireless communication apparatus also includes the wireless communication in any of the above embodiments. All the beneficial effects of the method will not be repeated here.
  • a relay device 1700 including: a processor 1704 , a memory 1702 , and programs or instructions stored on the memory 1702 and executable on the processor 1704 , when the program or instruction is executed by the processor 1704 to implement the steps of the wireless communication method provided in any of the above embodiments, therefore, the relay device 1700 includes all the beneficial effects of the wireless communication method provided in any of the above embodiments , and will not be repeated here.
  • FIG. 25 is a schematic diagram of a hardware structure of a relay device 2000 implementing an embodiment of the present application.
  • the relay device 2000 includes but is not limited to: a radio frequency unit 2002, a network module 2004, an audio output unit 2006, an input unit 2008, a sensor 2010, a display unit 2012, a user input unit 2014, an interface unit 2016, a memory 2018, a processor 2020, etc. part.
  • the relay device 2000 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 2020 through a power management system, so as to manage charging, discharging, and Power management and other functions.
  • a power source such as a battery
  • the relay device structure shown in FIG. 25 does not constitute a limitation on the relay device, and the relay device may include more or less components than shown, or combine some components, or arrange different components.
  • the relay device includes but is not limited to a mobile terminal, a tablet computer, a notebook computer, a palmtop computer, a vehicle-mounted electronic device, a wearable device, a pedometer, and the like.
  • the processor 2020 is configured to receive configuration parameters of the Uu interface of the base station, and determine the time information of the cell corresponding to the relay device according to the configuration parameters; the radio frequency unit 2002 is further configured to send a message carrying the time information to the remote device. Even when the remote device is out of the cell coverage, it can still determine the cell time window or understand the measurement configuration through the time information sent by the relay device, so as to perform measurement gap configuration and cell reselection, and save the measurement of the remote device. Power and measurement time to improve business continuity for remote devices in mobile conditions.
  • the time information includes at least one of the following: the identity information of the cell, the system frame number of the Uu interface, the time slot number of the Uu interface, the OFDM symbol sequence number, the subcarrier spacing, the system frame number of the Uu interface, and the relay device.
  • the message includes at least one of the following: a side link main information block, a side link signaling radio bearer, and a discovery signal.
  • the side link management information includes update indication information of the time information, so that the remote device can determine the time information according to the update indication information.
  • the cells include at least one of the following: a primary cell, a secondary cell, and a primary and secondary cell.
  • the processor 2020 is also used to determine the initialization method of the frame number of the PC5 interface of the relay device; configure the frame number of the PC5 interface according to the initialization method; wherein, the initialization method includes: configuring the initial value of the frame number of the PC5 interface as The value of the system frame number of the Uu interface, or the frame number of the PC5 interface is initialized according to the preset offset between the system frame number of the Uu interface and the frame number of the PC5 interface.
  • the radio frequency unit 2002 is configured to send the first request information of time information to the base station; receive the second configuration information returned by the base station or the second request information of time information sent by the remote device; Request information to send a message to the remote device.
  • the second configuration information includes at least one of the following: a time configuration message, permission information, and rejection information;
  • the processor 2020 is further configured to configure a single connection based on the relay device; and determine the time information of the primary cell and/or the secondary cell according to the configuration parameters. Based on the configuration of the relay device as dual connectivity; the time information of the primary cell and/or the primary and secondary cells is determined according to the configuration parameters.
  • the processor 2020 is further configured to determine a transmission mode of the message; the radio frequency unit 2002 is configured to send the message to the remote device according to the transmission mode; wherein the transmission mode includes a unicast mode or a broadcast mode.
  • the radio frequency unit 2002 may be used to send and receive information or send and receive signals during a call, and specifically, receive downlink data from the base station or send uplink data to the base station.
  • the radio frequency unit 2002 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the network module 2004 provides users with wireless broadband Internet access, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 2006 may convert audio data received by the radio frequency unit 2002 or the network module 2004 or stored in the memory 2018 into audio signals and output as sound. Also, the audio output unit 2006 may also provide audio output related to a specific function performed by the relay device 2000 (eg, call signal reception sound, message reception sound, etc.).
  • the audio output unit 2006 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 2008 is used to receive audio or video signals.
  • the input unit 2008 may include a graphics processor (Graphics Processing Unit, GPU) 5082 and a microphone 5084, the graphics processor 5082 is used for still pictures or video images obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode data is processed.
  • the processed image frames may be displayed on the display unit 2012, or stored in the memory 2018 (or other storage medium), or transmitted via the radio frequency unit 2002 or the network module 2004.
  • the microphone 5084 can receive sound, and can process the sound into audio data, and the processed audio data can be converted into a format that can be sent to a mobile communication base station via the radio frequency unit 2002 for output in the case of a phone call mode.
  • the relay device 2000 also includes at least one sensor 2010, such as a fingerprint sensor, a pressure sensor, an iris sensor, a molecular sensor, a gyroscope, a barometer, a hygrometer, a thermometer, an infrared sensor, a light sensor, a motion sensor, and other sensors.
  • a sensor 2010 such as a fingerprint sensor, a pressure sensor, an iris sensor, a molecular sensor, a gyroscope, a barometer, a hygrometer, a thermometer, an infrared sensor, a light sensor, a motion sensor, and other sensors.
  • the display unit 2012 is used to display information input by the user or information provided to the user.
  • the display unit 2012 may include a display panel 5122, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 2014 can be used to receive input numerical or character information, and generate key signal input related to user settings and function control of the relay device.
  • the user input unit 2014 includes a touch panel 5142 and other input devices 5144 .
  • the touch panel 5142 also referred to as a touch screen, collects the user's touch operations on or near it.
  • the touch panel 5142 may include two parts, a touch detection device and a touch controller. Among them, the touch detection device detects the user's touch orientation, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it to the touch controller. To the processor 2020, the command sent by the processor 2020 is received and executed.
  • Other input devices 5144 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which are not described herein again.
  • the touch panel 5142 can be covered on the display panel 5122.
  • the touch panel 5142 detects a touch operation on or near it, it transmits it to the processor 2020 to determine the type of the touch event, and then the processor 2020 determines the type of the touch event according to the touch
  • the type of event provides corresponding visual output on display panel 5122.
  • the touch panel 5142 and the display panel 5122 can be used as two independent components, or can be integrated into one component.
  • the interface unit 2016 is an interface for connecting an external device to the relay device 2000 .
  • the external device may include a wired or wireless headset end interface, an external power supply (or battery charger) end interface, a wired or wireless data end interface, a memory card end interface, an end interface for connecting to a device with an identification module , audio input/output (I/O) port, video I/O port, headphone port and so on.
  • the interface unit 2016 may be used to receive input from external devices (eg, data information, power, etc.) and transmit the received input to one or more elements within the relay device 2000 or may be used in the relay device 2000 data transfer to and from external devices.
  • Memory 2018 may be used to store software programs as well as various data.
  • the memory 2018 may mainly include a stored program area and a stored data area, wherein the stored program area may store an operating system, an application program (such as a sound playback function, an image playback function, etc.) required for at least one function, and the like; Data (such as audio data, phone book, etc.) created by the use of the mobile terminal, etc.
  • memory 2018 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the processor 2020 executes various functions of the relay device 2000 and processes data by running or executing the software programs and/or modules stored in the memory 2018, and calling the data stored in the memory 2018, thereby performing operations on the relay device 2000. Overall monitoring.
  • the processor 2020 may include one or more processing units; the processor 2020 may integrate an application processor and a modem processor, wherein the application processor mainly handles the operating system, user interface and application programs, etc., and the modem processor mainly handles Functions related to handling wireless communications.
  • FIG. 12 shows the seventh flowchart of the wireless communication method according to the embodiment of the present application, including:
  • Step 702 the remote device receives the message sent by the relay device
  • Step 704 the remote device determines the location of the time window for sending the discovery signal of the cell and/or the neighboring cells of the cell.
  • the remote device can obtain the time information of the cell through the relay device, and even if the remote device is outside the coverage of the cell, the remote device can still determine the location of the time window for sending the discovery signal of the cell and/or the neighboring cells of the cell, In order to facilitate cell reselection and improve the service continuity of remote equipment under moving conditions.
  • FIG. 13 shows the eighth flowchart of the wireless communication method of the embodiment of the present application, including:
  • Step 802 the remote device receives the message sent by the relay device
  • Step 804 the remote device parses the cell measurement configuration information according to the time information of the cell corresponding to the relay device in the message.
  • the remote device can still obtain the time information of the cell through the relay device, and use the time information to parse the cell measurement configuration information, so that the remote device can understand the measurement of the base station
  • the configuration saves the measurement power and measurement time of the remote device, and improves the service continuity of the remote device under mobile conditions.
  • FIG. 14 shows the ninth flow chart of the wireless communication method according to the embodiment of the present application, including:
  • Step 902 the remote device sends second request information of time information to the relay device.
  • the second request information includes user information of the remote device and required time information.
  • the remote device may send the second request information of the time information to the relay device, so that the relay device provides the time information of the corresponding cell.
  • FIG. 15 shows a tenth flow chart of the wireless communication method according to the embodiment of the present application, including:
  • Step 1002 the remote device reads the time slot number of the PC5 interface of the relay device, and determines the time slot number of the Uu interface of the base station according to the time slot number of the PC5 interface;
  • Step 1004 the remote device reads the frame number of the PC5 interface of the relay device, and determines the system frame number of the Uu interface of the base station according to the frame number of the PC5 interface.
  • the remote device can directly obtain the system frame number of the Uu interface from the frame number of the PC5 interface, thereby avoiding The system frame number of the Uu interface is directly transmitted in the packet, which saves transmission resources and improves the configuration efficiency of remote devices.
  • the relay device presets a preset offset between the system frame number of the Uu interface and the frame number of the PC5 interface, that is, the correspondence between the system frame number of the Uu interface and the frame number of the PC5 interface.
  • the frame number of the PC5 interface is initialized according to the preset offset between the frame number of the Uu interface system and the frame number of the PC5 interface.
  • the remote device obtains the frame number and preset offset of the PC5 interface, it can calculate the system frame number of the Uu interface.
  • the relay device configures the subcarrier spacing of the PC5 interface as the subcarrier spacing of the Uu interface.
  • the time slot number of the PC5 interface is the same as the time slot number of the Uu interface
  • the frame number of the PC5 interface is the same as the system frame number of the Uu interface.
  • the remote device directly obtains the system frame number and time slot number of the Uu interface from the frame number and time slot number of the PC5 interface, so there is no need to separately propagate the system frame number and time slot number of the Uu interface, saving transmission resources.
  • FIG. 16 shows the third structural block diagram of a wireless communication apparatus according to an embodiment of the present application.
  • the wireless communication apparatus 1500 includes: a receiving module 1502, and the receiving module 1502 is configured to receive the data sent by the relay device. message; the determination module 1504, the determination module 1504 is used to determine the location of the transmission time window of the cell and/or the adjacent cell discovery signal of the cell; and/or according to the time information of the cell corresponding to the relay device in the message, parse the cell measurement configuration information.
  • the time information includes at least one of the following: identification information of the cell, the system frame number of the Uu interface, the time slot number of the Uu interface, the OFDM symbol sequence number, the subcarrier spacing, the system frame number of the Uu interface, and the relay device.
  • the message includes at least one of the following: a side link main information block, a side link signaling radio bearer, and a discovery signal.
  • the side link management information includes update indication information of the time information, so that the remote device can determine the time information according to the update indication information.
  • the cells include at least one of the following: a primary cell, a secondary cell, and a primary and secondary cell.
  • the measurement information includes measurement configuration, measurement gap and measurement report.
  • the determining module 1504 is also used to read the time slot number of the PC5 interface of the relay device, and determine the time slot number of the Uu interface of the base station according to the time slot number of the PC5 interface; and/or read the time slot number of the relay device.
  • the frame number of the PC5 interface, and the system frame number of the Uu interface of the base station is determined according to the frame number of the PC5 interface.
  • FIG. 17 shows a fourth structural block diagram of a wireless communication apparatus according to an embodiment of the present application.
  • the wireless communication apparatus 1500 further includes: a sending module 1506, and the sending module 1506 is configured to send the second time information to the relay device. Request information.
  • each module of the wireless communication apparatus 1500 implements the steps of the wireless communication method in any of the above-mentioned embodiments when performing their respective functions. Therefore, the wireless communication apparatus also includes the wireless communication method in any of the above-mentioned embodiments. All the beneficial effects of the method will not be repeated here.
  • a remote device 1800 including: a memory 1802, on which a computer program is stored; a processor 1804, configured to execute the computer program to implement any of the above
  • the remote device 1800 includes all the beneficial effects of the wireless communication method provided in any of the above-mentioned embodiments, which will not be repeated here.
  • the remote device in this embodiment of the present application may be an apparatus, or may be a component, an integrated circuit, or a chip in a terminal.
  • the apparatus may be a mobile electronic device or a non-mobile electronic device.
  • the mobile electronic device may be a mobile phone, a tablet computer, a notebook computer, a palmtop computer, an in-vehicle electronic device, a wearable device, an ultra-mobile personal computer (UMPC), a netbook, or a personal digital assistant (personal digital assistant).
  • UMPC ultra-mobile personal computer
  • PDA personal digital assistant
  • non-mobile electronic devices can be servers, network attached storage (Network Attached Storage, NAS), personal computer (personal computer, PC), television (television, TV), teller machine or self-service machine, etc., this application Examples are not specifically limited.
  • the remote device in this embodiment of the present application may be a device having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • FIG. 18 shows the eleventh flowchart of the wireless communication method of the embodiment of the present application, including:
  • Step 1102 the base station sends the configuration parameters of the Uu interface of the base station to the relay device.
  • the base station actively sends the configuration parameters of the Uu interface between the base station and the relay device to the relay device.
  • the relay device After receiving the configuration parameters, the relay device generates a packet including corresponding time information through the configuration parameters, so as to forward the time information to the remote device.
  • FIG. 19 shows the twelfth flowchart of the wireless communication method of the embodiment of the present application, including:
  • Step 1202 the base station receives the first request information for time information sent by the relay device
  • Step 1204 the base station determines the second configuration information of the time information
  • the second configuration information includes permission information and rejection information.
  • Step 1206 the base station sends the second configuration information to the relay device.
  • the relay device before sending a message carrying time information to the remote device, the relay device first sends first request information about time information to the corresponding base station to ask the base station whether the remote device provides time information. If the base station determines the second configuration information in response to the user's operation or the preset communication authority, and feeds back the configuration permission information to the relay device. If the base station confirms the configuration, it will feed back the configuration permission information. The relay device performs transmission to the remote device according to the permission information returned by the base station. If the base station rejects the configuration, it will feed back configuration rejection information. The relay device will not send time information to the remote device according to the rejection information returned by the base station. Therefore, the access authority of the remote device can be further set through the first request information, and the security of the communication system can be improved.
  • FIG. 20 shows the fifth structural block diagram of a wireless communication apparatus according to an embodiment of the present application.
  • the wireless communication apparatus 1600 includes: a sending module 1602, and the sending module 1602 is configured to send a base station to a relay device Configuration parameters of the Uu interface.
  • the sending module 1602 is further configured to send second configuration information of the time information to the relay device, wherein the second configuration information includes permission information and rejection information.
  • FIG. 21 shows the sixth structural block diagram of a wireless communication apparatus according to an embodiment of the present application.
  • the wireless communication apparatus 1600 further includes: a receiving module 1604, and the receiving module 1604 is configured to receive the first time information sent by the relay device. a request information; the determining module 1606, the determining module 1606 is configured to determine the second configuration information of the time information; the sending module 1602 is further configured to send the second configuration information to the relay device.
  • each module of the wireless communication apparatus 1600 implements the steps of the wireless communication method in any of the above embodiments when performing their respective functions. Therefore, the wireless communication apparatus also includes the wireless communication in any of the above embodiments. All the beneficial effects of the method will not be repeated here.
  • a base station 1900 including: a memory 1902, on which a computer program is stored; a processor 1904, configured to execute the computer program to implement any of the above implementations
  • the base station 1900 includes all the beneficial effects of the wireless communication method provided in any of the above-mentioned embodiments, which will not be repeated here.
  • a readable storage medium on which a program or an instruction is stored, and when the program or instruction is executed by a processor, implements the steps of the wireless communication method provided in any of the foregoing embodiments .
  • the readable storage medium can implement each process of the wireless communication method provided by the embodiment of the present application, and can achieve the same technical effect, which is not repeated here to avoid repetition.
  • the processor is the processor in the communication device provided in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface and the processor are coupled, and the processor is used for running a program or an instruction to implement the various processes of the above wireless communication method embodiments, and can achieve the same The technical effect, in order to avoid repetition, will not be repeated here.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.
  • the terms “comprising”, “comprising” or any other variation thereof are intended to encompass non-exclusive inclusion, such that a process, method, article or device comprising a series of elements includes not only those elements, It also includes other elements not expressly listed or inherent to such a process, method, article or apparatus.
  • the term “plurality” refers to two or more, unless expressly limited otherwise.
  • the terms “connected”, “connected” and other terms should be understood in a broad sense. For example, “connected” may be a fixed connection, a detachable connection, or an integral connection; “connected” may be directly connected or connected through The intermediary is indirectly connected.
  • the terms “first,” “second,” etc. are used to distinguish between different objects, rather than to describe a particular order of the objects. For those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood according to specific situations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信方法、装置、中继设备、远端设备和基站,其中,无线通信方法包括:中继设备接收基站的Uu接口的配置参数;中继设备根据配置参数确定中继设备对应的小区的时间信息;中继设备向远端设备发送携带时间信息的报文。

Description

无线通信方法、装置、中继设备、远端设备和基站
相关申请的交叉引用
本申请主张在2020年10月23日在中国提交的中国专利申请号202011150338.7的优先权,其全部内容通过引用包含于此。
技术领域
本申请涉及通信技术领域,具体而言,涉及一种无线通信方法、一种无线通信装置、一种中继设备、一种远端设备、一种基站和一种可读存储介质。
背景技术
在第五代(the fifth generation,5G)移动通信技术中,随着海量设备将接入到蜂窝网络,核心网络压力陡增。3GPP(the third generation parmership project)提出了设备到设备通信(Device-to-Device,D2D),服务于近距离场景。对于功率受限的远端设备(remote user equipment,remote UE),可以通过中继设备(relay user equipment,relay UE)与基站(gNB)通信,从而减小远端设备的功率消耗。其中,从通信原理上来说,可以通过Uu接口(用户设备与基站之间的接口)和PC5接口(用户设备与用户设备之间的接口)来进行通信,远端设备和中继设备之间的链路为旁链路(sidelink),该旁链路之间的无线链路又称为PC5链路,中继设备跟基站之间的链路称为Uu链路(Uulink)。
相关技术中,当远端设备进行中继通信时,需要联合服务小区系统消息和单边带(Single side band,SSB)物理信号来确定中继设备Uu接口的具体时间,但是对于处于服务小区覆盖外的远端设备无法通过中继设备转发的系统消息来获取Uu接口的系统帧号等信息。这会导致远端设备无法准确预判Uu接口的发出的广播信号的发送时间窗位置,例如,SSB信号、物理广播信道(PBCH)信号、系统信息信号(SIB)等,使得远端设备盲测无线小区,不仅延时大,而且功耗高。另外,基站也无法为处于覆盖外的远端设备配置测量间隙(measurement gap,MG),使得远端设备无法及时根据测量间隙找到目标小区,无法保证通信业务连续性。
发明内容
本申请实施例提供了一种无线通信方法、装置、中继设备、远端设备和基站,能够解决相关技术中对处于小区覆盖外的远端设备如何获得系统时间信息的技术问题。
为了解决上述问题,本申请是这样实现的:
第一方面,本申请实施例提供了一种无线通信方法,包括:
中继设备接收基站的Uu接口的配置参数;
中继设备根据配置参数确定中继设备对应的小区的时间信息;
中继设备向远端设备发送携带时间信息的报文。
第二方面,本申请实施例提供了一种无线通信方法,包括:
远端设备接收中继设备发送的报文;
远端设备根据报文中中继设备对应的小区的时间信息,确定小区和/或小区的相邻小区发现信号的发送时间窗位置;和/或
远端设备根据报文中中继设备对应的小区的时间信息,解析小区测量配置信息。
第三方面,本申请实施例提供了一种无线通信方法,包括:
基站向中继设备发送基站的Uu接口的配置参数。
第四方面,本申请实施例提供了一种无线通信装置,包括:
接收模块,用于接收基站的Uu接口的配置参数;
确定模块,用于根据配置参数确定中继设备对应的小区的时间信息;
发送模块,用于向远端设备发送携带时间信息的报文。
第五方面,本申请实施例提供了一种无线通信装置,包括:
接收模块,用于接收中继设备发送的报文;
确定模块,用于根据报文中中继设备对应的小区的时间信息,确定小区和/或小区的相邻小区发现信号的发送时间窗位置;和/或根据报文中中继设备对应的小区的时间信息,解析小区测量配置信息。
第六方面,本申请实施例提供了一种无线通信装置,包括:
发送模块,用于向中继设备发送基站的Uu接口的配置参数。
第七方面,本申请实施例提供了一种中继设备,包括处理器、存储器及存储在该存储器上并在处理器上运行的程序或指令,该程序或指令被处理器执行时实现如第一方面提供的无线通信方法的步骤。
第八方面,本申请实施例提供了一种远端设备,包括处理器、存储器及存储在该存储器上并在处理器上运行的程序或指令,该程序或指令被处理器执行时实现如第二方面提供的无线通信方法的步骤。
第九方面,本申请实施例提供了一种基站,包括处理器、存储器及存储在该存储器上并在处理器上运行的程序或指令,该程序或指令被处理器执行时实现如第三方面提供的无线通信方法的步骤。
第十方面,本申请实施例提供了一种可读存储介质,可读存储介质上存储程序或指令,该程序或指令被处理器执行时实现如第一方面或第二方面或第三方面提供的无线通信方法的步骤。
第十一方面,本申请实施例提供了一种芯片,芯片包括处理器和通信接口,通信接口和处理器耦合,处理器用于运行程序或指令,实现如第一方面或第二方面或第三方面提供的无线通信方法的步骤。
在本申请实施例中,中继设备接收基站的Uu接口的配置参数;中继设备根据配置参数确定中继设备对应的小区的时间信息;中继设备向远端设备发送携带时间信息的报文。从而在远端设备进行中继通信的过程中,中继设备能够通过旁链路向远端设备提供小区的时间信息。使得处于小区覆盖范围外的远端设备,依然能够通过中继设备发送的时间信息确定小区时间窗或理解测量配置,以便于执行测量间隙配置和小区重选,节约远端设备的测量功率和测量时间,提高远端设备在移动条件下的业务连续性。
附图说明
图1示出了根据本申请的一个实施例的无线通信方法的流程图之一;
图2示出了根据本申请的一个实施例的无线通信方法的流程图之二;
图3示出了根据本申请的一个实施例的无线通信方法的流程图之三;
图4示出了根据本申请的一个实施例的无线通信方法的流程图之四;
图5示出了根据本申请的一个实施例的无线通信方法的流程图之五;
图6示出了根据本申请的一个实施例的无线通信方法的流程图之六;
图7示出了根据本申请的一个实施例的通信场景示意图;
图8示出了根据本申请的一个实施例的层2中继设备的回传链路控制面协议栈示意图;
图9示出了根据本申请的一个实施例的层3中继设备的回传链路控制面协议栈示意图;
图10示出了根据本申请的一个实施例的无线通信装置的结构框图之一;
图11示出了根据本申请的一个实施例的无线通信装置的结构框图之二;
图12示出了根据本申请的一个实施例的无线通信方法的流程图之七;
图13示出了根据本申请的一个实施例的无线通信方法的流程图之八;
图14示出了根据本申请的一个实施例的无线通信方法的流程图之九;
图15示出了根据本申请的一个实施例的无线通信方法的流程图之十;
图16示出了根据本申请的一个实施例的无线通信装置的结构框图之三;
图17示出了根据本申请的一个实施例的无线通信装置的结构框图之四;
图18示出了根据本申请的一个实施例的无线通信方法的流程图之十一;
图19示出了根据本申请的一个实施例的无线通信方法的流程图之十二;
图20示出了根据本申请的一个实施例的无线通信装置的结构框图之五;
图21示出了根据本申请的一个实施例的无线通信装置的结构框图之六;
图22示出了根据本申请的一个实施例的中继设备的结构框图之一;
图23示出了根据本申请的一个实施例的远端设备的结构框图;
图24示出了根据本申请的一个实施例的基站的结构框图;
图25示出了根据本申请的一个实施例的中继设备的结构框图之二。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图25描述根据本申请一些实施例所述无线通信方法、无线通信装置、中继设备、远端设备、基站和可读存储介质。
在本申请的一个实施例中,图1示出了本申请实施例的无线通信方法的流程图之一, 包括:
步骤102,中继设备接收基站的Uu接口的配置参数;
其中,图7示出了本申请实施例的通信场景示意图。新无线(New Radio,NR)或长期演进(Long Term Evolution,LTE)通信系统中远端设备1800与中继设备1700之间通过旁链路1710进行通信,中继设备1700和基站1900之间通过Uu链路1720进行通信。
旁链路运行PC5接口协议。例如,旁链路无线接口控制面有PC5RRC协议,旁链路运行在分组数据汇集协议(Packet Data Convergence Protocol,PDCP)层和无线链路控制(Radio Link Control,RLC)层之上,最下面是介质访问控制(Media Access Control,MAC)层和物理层,旁链路的无线接口用户面自上到下包括服务数据适配协议(Service Data Adaptation Protocol,SDAP)层,PDCP层,RLC层、MAC层和物理层。Uu链路运行Uulink协议。
需要说明的是,本申请涉及的网络通信标准框架,也就是开放式系统互联参考模型(Open System Interconnection Reference Model,OSI),将整个通信功能划分为七个层次,其中,OSI参考模型的下三层,负责创建网络通信连接的链路,分别是:
物理层(Physical Layer),用于定义网络的物理结构、传输的电磁标准、Bit流的编码及网络的时间原则,例如,分时复用及分频复用,决定了网络连接类型(端到端或多端连接)及物理拓扑结构。
数据链路层(Data Link Layer),用于在两个设备上建立数据链路连接,向物理层传输数据信号,并对信号进行处理使之无差错并合理的传输,具体地,数据链路层包括MAC(Media Access Control,介质访问控制)层、RLC(Radio Link Control,无线链路控制)、BMC(Broadcast/Multicast Control,广播/组播通信控制)层和PDCP(Packet Data Convergence Protocol,分组数据汇集协议)层,通过传送信道,MAC层和物理层能够发送和接收数据。
网络层(Network Layer),用于选择合适的路径,进行阻塞控制等功能,网络层包括用于对控制逻辑信道、传送信道、以及物理信道进行处理的无线资源控制(Radio Resource Control,RRC)层。
具体地,图8示出了本申请实施例的层2中继设备的回传链路控制面协议栈示意图。对于层2旁链路中继设备1700的回传链路,远端设备1800有PC5的RRC连接,用于控制旁链路连接,同时有与基站1900的RRC连接,用于控制与基站1900之间的连接和业务提供。层2旁链路中继设备1700的回传链路不限于图8中给出的Uu的RRC协议栈。图9示出了本申请实施例的层3中继设备的回传链路控制面协议栈示意图。对于层3旁链路中继设备1700的回传链路,远端设备1800仅有与中继设备1700的PC5的RRC连接,没有与基站1900的Uu的RRC连接。其中,回传链路是指远端设备和它的上级的基站进行通信时所使用的无线链路,包括上行传输和下行传输的链路。
步骤104,中继设备根据配置参数确定中继设备对应的小区的时间信息;
具体地,中继设备对应的小区包括:中继设备处于激活态时的服务小区或中继设备处于非激活态的驻留小区。
进一步地,时间信息包括以下至少一种:小区的身份识别信息(小区ID)、Uu接口的系统帧号(System Frame Number,SFN)、Uu接口的时隙号、Uu接口的OFDM(正交频分复用)符号序号、Uu接口的子载波间隔、Uu接口的系统帧号和中继设备的PC5接口 的帧号之间的偏移量。
需要说明的是,一般情况下,不同的子载波间隔有不同的适用频段。例如,在普通CP(循环前缀)下,低频(低于6GHz)数据和控制信道采用的子载波间隔为15KHz和30KHz,而高频数据信道采用的子载波间隔为60KHz和120KHz,不同的子载波间隔下,时隙和符号的长度不同。因此通过子载波间隔能够确定Uu接口的时隙/符号的时间长度。系统帧号为当前承载Uu接口时间信息的发送所在的系统帧号,OFDM符号序号与本次发送相关,例如,开头或结尾。当远端设备建立与中继设备之间的PC5链路,远端设备能够读取到PC5接口的相关参数,例如,PC5接口的时隙号和帧号(Direct Frame Number,DFN),通过DFN和中继设备的Uu接口的SFN和中继设备的PC5接口的DFN之间的偏移量即可得到Uu接口的系统帧号,而且避免中继设备转发系统消息时,由于Uu接口和PC5接口时间偏移造成的误差。
在本实施例中,依照通信协议的参数或来自小区的配置,中继设备依据从Uu接口获取的跟时间相关的信息生成小区的时间信息,也即旁链路Uu接口的时间信息,该时间信息指示选定的旁链路参考时间位置对应的Uu接口时间信息。一个远端设备在接入一个小区前,需要获得该小区的时间信息。
具体举例来说,对于层2和层3旁链路中继(SL-relay)结构中的远端终端,能够通过时间信息预判中继设备所在小区的SSB发送的可能时间位置和中继设备所在小区的邻小区的SSB发送的可能时间位置,以便于测量和小区重选。对层2旁链路中继结构中的远端终端,能够通过时间信息解析无线资源管理(Radio Resourse Control,RRC)消息中的跟时间相关的配置,例如,测量配置、测量间隙(measurement gap)和测量汇报等。
步骤106,中继设备向远端设备发送携带时间信息的报文。
在本实施例中,在远端设备进行中继通信的过程中,中继设备能够通过旁链路向远端设备提供小区的时间信息。使得处于小区覆盖范围外的远端设备,依然能够通过中继设备发送的时间信息确定小区时间窗或理解测量配置,以便于执行测量间隙配置和小区重选,节约远端设备的测量功率和测量时间,提高远端设备在移动条件下的业务连续性。
具体地,报文中的主信息块(Master Information Block,MIB)的SFN参数来表示系统帧号的高6位,报文中的物理广播信道(PBCH)的信道编码的来表示系统帧号低4位,报文中预先定义SSB发送的时序关系、发送时间位置和序号等,以使远端设备获取系统帧内的时隙号和符号序号。
具体举例来说,对于层2或层3的旁链路中继结构,可以预定义中继设备自动通过旁链路发送旁链路Uu接口时间信息至远端设备,也即远端设备与中继设备建立通信链路后,中继设备便会主动向远端设备提供对应的时间信息。
在本申请的一个实施例中,图2示出了根据本申请实施例的无线通信方法的流程图之二,包括:
步骤202,中继设备确定中继设备的PC5接口的帧号的初始化方式;
步骤204,中继设备根据初始化方式配置PC5接口的帧号。
其中,步骤204具体包括以下两种方式:
方式一,将PC5接口的帧号初始值配置为Uu接口的系统帧号值。
在该实施例中,中继设备通过初始化操作为PC5接口的帧号赋值,将PC5接口的帧号 初始化为与Uu接口系统帧号一样的值。使得远端设备可直接从PC5接口的帧号获得Uu接口系统帧号,从而避免在报文直接传输Uu接口的系统帧号,节省传输资源,提升远端设备的配置效率。
方式二,根据Uu接口的系统帧号与PC5接口的帧号之间的预设偏移量初始化PC5接口的帧号。
在该实施例中,中继设备预先设置Uu接口系统帧号和PC5接口的帧号之间的预设偏移量,也即Uu接口系统帧号和PC5接口的帧号之间的对应关系。根据预设偏移量和Uu接口系统帧号对PC5接口的帧号重新赋值。当远端设备获得PC5接口的帧号和预设偏移量后,即可计算出Uu接口系统帧号。从而避免在报文直接传输Uu接口的系统帧号,节省传输资源,提升远端设备的配置效率。
具体地,对于预设偏移量的获取过程具体包括一下步骤:
中继设备接收对中继设备的第一输入,中继设备响应于第一输入,确定预设偏移量;或中继设备接收基站发送的第一配置信息,中继设备根据第一配置信息确定预设偏移量。
在该实施例中,中继设备可根据用户的操作确定预设偏移量,还可以从基站发送的第一配置信息获得预设偏移量。其中,第一配置信息包括系统信息(SIB)或专用的无线资源管理(RRC)信息。
在本申请的一个实施例中,图3示出了根据本申请实施例的无线通信方法的流程图之三,包括:
步骤302,中继设备将中继设备的PC5接口的子载波间隔配置为Uu接口的子载波间隔。
在该实施例中,由于子载波间隔能够决定时隙/符号的时间长度,为此,可预先设置中继设备的旁链路使用与Uu接口相同的子载波间隔(SubCarrier Sapacing,SCS),使得PC5接口的时隙号与Uu接口的时隙号相同,PC5接口的帧号与Uu接口的系统帧号相同。远端设备能够直接从PC5接口的帧号和时隙号,获得Uu接口系统帧号和时隙号,从而无需另行传播Uu接口的系统帧号和时隙号,节省传输资源。
在本申请的一个实施例中,中继设备可通过以下形式接收基站的Uu接口的配置参数。
方式一,中继设备读取Uu接口的配置参数。
在该实施例中,在基站与中继设备建立通信链路之后,中继设备通过与基站之间的Uu链路能够读取到Uu接口的配置参数,中继设备通过配置参数即可确定基站小区的时间信息。中继设备再将携带有时间信息的报文发送至远端设备,从而能够为小区覆盖范围外的远端设备提供转却的时间信息,以便于远端设备根据时间信息执行测量间隙配置和小区重选操作,有效降低对小区覆盖范围的局限性,保证远端设备的业务连续性。
具体举例来说,对于层3旁链路中继结构,中继设备能够读取到Uu接口的相关参数,再通过PC5无线资源管理(RRC)或PC5介质访问控制控制元素(MAC CE)通知远端设备,使得远端设备得到时间信息。
方式二,中继设备接收基站发送的Uu接口的配置参数。
在该实施例中,在基站与中继设备建立通信链路之后,基站主动发送Uu接口的配置参数给中继设备。中继设备接收到配置参数后,通过配置参数生成包含对应的时间信息的报文,以将时间信息转发至远端设备。使得远端设备能够根据时间信息执行测量间隙配置 和小区重选操作,有效降低远端设备对小区覆盖范围的局限性,保证远端设备的业务连续性。
具体举例来说,对于层2旁链路中继结构,由于中继设备没有与基站之间的Uu的RRC连接,但远端设备具有与基站之间的Uu的RRC连接,所以基站可以把小区的时间信息,以RRC信令的形式通过中继设备转发给远端设备,远端设备基于接收的RRC信令得到时间信息。
在本申请的一个实施例中,图4示出了本申请实施例的无线通信方法的流程图之四,步骤106,具体包括:
步骤402,中继设备向基站发送时间信息的第一请求信息;
其中,第一请求信息包含远端设备和中继设备的用户信息等。
步骤404,中继设备根据基站返回的第二配置信息发送报文至远端设备。
其中,第二配置信息包括以下至少一种:时间配置消息、许可信息、拒绝信息;时间配置消息包括与远端设备相关的时间配置参数。例如,若基站确认配置,则第二配置信息包括时间配置消息和许可信息;若基站拒绝配置,则第二配置信息包括拒绝信息。
在该实施例中,中继设备在向远端设备发送携带有时间信息的报文之前,先发送关于时间信息的第一请求信息至对应的基站,以询问基站是否远端设备提供时间信息。若基站确认配置,则会反馈配置的许可信息。中继设备根据基站返回的许可信息执行向远端设备进行发送。若基站拒绝配置,则会反馈配置的拒绝信息。中继设备根据基站返回的拒绝信息则不会发送时间信息至远端设备。从而能够通过第一请求信息进一步设置远端设备的接入权限,提高通信系统的安全性。
具体举例来说,对于层3的旁链路中继结构,中继设备具有与基站的RRC连接信道。中继设备可预定义为在收到来自服务基站的许可配置后才通过旁链路发送Uu接口时间信息。进一步地,基站可以使用专用RRC信令或系统消息发送相关配置。
在本申请的一个实施例中,图5示出了本申请实施例的无线通信方法的流程图之五,步骤106,具体包括:
步骤502,中继设备接收远端设备发送的时间信息的第二请求信息;
步骤504,中继设备根据第二请求信息发送报文至远端设备。
其中,第二请求信息包含有远端设备的用户信息和所需的时间信息。
在该实施例中,当远端设备需要接入小区前,至少需要获得该小区的时间信息,便于测量和小区重选。此时,远端设备可发送的时间信息的第二请求信息至中继设备。中继设备在接收到该第二请求信息后,才会将携带有时间信息的报文发送至远端设备。从而避免中继设备持续向远端设备发送时间信息导致的资源占用问题,有利于传输资源分配,提高通信效率和稳定性。
在本申请的一个实施例中,图6示出了本申请实施例的无线通信方法的流程图之六,步骤106,具体包括:
步骤602,中继设备确定报文的传播方式;
其中,传播方式包括单播方式或广播方式。
步骤604,中继设备根据传播方式发送报文至远端设备。
在该实施例中,在收到远端设备发送的第二请求信息后,中继设备可在针对该远端的 响应信息中向远端设备发送报文,以可以周期性地广播发送报文。
具体地,中继设备向远端设备广播发送携带时间信息的报文之前,中继设备接收到网络设备发送的第三配置信息,根据第三配置信息配置广播消息识别符。也即网络设备为中继设备和远端设备配置独立广播消息识别符,以进行Uu接口时间信息的广播发送。
在本申请的一个实施例中,报文包括以下至少一种:旁链路主信息块(sidelink master information block,SL-MIB)、旁链路信令无线承载(sidelink signalling radio bearers,SL-SRB)、发现信号。
其中,旁链路管理信息包括时间信息的更新指示信息,更新指示信息用于远端设备确定时间信息。在该实施例中,当中继设备在SL-MIB消息中指示是否有Uu接口时间更新。如果更新指示信息指示有另外的Uu接口时间消息,则远端设备将接收另外的Uu接口时间消息以确定Uu接口的时间信息。如果更新指示信息指示没有另外的Uu接口时间消息,那么远端设备从SL-MIB消息中获取本次SL-MIB消息携带的Uu接口时间信息。从而能够使远端设备根据更新指示信息接收最新的时间信息。
具体地,在SL-MIB消息中可用一位保留比特作为更新指示信息;
具体举例来说,基于3GPP通信协议的车辆数据传输方案,v2x(Vehicle to X,车到特定目标通信)SL-MIB包含有时隙号,只需要将除时隙号以外的时间信息放入SL-MIB中即可。
另外,中继设备在使用旁链路信令无线承载向远端设备传输时间信息时,该旁链路信令无线承载可以RRC连接建立时的各无线承载,例如SL-SRB0,SL-SRB1,SL-SRB2,SL-SRB3中的任意一个;也可以通过中继设备配置一个新的旁链路信令无线承载,例如SL-SRB4、SL-SRB5等。
在本申请的一个实施例中,小区包括以下至少一种:主小区、辅小区、主辅小区。
在该实施例中,在载波聚合(Carrier Aggregation,CA)中,聚合了两个或更多个分量载波(Component Carrier,CC),以便于支持高达100MHz的更宽的传输带宽。当用户设备为单连接状态,用户设备进入连接态后可以同时通过多个分量载波与基站进行通信,基站会通过显式的配置或者按照协议约定为用户设备指定一个主分量载波(Primary Component Carrier,PCC),其他的分量载波称为辅分量载波(Secondary Component Carrier,SCC),在主分量载波上的小区称为主小区(Primary Cell,Pcell),也即工作在主频带上的小区。在辅分量载波上的小区称为辅小区(Secondary Cell,Scell),也即工作在辅频带上的小区。当用户设备为双连接(Dual connectivity,DC)状态,则网络中部署了多个小区,也即MCG(Master Cell group,主小区组)和SCG(Secondary Cell group,辅小区组),SCG中主分量载波上的小区称为主辅小区(Primary Secondary cell,PScell),辅分量载波上的小区称为辅小区。用户设备可根据需求可得到不同小区的时间信息。
其中,可预定义中继设备在旁链路至少发送其PCell的Uu接口时间信息。
具体地,中继设备配置为单连接,主小区和辅小区载波聚合联合在一起,且PC5链路使用辅小区的资源时,中继设备根据配置参数确定主小区和/或辅小区的时间信息,并发送至远端设备。中继设备配置为双连接,中继设备根据配置参数确定主小区和/或主辅小区的时间信息,并发送至远端设备。例如,当中继设备处于EN-DC连接态时,仅在旁链路发送PSCell的Uu接口时间信息。
具体举例来说,中继设备依照协议预定义或来自小区的配置,从Uu接口获取的跟时间相关的信息,生成Uu接口的时间信息,并将时间信息通过旁链路发送给远端设备。
其中,该时间信息包括如下内容一项或多项:小区ID、系统帧号、时隙号和OFDM符号序号;可选地,Uu接口时间信息还包含该小区Uu接口对应的SCS信息,以帮助远端设备确定Uu接口一个时隙/符号的时间长度。旁链路Uu接口时间信息指示选定的旁链路参考时间位置对应的Uu接口时间信息。其中小区ID是目前中继设备的一个小区ID,系统帧号是当前承载Uu接口时间信息的发送所在的系统帧号,OFDM符号序号是基于本次发送对应的帧,例如,开头或结尾。
具体地,对于层2旁链路中继结构,基站把PCell/PSCell的Uu接口的SFN跟中继设备的PC5接口的DFN之间的偏移量通过RRC信令发给远端设备,远端设备基于从PC5接口收到的DFN和该偏移量来计算中继设备的小区的SFN。作为另一种方式,对于层2或层3旁链路中继结构,中继设备把PCell/PSCell的Uu接口的SFN跟中继设备的PC5接口的DFN之间的偏移量通过PC5 RRC或PC5 MAC Control Element(控制元件)来通知远端设备被,远端设备基于从PC5接口收到的DFN和该偏移来计算中继设备的小区PCell/PSCell的SFN。
可选地,旁链路Uu接口时间信息可以通过如下方法之一向远端设备发送:
1.时间信息放到SL-MIB中向远端设备发送,具体地,若当前v2xSL-MIB中已有时隙号,可进一步包含Uu接口系统帧号;或把上述偏移量包含到SL-MIB消息中进行广播。
2.使用SL-SRB向远端设备发送,例如SL-SRB0、1、2、3中的任意一个;当然也可以定义一个新的SL-SRB,用于旁链路Uu接口时间信息发送。
3.作为旁链路发现信号携带信息的一部分,向远端设备发送。
可选地,在收到远端设备请求后,中继设备可在响应信息中向远端设备发送该时间信息,或周期性地广播发送。
可选地,对于层2或层3旁链路中继结构,可以预定义中继设备在旁链路发送旁链路Uu接口时间信息,使得远端设备与中继设备连接后即可得到中继设备发送的时间信息。
可选地,对于层3结构的旁链路中继,中继设备只有在收到来自基站的许可配置后才在旁链路发送旁链路Uu接口时间信息。基站可以使用专用RRC信令或系统消息发送相关配置。
可选地,可以预定义中继设备在初始化DFN时,将DFN初始化为跟Uu接口帧号一样的值,使得远端设备能够直接从DFN获得Uu接口系统帧号,从而不用另行广播Uu接口的系统帧号。作为另一种方式,可预定义中继设备的旁链路使用与Uu接口相同的SCS,这样PC5接口的时隙号与Uu接口的时隙号相同,远端设备直接从DFN就能够获得Uu接口系统帧号,同样不需要另行广播Uu接口的系统帧号和时隙号。
可选地,当中继设备在SL-MIB消息中指示是否有Uu接口时间指示信息发送,例如,用一位保留比特进行指示。如果指示有另外的Uu接口时间消息,则远端设备需收取此Uu接口时间消息以确定Uu接口的时间;如果指示没有另外的Uu接口时间消息,那么远端设备从SL-MIB消息得出Uu接口时间信息。
可选地,可预定义中继设备在旁链路至少发送其PCell的Uu接口时间信息。
具体地,当中继设备配置单连接,且配有载波聚合,PC5链路使用的时辅小区的资源 时,基站可配置中继设备在旁链路发送PCell的时间信息或辅小区的Uu接口的时间信息。
当中继设备配置了双连接,则可以在旁链路发送PCell和/或PSCell的Uu接口时间信息。例如,当中继设备处于EN-DC连接态时,仅在旁链路发送PSCell的Uu接口时间信息。
在该实施例中,对于处于小区覆盖外的远端设备,远端设备能从MIB和Uu口SSB的检测中获取系统时间相关的信息。远端设备在收到旁链路Uu接口时间信息后,确定对应的小区的Uu接口时间信息进而确定小区测量窗或执行接收到的测量间隙配置,节约远端设备的测量功率和测量时间,提高远端设备的移动条件下的业务连续性。
可选地,上层配置一个特殊的组ID,用于旁链路Uu接口时间信息的广播发送。
在本申请的一个实施例中,图10示出了根据本申请实施例的无线通信装置的结构框图之一,无线通信装置1400包括:接收模块1402,接收模块1402用于接收基站的Uu接口的配置参数;确定模块1404,确定模块1404用于根据配置参数确定中继设备对应的小区的时间信息;发送模块1406,发送模块1406用于向远端设备发送携带时间信息的报文。
可选的,时间信息包括以下至少一种:小区的身份识别信息、Uu接口的系统帧号、Uu接口的时隙号、OFDM符号序号、子载波间隔、Uu接口的系统帧号和中继设备的PC5接口的帧号之间的偏移量。报文包括以下至少一种:旁链路主信息块、旁链路信令无线承载、发现信号。旁链路管理信息包括时间信息的更新指示信息,以使远端设备根据更新指示信息确定时间信息。小区包括以下至少一种:主小区、辅小区、主辅小区。
可选的,图11示出了根据本申请实施例的无线通信装置的结构框图之二,无线通信装置1400还包括:配置模块1408,配置模块1408用于确定中继设备的PC5接口的帧号的初始化方式;根据初始化方式配置PC5接口的帧号;其中,初始化方式包括:将PC5接口的帧号初始值配置为Uu接口的系统帧号值,或根据Uu接口的系统帧号与PC5接口的帧号之间的预设偏移量初始化PC5接口的帧号。
可选的,发送模块1406具体用于向基站发送时间信息的第一请求信息,接收模块1402还用于接收基站返回的第二配置信息;发送模块1406具体用于根据基站返回的第二配置信息发送报文至远端设备。其中,第二配置信息包括以下至少一种:时间配置消息、许可信息、拒绝信息。
可选的,接收模块1402还用于接收远端设备发送的时间信息的第二请求信息;发送模块1406具体用于根据第二请求信息发送报文至远端设备。
可选的,基于中继设备配置为单连接;确定模块1404具体用于根据配置参数确定主小区和/或辅小区的时间信息。基于中继设备配置为双连接;确定模块1404具体用于根据配置参数确定主小区和/或主辅小区的时间信息。
可选的,确定模块1404还用于确定报文的传播方式;发送模块1406具体用于根据传播方式发送报文至远端设备;其中,传播方式包括单播方式或广播方式。
在该实施例中,无线通信装置1400的各模块执行各自功能时实现如上述任一实施例中的无线通信方法的步骤,因此,无线通信装置同时也包括如上述任一实施例中的无线通信方法的全部有益效果,在此不再赘述。
在本申请的一个实施例中,如图22所示,提供了一种中继设备1700,包括:处理器1704,存储器1702及存储在存储器1702上并可在处理器1704上运行的程序或指令,程 序或指令被处理器1704执行时实现如上述任一实施例中提供的无线通信方法的步骤,因此,该中继设备1700包括如上述任一实施例中提供的无线通信方法的全部有益效果,在此不再赘述。
图25为实现本申请实施例的一种中继设备2000的硬件结构示意图。该中继设备2000包括但不限于:射频单元2002、网络模块2004、音频输出单元2006、输入单元2008、传感器2010、显示单元2012、用户输入单元2014、接口单元2016、存储器2018、处理器2020等部件。
本领域技术人员可以理解,中继设备2000还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器2020逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图25中示出的中继设备结构并不构成对中继设备的限定,中继设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本申请实施例中,中继设备包括但不限于移动终端、平板电脑、笔记本电脑、掌上电脑、车载电子设备、可穿戴设备、以及计步器等。
其中,处理器2020用于接收基站的Uu接口的配置参数,根据配置参数确定中继设备对应的小区的时间信息;射频单元2002还用于向远端设备发送携带时间信息的报文。即使在远端设备处于小区覆盖范围外的情况下,依然能够通过中继设备发送的时间信息确定小区时间窗或理解测量配置,以便于执行测量间隙配置和小区重选,节约远端设备的测量功率和测量时间,提高远端设备在移动条件下的业务连续性。
进一步地,时间信息包括以下至少一种:小区的身份识别信息、Uu接口的系统帧号、Uu接口的时隙号、OFDM符号序号、子载波间隔、Uu接口的系统帧号和中继设备的PC5接口的帧号之间的偏移量。报文包括以下至少一种:旁链路主信息块、旁链路信令无线承载、发现信号。旁链路管理信息包括时间信息的更新指示信息,以使远端设备根据更新指示信息确定时间信息。小区包括以下至少一种:主小区、辅小区、主辅小区。
可选的,处理器2020还用于确定中继设备的PC5接口的帧号的初始化方式;根据初始化方式配置PC5接口的帧号;其中,初始化方式包括:将PC5接口的帧号初始值配置为Uu接口的系统帧号值,或根据Uu接口的系统帧号与PC5接口的帧号之间的预设偏移量初始化PC5接口的帧号。
可选的,射频单元2002用于向基站发送时间信息的第一请求信息;接收基站返回的第二配置信息或远端设备发送的时间信息的第二请求信息;根据第二配置信息或第二请求信息发送报文至远端设备。其中,第二配置信息包括以下至少一种:时间配置消息、许可信息、拒绝信息;
可选的,处理器2020还用于基于中继设备配置为单连接;根据配置参数确定主小区和/或辅小区的时间信息。基于中继设备配置为双连接;根据配置参数确定主小区和/或主辅小区的时间信息。
可选的,处理器2020还用于确定报文的传播方式;射频单元2002用于根据传播方式发送报文至远端设备;其中,传播方式包括单播方式或广播方式。
应理解的是,本申请实施例中,射频单元2002可用于收发信息或收发通话过程中的信号,具体的,接收基站的下行数据或向基站发送上行数据。射频单元2002包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
网络模块2004为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元2006可以将射频单元2002或网络模块2004接收的或者在存储器2018中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元2006还可以提供与中继设备2000执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元2006包括扬声器、蜂鸣器以及受话器等。
输入单元2008用于接收音频或视频信号。输入单元2008可以包括图形处理器(Graphics Processing Unit,GPU)5082和麦克风5084,图形处理器5082对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元2012上,或者存储在存储器2018(或其它存储介质)中,或者经由射频单元2002或网络模块2004发送。麦克风5084可以接收声音,并且能够将声音处理为音频数据,处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元2002发送到移动通信基站的格式输出。
中继设备2000还包括至少一种传感器2010,比如指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器、光传感器、运动传感器以及其他传感器。
显示单元2012用于显示由用户输入的信息或提供给用户的信息。显示单元2012可包括显示面板5122,可以采用液晶显示器、有机发光二极管等形式来配置显示面板5122。
用户输入单元2014可用于接收输入的数字或字符信息,以及产生与中继设备的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元2014包括触控面板5142以及其他输入设备5144。触控面板5142也称为触摸屏,可收集用户在其上或附近的触摸操作。触控面板5142可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器2020,接收处理器2020发来的命令并加以执行。其他输入设备5144可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板5142可覆盖在显示面板5122上,当触控面板5142检测到在其上或附近的触摸操作后,传送给处理器2020以确定触摸事件的类型,随后处理器2020根据触摸事件的类型在显示面板5122上提供相应的视觉输出。触控面板5142与显示面板5122可作为两个独立的部件,也可以集成为一个部件。
接口单元2016为外部装置与中继设备2000连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端接口、外部电源(或电池充电器)端接口、有线或无线数据端接口、存储卡端接口、用于连接具有识别模块的装置的端接口、音频输入/输出(I/O)端接口、视频I/O端接口、耳机端接口等等。接口单元2016可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到中继设备2000内的一个或多个元件或者可以用于在中继设备2000和外部装置之间传输数据。
存储器2018可用于存储软件程序以及各种数据。存储器2018可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据移动终端的使用所创建的数 据(比如音频数据、电话本等)等。此外,存储器2018可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器2020通过运行或执行存储在存储器2018内的软件程序和/或模块,以及调用存储在存储器2018内的数据,执行中继设备2000的各种功能和处理数据,从而对中继设备2000进行整体监控。处理器2020可包括一个或多个处理单元;处理器2020可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信的相关功能。
在本申请的一个实施例中,图12示出了本申请实施例的无线通信方法的流程图之七,包括:
步骤702,远端设备接收中继设备发送的报文;
步骤704,远端设备确定小区和/或小区的相邻小区发现信号的发送时间窗位置。
在该实施例中,远端设备能够通过中继设备获得小区的时间信息,即使处于小区覆盖范围外远端设备,依然能够确定小区和/或小区的相邻小区发现信号的发送时间窗位置,以便于进行小区重选,提高远端设备在移动条件下的业务连续性。
在本申请的一个实施例中,图13示出了本申请实施例的无线通信方法的流程图之八,包括:
步骤802,远端设备接收中继设备发送的报文;
步骤804,远端设备根据报文中中继设备对应的小区的时间信息,解析小区测量配置信息。
在该实施例中,即使处于小区覆盖范围外远端设备,远端设备依然能够通过中继设备获得小区的时间信息,并通过时间信息解析小区测量配置信息,以便于远端设备理解基站的测量配置,节约远端设备的测量功率和测量时间,提高远端设备在移动条件下的业务连续性。
在本申请的一个实施例中,步骤802,远端设备接收中继设备发送的报文之前,图14示出了本申请实施例的无线通信方法的流程图之九,包括:
步骤902,远端设备向中继设备发送时间信息的第二请求信息。
其中,第二请求信息包含有远端设备的用户信息和所需的时间信息。
在该实施例中,当远端设备需要接入小区前,至少需要获得该小区的时间信息,便于测量和小区重选。此时,远端设备可发送的时间信息的第二请求信息至中继设备,以使中继设备提供对应的小区的时间信息。
在本申请的一个实施例中,图15示出了本申请实施例的无线通信方法的流程图之十,包括:
步骤1002,远端设备读取中继设备的PC5接口的时隙号,并根据PC5接口的时隙号确定基站的Uu接口的时隙号;
步骤1004,远端设备读取中继设备的PC5接口的帧号,并根据PC5接口的帧号确定基站的Uu接口的系统帧号。
在该实施例中,若中继设备将PC5接口的帧号初始值设为与Uu接口系统帧号一样的值,远端设备可直接从PC5接口的帧号获得Uu接口系统帧号,从而避免在报文直接传输 Uu接口的系统帧号,节省传输资源,提升远端设备的配置效率。
同样的,若中继设备预先设置Uu接口系统帧号和PC5接口的帧号之间的预设偏移量,也即Uu接口系统帧号和PC5接口的帧号之间的对应关系。并且根据Uu接口系统帧号和PC5接口的帧号之间的预设偏移量初始化PC5接口的帧号。当远端设备获得PC5接口的帧号和预设偏移量后,即可计算出Uu接口系统帧号。
同样的,若中继设备将PC5接口的子载波间隔配置为Uu接口的子载波间隔。使得PC5接口的时隙号与Uu接口的时隙号相同,PC5接口的帧号与Uu接口的系统帧号相同。远端设备直接从PC5接口的帧号和时隙号,获得Uu接口系统帧号和时隙号,从而无需另行传播Uu接口的系统帧号和时隙号,节省传输资源。
在本申请的一个实施例中,图16示出了根据本申请实施例的无线通信装置的结构框图之三,无线通信装置1500包括:接收模块1502,接收模块1502用于接收中继设备发送的报文;确定模块1504,确定模块1504用于确定小区和/或小区的相邻小区发现信号的发送时间窗位置;和/或根据报文中中继设备对应的小区的时间信息,解析小区测量配置信息。
可选的,时间信息包括以下至少一种:小区的身份识别信息、Uu接口的系统帧号、Uu接口的时隙号、OFDM符号序号、子载波间隔、Uu接口的系统帧号和中继设备的PC5接口的帧号之间的偏移量。报文包括以下至少一种:旁链路主信息块、旁链路信令无线承载、发现信号。旁链路管理信息包括时间信息的更新指示信息,以使远端设备根据更新指示信息确定时间信息。小区包括以下至少一种:主小区、辅小区、主辅小区。测量信息包括测量配置、测量间隙和测量汇报等。
可选的,确定模块1504还用于读取中继设备的PC5接口的时隙号,并根据PC5接口的时隙号确定基站的Uu接口的时隙号;和/或读取中继设备的PC5接口的帧号,并根据PC5接口的帧号确定基站的Uu接口的系统帧号。
可选的,图17示出了根据本申请实施例的无线通信装置的结构框图之四,无线通信装置1500还包括:发送模块1506,发送模块1506用于向中继设备发送时间信息的第二请求信息。
在该实施例中,无线通信装置1500的各模块执行各自功能时实现如上述任一实施例中的无线通信方法的步骤,因此,无线通信装置同时也包括如上述任一实施例中的无线通信方法的全部有益效果,在此不再赘述。
在本申请的一个实施例中,如图23所示,提供了一种远端设备1800,包括:存储器1802,其上存储有计算机程序;处理器1804,配置为执行计算机程序以实现如上述任一实施例中提供的无线通信方法的步骤,因此,该远端设备1800包括如上述任一实施例中提供的无线通信方法的全部有益效果,在此不再赘述。
本申请实施例中的远端设备可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动电子设备,也可以为非移动电子设备。示例性的,移动电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等,非移动电子设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的远端设备可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
在本申请的一个实施例中,图18示出了本申请实施例的无线通信方法的流程图之十一,包括:
步骤1102,基站向中继设备发送基站的Uu接口的配置参数。
在该实施例中,在基站与中继设备建立通信链路之后,基站主动发送基站与中继设备之间的Uu接口的配置参数给中继设备。中继设备接收到配置参数后,通过配置参数生成包含对应的时间信息的报文,以将时间信息转发至远端设备。使得远端设备能够根据时间信息执行测量间隙配置和/或小区重选操作,有效降低远端设备对小区覆盖范围的局限性,保证远端设备的业务连续性。
在本申请的一个实施例中,图19示出了本申请实施例的无线通信方法的流程图之十二,包括:
步骤1202,基站接收中继设备发送的时间信息的第一请求信息;
步骤1204,基站确定时间信息的第二配置信息;
其中,第二配置信息包括许可信息和拒绝信息。
步骤1206,基站向中继设备发送第二配置信息。
在该实施例中,中继设备在向远端设备发送携带有时间信息的报文之前,先发送关于时间信息的第一请求信息至对应的基站,以询问基站是否远端设备提供时间信息。若基站响应于用户的操作或预先设置的通信权限确定第二配置信息,并反馈配置许可信息至中继设备。若基站确认配置,则会反馈配置的许可信息。中继设备根据基站返回的许可信息执行向远端设备进行发送。若基站拒绝配置,则会反馈配置的拒绝信息。中继设备根据基站返回的拒绝信息则不会发送时间信息至远端设备。从而能够通过第一请求信息进一步设置远端设备的接入权限,提高通信系统的安全性。
在本申请的一个实施例中,图20示出了根据本申请实施例的无线通信装置的结构框图之五,无线通信装置1600包括:发送模块1602,发送模块1602用于向中继设备发送基站的Uu接口的配置参数。
可选地,发送模块1602还用于向中继设备发送时间信息的第二配置信息;其中,第二配置信息包括许可信息和拒绝信息。
可选地,图21示出了根据本申请实施例的无线通信装置的结构框图之六,无线通信装置1600还包括:接收模块1604,接收模块1604用于接收中继设备发送的时间信息的第一请求信息;确定模块1606,确定模块1606用于确定时间信息的第二配置信息;发送模块1602还用于向中继设备发送第二配置信息。
在该实施例中,无线通信装置1600的各模块执行各自功能时实现如上述任一实施例中的无线通信方法的步骤,因此,无线通信装置同时也包括如上述任一实施例中的无线通信方法的全部有益效果,在此不再赘述。
在本申请的一个实施例中,如图24所示,提供了一种基站1900,包括:存储器1902,其上存储有计算机程序;处理器1904,配置为执行计算机程序以实现如上述任一实施例中提供的无线通信方法的步骤,因此,该基站1900包括如上述任一实施例中提供的无线通 信方法的全部有益效果,在此不再赘述。
在本申请的一个实施例中,提供了一种可读存储介质,其上存储有程序或指令,该程序或指令被处理器执行时实现如上述任一实施例中提供的无线通信方法的步骤。
在该实施例中,可读存储介质能够实现本申请的实施例提供的无线通信方法的各个过程,并能达到相同的技术效果,为避免重复,这里不再赘述。
其中,处理器为上述实施例中提供的通信设备中的处理器。可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,芯片包括处理器和通信接口,通信接口和处理器耦合,处理器用于运行程序或指令,实现上述无线通信方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。术语“多个”则指两个或两个以上,除非另有明确的限定。术语“相连”、“连接”、等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。术语“第一”、“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (37)

  1. 一种无线通信方法,包括:
    中继设备接收基站的Uu接口的配置参数;
    所述中继设备根据所述配置参数确定所述中继设备对应的小区的时间信息;
    所述中继设备向远端设备发送携带所述时间信息的报文。
  2. 根据权利要求1所述的无线通信方法,其中,
    所述时间信息包括以下至少一种:所述小区的身份识别信息、所述Uu接口的系统帧号、所述Uu接口的时隙号、所述Uu接口的OFDM符号序号、所述Uu接口的子载波间隔、所述Uu接口的系统帧号和所述中继设备的PC5接口的帧号之间的偏移量。
  3. 根据权利要求2所述的无线通信方法,其中,还包括:
    所述中继设备确定所述中继设备的PC5接口的帧号的初始化方式;
    所述中继设备根据所述初始化方式配置所述PC5接口的帧号;
    其中,所述初始化方式包括:将所述PC5接口的帧号初始值配置为所述Uu接口的系统帧号值,或根据所述Uu接口的系统帧号与所述PC5接口的帧号之间的预设偏移量初始化所述PC5接口的帧号。
  4. 根据权利要求3所述的无线通信方法,其中,所述初始化方式包括根据所述Uu接口的系统帧号与所述PC5接口的帧号之间的预设偏移量初始化所述PC5接口的帧号;所述中继设备根据所述初始化方式配置所述PC5接口的帧号之前,还包括:
    所述中继设备接收对所述中继设备的第一输入,所述中继设备响应于所述第一输入,确定所述预设偏移量;或
    所述中继设备接收所述基站发送的第一配置信息,所述中继设备根据所述第一配置信息确定所述预设偏移量。
  5. 根据权利要求2所述的无线通信方法,其中,还包括:
    所述中继设备将所述中继设备的PC5接口的子载波间隔配置为所述Uu接口的子载波间隔。
  6. 根据权利要求1至5中任一项所述的无线通信方法,其中,所述中继设备向远端设备发送携带所述时间信息的报文,包括:
    所述中继设备向所述基站发送所述时间信息的第一请求信息;
    所述中继设备根据所述基站返回的第二配置信息发送所述报文至所述远端设备。
  7. 根据权利要求6所述的无线通信方法,其中,
    所述第二配置信息包括以下至少一种:时间配置消息、许可信息、拒绝信息。
  8. 根据权利要求1至5中任一项所述的无线通信方法,其中,所述中继设备向远端设备发送携带所述时间信息的报文,包括:
    所述中继设备接收所述远端设备发送的所述时间信息的第二请求信息;
    所述中继设备根据所述第二请求信息发送所述报文至所述远端设备。
  9. 根据权利要求1至5中任一项所述的无线通信方法,其中,所述中继设备向远端设备发送携带所述时间信息的报文,包括:
    所述中继设备确定所述报文的传播方式;
    所述中继设备根据所述传播方式发送所述报文至所述远端设备;
    其中,所述传播方式包括单播方式或广播方式。
  10. 根据权利要求9所述的无线通信方法,其中,所述传播方式包括所述广播方式;所述中继设备向远端设备发送携带所述时间信息的报文之前,包括:
    所述中继设备接收网络设备发送的第三配置信息;
    所述中继设备根据所述第三配置信息配置广播消息识别符。
  11. 根据权利要求1至5中任一项所述的无线通信方法,其中,
    所述报文包括以下至少一种:旁链路主信息块、旁链路信令无线承载、发现信号。
  12. 根据权利要求11所述的无线通信方法,其中,
    所述旁链路管理信息包括所述时间信息的更新指示信息;
    所述更新指示信息用于所述远端设备确定所述时间信息。
  13. 根据权利要求11所述的无线通信方法,其中,所述报文包括旁链路信令无线承载;所述中继设备向远端设备发送携带所述时间信息的报文之前,还包括:
    所述中继设备配置所述旁链路信令无线承载。
  14. 根据权利要求1至5中任一项所述的无线通信方法,其中,
    所述小区包括以下至少一种:主小区、辅小区、主辅小区。
  15. 根据权利要求14所述的无线通信方法,其中,所述中继设备根据所述配置参数确定所述中继设备对应的小区的时间信息,包括:
    所述中继设备根据所述配置参数确定所述主小区和/或所述辅小区的所述时间信息。
  16. 根据权利要求14所述的无线通信方法,其中,所述中继设备根据所述配置参数确定所述中继设备对应的小区的时间信息,包括:
    所述中继设备根据所述配置参数确定所述主小区和/或所述主辅小区的所述时间信息。
  17. 一种无线通信方法,包括:
    远端设备接收中继设备发送的报文;
    所述远端设备根据所述报文中所述中继设备对应的小区的时间信息,确定所述小区和/或所述小区的相邻小区发现信号的发送时间窗位置;和/或
    所述远端设备根据所述报文中所述中继设备对应的小区的时间信息,解析小区测量配置信息。
  18. 根据权利要求17所述的无线通信方法,其中,所述远端设备接收中继设备发送的报文之前,还包括:
    所述远端设备向所述中继设备发送所述时间信息的第二请求信息。
  19. 根据权利要求17所述的无线通信方法,其中,还包括:
    所述远端设备读取所述中继设备的PC5接口的时隙号,并根据所述PC5接口的时隙号确定基站的Uu接口的时隙号;和/或
    所述远端设备读取所述中继设备的PC5接口的帧号,并根据所述PC5接口的帧号确定基站的Uu接口的系统帧号。
  20. 一种无线通信方法,包括:
    基站向中继设备发送所述基站的Uu接口的配置参数。
  21. 根据权利要求20所述的无线通信方法,其中,还包括:
    所述基站接收所述中继设备发送的时间信息的第一请求信息;
    所述基站确定所述时间信息的第二配置信息;
    所述基站向所述中继设备发送所述第二配置信息。
  22. 一种无线通信装置,适用于中继设备,包括:
    接收模块,用于接收基站的Uu链路的配置参数;
    确定模块,用于根据所述配置参数确定所述中继设备对应的小区的时间信息;
    发送模块,用于向远端设备发送携带所述时间信息的报文。
  23. 根据权利要求22所述的无线通信装置,其中,
    所述发送模块具体用于向所述基站发送所述时间信息的第一请求信息,并根据所述基站返回的第二配置信息发送所述报文至所述远端设备。
  24. 根据权利要求22所述的无线通信装置,其中,
    所述接收模块还用于接收所述远端设备发送的所述时间信息的第二请求信息;
    所述发送模块具体用于根据所述第二请求信息发送所述报文至所述远端设备。
  25. 一种无线通信装置,适用于远端设备,包括:
    接收模块,用于接收中继设备发送的报文;
    确定模块,用于根据所述报文中所述中继设备对应的小区的时间信息,确定所述小区和/或所述小区的相邻小区发现信号的发送时间窗位置;和/或根据所述报文中所述中继设备对应的小区的时间信息,解析小区测量配置信息。
  26. 根据权利要求25所述的无线通信装置,其中,还包括:
    发送模块,用于向所述中继设备发送所述时间信息的第二请求信息。
  27. 一种无线通信装置,适用于基站,包括:
    发送模块,用于向中继设备发送所述基站的Uu接口的配置参数。
  28. 根据权利要求27所述的无线通信装置,其中,还包括:
    接收模块,用于接收所述中继设备发送的时间信息的第一请求信息;
    确定模块,用于确定所述时间信息的第二配置信息;
    所述发送模块还用于向所述中继设备发送所述第二配置信息。
  29. 一种中继设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至16中任一项所述的无线通信方法的步骤。
  30. 一种远端设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求17至19中任一项所述的无线通信方法的步骤。
  31. 一种基站,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求20或21所述的无线通信方法的步骤。
  32. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至21中任一项所述的无线通信方法的步骤。
  33. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至16中任一项所述的无线通信方法,或者实现如权利要求17至19中任一项所述的无线通信方法,或者实现如权利要求20或21所述的无线通信方法。
  34. 一种计算机程序产品,所述程序产品被至少一个处理器执行以实现如权利要求1至16中任一项所述的无线通信方法,或者实现如权利要求17至19中任一项所述的无线通信方法,或者实现如权利要求20或21所述的无线通信方法。
  35. 一种中继设备,包括所述中继设备被配置成用于执行如权利要求1至16中任一项所述的无线通信方法。
  36. 一种远端设备,包括所述远端设备被配置成用于执行如权利要求17至19中任一项所述的无线通信方法。
  37. 一种基站,包括所述基站被配置成用于执行如权利要求20或21所述的无线通信方法。
PCT/CN2021/125751 2020-10-23 2021-10-22 无线通信方法、装置、中继设备、远端设备和基站 WO2022083743A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023522465A JP2023546844A (ja) 2020-10-23 2021-10-22 無線通信方法、装置、中継機器、リモート機器及び基地局
KR1020237013511A KR20230073287A (ko) 2020-10-23 2021-10-22 무선 통신 방법, 장치, 릴레이 장비, 원격 장비 및 기지국
EP21882155.1A EP4236426A4 (en) 2020-10-23 2021-10-22 WIRELESS COMMUNICATIONS METHOD AND DEVICE, RELAY DEVICE, REMOTE DEVICE AND BASE STATION
US18/132,537 US20230247572A1 (en) 2020-10-23 2023-04-10 Wireless communication method and apparatus, relay device, remote device, and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011150338.7A CN114501482B (zh) 2020-10-23 2020-10-23 无线通信方法、装置、中继设备、远端设备和基站
CN202011150338.7 2020-10-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/132,537 Continuation US20230247572A1 (en) 2020-10-23 2023-04-10 Wireless communication method and apparatus, relay device, remote device, and base station

Publications (1)

Publication Number Publication Date
WO2022083743A1 true WO2022083743A1 (zh) 2022-04-28

Family

ID=81291652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125751 WO2022083743A1 (zh) 2020-10-23 2021-10-22 无线通信方法、装置、中继设备、远端设备和基站

Country Status (6)

Country Link
US (1) US20230247572A1 (zh)
EP (1) EP4236426A4 (zh)
JP (1) JP2023546844A (zh)
KR (1) KR20230073287A (zh)
CN (1) CN114501482B (zh)
WO (1) WO2022083743A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023236141A1 (en) * 2022-06-09 2023-12-14 Mediatek Inc. Frame number offset for positioning of a remote ue
WO2024087233A1 (en) * 2022-10-28 2024-05-02 Nec Corporation Method, device and computer storage medium of communication

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180206176A1 (en) * 2015-08-12 2018-07-19 Intel Corporation Methods to enable high data rate relay operation using d2d air-interface

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150264588A1 (en) * 2014-03-14 2015-09-17 Samsung Electronics Co., Ltd. Methods and apparatus for synchronization in device-to-device communication networks
CN107306423B (zh) * 2016-04-25 2019-09-17 电信科学技术研究院 一种进行业务传输的方法和终端
CN110073685B (zh) * 2016-09-29 2023-03-28 夏普株式会社 为远程无线终端提供和获取系统信息
US11382107B2 (en) * 2018-06-14 2022-07-05 Lg Electronics Inc. Method and apparatus for performing sidelink communication by UE in NR V2X
CN110912846B (zh) * 2018-09-18 2021-10-01 华为技术有限公司 同步的方法和通信装置
MX2021003260A (es) * 2018-10-02 2021-05-12 Fg innovation co ltd Comunicaciones de enlace lateral de multiples tecnologias de acceso de radio (rat).
KR20200087017A (ko) * 2019-01-10 2020-07-20 삼성전자주식회사 무선 통신 시스템에서 동기 신호를 전송하기 위한 방법 및 장치
US20220086782A1 (en) * 2019-01-10 2022-03-17 Mediatek Singapore Pte. Ltd. Sidelink synchronization signal block (s-ssb) design

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180206176A1 (en) * 2015-08-12 2018-07-19 Intel Corporation Methods to enable high data rate relay operation using d2d air-interface

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Signalling to support UE-NW relay and Service continuity", 3GPP DRAFT; R2-151148 - SIGNALLING TO SUPPORT UE-NW RELAY AND SERVICE CONTINUITY, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Bratislava, Slovakia; 20150420 - 20150424, 19 April 2015 (2015-04-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP050936125 *
KT CORP.: "Considerations on relay selection and reselection", 3GPP DRAFT; R2-2009634, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20201102 - 20201113, 22 October 2020 (2020-10-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051941330 *
OPPO (RAPPORTEUR): "Summary of [Post111-e][623][Relay] Remaining issues on relay discovery ", 3GPP TSG-RAN WG2 #111-E, R2-2008815, 3GPP, vol. R2-2008815, 22 October 2020 (2020-10-22), XP055924509 *
See also references of EP4236426A4 *
SONY: "Sidelink relay selection", 3GPP DRAFT; R2-2009892, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20201101, 22 October 2020 (2020-10-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051941456 *

Also Published As

Publication number Publication date
CN114501482A (zh) 2022-05-13
CN114501482B (zh) 2024-04-26
JP2023546844A (ja) 2023-11-08
KR20230073287A (ko) 2023-05-25
US20230247572A1 (en) 2023-08-03
EP4236426A4 (en) 2024-04-17
EP4236426A1 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
US20240064646A1 (en) Method for efficient rediscovery and medium access for wake-up radios
US10880835B2 (en) Methods for efficient medium access for wake up radios
CN110267245B (zh) 通信控制方法及电子设备
US9992744B2 (en) Mechanisms to optimize and align discontinuous reception configuration of device to-device capable user equipment
WO2019104685A1 (zh) 通信方法和通信设备
WO2018228548A1 (zh) 上行资源的授权方法、装置及系统
US9661628B2 (en) Method and apparatus for receiving timing information from a cell or network in a less active mode
US20230247572A1 (en) Wireless communication method and apparatus, relay device, remote device, and base station
CN111800238B (zh) 载波聚合参数配置方法、设备及系统
US20230144480A1 (en) Method for configuring sidelink relay architecture and terminal
WO2019062746A1 (zh) 通信方法、装置和系统
WO2020143490A1 (zh) 通信方法及装置
KR20210015101A (ko) 듀얼 커넥티비티를 지원하는 전자 장치 및 그 동작 방법
WO2022057828A1 (zh) 测量方法、测量装置、终端及网络设备
WO2022099539A1 (zh) 一种通信方法及装置
WO2022151423A1 (zh) 一种寻呼指示方法及装置
WO2021196134A1 (zh) 波束管理方法及装置、通信设备及存储介质
WO2022237616A1 (zh) 资源池配置方法、装置、终端及网络侧设备
WO2022237619A1 (zh) Rrc消息的传输方法及装置、终端及可读存储介质
WO2023207878A1 (zh) 一种设备唤醒方法及装置
WO2022228446A1 (zh) 无线链路失败的处理方法、装置、设备及可读存储介质
WO2023040859A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2022222792A1 (zh) 业务处理方法、相关设备及可读存储介质
WO2022262867A1 (zh) 配置间隔的方法、终端及网络设备
WO2023001227A1 (zh) 执行gap的方法、装置及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882155

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023522465

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237013511

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021882155

Country of ref document: EP

Effective date: 20230523