WO2021196134A1 - 波束管理方法及装置、通信设备及存储介质 - Google Patents

波束管理方法及装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2021196134A1
WO2021196134A1 PCT/CN2020/083020 CN2020083020W WO2021196134A1 WO 2021196134 A1 WO2021196134 A1 WO 2021196134A1 CN 2020083020 W CN2020083020 W CN 2020083020W WO 2021196134 A1 WO2021196134 A1 WO 2021196134A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam management
carrier
secondary carrier
terminal
capability information
Prior art date
Application number
PCT/CN2020/083020
Other languages
English (en)
French (fr)
Inventor
洪伟
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US17/915,718 priority Critical patent/US20230128129A1/en
Priority to CN202080000632.1A priority patent/CN113767683B/zh
Priority to PCT/CN2020/083020 priority patent/WO2021196134A1/zh
Publication of WO2021196134A1 publication Critical patent/WO2021196134A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • This application relates to the field of wireless communication technology but is not limited to the field of wireless communication technology, and in particular to a beam management method and device, communication equipment and storage medium.
  • the embodiments of the present application provide a beam management method and device, communication equipment, and storage medium.
  • the first aspect of the embodiments of the present application provides a beam management method, which is applied to a base station and includes:
  • the configuration information for separate beam management of the secondary carrier is issued.
  • the issuing configuration information for individual beam management of the secondary carrier according to the beam management capability information of the terminal includes:
  • the determining whether the secondary carrier satisfies the individual beam management condition of the secondary carrier according to the relative position in the frequency domain and the beam management capability information includes:
  • the relative position in the frequency domain and the beam management capability information when it is determined that the relative position in the frequency domain with the primary carrier exceeds the unified management capability of the terminal based on the primary carrier, determine The secondary carrier whose relative position in the frequency domain between the primary carriers exceeds the unified management capability range of the terminal based on the primary carrier satisfies the secondary carrier individual beam management condition.
  • the relative position in the frequency domain is indicated by at least one of the following parameters:
  • the frequency difference between the center frequencies of the primary carrier and the secondary carrier is the frequency difference between the center frequencies of the primary carrier and the secondary carrier
  • the frequency difference between the frequency band where the primary carrier is located and the frequency band where the secondary carrier is located is located.
  • the method further includes:
  • the method further includes:
  • the second aspect of the embodiments of the present application provides a beam management method, which is applied to a terminal and includes:
  • the method further includes:
  • the method further includes:
  • the reported beam management capability information of the terminal includes:
  • the report instruction report the beam management capability information.
  • the performing individual beam management of the secondary carrier according to the configuration information includes:
  • a third aspect of the embodiments of the present application provides a beam management device, which is applied to a base station and includes:
  • the first sending module is configured to issue configuration information for individual beam management of the secondary carrier according to the beam management capability information of the terminal.
  • the first issuing module includes:
  • the first determining unit is configured to determine the relative position in the frequency domain before the primary carrier of the terminal and any one of the secondary carriers;
  • the second determining unit is configured to determine whether the secondary carrier satisfies the individual beam management condition of the secondary carrier according to the relative position in the frequency domain and the beam management capability information;
  • the issuing unit is configured to, when the secondary carrier meets the secondary carrier separate beam management condition, issue the configuration information for performing separate beam management on the secondary carrier that meets the secondary carrier separate beam management condition.
  • the second determining unit is configured to determine that the relative position in the frequency domain with the primary carrier exceeds the relative position in the frequency domain according to the relative position in the frequency domain and the beam management capability information.
  • the terminal is based on the unified management capability of the primary carrier, it is determined that the secondary carrier whose relative position in the frequency domain with the primary carrier exceeds the range of the terminal's unified management capability based on the primary carrier meets the requirements of the secondary carrier alone Beam management conditions.
  • the relative position in the frequency domain is indicated by at least one of the following parameters:
  • the frequency difference between the center frequencies of the primary carrier and the secondary carrier is the frequency difference between the center frequencies of the primary carrier and the secondary carrier
  • the frequency difference between the frequency band where the primary carrier is located and the frequency band where the secondary carrier is located is located.
  • the device further includes:
  • the first receiving module is configured to send a report indication of the multi-carrier beam management capability to the terminal;
  • the first sending module is configured to receive the beam management capability information sent by the terminal according to the reporting instruction.
  • the first sending module is configured to send a reference signal on the secondary carrier when there is a secondary carrier that needs to be separately managed;
  • the device also includes:
  • the first receiving module is configured to receive a measurement result of the reference signal by the terminal.
  • a fourth aspect of the embodiments of the present application provides a beam management device, which is applied to a terminal and includes:
  • the second receiving module is configured to receive configuration information for performing individual beam management on the secondary carrier, wherein the configuration information is determined based on the management capability information of the terminal;
  • the beam management module is configured to perform individual beam management of the secondary carrier according to the configuration information.
  • the device further includes:
  • the second sending module is configured to report beam management capability information of the terminal, where the beam management capability information is used for the base station to determine whether the secondary carrier requires separate beam management.
  • the second receiving module is configured to receive a report instruction issued by the base station
  • the second sending module is configured to report the beam management capability information according to the report instruction.
  • the beam management module is configured to receive a reference signal on the secondary carrier when it is determined that there is a secondary carrier that needs to manage the beam separately according to the configuration information; and report the measurement result of the reference signal.
  • the fifth aspect of the embodiments of the present application provides a communication device, including a processor, a transceiver, a memory, and an executable program stored on the memory and capable of being run by the processor, wherein the processor runs the executable program During the procedure, the beam management method provided by any technical solution of the first aspect or the second aspect described above is executed.
  • a sixth aspect of the embodiments of the present application provides a computer storage medium that stores an executable program; after the executable program is executed by a processor, any technical solution as in the first aspect or the second aspect can be implemented Provide beam management method.
  • the base station issues configuration information for individual beam management of the secondary carrier according to the beam management capability information of the terminal, and the configuration information includes configuration information for the terminal to perform beam management alone.
  • the configuration information includes configuration information for the terminal to perform beam management alone.
  • Individual beam management ensures that the optimal beam direction of the auxiliary carrier is determined, and the communication quality of the communication using the auxiliary carrier is ensured.
  • the separate beam management of the secondary carrier can be realized based on the beam management of the primary carrier, and the unified beam management based on the primary carrier can reduce the signaling overhead. In this way, when performing beam management, the communication quality is ensured at the same time, and the signaling overhead is reduced as much as possible.
  • Fig. 1 is a schematic structural diagram showing a wireless communication system according to an exemplary embodiment
  • Fig. 2 is a schematic diagram showing the determination of optimal beam directions of different carriers according to an exemplary embodiment
  • Fig. 3 is a schematic flowchart showing a beam management method according to an exemplary embodiment
  • Fig. 4 is a schematic flowchart showing a beam management method according to an exemplary embodiment
  • Fig. 5 is a schematic flowchart showing a beam management method according to an exemplary embodiment
  • Fig. 6 is a schematic flowchart showing a beam management method according to an exemplary embodiment
  • Fig. 7 is a schematic flowchart showing a beam management method according to an exemplary embodiment
  • Fig. 8A is a schematic diagram showing a carrier interval of a carrier according to an exemplary embodiment
  • Fig. 8B is a schematic diagram showing the carrier spacing of another carrier according to an exemplary embodiment
  • Fig. 9 is a schematic structural diagram showing a beam management device according to an exemplary embodiment
  • Fig. 10 is a schematic structural diagram showing another beam management device according to an exemplary embodiment
  • Fig. 11 is a schematic flowchart showing a beam management method according to an exemplary embodiment
  • Fig. 12 is a schematic structural diagram of a UE according to an exemplary embodiment
  • Fig. 13 is a schematic structural diagram of a base station according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information, and similarly, the second information may also be referred to as first information.
  • word “if” as used herein can be interpreted as "when” or "when” or "in response to determination”.
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include several UEs 11 and several base stations 12.
  • UE11 may be a device that provides voice and/or data connectivity to the user.
  • the UE11 can communicate with one or more core networks via the Radio Access Network (RAN).
  • RAN Radio Access Network
  • the UE11 can be an Internet of Things UE, such as sensor devices, mobile phones (or “cellular” phones), and Internet of Things.
  • the computer of the UE for example, may be a fixed, portable, pocket-sized, handheld, built-in computer, or vehicle-mounted device.
  • station For example, station (Station, STA), subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote station (remote station), access point, remote UE ( remote terminal), access UE (access terminal), user equipment (user terminal), user agent (user agent), user equipment (user device), or user UE (user equipment, UE).
  • UE11 may also be a device of an unmanned aerial vehicle.
  • the UE 11 may also be an in-vehicle device, for example, it may be a trip computer with a wireless communication function, or a wireless communication device with an external trip computer.
  • the UE 11 may also be a roadside device, for example, it may be a street lamp, signal lamp, or other roadside device with a wireless communication function.
  • the base station 12 may be a network side device in a wireless communication system.
  • the wireless communication system may be the 4th generation mobile communication (4G) system, also known as the Long Term Evolution (LTE) system; or, the wireless communication system may also be a 5G system, Also known as new radio (NR) system or 5G NR system.
  • the wireless communication system may also be the next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network). Or, MTC system.
  • the base station 12 may be an evolved base station (eNB) used in a 4G system.
  • the base station 12 may also be a base station (gNB) adopting a centralized and distributed architecture in the 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 12 adopts a centralized distributed architecture it usually includes a centralized unit (CU) and at least two distributed units (DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, a radio link layer control protocol (Radio Link Control, RLC) layer, and a media access control (Media Access Control, MAC) layer protocol stack; distribution
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC media access control
  • the unit is provided with a physical (Physical, PHY) layer protocol stack, and the embodiment of the present disclosure does not limit the specific implementation manner of the base station 12.
  • a wireless connection can be established between the base station 12 and the UE 11 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth-generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, such as The wireless air interface is a new air interface; or, the wireless air interface may also be a wireless air interface based on a 5G-based next-generation mobile communication network technology standard.
  • an E2E (End to End, end-to-end) connection may also be established between UE11.
  • V2V vehicle to vehicle
  • V2I vehicle to Infrastructure
  • V2P vehicle to pedestrian
  • the above-mentioned wireless communication system may further include a network management device 13.
  • the network management device 13 may be a core network device in a wireless communication system.
  • the network management device 13 may be a mobility management entity (Mobility Management Entity) in an Evolved Packet Core (EPC) network. MME).
  • the network management device may also be other core network devices, such as Serving GateWay (SGW), Public Data Network GateWay (PGW), Policy and Charging Rules function unit (Policy and Charging Rules). Function, PCRF) or Home Subscriber Server (HSS), etc.
  • SGW Serving GateWay
  • PGW Public Data Network GateWay
  • Policy and Charging Rules function unit Policy and Charging Rules
  • Function PCRF
  • HSS Home Subscriber Server
  • the optimal beam of carrier 1 is determined to be beam i through beam management, and the direction of beam i of carrier 2 is inconsistent with the direction of beam i of carrier 1. If unified beam management is used to select beam i on carrier 2, this The link performance on carrier 2 is poor and even loses connection. In order to reduce this phenomenon, while supporting unified beam management as much as possible, unified beam management is adopted to reduce the signaling overhead of beam management.
  • this embodiment provides a beam management method, which is applied to a base station and includes:
  • S110 According to the beam management capability information of the terminal, issue configuration information for individual beam management of the secondary carrier.
  • the embodiments of the present application are applied to various types of base stations, for example, 4G base stations or 5G base stations.
  • a base station When a base station configures a carrier for a terminal, for a terminal that supports multiple carriers, it can configure a primary carrier and one or more secondary carriers for the terminal.
  • the terminal can send and receive control signaling on the primary carrier, and control the transmission behavior of the terminal on the primary carrier and/or the secondary carrier according to the control signaling.
  • the primary carrier is a carrier of a serving cell of the terminal; the secondary carrier may be a carrier of a neighboring cell of the serving cell of the terminal.
  • the beam management capability information indicates: the strength of the terminal's ability to adopt a unified management method for multiple carriers.
  • the information content of the beam management capability information may include one or more of the following:
  • Different levels of multi-carrier unified management capabilities correspond to the relative positions of the maximum inter-carrier frequency domains with different multi-carrier unified management capabilities; the higher the level, the relative maximum inter-carrier frequency domains supported during multi-carrier unified management The larger the position.
  • the multi-carrier unified management capability of the indicating terminal can be divided into two levels, three levels, or four levels.
  • the terminal's unified multi-carrier management capability can be divided into two levels: "low” and "high”. The higher the level, the stronger the terminal's unified multi-carrier management capability. , Support the unified management between the two carriers with the farther relative position in the frequency domain.
  • the terminal's multi-carrier unified management capability When divided into 3 levels, the terminal's multi-carrier unified management capability can be divided into “low”, “medium”, and “high”. When divided into 4 levels, the terminal's multi-carrier unified management capability is strong Weakness can be divided into “low”, “lower”, “higher” and “high”. If the beam management capability information directly indicates the level, one or more bits may be used to directly indicate the level, for example, 1 bit is used to indicate two levels, and 2 bits are used to indicate 3 levels or 4 levels.
  • a unified management method is adopted, that is, in order to reduce the high signaling overhead caused by managing each beam separately, it is considered that the optimal beam direction of the primary carrier and at least one secondary carrier are the same.
  • this deviation is acceptable, that is, The impact of communication quality is small, but in some cases there is a large deviation between the optimal beam directions of the two carriers. If the beam management is performed based on the same management method at this time, the communication quality on the corresponding carrier will be poor, or even appear The phenomenon of link disconnection.
  • some terminals have relatively strong terminal capabilities. For example, a terminal that contains more antennas or has a relatively large coverage area between these antennas has a relatively strong unified management capability for carriers. In this way, even if the two carriers are actually The deviation of the optimal beam direction is relatively large, but it is still within the coverage of the terminal's antenna, and the unified management mode of the carrier can be used for beam management, thereby reducing signaling overhead.
  • some terminals have few antennas or the coverage area of the antenna array is small, only adopting a unified carrier management method may lead to the above-mentioned poor communication quality or even link disconnection.
  • S110 may include: when it is determined according to the beam management capability information of the terminal that it is necessary to perform separate beam management on the secondary carrier of the terminal, issuing configuration information for performing separate beam management on the secondary carrier; and/or according to the beam management capability of the terminal.
  • the configuration information for separate beam management on the secondary carrier is not issued, and only the configuration information for the beam management of the primary carrier may be issued.
  • the primary carrier of the terminal is configured with beam management by default. If it is determined that the terminal directly adopts unified beam management, it will only perform beam measurement on the main carrier, and determine the optimal beam direction based on the beam measurement on the main carrier. Then, the optimal beam direction obtained by beam measurement on the main carrier is unified as the optimal beam direction on all carriers of the terminal.
  • a terminal is configured with N carriers, including one primary carrier and N-1 secondary carriers; N is a positive integer equal to or greater than 2. If unified beam management is adopted, the optimal beam direction on the primary carrier obtained from the beam measurement on the primary carrier will be regarded as the optimal beam direction of all carriers on the primary carrier and the secondary carrier at the same time.
  • the primary carrier and secondary carrier currently configured for the terminal use unified beam management based on the primary carrier based on the terminal’s beam management capability information, it may result in the optimal beam direction determined on the secondary carrier, and the difference between the secondary carrier and the secondary carrier. If the deviation of the actual optimal beam direction is too large, separate beam management is required for the auxiliary carrier at this time.
  • beam management includes one or more of the following:
  • Beam measurement includes: sending a reference signal on each beam on the corresponding carrier, and measuring the reference signal to obtain a measurement result;
  • Beam indication for example, the terminal or base station indicates a beam for communication on any secondary carrier configured for the terminal;
  • Beam recovery including: how to perform beam recovery on one or more carriers after beam failure.
  • the unified beam management method based on one carrier will not be directly adopted for the terminal, but based on the beam management capability information of the terminal, it will be determined whether a secondary carrier needs to be configured for it. Separate beam management to reduce the poor communication quality and even link failure on the secondary carrier caused by the unified use of unified beam management based on the primary carrier.
  • the base station When the base station determines that at least one secondary carrier configured for the terminal needs to perform separate beam management according to the beam management capability information of the terminal, it issues the configuration information of the separate beam management of the secondary carrier, and the configuration information of the separate beam management of the secondary carrier, It can be delivered together with the configuration information of the beam management of the primary carrier, or can be delivered separately the configuration information of the individual beam management of the secondary carrier.
  • the method further includes:
  • the terminal will perform carrier management according to the configuration information. For example, if the terminal is configured for the separate management of the secondary carrier, the terminal will perform the separate management of the secondary carrier according to the configuration information.
  • the separate management of the secondary carrier by the terminal includes: performing reference signal measurement on the secondary carrier and/or Report the measurement results.
  • the configuration information includes: a first configuration for beam management based on the primary carrier; or a first configuration for beam management based on the primary carrier and a second configuration for beam management based on the secondary carrier.
  • the first configuration at least includes: time-frequency domain resources for sending reference signals on the primary carrier.
  • the second configuration at least includes: time-frequency domain resources for sending reference signals on the secondary carrier.
  • the first configuration and the second configuration further include: reporting conditions and/or measurement conditions of the measurement result, etc.
  • the measurement conditions are used to instruct the terminal to perform the conditions of the reference signal on the corresponding carrier. For example, when the beam quality of the currently selected beam is lower than the quality threshold, re-measure the beams of the primary carrier and the secondary carrier to re-determine the primary carrier and/ Or the optimal beam direction of the secondary carrier.
  • the reporting conditions are used to indicate the measurement results that the terminal needs to report after performing the reference signal on the corresponding carrier.
  • Some measurement results are equivalent to indicating that the currently selected beam direction is the optimal beam direction of the primary carrier and/or secondary carrier, then You do not need to report; for example, if you find that the optimal beam direction has changed through beam measurement, you can report the re-determined optimal beam direction.
  • the S110 includes:
  • S111 Determine the relative position in the frequency domain before the primary carrier of the terminal and any one of the secondary carriers;
  • S112 Determine, according to the relative position in the frequency domain and the beam management capability information, whether the secondary carrier satisfies the individual beam management condition of the secondary carrier;
  • Different carriers have different frequencies. In this way, different carriers have a certain position offset in the frequency domain. In this application, the relative position in the frequency domain will be used to measure the relative position of the two carriers in the frequency domain.
  • the relative position in the frequency domain between any secondary carrier and the primary carrier and the terminal’s beam management capability information will be combined to determine whether the secondary carrier configured for the terminal meets the secondary carrier’s separate beam management conditions. Beam management is performed on this aid alone.
  • the relative position in the frequency domain before any secondary carrier and the main carrier is determined to be compared with the relative position in the maximum frequency domain corresponding to the beam management capability information of the terminal.
  • the relative position in the frequency domain of a certain secondary carrier If it is smaller than the maximum frequency domain relative position corresponding to the beam management capability indicated by the management capability information of the terminal, it can be considered that the secondary carrier does not meet the secondary carrier's separate beam management condition, and the secondary carrier meets the unified management condition based on the primary carrier. If the unified management conditions are met, the secondary carrier only performs beam management such as beam measurement on the primary carrier based on the unified management conditions of the primary carrier, and the beam management of the primary carrier is directly recognized as beam management of the secondary carrier.
  • the S112 may include:
  • the relative position in the frequency domain and the beam management capability information when it is determined that the relative position in the frequency domain with the primary carrier exceeds the unified management capability of the terminal based on the primary carrier, determine The secondary carrier whose relative position in the frequency domain between the primary carriers exceeds the unified management capability range of the terminal based on the primary carrier satisfies the secondary carrier individual beam management condition.
  • the beam management capability information indicates that the maximum relative frequency domain position of unified beam management is XMhz. If the frequency difference corresponding to the relative frequency domain position is greater than XMhz, it is determined that the secondary carrier individual beam management condition is satisfied; otherwise It can be considered that the individual beam management conditions of the secondary carrier are not met.
  • the frequency ratio characterizing the relative position in the frequency domain is greater than the maximum ratio corresponding to the beam management capability, it can be considered that the secondary carrier individual beam management condition is satisfied, otherwise it is considered that the secondary carrier individual beam management condition is not satisfied. condition.
  • relative position parameters indicating the relative position in the frequency domain.
  • the relative position parameter can be compared with the threshold corresponding to the relative position parameter, and based on the result of the threshold comparison, it is determined whether the relative position is satisfied.
  • Individual beam management conditions for the secondary carrier are many kinds.
  • the relative position in the frequency domain is indicated by at least one of the following parameters:
  • the frequency difference between the center frequencies of the primary carrier and the secondary carrier for example, the center frequency of the primary carrier is f1, and the center frequency of the secondary carrier is f2; the frequency difference is f1-f2 or f2-f1;
  • a predetermined multiple ratio, A*(f2-f1)/(f1+f2) can be any positive number, for example, A can be any decimal between 0 and 1, and A can be 1, 2 or 3.
  • the frequency difference between the frequency band where the primary carrier is located and the frequency band where the secondary carrier is located may be the frequency difference between the center frequencies of the two frequency bands.
  • the frequency band A where the primary carrier is located the frequency band B where the secondary carrier is located, the center frequency f11 of the frequency band A; the center frequency f12 of the frequency band B; then the frequency difference between the frequency band where the primary carrier is located and the frequency band where the secondary carrier is located is: f11 -f12 or f12-f11.
  • the relative position in the frequency domain may also be determined by the ratio between the primary carrier and the secondary carrier.
  • the center frequency of the primary carrier is f1 and the center frequency of the secondary carrier is f2, then the ratio is: f1/f2 or f2/f1.
  • Carrier 1 and carrier 2 shown in FIG. 8A are located on the same frequency band A, and the carrier spacing between the two can be the frequency difference between the center frequencies of the two carriers. This frequency difference is one of the aforementioned relative positions in the frequency domain. kind.
  • Carrier 1 and carrier 2 shown in Figure 8B are located on different frequency bands.
  • Carrier 1 is located on frequency band A and carrier 2 is located on frequency band B.
  • the carrier spacing between the two can be the frequency difference between the center frequencies of the two carriers. This frequency difference is one of the aforementioned relative positions in the frequency domain.
  • the method further includes:
  • S102 Receive the beam management capability information sent by the terminal according to the reporting instruction.
  • the base station issues a report instruction, which instructs the terminal to perform multi-carrier transmission, and then instructs to report the beam management capability information.
  • the base station may use the beam management capability information actively reported by the terminal, or it may infer the beam management capability information according to the terminal type of the terminal.
  • the issuance of the report instruction triggers the terminal in need to report the beam management capability information, reducing signaling overhead; compared to the base station recording the beam management capability information of all terminals, the amount of information stored by the terminal can be reduced.
  • the method further includes:
  • the reference signal is sent on the secondary carrier.
  • the carrier is used to send the reference signal in each beam direction. The measurement result of the signal can thus determine the optimal beam direction on the secondary carrier.
  • the terminal may support one primary carrier and multiple secondary carriers.
  • one secondary carrier has been determined to need to be managed separately, when determining whether the remaining secondary carriers need to be managed separately, not only needs to be based on the remaining secondary carriers.
  • the relative position in the frequency domain between the carrier and the main carrier determines whether it needs to be managed separately, and the relative position in the frequency domain with the auxiliary carrier that has been determined to need to be managed separately. Unified beam management between carriers.
  • the carrier that has been determined to need to be separately managed is called the first carrier, and the first carrier includes, but is not limited to: a primary carrier and a secondary carrier that has been determined to need to be separately managed.
  • the secondary carrier that has not yet been determined to be managed separately can be called the second carrier; in the specific implementation process, it can be determined according to the relative position in the frequency domain between the second carrier and each first carrier and the beam management capability information of the terminal Whether the corresponding second carrier can perform unified beam management with a certain first carrier, if so, the second carrier and one of the first beams perform unified beam management, otherwise, it can be considered that separate beam management is required. In this way, when there are multiple secondary carriers in the terminal, if the frequency difference between the two secondary carriers is small, and the deviation of the optimal beam direction is small, the uniformity can be used between the two secondary carriers. Beam management to further reduce the signaling overhead caused by beam management.
  • the method of determining the relative position in the frequency domain between the first carrier and the second carrier, and determining whether to adopt a separate beam management or a unified beam management method can be referred to in the embodiment of the present application, the frequency of the primary carrier and the secondary carrier
  • the determination of the relative position of the domain and the determination of whether the individual beam management conditions of the secondary carrier are satisfied are not repeated here.
  • the method may further include:
  • the measurement result of the reference signal by the receiving terminal includes but is not limited to the reference signal received power and/or the reference signal received quality of the beam; in some embodiments, the measurement result may also be the optimal beam selected by the terminal based on the measurement Indication information of the optimal beam direction, such as the beam index.
  • the reference signal here includes but is not limited to: Channel Status Information-Reference Signal (CSI-RS).
  • CSI-RS Channel Status Information-Reference Signal
  • the reference signal may also include: a synchronization signal.
  • the synchronization signal includes: a primary synchronization signal and/or an auxiliary synchronization signal.
  • this embodiment provides a beam management method, which is applied to a terminal and includes:
  • S210 Receive configuration information for performing individual beam management on a secondary carrier, where the configuration information is determined based on the management capability information of the terminal;
  • S220 Perform individual beam management of the secondary carrier according to the configuration information.
  • the terminal applied by the beam management method of the embodiment of the application can be various types of terminals, including but not limited to: user terminals such as mobile phones, wearable devices, or tablet computers, and can also be vehicle-mounted terminals, smart homes, and/or smart offices. Equipment, etc.
  • the terminal receives the configuration information for the individual beam management of the secondary carrier issued by the base station.
  • the configuration information contains the configuration information for the terminal to perform beam management alone.
  • it can Separate beam management for the secondary carrier.
  • the separate beam management of the secondary carrier can be considered to distinguish the beam management of the primary carrier, that is, if a secondary carrier performs separate beam management (or separate management of beams), it is considered that:
  • the auxiliary carrier and the main carrier need to perform beam measurement separately, and based on the beam measurement results, the optimal beam direction measurement of the auxiliary carrier and the main carrier are selected respectively.
  • the beam measurement here includes the measurement of beam quality and/or received power through the transmission of a reference signal.
  • the terminal when it performs carrier beam management based on the configuration information of the base station, it will not only perform unified beam management based on the primary carrier, or separate beam management for each primary carrier and secondary carrier, but based on the terminal’s beam management
  • the separate beam management of the secondary carrier can be used to ensure that the optimal beam direction can be ensured when the secondary carrier is used for communication, and the communication quality can be ensured.
  • unified beam management based on the primary carrier is performed to reduce the signaling of beam management.
  • the method further includes:
  • the beam management capability information is used for the base station to determine whether it is necessary to separately manage the secondary carrier of the terminal.
  • the base station may obtain the beam management capability information of the terminal.
  • it may include the mid-order reporting the beam management capability information.
  • the report of the beam management capability information of the terminal here includes, but is not limited to, the active report of the terminal, and may also be a report based on a report instruction of the base station.
  • the method further includes:
  • S201 Receive a report instruction issued by a base station
  • the S220 may include:
  • the reference signal is received on the secondary carrier
  • the reference signals measured here include but are not limited to CSI-RS and so on.
  • the reference signals described in the embodiments of the present application are various reference signals used to measure beam quality in different beam directions.
  • the terminal scans the reference signals sent by beams in different beam directions on the same carrier to determine the reception quality of a carrier in different beam directions, and then can select the optimal beam direction using the main carrier and any auxiliary carrier according to the reception quality. Communication based on the selected optimal beam direction can ensure communication quality.
  • the reported measurement results can include one or more of the following:
  • the beam index of the optimal beam direction is the beam index of the optimal beam direction
  • a beam index set of the optimal beam direction, and the beam index set corresponds to one or more beam indexes.
  • an embodiment of the present application provides a beam management device, which is applied to a base station and includes:
  • the first sending module 310 is configured to issue configuration information for individual beam management of the secondary carrier according to the beam management capability information of the terminal.
  • the first sending module 310 may be a program module; after the program module is executed by the processor, it can issue a separate beam for the secondary carrier configured by the terminal according to the beam management capability information of the terminal.
  • the managed configuration information is such that the terminal and the base station can separately manage the secondary carrier of the terminal.
  • the first sending module 310 may be a software and hardware combination module; the software and hardware combination module includes but is not limited to various programmable arrays; the programmable array includes but is not limited to: a field programmable array Or a complex programmable array.
  • the first sending module 310 may be a pure hardware module; the pure hardware module includes, but is not limited to, an application specific integrated circuit.
  • the first issuing module includes:
  • the first determining unit is configured to determine the relative position in the frequency domain before the primary carrier of the terminal and any one of the secondary carriers;
  • the second determining unit is configured to determine whether the secondary carrier satisfies the individual beam management condition of the secondary carrier according to the relative position in the frequency domain and the beam management capability information;
  • the issuing unit is configured to, when the secondary carrier meets the secondary carrier separate beam management condition, issue the configuration information for performing separate beam management on the secondary carrier that meets the secondary carrier separate beam management condition.
  • the second determining unit is configured to determine, based on the frequency domain relative position and the beam management capability information, that the frequency domain relative position between the primary carrier and the primary carrier exceeds
  • the terminal is based on the unified management capability of the primary carrier, it is determined that the secondary carrier whose relative position in the frequency domain to the primary carrier exceeds the range of the terminal's unified management capability based on the primary carrier meets the requirements of the secondary carrier Carrier separate beam management conditions.
  • the relative position in the frequency domain is indicated by at least one of the following parameters:
  • the frequency difference between the center frequencies of the primary carrier and the secondary carrier is the frequency difference between the center frequencies of the primary carrier and the secondary carrier
  • the frequency difference between the frequency band where the primary carrier is located and the frequency band where the secondary carrier is located is located.
  • the device further includes:
  • the first receiving module is configured to send a report indication of the multi-carrier beam management capability to the terminal;
  • the first sending module 310 is configured to receive the beam management capability information sent by the terminal according to the reporting instruction.
  • the first sending module 310 is configured to send a reference signal on the secondary carrier when there is a secondary carrier that needs to be managed separately;
  • the device also includes:
  • the first receiving module is configured to receive a measurement result of the reference signal by the terminal.
  • this embodiment provides a beam management device, which is applied to a terminal and includes:
  • the second receiving module 410 is configured to receive configuration information for performing individual beam management on the secondary carrier, where the configuration information is determined based on the management capability information of the terminal;
  • the beam management module 420 is configured to perform individual beam management of the secondary carrier according to the configuration information.
  • the second receiving module 410 and the beam management module 420 may be program modules; after the program module is executed by the processor, it can realize individual beam management for the secondary carrier, so that when necessary, the secondary carrier can be managed. In the case of individual beam management, the individual beam management of the auxiliary carrier is performed to ensure the communication quality on the auxiliary carrier.
  • the second receiving module 410 and the beam management module 420 may be a combination of software and hardware; the combination of software and hardware includes but is not limited to various programmable arrays; the programmable array includes but is not limited to: Complex programmable array or field programmable array.
  • the device further includes:
  • the second sending module is configured to report beam management capability information of the terminal, where the beam management capability information is used for the base station to determine whether the secondary carrier requires separate beam management.
  • the second receiving module 410 is configured to receive a report instruction issued by a base station
  • the second sending module is configured to report the beam management capability information according to the report instruction.
  • the beam management module 420 is configured to receive a reference signal on the secondary carrier when it is determined that there is a secondary carrier that needs to manage the beam separately according to the configuration information; and report the measurement result of the reference signal .
  • the embodiment of the present application provides a communication device, including a processor, a transceiver, a memory, and an executable program stored on the memory and capable of being run by the processor, wherein the processor executes the program provided by any of the foregoing technical solutions when the executable program is run.
  • the communication device may be the aforementioned base station or terminal.
  • the processor may include various types of storage media.
  • the storage media is a non-transitory computer storage medium that can continue to memorize and store information thereon after the communication device is powered off.
  • the communication device includes a base station or user equipment.
  • the processor may be connected to the memory through a bus or the like, and used to read an executable program stored on the memory, for example, at least one of the methods shown in FIG. 2 or 5.
  • An embodiment of the present application provides a computer storage medium that stores an executable program; after the executable program is executed by a processor, the method shown in any technical solution of the first aspect or the second aspect can be implemented, For example, at least one of the methods shown in FIG. 2 or 5.
  • the present disclosure does not consider the capabilities of different terminals in an existing beam management solution, and adopts a unified beam management solution for all multi-carrier scenarios, which may cause poor beam directions on some carriers, thereby affecting link performance.
  • the solution provided in this example selects different beam management solutions according to the different capabilities of the terminal, which can avoid the poorly capable terminal from selecting a poor beam direction, and can also save the signaling overhead of the capable terminal.
  • the application scenarios of the beam processing method provided in this example include but are not limited to at least one of the following:
  • Dual-link technology can also include the dual-link technology (Muti-RAT dual connectivity, MRDC) of multiple access systems, such as the dual-connection (EUTRA-NR Dual Connection) of secondary nodes in the 4G network.
  • MRDC dual-link technology
  • EN-DC EN-DC
  • 5G network NR-E-UTRA Dual Connectivity, NE-DC
  • NE-DC NE-DC
  • the base station side transmits a message to the terminal to request the terminal to report the beam management capability in the multi-carrier case, the terminal reports the beam management capability in the multi-carrier case, and the base station determines whether there is a carrier that requires a separate beam according to the multi-carrier beam management capability reported by the terminal manage.
  • the specific process is shown in Figure 11, including:
  • the base station transmits a message to the terminal to request the terminal to report the multi-carrier beam management capability. For example, the base station requires the terminal to report the multi-carrier beam management capability through a report instruction;
  • the terminal feeds back the multi-carrier beam management capability, for example, the terminal indicates its own multi-carrier beam management capability through the beam management capability information;
  • the base station determines which beams need individual beam management according to the multi-carrier management capability fed back by the terminal;
  • S604 Perform beam management on the terminal.
  • the base station When the base station configures other carriers for the terminal (the other carriers here include at least the secondary carrier), the base station transmits a message to the terminal requesting the terminal to report the beam management capability in the multi-carrier situation.
  • the terminal reports the beam management capability in the multi-carrier situation.
  • the multi-carrier beam management capability reported by the terminal determines whether there are carriers that require separate beam management.
  • the beam management capability reported by the terminal may indicate the difference in capability through bit values, such as "low”, “medium”, “high”, or “low” and "high”.
  • the base station After the base station receives the information, it is based on the carrier where the beam management is located, that is, the base station needs to transmit a reference signal or synchronization signal on this carrier. Generally, whether the position relationship between the primary carrier and the secondary carrier that needs to be configured meets the requirements reported by the terminal If the requirements are exceeded, it is determined that separate beam management is required on the secondary carrier, that is, the reference signal is transmitted.
  • the method for determining the "low”, “medium”, and “high” can be determined according to different frequency bands and different positions of the carrier. In one embodiment, it can be determined as follows.
  • F1 is less than a certain value X1
  • X1 and X2 are both thresholds for determining the relative position in the frequency domain supported by the terminal.
  • the base station receives the reported capability level of the terminal. For example, if the capability level reported by a terminal in this frequency band A is "low", the base station calculates whether F1 or F2 is greater than X1 or Y1 according to the carrier information that needs to be configured for the terminal ;
  • the base station determines that it is necessary to configure a reference signal for beam management on the secondary carrier, such as a CSI-RS (Channel State Information Reference Signal) or a synchronization signal block (SSB) signal.
  • a reference signal for beam management on the secondary carrier such as a CSI-RS (Channel State Information Reference Signal) or a synchronization signal block (SSB) signal.
  • the terminal scans the signal, and determines the best beam i for downlink reception on the auxiliary carrier according to the strength of the signal, such as the maximum reference signal receiving power (Reference Signal Receiving Power, RSRP).
  • RSRP Reference Signal Receiving Power
  • the base station does not need to perform beam management on the secondary carrier, that is, it does not need to transmit additional reference signals such as CSI-RS (Channel State Information Reference Signal) or SSB signals on the carrier. That is, if the best beam direction of the terminal on the primary carrier is i, the beam direction i is also used on other secondary carriers.
  • CSI-RS Channel State Information Reference Signal
  • the beam management capability reported by the terminal may directly report specific parameter values.
  • the specific parameter value reporting method determines the number of bits required according to the accuracy of the report. For example, for 2-bit information, four different values can be reported.
  • the following table uses F1 reporting as an example.
  • the base station When the base station receives the specific parameter value corresponding to the reported capability level of the terminal, the base station calculates whether F1 or F2 is greater than X1 or Y1 according to the carrier information that needs to be configured for the terminal. If so, the base station determines that it needs to be on the secondary carrier Configure the reference signal for beam management; if not, the base station does not need to perform beam management on the secondary carrier, that is, it does not need to transmit additional reference signals on the carrier.
  • the secondary carrier that the base station needs to configure is in another frequency band.
  • carrier 1 is on band A (Band A)
  • carrier 2 is on band B (Band B).
  • independent beam management may be directly adopted for the carrier aggregation between frequency bands.
  • this scheme can ensure better performance on the secondary carrier, it requires additional signaling overhead.
  • some terminals have strong design capabilities, or if the frequency separation between two frequency bands, such as frequency band A and frequency band B, is not too large, common beam management can still be used. Therefore, in order to also consider the capabilities of the terminal, the methods in Example 1, Example 2 and Example 3 above can still be used.
  • Fig. 12 is a block diagram showing a UE (UE) 800 according to an exemplary embodiment.
  • UE800 can be a mobile phone, a computer, a digital broadcast user equipment, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and so on.
  • UE800 may include one or more of the following components: a processing component 802, a memory 804, a power supply component 806, a multimedia component 808, an audio component 810, an input/output (I/O) interface 812, a sensor component 814, and Communication component 816.
  • the processing component 802 generally controls the overall operations of the UE 800, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the foregoing method.
  • the processing component 802 may include one or more modules to facilitate the interaction between the processing component 802 and other components.
  • the processing component 802 may include a multimedia module to facilitate the interaction between the multimedia component 808 and the processing component 802.
  • the memory 804 is configured to store various types of data to support operations in the UE 800. Examples of these data include instructions for any application or method operating on the UE800, contact data, phonebook data, messages, pictures, videos, etc.
  • the memory 804 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable and Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable and Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic Disk Magnetic Disk or Optical Disk.
  • the power supply component 806 provides power for various components of the UE800.
  • the power supply component 806 may include a power management system, one or more power supplies, and other components associated with the generation, management, and distribution of power for the UE 800.
  • the multimedia component 808 includes a screen that provides an output interface between the UE 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure related to the touch or slide operation.
  • the multimedia component 808 includes a front camera and/or a rear camera. When the UE800 is in an operating mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 810 is configured to output and/or input audio signals.
  • the audio component 810 includes a microphone (MIC), and when the UE 800 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive external audio signals.
  • the received audio signal may be further stored in the memory 804 or transmitted via the communication component 816.
  • the audio component 810 also includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module.
  • the above-mentioned peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: home button, volume button, start button, and lock button.
  • the sensor component 814 includes one or more sensors for providing UE 800 with various aspects of status assessment.
  • the sensor component 814 can detect the on/off status of the device 800 and the relative positioning of components, such as the display and keypad of the UE800.
  • the sensor component 814 can also detect the position change of the UE800 or a component of the UE800. The presence or absence of contact with UE800, the orientation or acceleration/deceleration of UE800, and the temperature change of UE800.
  • the sensor component 814 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
  • the sensor component 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 816 is configured to facilitate wired or wireless communication between the UE 800 and other devices.
  • the UE 800 can access a wireless network based on a communication standard, such as WiFi, 2G, or 3G, or a combination thereof.
  • the communication component 816 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 further includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • UE800 can be implemented by one or more application specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing devices (DSPD), programmable logic devices (PLD), field programmable gates Array (FPGA), controller, microcontroller, microprocessor or other electronic components are implemented to implement the above methods.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing devices
  • PLD programmable logic devices
  • FPGA field programmable gates Array
  • controller microcontroller, microprocessor or other electronic components are implemented to implement the above methods.
  • non-transitory computer-readable storage medium including instructions, for example, the memory 804 including instructions, and the foregoing instructions may be executed by the processor 820 of the UE 800 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • an embodiment of the present disclosure shows a structure of a base station.
  • the base station 900 may be provided as a network side device.
  • the base station 900 includes a processing component 922, which further includes one or more processors, and a memory resource represented by a memory 932, for storing instructions that can be executed by the processing component 922, such as application programs.
  • the application program stored in the memory 932 may include one or more modules each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to execute any of the aforementioned methods applied to the base station, for example, the method shown in FIG. 2-3.
  • the base station 900 may also include a power supply component 926 configured to perform power management of the base station 900, a wired or wireless network interface 950 configured to connect the base station 900 to the network, and an input output (I/O) interface 958.
  • the base station 900 can operate based on an operating system stored in the memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开一种波束管理方法及装置、通信设备及存储介质。应用于基站中的所述波束管理方法,其中,,包括:根据终端的波束管理能力信息,下发对辅载波进行单独波束管理的配置信息。

Description

波束管理方法及装置、通信设备及存储介质 技术领域
本申请涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及一种波束管理方法及装置、通信设备及存储介质。
背景技术
随着移动通信技术的发展,为了满足更高的速率的要求,高频大带宽和大规模天线技术越来越成为无线通信技术发展的趋势,目前已经成为第五代通信的毫米波频段的主要技术特征。
在大规模天线技术中,为了保证发射机和接收机都能选择到最优的波束从而保证最好的连接性能,就需要对波束进行管理。由于波束管理需要大量的信令开销,因此即使在多载波系统中,仍然采用统一的波束管理,即认为所有载波的最优波束方向是一样的。如第五代移动通信(5 th Generation,5G)新无线(New Radio,NR)系统中。然而在实际中,由于终端的设计能力以及载波之间的频率间隔,会导致载波之间的波束方向相差较大,如果仍然采用统一的波束管理,可能会造成某些载波的选择的并非最优波束方向,从而导致通信质量差。
发明内容
本申请实施例提供一种波束管理方法及装置、通信设备及存储介质。
本申请实施例第一方面提供一种波束管理方法,其中,应用于基站中,包括:
根据终端的波束管理能力信息,下发对辅载波进行单独波束管理的 配置信息。
基于上述方案,所述根据终端的波束管理能力信息,下发对辅载波进行单独波束管理的配置信息,包括:
确定出所述终端的主载波与任意一个所述辅载波之前的频域相对位置;
根据所述频域相对位置及所述波束管理能力信息,确定所述辅载波是否满足辅载波单独波束管理条件;
当所述辅载波满足所述辅载波单独波束管理条件时,下发对满足所述辅载波单独波束管理条件的辅载波进行单独波束管理的所述配置信息。
基于上述方案,所述根据所述频域相对位置及所述波束管理能力信息,确定所述辅载波是否满足辅载波单独波束管理条件,包括:
根据所述频域相对位置及所述波束管理能力信息,确定出存在与所述主载波之间的的所述频域相对位置超出所述终端基于所述主载波的统一管理能力时,确定与所述主载波之间的频域相对位置超出所述终端基于所述主载波的统一管理能力范围的所述辅载波满足所述辅载波单独波束管理条件。
基于上述方案,所述频域相对位置由以下参数至少之一指示:
所述主载波和所述辅载波的中心频率的频率差;
所述主载波和所述辅载波的中心频率差,与所述主载波和所述辅载波的中心频率和的比值;
所述主载波所在频段和所述辅载波所在频段的频率差。
基于上述方案,所述方法还包括:
向终端发送多载波的波束管理能力的上报指示;
接收终端根据所述上报指示发送的所述波束管理能力信息。
基于上述方案,所述方法还包括:
当存在需要单独管理的辅载波时,在所述辅载波上发送参考信号;
接收终端对所述参考信号的测量结果。
本申请实施例第二方面提供一种波束管理方法,其中,应用于终端中,包括:
接收对辅载波进行单独波束管理的配置信息,其中,所述配置信息是基于所述终端的管理能力信息确定的;
根据所述配置信息,进行辅载波的单独波束管理。
基于上述方案,所述方法还包括:
上报终端的波束管理能力信息,其中,所述波束管理能力信息,用于供基站确定辅载波是否需要单独波束管理。
基于上述方案,所述方法还包括:
接收基站下发的上报指示;
所述上报终端的波束管理能力信息,包括:
根据所述上报指示,上报所述波束管理能力信息。
基于上述方案,所述根据所述配置信息,进行辅载波的单独波束管理,包括:
根据所述配置信息确定出存在辅载波需要单独管理波束时,在所述辅载波上接收参考信号;
上报所述参考信号的测量结果。
本申请实施例第三方面提供一种波束管理装置,其中,应用于基站中,包括:
第一发送模块,被配置为根据终端的波束管理能力信息,下发对辅载波进行单独波束管理的配置信息。
基于上述方案,所述第一下发模块,包括:
第一确定单元,被配置为确定出所述终端的主载波与任意一个所述辅载波之前的频域相对位置;
第二确定单元,被配置为根据所述频域相对位置及所述波束管理能力信息,确定所述辅载波是否满足辅载波单独波束管理条件;
下发单元,被配置为当所述辅载波满足所述辅载波单独波束管理条件时,下发对满足所述辅载波单独波束管理条件的辅载波进行单独波束管理的所述配置信息。
基于上述方案,所述第二确定单元,被配置为根据所述频域相对位置及所述波束管理能力信息,确定出存在与所述主载波之间的的所述频域相对位置超出所述终端基于所述主载波的统一管理能力时,确定与所述主载波之间的频域相对位置超出所述终端基于所述主载波的统一管理能力范围的所述辅载波满足所述辅载波单独波束管理条件。
基于上述方案,所述频域相对位置由以下参数至少之一指示:
所述主载波和所述辅载波的中心频率的频率差;
所述主载波和所述辅载波的中心频率差,与所述主载波和所述辅载波的中心频率和的比值;
所述主载波所在频段和所述辅载波所在频段的频率差。
基于上述方案,所述装置还包括:
第一接收模块,被配置为向终端发送多载波的波束管理能力的上报指示;
所述第一发送模块,被配置为接收终端根据所述上报指示发送的所述波束管理能力信息。
基于上述方案,所述第一发送模块,被配置为当存在需要单独管理的辅载波时,在所述辅载波上发送参考信号;
所述装置还包括:
第一接收模块,被配置为接收终端对所述参考信号的测量结果。
本申请实施例第四方面提供一种波束管理装置,其中,应用于终端中,包括:
第二接收模块,被配置为接收对辅载波进行单独波束管理的配置信息,其中,所述配置信息是基于所述终端的管理能力信息确定的;
波束管理模块,被配置为根据所述配置信息,进行辅载波的单独波束管理。
基于上述方案,所述装置还包括:
第二发送模块,被配置为上报终端的波束管理能力信息,其中,所述波束管理能力信息,用于供基站确定辅载波是否需要单独波束管理。
基于上述方案,所述第二接收模块,被配置为接收基站下发的上报指示;
所述第二发送模块,被配置为根据所述上报指示,上报所述波束管理能力信息。
基于上述方案,所述波束管理模块,被配置为根据所述配置信息确定出存在辅载波需要单独管理波束时,在所述辅载波上接收参考信号;上报所述参考信号的测量结果。
本申请实施例第五方面提供一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如上述第一方面或第二方面任意技术方案提供的波束管理方法。
本申请实施例第六方面提供一种计算机存储介质,所述计算机存储介质存储有可执行程序;所述可执行程序被处理器执行后,能够实现如上述第一方面或第二方面任意技术方案提供的波束管理方法。
本申请实施例提供的技术方案,基站是根据终端的波束管理能力信 息,下发的辅载波单独波束管理的配置信息,该配置信息包含有用于终端单独进行波束管理的配置信息。如此,为终端配置的辅载波是否需要区分主载波进行单独的波束管理,会根据终端的波束能力信息指示的波束管理能力确定,如在有需要进行辅载波的单独波束管理时,进行辅载波的单独波束管理,确保确定出辅载波的最优波束方向,确保使用辅载波进行通信的通信质量。在无需进行辅载波的单独波束管理时,则可以基于对主载波的波束管理实现对辅载波的单独波束管理,通过基于主载波的统一波束管理,减少信令开销。如此,在进行波束管理时,同时确保了通信质量,并尽可能减少了信令开销。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开实施例,并与说明书一起用于解释本公开实施例的原理。
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图;
图2是根据一示例性实施例示出的一种不同载波的最优波束方向确定示意图;
图3是根据一示例性实施例示出的一种波束管理方法的流程示意图;
图4是根据一示例性实施例示出的一种波束管理方法的流程示意图;
图5是根据一示例性实施例示出的一种波束管理方法的流程示意图;
图6是根据一示例性实施例示出的一种波束管理方法的流程示意图;
图7是根据一示例性实施例示出的一种波束管理方法的流程示意图;
图8A是根据一示例性实施例示出的一种载波的载波间隔的示意图;
图8B是根据一示例性实施例示出的另一种载波的载波间隔的示意图;
图9是根据一示例性实施例示出的一种波束管理装置的结构示意图;
图10是根据一示例性实施例示出的另一种波束管理装置的结构示意图;
图11是根据一示例性实施例示出的一种波束管理方法的流程示意图;
图12是根据一示例性实施例示出的UE的结构示意图;
图13是根据一示例性实施例示出的基站的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个UE11以及若干个基站12。
其中,UE11可以是指向用户提供语音和/或数据连通性的设备。UE11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进 行通信,UE11可以是物联网UE,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网UE的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station)、移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程UE(remote terminal)、接入UE(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户UE(user equipment,UE)。或者,UE11也可以是无人飞行器的设备。或者,UE11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,UE11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站12可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。或者,MTC系统。
其中,基站12可以是4G系统中采用的演进型基站(eNB)。或者,基站12也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实 施例对基站12的具体实现方式不加以限定。
基站12和UE11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,UE11之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个基站12分别与网络管理设备13相连。其中,网络管理设备13可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实施例不做限定。
如图2所示,通过波束管理确定载波1的最优波束为波束i,载波2的波束i与载波1的波束i方向不一致,如果采用统一波束管理在载波2上选择波束i,会导致该载波2上的链路性能较差,甚至失去连接,为了减少这一现象,同时尽可能的在支持统一波束管理时,采用统一波束管理以减少波束管理的信令开销。如图3所示,本实施例提供一种波束管 理方法,其中,应用于基站中,包括:
S110:根据终端的波束管理能力信息,下发对辅载波进行单独波束管理的配置信息。
本申请实施例应用于各种类型的基站中,例如,4G基站或5G基站等。
基站在给终端配置载波时,针对支持多载波的终端,可以为终端配置一个主载波和一个或多个辅载波。终端可以在主载波上收发控制信令,根据该控制信令控制终端在主载波和/或辅载波上的传输行为。
在一些实施例中,所述主载波为中终端的服务小区的载波;所述辅载波可为终端的服务小区的邻小区的载波。
所述波束管理能力信息指示:终端对多个载波采用统一管理方式的能力强弱。例如,所述波束管理能力信息的信息内容可包括以下一项或多项;
所述终端的多载波统一管理能力强弱等级的指示信息;
所述终端进行多载波统一管理能力时支持的载波间最大频域相对位置的指示信息。
不同的多载波统一管理能力强弱等级,对应了不同的多载波统一管理能力强弱的载波间最大频域相对位置;等级越高,则进行多载波统一管理时支持的载波间最大频域相对位置越大。例如,指示终端的多载波统一管理能力强弱等级可分为:2个等级、3个等级或者4个等级等。例如,在分为2个等级时,终端的多载波统一管理能力强弱可分为“低”及“高”两个等级,等级越高,则说明终端的多载波统一管理能力强弱越强,支持频域相对位置越远的两个载波之间的统一管理。在分为3个等级时,终端的多载波统一管理能力强弱可分为“低”、“中”、及“高”,在分为4个等级时,终端的的多载波统一管理能力强弱可分为“低”、“较 低”、“较高”及“高”。若波束管理能力信息是直接指示等级,则可以用一个或多个比特直接指示等级,例如,用1个比特指示两个等级,用2个比特指示3个等级或4个等级等。
此处的是采用统一管理方式即:为了减少单独管理每一个波束导致的信令开销大,会认为主载波和至少一个辅载波的最优波束方向是一样的。实际应用时,由于终端的软硬件能力及不同载波的频率不同,实质上任意两个载波的最优波束方向可能是存在一定偏差,但是有的情况下,这种偏差是可以接受的,即对通信质量的影响较小,但是有的情况下两个载波的最优波束方向存在较大偏差,若此时基于同一个管理方式进行波束管理,会导致在对应载波上的通信质量差,甚至出现链路断开的现象。
例如,有的终端的终端能力比较强,例如,包含较多天线或者这些天线之间的覆盖范围比较大的终端,具有的载波的统一管理能力就比较强,如此,即便两个载波实际上的最优波束方向偏差比较大,但是还是在终端的天线的覆盖范围内,则可以采用载波的统一管理方式进行波束管理,从而减少信令开销。但是有的终端的天线少或者天线阵列的覆盖范围小的情况下,仅采用载波的统一管理方式是,就可能会导致上述通信质量差甚至链路断开的现象。
为了解决上述现象,针对副载波,基站在为终端进行载波管理配置时,会根据终端的波束管理能力信息,会确定是否要为终端的辅载波皮遏制单独的波束管理。即S110可包括:当根据终端的波束管理能力信息确定出需要对终端的辅载波进行单独波束管理时,下发对辅载波进行单独波束管理的配置信息;和/或当根据终端的波束管理能力信息确定出不需要对终端的辅载波进行单独波束管理时,不下发对辅载波进行单独波束管理的配置信息,可仅下发主载波的波束管理的配置信息。
在本申请实施例中,终端的主载波默认是配置波束管理的。若确定该终端直接采用统一波束管理,则仅会在主载波上进行波束测量,基于主载波上的波束测量确定最优波束方向。然后统一以主载波上进行波束测量得到的最优波束方向,视为该终端的所有载波上的最优波束方向。例如,一个终端配置有N个载波,其中,一个主载波和N-1个辅载波;N为等于或大于2的正整数。若采用统一波束管理,则会基于主载波上的波束测量得到的主载波上的最优波束方向,同时视为主载波和辅载波上的所有载波的最优波束方向。
但是若根据终端的波束管理能力信息,确定出当前为终端配置的主载波和辅载波采用基于主载波的统一波束管理的话,可能会导致为辅载波上确定的最优波束方向,与辅载波的实际最优波束方向偏差太大的现象,则此时需要对辅载波进行单独的波束管理。
在本申请实施例中,波束管理包括以下一项或多项:
波束测量,包括:在对应载波上的各个波束上发送参考信号,对参考信号进行测量得到测量结果;
波束测量结果的上报;
波束指示,例如,终端或基站指示在任意一个为终端配置的辅载波上进行通信的波束;
波束恢复,包括:波束失效之后如何进行一个或多个载波上的波束恢复。
总之,在本申请实施例中,不会直接对终端采用基于一个载波(例如,主载波)的统一波束管理方式,而是会根据终端的波束管理能力信息,确定是否需要为其配置的辅载波单独进行波束管理,减少统一采用基于主载波的统一波束管理导致的在辅载波上的通信质量差及甚至链路失效的现象。
基站在根据终端的波束管理能力信息确定出为终端配置的至少一个辅载波需要进行单独波束管理时,为下发辅载波的单独波束管理的配置信息,该辅载波的单独波束管理的配置信息,可以与主载波的波束管理的配置信息一同下发,也可以单独下发辅载波的单独波束管理的配置信息。例如,在一些实施例中,所述方法还包括:
根据是否为终端的辅载波是否需要单独管理的确定结果,下发终端进行载波管理的配置信息;
终端会根据所述配置信息进行载波管理。例如,若为终端配置了辅载波的单独管理,则终端会根据所述配置信息进行辅载波的单独管理,终端进行所述辅载波的单独管理包括:在辅载波上进行参考信号测量和/或上报测量结果。
所述配置信息包括:基于主载波进行波束管理的第一配置;或者,基于主载波进行波束管理的第一配置及基于辅载波进行波束管理的第二配置。
所述第一配置至少包括:在所述主载波上发送参考信号的时频域资源。所述第二配置至少包括:在所述辅载波上发送参考信号的时频域资源。
在一些实施例中,所述第一配置和第二配置还包括:测量结果的上报条件和/或测量条件等。测量条件,用于指示终端进行对应载波上参考信号的条件,例如,当前选定的波束的波束质量低于质量阈值时,进行主载波和辅载波的波束重新测量,以重新确定主载波和/或辅载波的最优波束方向想。上报条件,用于指示终端进行对应载波上参考信号之后,需要上报的测量结果,有的测量结果相当于指示当前选定的波束方向即为主载波和/或辅载波的最优波束方向,则可以不用上报;例如,通过波束测量发现最优波束方向发生了变化,则可上报重新确定的最优波束方 向。
在一些实施例中,如图4所示,所述S110,包括:
S111:确定出所述终端的主载波与任意一个所述辅载波之前的频域相对位置;
S112:根据所述频域相对位置及所述波束管理能力信息,确定所述辅载波是否满足辅载波单独波束管理条件;
S113:当所述辅载波满足所述辅载波单独波束管理条件时,下发对满足所述辅载波单独波束管理条件的辅载波进行单独波束管理的所述配置信息。
不同载波具有不同的频率。如此,不同载波在频域是有一定位置偏移量的。在本申请中会使用频域相对位置来衡量两个载波在频域的相对位置。
若两个载波的频率差比较大,由于不同的频率在相同信道内的传输效果是不一样的,如此可能会导致两个载波的最优波束方向的偏差较大。故在本申请实施例中,会结合任意辅载波和主载波之间的频域相对位置和终端的波束管理能力信息,确定为该终端配置的辅载波是否满足辅载波单独波束管理条件,则需要单独在该辅助上进行波束管理。
总之在本实施例中,会确定任意一个辅载波和主载波之前的频域相对位置和终端的波束管理能力信息所对应的最大频域相对位置进行比较,某一个辅载波的频域相对位置,小于前述终端的管理能力信息指示的波束管理能力所对应的最大频域相对位置,则可认为该辅载波不满足辅载波单独波束管理条件,该辅载波满足基于主载波的统一管理条件。若满足统一管理条件,则该辅载波基于该主载波的统一管理条件,仅对主载波进行波束测量等波束管理,将主载波的波束管理直接认定为是对该辅载波的波束管理。
在一些实施例中,所述S112可包括:
根据所述频域相对位置及所述波束管理能力信息,确定出存在与所述主载波之间的的所述频域相对位置超出所述终端基于所述主载波的统一管理能力时,确定与所述主载波之间的频域相对位置超出所述终端基于所述主载波的统一管理能力范围的所述辅载波满足所述辅载波单独波束管理条件。
在一些实施例中,所述波束管理能力信息指示统一波束管理的最大相对频域位置为XMhz,若频域相对位置对应的频率差大于XMhz,则确定满足所述辅载波单独波束管理条件,否则可认为不满足辅载波单独波束管理条件。
在另一些实施例中,表征频域相对位置的频率比值,大于波束管理能力对应的最大比值时,则可认为满足所述辅载波单独波束管理条件,否则认为不满足所述辅载波单独波束管理条件。
总之,在本申请实施例中,指示所述频域相对位置的相对位置参数有很多种,可以将相对位置参数与该相对位置参数所对应的阈值进行比较,基于阈值比较的结果,确定是否满足辅载波单独波束管理条件。
通常情况下,两个载波之间的频率差越大,则越有可能需要进行单独波束管理。
例如,所述频域相对位置由以下参数至少之一指示:
所述主载波和所述辅载波的中心频率的频率差;例如,主载波的中心频率为f1、辅载波的中心频率为f2;该频率差为f1-f2或f2-f1;
所述主载波和所述辅载波的中心频率差,与所述主载波和所述辅载波的中心频率和的比值;该比值可为:(f2-f1)/(f1+f2)。在一些实施例中,还可以预定倍数比值,A*(f2-f1)/(f1+f2),该A可为任意正数,例如A可为0到1之间的任意小数、A可为1、2或3。
所述主载波所在频段和所述辅载波所在频段的频率差。该频率差可为两个频段的中心频率的频率差。例如,主载波所在频段A,辅载波所在频段B,频段A的中心频率f11;频段B的中心频率f12;则此时所述主载波所在频段和所述辅载波所在频段的频率差为:f11-f12或f12-f11。
在一些实施例中,所述频域相对位置还可以由主载波和辅载波之间的比值。主载波的中心频率为f1、辅载波的中心频率为f2,则该比值为:f1/f2或者f2/f1。
图8A所示的载波1和载波2是位于相同的频带A上,两者之间的载波间隔可为两个载波中心频率的频率差,这种频率差即为前述的频域相对位置的一种。
图8B所示的载波1和载波2是位于不同的频带上,载波1位于频带A上,载波2位于频带B上,两者之间的载波间隔可为两个载波中心频率的频率差,这种频率差即为前述的频域相对位置的一种。
在一些实施例中,如图5所示,所述方法还包括:
S101:向终端发送多载波的波束管理能力的上报指示;
S102:接收终端根据所述上报指示发送的所述波束管理能力信息。
基站下发上报指示,该上报指示在终端进行多载波进行传输,则指示进行波束管理能力信息的上报。
在一些实施例中,基站可以就终端主动上报的波束管理能力信息,也可以是根据终端的终端类型推测波束管理能力信息。
通过上报指示的下发,触发有需要的终端进行波束管理能力信息上报,减少信令开销;相对于基站记录所有终端的波束管理能力信息,可以减少终端存储的信息量。
在一些实施例中,所述方法还包括:
当存在需要单独管理的辅载波时,在所述辅载波上发送参考信号;
接收终端对所述参考信号的测量结果。
若存在需要单独管理的副载波,即存在满足辅载波单独波束管理条件的辅载波,则在该辅载波上发送参考信号,例如,使用该载波在各个波束方向上发送参考信号,接收终端对参考信号的测量结果,从而可以确定出在该辅载波的最优波束方向。
进一步地,在一些实施例中终端可能支持一个主载波和多个辅载波,此时,若有一个辅载波已经确定需要单独管理,剩余辅载波在确定是否需要单独管理时,不仅需要根据剩余辅载波与主载波之间的频域相对位置确定是否要单独管理,同时还需要和已确定需要单独管理的辅载波之间的频域相对位置,进一步确定是否是可以和已确定需要单独管理的辅载波之间进行统一波束管理。在本申请实施例中,将已确定需要单独管理的载波称为第一载波,该第一载波包括但不限于:主载波和已确定需要单独管理的辅载波。将尚未确定需要单独管理的辅载波可称之为第二载波;在具体的实现过程中,可以根据第二载波和各个第一载波之间的频域相对位置及终端的波束管理能力信息,确定对应的第二载波是否可以和某一个第一载波进行统一波束管理,若可以,则该第二载波与其中某一个第一波束进行统一波束管理,否则可认为需要进行单独波束管理。如此,在终端存在多个辅载波时,若有两个辅载波之间的频率相差较小,导致的最优波束方向的偏差较小的情况下,可以使得这两个辅载波之间采用统一波束管理,以进一步减少波束管理导致的信令开销。此处,第一载波和第二载波之间确定频域相对位置的方式,及判断是否采用单独波束管理或波束统一管理方式的方式,可以参见本申请实施例中,主载波和辅载波的频域相对位置的确定及是否满足辅载波单独波束管理条件的判定,此处就不赘述了。
在基站侧进行辅载波的单独波束管理时,所述方法还可包括:
在辅载波上以不同方向的波束发送参考信号;
接收终端对参考信号的测量结果,该测量结果包括但不限于波束的参考信号接收功率和/或参考信号接收质量;在一些实施例中,该测量结果还可以是终端基于测量选择的最优波束的波束索引等最优波束方向的指示信息。
此处的参考信号包括但不限于:信道状态信息参考信号(Channel Status Information-Reference Signal,CSI-RS)。例如,该参考信号还可包括:同步信号。该同步信号包括:主同步信号和/或辅同步信号。
如图6所示,本实施例提供一种波束管理方法,其中,应用于终端中,包括:
S210:接收对辅载波进行单独波束管理的配置信息,其中,所述配置信息是基于所述终端的管理能力信息确定的;
S220:根据所述配置信息,进行辅载波的单独波束管理。
本申请实施例波束管理方法所应用的终端可为各种类型的终端,包括但不限于:手机、可穿戴式设备或平板电脑等用户终端、还可以是车载终端、智能家居和/或智能办公设备等。
在本申请实施例中,终端接收基站下发的辅载波单独波束管理的配置信息,该配置信息包含有用于终端单独进行波束管理的配置信息,此时,终端接收到该配置信息之后,就可以针对辅载波单独进行波束管理。值得注意的是,在本申请实施例中,辅载波的单独波束管理可认为是区分主载波的波束管理而言的,即若一个辅载波进行单独波束管理(或波束的单独管理)则认为:该辅载波和主载波需要分别进行波束测量,基于波束测量结果,分别选择该辅载波和主载波的最优波束方向的测量。此处的波束测量包括:通过参考信号的发送进行波束质量和/或接收功率的测量。
如此,终端根据基站的配置信息进行载波的波束管理时,不会仅进行基于主载波的统一波束管理,或者,针对每一个主载波和辅载波的单独波束管理,而是会根据终端的波束管理能力信息,在有需要进行辅载波的单独波束管理时,可以辅载波单独的波束管理,从而确保使用辅载波通信时能够确保最优波束方向,确保通信质量。在无需进行辅载波的单独波束管理时,则进行基于主载波的统一波束管理,以减少波束管理的信令。
在本申请实施例中,所述方法还包括:
上报终端的波束管理能力信息,其中,所述波束管理能力信息,用于供基站确定是否需要单独管理所述终端的辅载波。
基站获取终端的波束管理能力信息的方式有多种,例如,可包括中单上报波束管理能力信息。此处终端的波束管理能力信息的上报,包括但不限于终端主动上报,也可以是基于基站的上报指示的上报。
故在一些实施例中,如图7所示,所述方法还包括:
S201:接收基站下发的上报指示;
S202:根据所述上报指示,上报所述波束管理能力信息。
在一些实施例中,所述S220可包括:
根据所述配置信息,确定出当存在需单独管理的辅载波时,在所述辅载波上接收参考信号;
上报所述参考信号的测量结果。
此处测量的参考信号包括但不限于CSI-RS等。在一些实施例中,总之,本申请实施例所述的参考信号是各种用于测量不同波束方向的波束质量的参考信号。
终端扫描同一个载波上不同波束方向上的波束发送的参考信号,确定在一个载波在不同波束方向上的接收质量,然后可以根据接收质量选 择使用主载波和任意一个辅载波的最优波束方向。基于选择的最优波束方向进行通信,能够确保通信质量。
上报的测量结果可包括以下一项或多项:
在各个波束方向的参考信号接收功率;
在各个波束方向的参考信号接收质量;
最优波束方向的波束索引;
最优波束方向的波束索引集合,该波束索引集合对应于一个或多个波束索引。
如图9所示,本申请实施例提供一种波束管理装置,其中,应用于基站中,包括:
第一发送模块310,被配置为根据终端的波束管理能力信息,下发对辅载波进行单独波束管理的配置信息。
在一些实施例中,所述第一发送模块310可为程序模块;所述程序模块被处理器执行后,能够实现根据终端的波束管理能力信息,下发对终端被配置的辅载波进行单独波束管理的配置信息,如此,以便终端和基站对终端的辅载波进行单独管理。
在一些实施例中,所述第一发送模块310可为软硬件结合模块;所述软硬件结合模块包括但不限于各种可编程阵列;所述可编程阵列包括但不限于:现场可编程阵列或复杂可编程阵列。
在还有一些实施例中,所述第一发送模块310可为纯硬件模块;所述纯硬件模块包括但不限于专用集成电路。
在一些实施例中,所述第一下发模块,包括:
第一确定单元,被配置为确定出所述终端的主载波与任意一个所述辅载波之前的频域相对位置;
第二确定单元,被配置为根据所述频域相对位置及所述波束管理能 力信息,确定所述辅载波是否满足辅载波单独波束管理条件;
下发单元,被配置为当所述辅载波满足所述辅载波单独波束管理条件时,下发对满足所述辅载波单独波束管理条件的辅载波进行单独波束管理的所述配置信息。
在一些实施例中,所述第二确定单元,被配置为根据所述频域相对位置及所述波束管理能力信息,确定出存在与所述主载波之间的的所述频域相对位置超出所述终端基于所述主载波的统一管理能力时,确定与所述主载波之间的频域相对位置超出所述终端基于所述主载波的统一管理能力范围的所述辅载波满足所述辅载波单独波束管理条件。
在一些实施例中,所述频域相对位置由以下参数至少之一指示:
所述主载波和所述辅载波的中心频率的频率差;
所述主载波和所述辅载波的中心频率差,与所述主载波和所述辅载波的中心频率和的比值;
所述主载波所在频段和所述辅载波所在频段的频率差。
在一些实施例中,所述装置还包括:
第一接收模块,被配置为向终端发送多载波的波束管理能力的上报指示;
所述第一发送模块310,被配置为接收终端根据所述上报指示发送的所述波束管理能力信息。
在一些实施例中,所述第一发送模块310,被配置为当存在需要单独管理的辅载波时,在所述辅载波上发送参考信号;
所述装置还包括:
第一接收模块,被配置为接收终端对所述参考信号的测量结果。
如图10所示,本实施例提供一种波束管理装置,其中,应用于终端中,包括:
第二接收模块410,被配置为接收对辅载波进行单独波束管理的配置信息,其中,所述配置信息是基于所述终端的管理能力信息确定的;
波束管理模块420,被配置为根据所述配置信息,进行辅载波的单独波束管理。
在一些实施例中,所述第二接收模块410及波束管理模块420可为程序模块;该程序模块被处理器执行后,能够实现针对辅载波的单独波束管理,如此在有需要对辅载波进行单独波束管理时,进行辅载波的单独波束管理以确保在辅载波上的通信质量。
在另一些实施例中,所述第二接收模块410及波束管理模块420可为软硬结合模块;该软硬结合模块包括但不限于各种可编程阵列;该可编程阵列包括但不限于:复杂可编程阵列或现场可编程阵列。
在一些实施例中,所述装置还包括:
第二发送模块,被配置为上报终端的波束管理能力信息,其中,所述波束管理能力信息,用于供基站确定辅载波是否需要单独波束管理。
在一些实施例中,所述第二接收模块410,被配置为接收基站下发的上报指示;
所述第二发送模块,被配置为根据所述上报指示,上报所述波束管理能力信息。
在一些实施例中,所述波束管理模块420,被配置为根据所述配置信息确定出存在辅载波需要单独管理波束时,在所述辅载波上接收参考信号;上报所述参考信号的测量结果。
本申请实施例提供一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有处理器运行的可执行程序,其中,处理器运行可执行程序时执行前述任意技术方案提供的应用于终端中的波束管理方法,或执行前述任意技术方案提供的应用于基站中的波束管理方法。
该通信设备可为前述的基站或者终端。
其中,处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。这里,所述通信设备包括基站或用户设备。
所述处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序,例如,如图2或5所示的方法的至少其中之一。
本申请实施例提供一种计算机存储介质,所述计算机存储介质存储有可执行程序;所述可执行程序被处理器执行后,能够实现第一方面或第二方面任意技术方案所示的方法,例如,如图2或5所示的方法的至少其中之一。
以下结合任意一个实施例提供几个示例:
示例1:
本公开针对现有波束管理方案未考虑不同终端的能力,对所有的多载波场景采用统一的波束管理方案,可能会造成某些载波上的波束方向比较差,从而影响链路性能。为了减少上述问题,本示例提供的方案依据终端的不同能力选择不同波束管理方案,既可以避免了能力差终端选择了较差的波束方向,又可以节省能力强的终端的信令开销。
本示例提供的波束处理方法的应用场景包括但不限于以下至少之一:
指载波聚合技术,双链接技术(DC,Dual connectivity)还可以包括多接入系统的双链接技术(Muti-RAT dual connectivity,MRDC),如,4G网络辅节点的双连接(EUTRA-NR Dual Connection,EN-DC)EN-DC和5G网络(NR-E-UTRA Dual Connectivity,NE-DC)NE-DC等。
基站侧向终端发射消息要求终端上报多载波情况下波束管理能力,终端上报所述多载波情况下波束管理能力,基站根据所述终端上报的多载波波束管理能力确定是否有载波需要进行单独的波束管理。具体的流程示意 图11所示,包括:
S601:基站向终端发射消息要求终端上报多载波波束管理能力,例如,基站通过上报指示,要求终端上报多载波波束管理能力;
S602:终端反馈多载波波束管理能力,例如,终端通过波束管理能力信息指示自身对多载波的波束管理能力;
S603:基站根据终端反馈的多载波管理能力,确定哪些波束需要进行单独波束管理;
S604:对终端进行波束管理。
示例2:
基站在给终端配置其他载波(此处的其他载波至少包括辅载波)时,向终端发射消息要求终端上报多载波情况下波束管理能力,终端上报所述多载波情况下波束管理能力,基站根据所述终端上报的多载波波束管理能力确定是否有载波需要进行单独的波束管理。
在一个实施例中,所述终端上报的波束管理能力可通过比特(bit)值指示能力的差别,比如“低”,“中”,“高”,或者“低”和“高”等。基站收到该信息后,根据波束管理所在的载波,即基站在该载波上需要发射参考信号或者同步信号,一般为主载波,以及需要配置的辅载波之间的位置关系是否满足要求终端上报的要求,如果超出要求,则判断辅载波上需要做单独的波束管理,即发射参考信号。
所述“低”,“中”,“高”,的确定方法可根据不同的频段和载波的不同位置来确定。在一个实施例中可依据如下确定。
设两个载波在频段A(Band A)的中心频点为f1和f2,根据参数:F1=2*(f2-f1)/(f1+f2)的值来确定。比如F1小于某一值X1时,认为是“低”;在X1和X2之间是“中”;大于X2,认为是“高”。其中,X2大于X1。此处,X1和X2均为用于确定终端所支持的频域相对位置的阈值。
所述根据不同的频段和载波的不同位置来确定能力等级的方法,在另一个实施例中,可直接根据两个载波间的距离差来决定。如参数F2=f2-f1,然后依据F2小于某一值Y1时,认为是“低”;在Y1和Y2之间是“中”;大于Y2,认为是“高”。X2大于X1。
基站收到终端的上报的能力等级,比如某个终端在该频段A上报的能力等级为“低”,则基站根据需要给该终端配置的载波信息,计算出F1,或F2是否大于X1或者Y1;
如果是,则基站判断需要在辅载波上配置进行波束管理的参考信号如CSI-RS(Channel State Information Reference Signal)或同步信号块(Synchronization signal block,SSB)信号。终端扫描该信号,根据信号的强度如最大的参考信号接收功率(Reference Signal Receiving Power,RSRP)来确定该辅助载波上的下行接收的最佳波束(beam)i。
如果否,基站无需在该辅载波上进行波束管理,即无需在该载波上额外发射参考信号如CSI-RS(Channel State Information Reference Signal)或SSB信号。即如果主载波上终端的最佳波束方向为i,则其它辅载波上也采用该波束方向i。
示例3:
在一个实施例中所述终端上报的波束管理能力,可直接上报具体的参数值。如例1中的F1或者F2,具体的参数值上报方法,依据需要上报的精度来确定需要的比特数量。如2比特(bit)的信息,可上报四种不同的值,下表以F1上报为例。
F1对应的值 比特(Bit)值
F1_1 00
F1_2 01
F1_3 10
F1_4 11
表1
基站收到终端的上报的能力等级对应的具体参数值,则基站根据需要给该终端配置的载波信息,计算出F1,或F2是否大于X1或者Y1,如果是,则基站判断需要在辅载波上配置进行波束管理的参考信号;如果否,基站无需在该辅载波上进行波束管理,即无需在该载波上额外发射参考信号。
示例4:
在另一个实施例中,如果基站需要配置的辅载波在另一个频段上。如图8B所示,载波1在频段A(Band A)上,而载波2在频段B(Band B)上。一些方案中可能对于这种频段间的载波聚合直接采用独立的波束管理,这种方案虽然能搞保证辅载波上的比较优的性能,但需要额外的信令开销。但实际上一些终端设计能力较强,或者两个频段如频段A和频段B之间的频率间隔不太大,依然可以采用共同的波束管理。因此,同样为了考虑终端的能力,因此上述例1、例2和例3中的方法依然可使用。
图12是根据一示例性实施例示出的一种UE(UE)800的框图。例如,UE800可以是移动电话,计算机,数字广播用户设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图12,UE800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制UE800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒 体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在UE800的操作。这些数据的示例包括用于在UE800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为UE800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为UE800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述UE800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当UE800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当UE800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施 例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为UE800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如所述组件为UE800的显示器和小键盘,传感器组件814还可以检测UE800或UE800一个组件的位置改变,用户与UE800接触的存在或不存在,UE800方位或加速/减速和UE800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于UE800和其他设备之间有线或无线方式的通信。UE800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,UE800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由UE800的处理器820执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
如图13所示,本公开一实施例示出一种基站的结构。例如,基站900可以被提供为一网络侧设备。参照图13,基站900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述应用在所述基站的任意方法,例如,如图2-3所示方法。
基站900还可以包括一个电源组件926被配置为执行基站900的电源管理,一个有线或无线网络接口950被配置为将基站900连接到网络,和一个输入输出(I/O)接口958。基站900可以操作基于存储在存储器932的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (22)

  1. 一种波束管理方法,其中,应用于基站中,包括:
    根据终端的波束管理能力信息,下发对辅载波进行单独波束管理的配置信息。
  2. 根据权利要求1所述的方法,其中,所述根据终端的波束管理能力信息,下发对辅载波进行单独波束管理的配置信息,包括:
    确定出所述终端的主载波与任意一个所述辅载波之前的频域相对位置;
    根据所述频域相对位置及所述波束管理能力信息,确定所述辅载波是否满足辅载波单独波束管理条件;
    当所述辅载波满足所述辅载波单独波束管理条件时,下发对满足所述辅载波单独波束管理条件的辅载波进行单独波束管理的所述配置信息。
  3. 根据权利要求2所述的方法,其中,所述根据所述频域相对位置及所述波束管理能力信息,确定所述辅载波是否满足辅载波单独波束管理条件,包括:
    根据所述频域相对位置及所述波束管理能力信息,确定出存在与所述主载波之间的的所述频域相对位置超出所述终端基于所述主载波的统一管理能力时,确定与所述主载波之间的频域相对位置超出所述终端基于所述主载波的统一管理能力范围的所述辅载波满足所述辅载波单独波束管理条件。
  4. 根据权利要求3所述的方法,其中,所述频域相对位置由以下参数至少之一指示:
    所述主载波和所述辅载波的中心频率的频率差;
    所述主载波和所述辅载波的中心频率差,与所述主载波和所述辅载 波的中心频率和的比值;
    所述主载波所在频段和所述辅载波所在频段的频率差。
  5. 根据权利要求1所述的方法,其中,所述方法还包括:
    向终端发送多载波的波束管理能力的上报指示;
    接收终端根据所述上报指示发送的所述波束管理能力信息。
  6. 根据权利要求1所述的方法,其中,所述方法还包括:
    当存在需要单独管理的辅载波时,在所述辅载波上发送参考信号;
    接收终端对所述参考信号的测量结果。
  7. 一种波束管理方法,其中,应用于终端中,包括:
    接收对辅载波进行单独波束管理的配置信息,其中,所述配置信息是基于所述终端的管理能力信息确定的;
    根据所述配置信息,进行辅载波的单独波束管理。
  8. 根据权利要求7所述的方法,其中,所述方法还包括:
    上报终端的波束管理能力信息,其中,所述波束管理能力信息,用于供基站确定辅载波是否需要单独波束管理。
  9. 根据权利要求8所述的方法,其中,所述方法还包括:
    接收基站下发的上报指示;
    所述上报终端的波束管理能力信息,包括:
    根据所述上报指示,上报所述波束管理能力信息。
  10. 根据权利要求7、8或9所述的方法,其中,所述根据所述配置信息,进行辅载波的单独波束管理,包括:
    根据所述配置信息确定出存在辅载波需要单独管理波束时,在所述辅载波上接收参考信号;
    上报所述参考信号的测量结果。
  11. 一种波束管理装置,其中,应用于基站中,包括:
    第一发送模块,被配置为根据终端的波束管理能力信息,下发对辅载波进行单独波束管理的配置信息。
  12. 根据权利要求11所述的装置,其中,所述第一下发模块,包括:
    第一确定单元,被配置为确定出所述终端的主载波与任意一个所述辅载波之前的频域相对位置;
    第二确定单元,被配置为根据所述频域相对位置及所述波束管理能力信息,确定所述辅载波是否满足辅载波单独波束管理条件;
    下发单元,被配置为当所述辅载波满足所述辅载波单独波束管理条件时,下发对满足所述辅载波单独波束管理条件的辅载波进行单独波束管理的所述配置信息。
  13. 根据权利要求12所述的装置,其中,所述第二确定单元,被配置为根据所述频域相对位置及所述波束管理能力信息,确定出存在与所述主载波之间的的所述频域相对位置超出所述终端基于所述主载波的统一管理能力时,确定与所述主载波之间的频域相对位置超出所述终端基于所述主载波的统一管理能力范围的所述辅载波满足所述辅载波单独波束管理条件。
  14. 根据权利要求13所述的装置,其中,所述频域相对位置由以下参数至少之一指示:
    所述主载波和所述辅载波的中心频率的频率差;
    所述主载波和所述辅载波的中心频率差,与所述主载波和所述辅载波的中心频率和的比值;
    所述主载波所在频段和所述辅载波所在频段的频率差。
  15. 根据权利要求11所述的装置,其中,所述装置还包括:
    第一接收模块,被配置为向终端发送多载波的波束管理能力的上报指示;
    所述第一发送模块,被配置为接收终端根据所述上报指示发送的所述波束管理能力信息。
  16. 根据权利要求11所述的装置,其中,所述第一发送模块,被配置为当存在需要单独管理的辅载波时,在所述辅载波上发送参考信号;
    所述装置还包括:
    第一接收模块,被配置为接收终端对所述参考信号的测量结果。
  17. 一种波束管理装置,其中,应用于终端中,包括:
    第二接收模块,被配置为接收对辅载波进行单独波束管理的配置信息,其中,所述配置信息是基于所述终端的管理能力信息确定的;
    波束管理模块,被配置为根据所述配置信息,进行辅载波的单独波束管理。
  18. 根据权利要求17所述的装置,其中,所述装置还包括:
    第二发送模块,被配置为上报终端的波束管理能力信息,其中,所述波束管理能力信息,用于供基站确定辅载波是否需要单独波束管理。
  19. 根据权利要求18所述的装置,其中,
    所述第二接收模块,被配置为接收基站下发的上报指示;
    所述第二发送模块,被配置为根据所述上报指示,上报所述波束管理能力信息。
  20. 根据权利要求17、18或19所述的装置,其中,所述波束管理模块420,被配置为根据所述配置信息确定出存在辅载波需要单独管理波束时,在所述辅载波上接收参考信号;上报所述参考信号的测量结果。
  21. 一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如权利要求1至6或7至10任一项提供的方法。
  22. 一种计算机存储介质,所述计算机存储介质存储有可执行程序; 所述可执行程序被处理器执行后,能够实现如权利要求1至6或7至10任一项提供的方法。
PCT/CN2020/083020 2020-04-02 2020-04-02 波束管理方法及装置、通信设备及存储介质 WO2021196134A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/915,718 US20230128129A1 (en) 2020-04-02 2020-04-02 Beam management method and apparatus, communication device, and storage medium
CN202080000632.1A CN113767683B (zh) 2020-04-02 2020-04-02 波束管理方法及装置、通信设备及存储介质
PCT/CN2020/083020 WO2021196134A1 (zh) 2020-04-02 2020-04-02 波束管理方法及装置、通信设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/083020 WO2021196134A1 (zh) 2020-04-02 2020-04-02 波束管理方法及装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021196134A1 true WO2021196134A1 (zh) 2021-10-07

Family

ID=77927342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083020 WO2021196134A1 (zh) 2020-04-02 2020-04-02 波束管理方法及装置、通信设备及存储介质

Country Status (3)

Country Link
US (1) US20230128129A1 (zh)
CN (1) CN113767683B (zh)
WO (1) WO2021196134A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023060490A1 (zh) * 2021-10-13 2023-04-20 北京小米移动软件有限公司 能力信息的上报方法、装置、通信设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101925130A (zh) * 2009-06-16 2010-12-22 中兴通讯股份有限公司 多载波配置信息的发送方法及辅载波分配方法
CN101998631A (zh) * 2009-08-14 2011-03-30 大唐移动通信设备有限公司 一种资源配置的方法、系统和设备
CN109699037A (zh) * 2017-10-24 2019-04-30 中国移动通信有限公司研究院 一种波束断连判定配置方法、判定方法及装置
CN109756312A (zh) * 2017-11-02 2019-05-14 成都鼎桥通信技术有限公司 一种pdcch搜索空间的设置方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101925130A (zh) * 2009-06-16 2010-12-22 中兴通讯股份有限公司 多载波配置信息的发送方法及辅载波分配方法
CN101998631A (zh) * 2009-08-14 2011-03-30 大唐移动通信设备有限公司 一种资源配置的方法、系统和设备
CN109699037A (zh) * 2017-10-24 2019-04-30 中国移动通信有限公司研究院 一种波束断连判定配置方法、判定方法及装置
CN109756312A (zh) * 2017-11-02 2019-05-14 成都鼎桥通信技术有限公司 一种pdcch搜索空间的设置方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Summary of open issues related to rate-matching in NR", 3GPP DRAFT; R1-1801039_7_3_5_RAN1_AH1801_SUMMARY_FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Vancouver, Canada; 20180122 - 20180126, 29 January 2018 (2018-01-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051385356 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023060490A1 (zh) * 2021-10-13 2023-04-20 北京小米移动软件有限公司 能力信息的上报方法、装置、通信设备及存储介质

Also Published As

Publication number Publication date
CN113767683A (zh) 2021-12-07
CN113767683B (zh) 2023-10-03
US20230128129A1 (en) 2023-04-27

Similar Documents

Publication Publication Date Title
WO2021203309A1 (zh) 配置测量信息传输方法及装置、通信设备及存储介质
WO2021163936A1 (zh) 通信处理方法、装置及计算机存储介质
WO2020258335A1 (zh) 控制资源配置、确定方法及装置、通信设备及存储介质
US20230007724A1 (en) Information processing method and apparatus, communication device, and storage medium
WO2021253240A1 (zh) 无线通信方法及装置、终端及存储介质
WO2021114274A1 (zh) 无线通信方法、装置及存储介质
WO2022021326A1 (zh) 带宽资源复用方法及装置、通信设备及存储介质
WO2021007823A1 (zh) 信息指示、确定方法及装置、通信设备及存储介质
KR20240005098A (ko) 리소스 설정 방법, 장치, 통신 장치 및 저장 매체(resource configuration method and apparatus, communication device, and storage medium)
WO2021030979A1 (zh) 数据处理方法及装置、通信设备及存储介质
WO2021196134A1 (zh) 波束管理方法及装置、通信设备及存储介质
WO2021174494A1 (zh) 增强上行覆盖的处理方法、装置及存储介质
WO2021174510A1 (zh) 无线网络接入方法、装置、通信设备及存储介质
WO2021142796A1 (zh) 通信处理方法、装置及计算机存储介质
US20230009059A1 (en) Communication processing method and device, and computer storage medium
WO2021016771A1 (zh) 信道检测方式切换方法、装置及存储介质
WO2022147662A1 (zh) 测量间隙调度方法及装置、通信设备及存储介质
WO2021223235A1 (zh) 数据传输处理方法、装置、通信设备及存储介质
US20240187844A1 (en) Method and apparatus for reducing interference, communication device and storage medium
WO2023230901A1 (zh) 保护间隔配置方法及装置、通信设备及存储介质
WO2023201660A1 (zh) Rsrp门限参数确定方法、装置、通信设备及存储介质
WO2024026696A1 (zh) 波束上报增强方法、装置、通信设备及存储介质
WO2024016233A1 (zh) 初始bwp处理方法、装置、通信设备及存储介质
US20240163052A1 (en) Information processing method and apparatus, communication device, and storage medium
WO2024026682A1 (zh) 波束上报方法及装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20928175

Country of ref document: EP

Kind code of ref document: A1