WO2022083588A1 - 水合物法联合膜法的连续气体分离系统及其扰动装置 - Google Patents

水合物法联合膜法的连续气体分离系统及其扰动装置 Download PDF

Info

Publication number
WO2022083588A1
WO2022083588A1 PCT/CN2021/124722 CN2021124722W WO2022083588A1 WO 2022083588 A1 WO2022083588 A1 WO 2022083588A1 CN 2021124722 W CN2021124722 W CN 2021124722W WO 2022083588 A1 WO2022083588 A1 WO 2022083588A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrate
pipe
separation system
gas separation
continuous gas
Prior art date
Application number
PCT/CN2021/124722
Other languages
English (en)
French (fr)
Inventor
薛倩
李遵照
王晓霖
刘名瑞
赵巍
李世瀚
孙小喆
王唯
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司大连石油化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司大连石油化工研究院 filed Critical 中国石油化工股份有限公司
Priority to EP21882004.1A priority Critical patent/EP4215264A4/en
Priority to US18/249,270 priority patent/US20230415111A1/en
Priority to CA3198942A priority patent/CA3198942A1/en
Publication of WO2022083588A1 publication Critical patent/WO2022083588A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/82Combinations of dissimilar mixers
    • B01F33/821Combinations of dissimilar mixers with consecutive receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/82Combinations of dissimilar mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1487Removing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/10Mixing gases with gases
    • B01F23/19Mixing systems, i.e. flow charts or diagrams; Arrangements, e.g. comprising controlling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/23Mixing by intersecting jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4319Tubular elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4331Mixers with bended, curved, coiled, wounded mixing tubes or comprising elements for bending the flow
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/108Production of gas hydrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/10Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • B01D2256/245Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/2204Mixing chemical components in generals in order to improve chemical treatment or reactions, independently from the specific application
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/10Recycling of a stream within the process or apparatus to reuse elsewhere therein
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/14Injection, e.g. in a reactor or a fuel stream during fuel production
    • C10L2290/146Injection, e.g. in a reactor or a fuel stream during fuel production of water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/24Mixing, stirring of fuel components
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/46Compressors or pumps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/548Membrane- or permeation-treatment for separating fractions, components or impurities during preparation or upgrading of a fuel

Definitions

  • the invention relates to the technical field of gas separation based on a hydrate method, in particular to a continuous gas separation system combined with a hydrate method and a membrane method and a disturbance device thereof.
  • Natural gas hydrate is abundantly stored on earth and is an important potential energy source in the world. Under the background of energy crisis, its investigation and research has become a global hotspot. Gas hydrates are ice-like crystalline compounds composed of water and natural gas at high pressure and low temperature. With the deepening of the research on the basic physical properties, microstructure, thermodynamics and dynamics of hydrates, people have successively discovered abundant natural gas hydrates in permafrost and deep oceans, which have attracted great attention all over the world. In addition to being a potential clean energy source, natural gas hydrate has been found to be a new technology for the benefit of civilization.
  • the basic principle of gas separation by hydration method is that the conditions for generating hydrates from different gases are different.
  • the components that are easy to generate hydrates will be enriched in the hydrate phase, thereby realizing the separation of gases.
  • Hydrate gas separation technology is mainly used in mixed gas containing CO 2 (flue gas N 2 /CO 2 , natural gas CH 4 /CO 2 , coalbed methane CH 4 /CO 2 , synthesis gas H 2 /CO 2 ), hydrocarbons Separation of mixed gas (CH 4 , C 2 H 6 and C 2 H 4 , etc.), hydrogen-containing mixed gas (refinery containing hydrogen, ethylene cracking gas, catalytic cracking dry gas, etc.) and other mixed gas.
  • One of the objectives of the present invention is to provide a continuous gas separation system combined with a hydrate method and a membrane method and a disturbance device thereof, so as to improve the hydrate generation efficiency and gas separation efficiency.
  • Another object of the present invention is to provide a continuous gas separation system combined with a hydrate method and a membrane method and a disturbance device thereof, so as to realize continuous and large-scale gas separation for industrial application.
  • the present invention provides a disturbance device, which comprises: two jet mixers, which are arranged opposite to each other along the horizontal direction; a mixing chamber, which is connected between the two jet mixers and a mixing pipe, which is connected below the mixing chamber, the mixing pipe includes: a plurality of spiral pipes, which are divided into multiple layers and are arranged around the central axis of the mixing pipe, and the diameters of the plurality of spiral pipes extend from the inner layer to the center axis of the mixing pipe.
  • the outer layer is gradually increased, and each spiral tube is provided with multiple groups of blocking components at intervals; and an outer sleeve, which is sleeved outside the outermost spiral tube.
  • the mixing pipe includes a circular tube, which is vertically arranged at the central axis of the mixing pipe, and the plurality of helical tubes are wound around the circular core.
  • the outer sleeve is a straight pipe
  • the central pipe is a straight pipe
  • the mixing conduit is located in the lateral center of the mixing chamber.
  • the adjacent two groups of flow blocking components are separated by 1/4 of the spiral.
  • each group of choke components includes an even number of choke columns, the axial direction of each choke column is arranged along the radial direction of the cross section of the spiral tube, and the even number of choke columns are symmetrically distributed on the cross section of the spiral tube. superior.
  • the cross-sectional shape of the blocking column is circular, triangular, T-shaped or trapezoidal.
  • the length of the blocking column is 1/4-1/3 of the pipe diameter of the corresponding helical pipe.
  • the width of the blocking column is 0.1 to 0.3 times the diameter of the corresponding spiral tube.
  • the diameter of the outermost spiral tube is the same as the diameter of the central tube.
  • the present invention provides a continuous gas separation system of a hydrate method combined with a membrane method, comprising: a hydrate generation loop, the inlet of which is provided with the disturbance device according to any one of the above technical solutions, A separator is arranged on the hydrate generation loop, the first inlet of the separator is connected with the air inlet unit, the second inlet is connected with the outlet of the hydrate generation loop, and the first outlet and the second outlet are connected with the jet mixer a three-phase separator, the inlet of which is connected with the third outlet of the separator; a hydrate decomposition module, which is connected with the hydrate outlet of the three-phase separator.
  • the continuous gas separation system of the hydrate method combined with the membrane method further includes a membrane separation unit, which is connected with the mixed gas outlet of the three-phase separator, and the membrane separation unit is provided with a product gas outlet.
  • the continuous gas separation system of the hydrate method combined with the membrane method further includes: a recovery unit, which is used for recovering the non-product gas of the membrane separation unit and the hydrate decomposition module.
  • the hydrate formation loop is a tubular reaction loop.
  • a heat preservation device is provided outside the hydrate generation loop.
  • the hydrate generation loop is provided with an observation window, and the pressure resistance of the observation window is greater than or equal to 20MPa.
  • a gas circulation pump is provided between the first outlet of the separator and the jet mixer; a magnetic circulation pump is provided between the second outlet of the separator and the jet mixer.
  • the hydrate generation loop is provided with a quantitative injection module, the quantitative injection module injects water and accelerator into the hydrate generation loop, and the quantitative injection module is connected to the liquid outlet of the hydrate decomposition module.
  • the quantitative injection module includes a large-flow advective pump and a plunger pump.
  • the accelerator is tetrahydrofuran and/or tetrabutylammonium bromide.
  • an emergency discharge unit and a back pressure unit are provided between the intake unit and the first inlet of the separator.
  • the air intake unit is a gas cylinder, and when the pressure of the gas cylinder is insufficient, the gas cylinder is connected to the first inlet of the separator through a gas booster pump.
  • the present invention has one or more of the following beneficial effects:
  • the perturbation device of the present invention is mixed by the multi-stage coordination of the jet mixer, the mixing chamber and the mixing pipeline, and the two mixed streams mixed by the jet mixer are impinged in the opposite direction at a high speed, and the collision in the mixing chamber reaches a very high phase-to-phase instantaneously.
  • the relative velocity enhances the interphase transfer.
  • the spiral tubes of different diameters in the mixing pipeline not only enhance the radial mixing, but also generate Dean vortices, and the turbulence in the tube is enhanced.
  • the formation of alternate reverse separation vortices promotes gas-liquid contact mixing, which can increase gas-liquid mass transfer, thereby improving the formation efficiency of hydrates.
  • the strength of the Dean vortex in the helical tube is related to the inner diameter and the helical diameter of the helical tube.
  • the tube diameters of the multiple helical tubes gradually increase from the inner layer to the outer layer, and the spiral diameter also increases from the inner layer to the outer layer. Gradually increase, so the vortex strength of Dean vortex generated by different diameters of the helical tube is equivalent, which increases the efficient mixing of the fluid; the time of the medium flowing through the different diameters of the spiral tube is different, which increases to a certain extent along the axis. to the sub-mix.
  • the continuous gas separation system of the hydrate method combined with the membrane method of the present invention realizes the coupling of the lean gas hydration separation and the rich gas membrane separation, which can make up for the low efficiency of the simple hydrate method for low-concentration gas separation and the need for additional pressure. and other problems, the system of the present invention includes the entire process of generation, separation and dissolution, realizes continuous gas separation, and is easy to scale and industrialize application.
  • FIG. 1 is a schematic diagram of a continuous gas separation system of a hydrate method combined with a membrane method according to an embodiment of the present invention.
  • FIG. 2 is a schematic top view of the structure of a mixing pipe according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a spiral tube according to an embodiment of the present invention.
  • FIG. 4 is a schematic illustration of a cross-section of a helical tube showing a set of flow blocking assemblies on the cross-section, according to an embodiment of the present invention.
  • spatially relative terms such as “below”, “below”, “under”, “above”, “above”, “over”, etc., may be used to describe one element or feature with respect to another Relationship of elements or features in the drawings. It is to be understood that spatially relative terms are intended to encompass different orientations of items in use or operation in addition to the orientation depicted in the figures. For example, if the item in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the elements or features. Thus, the exemplary term “below” can encompass both an orientation of below and above. Items may also have other orientations (rotated 90 degrees or other orientations) and the spatially relative terms used herein should be interpreted accordingly.
  • first, second, etc. are used to distinguish two different elements or parts, and are not used to limit a specific position or relative relationship. In other words, in some embodiments, the terms “first,” “second,” etc. are also interchangeable with each other.
  • the continuous gas separation system of the hydrate method combined with the membrane method according to the specific embodiment of the present invention includes a hydrate generation loop 30 , the inlet of which is provided with a disturbance device 20 , and the hydrate generation loop 30 is provided with There is a separator 31 .
  • the first inlet of the separator 31 is connected with an air intake unit, exemplarily, the air intake unit includes the gas cylinder 10 .
  • the second inlet of the separator 31 is connected to the outlet of the hydrate generating loop 30 , and the first outlet and the second outlet are connected to the disturbance device 20 .
  • the third outlet of the separator 31 is connected to the inlet of the three-phase separator 40, the hydrate outlet of the three-phase separator 40 is connected to the hydrate decomposition module 50, the mixed gas outlet is connected to the membrane separation unit 60, and the membrane separation unit 60 is provided with a product gas outlet 61 .
  • the hydrate decomposition module 50 is used to decompose the produced hydrate slurry, and the membrane separation unit 60 is used to further separate the produced lean gas.
  • the hydrate method combined with the membrane method can realize the coupling of the rich gas hydration separation and the lean gas membrane separation, and make up for the problem of low separation efficiency when using a single method.
  • the disturbance device 20 includes two jet mixers 21, a mixing chamber 22 and a mixing pipe 23, the mixing chamber 22 is connected between the two jet mixers 21, and the mixing pipe 23 is connected below the mixing chamber 22 .
  • the jet mixer 21 is a device for mixing two or more liquids or gases. The mixed two fluids are ejected at a relatively high speed along the horizontal direction by the two jet mixers 21, and the two fluids are in the mixing chamber 22. Opposite impact, reaching a very high relative speed between phases at the moment of impact, strengthening the transfer between phases.
  • the fluid in the mixing chamber 22 enters the mixing pipe 23 .
  • the mixing conduit 23 is in the lateral center of the mixing chamber 22 .
  • the mixing pipe 23 sequentially includes a central pipe 231 , a plurality of helical pipes 232 and an outer sleeve 233 from inside to outside.
  • the central tube 231 is a vertical straight tube, and the plurality of spiral tubes 232 are divided into multi-layer winding and arranged outside the central tube 231.
  • the diameter of the multi-layer spiral tube 232 gradually increases from the inner layer to the outer layer, and the outer sleeve 233 is A straight pipe sleeved outside the outermost spiral pipe 232 .
  • Each spiral tube 232 is provided with a plurality of groups of blocking components at intervals.
  • each group of blocking components may be an even number of blocking columns 2321 , and the axial direction of each blocking column 2321 is along the diameter of the cross section of the spiral tube 232 .
  • the even-numbered blocking columns 2321 of each group of blocking components are symmetrically distributed on the cross section of the spiral tube 232 . In the embodiment shown in FIG.
  • each set of blocking components includes four blocking columns 2321 evenly distributed on the cross section of the spiral tube 232 , and two adjacent blocking columns 2321 are separated by 90°. It should be understood that However, the present invention is not limited to this.
  • the arrangement directions of the blocking columns 2321 are all perpendicular to the flow direction of the main fluid in the spiral tube 232 .
  • two vortices with opposite rotation directions are generated, resulting in secondary flow and the formation of Dean vortices.
  • the velocity field and pressure field in the spiral tube occur. Variation, which is a wake flow that occurs in a direction perpendicular to the main flow.
  • the generation of Dean vortices improves the mass and heat transfer properties of the fluid, enhancing gas-liquid contact and mixing.
  • the Dean number describes the relationship between centrifugal force and viscous force during fluid flow, and can be used to characterize the strength of the Dean vortex.
  • the Dean number is related to the pipe diameter and helical diameter of the helical pipe.
  • the helical pipe adopts the design that the pipe diameter gradually increases from the inside to the outside. quite, promoting efficient mixing of fluids.
  • the helical pipe is provided with symmetrically distributed blocking columns, which separate the two Dean vortices generated in the helical pipe and disrupt the fluid disturbance caused by the Dean vortices.
  • the rear side of the choke column forms alternating reverse vortices, namely the separation vortex, and the separation effect of the choke column makes the fluid fully contact through redistribution, which further strengthens the mixing. Then the fluid forms Dean vortex again due to the influence of the secondary flow of the helical pipe, and then forms a separation vortex through the blocking column, and so on repeatedly through the helical pipe.
  • the gas-liquid mixed medium with different turbulence intensity flows through the mixing pipe at different times, thus increasing the sub-mixing along the axial direction.
  • the cross-sectional shape of the blocking column 2321 is a circle, a triangle, a T-shape or a trapezoid. It should be understood that the present invention is not limited to this, and the shape of the blocking column 2321 can be selected according to actual needs.
  • the length of the blocking column 2321 is 1/4 ⁇ 1/3 of the pipe diameter of the corresponding spiral pipe 232 .
  • the width of the blocking column 2321 is 0.1 ⁇ 0.3 times the diameter of the corresponding spiral tube 232 .
  • the width of the blocking column 2321 refers to the width of the upstream surface. For example, when the blocking column is a cylinder, its width is the diameter of the cylinder, and when the blocking column is a triangular column, its width is the length of the bottom edge of the upstream surface.
  • the diameter of the outermost spiral tube 232 is the same as the diameter of the central tube 231 .
  • the continuous gas separation system of the hydrate method combined with the membrane method further includes a recovery unit 70 , which is used for recovering the membrane separation unit 60 and the hydrate decomposition module 50 .
  • a recovery unit 70 which is used for recovering the membrane separation unit 60 and the hydrate decomposition module 50 .
  • Non-product gas so as not to pollute the environment.
  • the hydrate generation loop 30 may be a tubular reaction loop.
  • the tubular reaction loop is designed to be detachable and can be easily replaced between different pipe diameters.
  • the present invention is not limited to this.
  • a heat preservation device 32 is provided outside the hydrate generating loop 30 to keep the temperature constant.
  • the heat preservation device 32 may be a high and low temperature integrated bath, the working temperature is -20 to 90° C., and has functions such as overheat protection and overload protection.
  • the hydrate generation loop 30 is provided with an observation window (not shown in the figure), and the pressure resistance of the observation window is greater than or equal to 20MPa.
  • the observation window is mainly used to observe the flow in the hydrate formation ring 30 and the formation of hydrate.
  • a gas circulation pump 311 is provided between the first outlet of the separator 31 and the jet mixer 21 ; the second outlet of the separator 31 is connected to the jet mixer 21 ; There is a magnetic circulation pump 312 therebetween.
  • the hydrate generation loop 30 is provided with a quantitative injection module, and the quantitative injection module injects the accelerator 333 into the hydrate generation loop 30 through the plunger pump 334. , inject water 331 into the hydrate generation loop 30 through the large-flow advection pump 332, and the quantitative injection module can be connected to the liquid outlet of the hydrate decomposition module 50 to realize the recycling of water in the system.
  • the accelerator 333 may be tetrahydrofuran and/or tetrabutylammonium bromide, but the present invention is not limited thereto.
  • an emergency discharge unit 12 and a back pressure unit 13 are provided between the gas cylinder 10 of the air intake unit and the first inlet of the separator 31 .
  • the gas cylinder 10 when the pressure of the gas cylinder 10 is insufficient, the gas cylinder 10 is connected to the first inlet of the separator 31 through the gas booster pump 11.
  • the A/B mixed gas in the gas cylinder 10 enters through the first inlet of the separator 31, and the A/B mixed gas in the separator 31 is pumped into the two jet mixers 21 through the gas circulation pump 311 through its first outlet, and the separation
  • the circulating liquid in the mixer 31 is pumped into the two jet mixers 21 through the magnetic circulation pump 312 through its second outlet.
  • the fluids mixed by the jet mixer 21 are sprayed out and collided with each other in the mixing chamber 22 .
  • the impinging mixed fluid enters the mixing pipe 23 for mixing.
  • the fluid mixed by the perturbation device 20 enters the hydrate generation loop 30 to generate hydrate, and the quantitative injection module quantitatively replenishes water 331 and accelerator 333 to the hydrate generation loop to ensure continuous circulation of the system.
  • the A hydrate generated in the hydrate generation loop 30 enters the three-phase separator 40 through the third outlet of the separator 31 together with a part of the unreacted A/B mixed gas.
  • the A/B mixed gas enters the membrane separation unit 60 through the mixed gas outlet of the three-phase separator 31, and the A hydrate and its slurry pass through the three-phase separator 31.
  • the hydrate outlet of the separator 31 enters the hydrate decomposition module 50 .
  • A/B mixed gas containing low concentration A gas enters the membrane separation unit 60 for separation, the A gas enters the recovery unit 70 for recovery, and the B gas is discharged and collected through the product gas outlet 61 of the membrane separation unit 60 .
  • a hydrate and its slurry are decomposed into A gas and water or accelerator solution in the hydrate decomposition module 50, A gas enters the recovery unit 70 for recovery, and water or accelerator solution enters the quantitative injection module for recycling.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种扰动装置,其包括:两个喷射混合器,其沿水平方向相对设置;混合腔,其连接在两个喷射混合器之间;以及混合管道,其连接在混合腔的下方,混合管道包括:圆心管,其为竖直设置的直管;多个螺旋管,其分为多层缠绕设置在圆心管外,多个螺旋管的管径从内层向外层逐渐增大,每一个螺旋管内间隔设置多组阻流组件;以及外套管,其为直管,外套管套设在最外层的螺旋管外。本发明还公开了一种水合物法联合膜法的连续气体分离系统。本发明的水合物法联合膜法的连续气体分离系统及其扰动装置通过多级配合扰动混合,提高水合物的生成效率,并采用贫气水合分离和富气膜分离的耦合,实现了连续气体分离,易于规模化、工业化应用。

Description

水合物法联合膜法的连续气体分离系统及其扰动装置
相关申请的交叉引用
本申请要求2020年10月20日提交的中国专利申请202011121986.X的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明涉及基于水合物法的气体分离技术领域,特别涉及一种水合物法联合膜法的连续气体分离系统及其扰动装置。
背景技术
天然气水合物在地球上储存丰富,是世界上重要的潜在能源,在能源危机的时代背景下,其调查与研究已经成为全球的热点。天然气水合物是在高压低温下由水和天然气组成的类冰状的结晶化合物。随着对水合物基本物性、微观结构、热力学和动力学等特性研究的不断深入,人们陆续在冻土带和海洋深处发现了储量丰富的天然气水合物,在全世界引起了高度的重视。天然气水合物除了可以作为潜在的清洁能源以外,人们发现水合物利用技术,还能够成为造福人类的一项新技术。
水合法气体分离的基本原理是不同气体生成水合物的条件不同,当气体混合物生成水合物时,容易生成水合物的组分会在水合物相富集,从而实现了气体的分离。水合物法气体分离技术主要应用在含有 CO 2的混合气(烟气N 2/CO 2、天然气CH 4/CO 2、煤层气CH 4/CO 2、合成气H 2/CO 2),烃类混合气(CH 4、C 2H 6和C 2H 4等),含氢混合气体(炼厂含氢气、乙烯裂解气、催化裂化干气等)以及其他混合气的分离。但是基于水合物的气体分离方法也有其自身的问题。首先,目前大多数研究都是基于实验室规模的小型设备进行的,并且上述研究都是使用间歇式或半间歇式分离方法进行的。在间歇式操作中,连续生产纯化气体需要两套或更多套反应器,不能同时从形成水合物的反应器中取出气相,气体分离不能连续进行操作,并且形成水合物的水溶液没有循环再次使用。其次,水合物的形成随着分离目标气体浓度的减少,分离条件变得更为苛刻。另外,由于气体水合物的形成是气-液-固相平衡的过程,因此在水合物形成完成之后,气相中仍残留一定百分比的分离目标气体。简言之,单一的基于水合物的气体分离技术无法完全从混合气体中捕获目标气体。因此为了将基于水合物的气体分离技术应用于工业,有必要开发连续气体分离工艺,规模化的反应设备,以及水合物法与其他分离方法耦合的新的分离方法。
此外,对于水合物法分离气体的装置,气液混合的效果直接影响了水合物的生成效率及分离效果,因此亟需一种能够增强气液传质,促进水合物高效生成的设计。
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
发明内容
本发明的目的之一在于,提供一种水合物法联合膜法的连续气体分离系统及其扰动装置,从而提高水合物的生成效率和气体分离效率。
本发明的另一目的在于,提供一种水合物法联合膜法的连续气体分离系统及其扰动装置,从而实现连续化、规模化的气体分离,以供工业应用。
为实现上述目的,根据本发明的第一方面,本发明提供了一种扰动装置,其包括:两个喷射混合器,其沿水平方向相对设置;混合腔,其连接在两个喷射混合器之间;以及混合管道,其连接在混合腔的下方,混合管道包括:多个螺旋管,其分为多层并缠绕所述混合管道的中心轴线设置,多个螺旋管的管径从内层向外层逐渐增大,每一个螺旋管内间隔设置多组阻流组件;以及外套管,外套管套设在最外层的螺旋管外。
可选择的,所述混合管道包括圆心管,其竖直设置在所述混合管道的中心轴线处,所述多个螺旋管缠绕所述圆心管设置。
可选择的,所述外套管为直管,所述圆心管为直管。
可选择的,混合管道处于混合腔的横向中心位置。
可选择的,相邻的两组阻流组件之间相隔1/4螺旋。
可选择的,每一组阻流组件包括偶数个阻流柱,每一个阻流柱的轴向沿螺旋管的横截面的径向设置,偶数个阻流柱对称地分布在螺旋管的横截面上。
可选择的,阻流柱的截面形状为圆形、三角形、T字型或梯形。
可选择的,阻流柱的长度为相应的螺旋管的管径的1/4~1/3。
可选择的,阻流柱的宽度为相应的螺旋管的管径的0.1~0.3倍。
可选择的,最外层的螺旋管的管径与圆心管的直径相同。
根据本发明的第二方面,本发明提供了一种水合物法联合膜法的连续气体分离系统,其包括:水合物生成环道,其入口设有如上述技术方案中任意一项的扰动装置,水合物生成环道上设有分离器,分离器的第一入口与进气单元相连接,第二入口与水合物生成环道的出口相连接,第一出口和第二出口与喷射混合器相连接;三相分离器,其入口与分离器的第三出口相连接;水合物分解模块,其与三相分离器的水合物出口相连接。
可选择的;水合物法联合膜法的连续气体分离系统还包括膜分离单元,其与三相分离器的混合气出口相连接,膜分离单元设有产品气出口。
可选择的,水合物法联合膜法的连续气体分离系统还包括:回收单元,其用于回收膜分离单元和水合物分解模块的非产品气体。
可选择的,水合物生成环道为管式反应环道。
可选择的,水合物生成环道外部设有保温装置。
可选择的,水合物生成环道设有观察视窗,观察视窗耐压大于或等于20MPa。
可选择的,分离器的第一出口与喷射混合器之间设有气体循环泵;分离器的第二出口与喷射混合器之间设有磁力循环泵。
可选择的,水合物生成环道设有定量注剂模块,定量注剂模块向 水合物生成环道注入水和促进剂,定量注剂模块与水合物分解模块的液体出口相连接。
可选择的,定量注剂模块包括大流量平流泵和柱塞泵。
可选择的,促进剂为四氢呋喃和/或四丁基溴化铵。
可选择的,进气单元与分离器的第一入口之间设有应急排放单元和背压单元。
可选择的,进气单元为气瓶,当气瓶的压力不足时,气瓶通过气体增压泵与分离器的第一入口相连接。
与现有技术相比,本发明具有如下一个或多个有益效果:
1.本发明的扰动装置通过喷射混合器、混合腔和混合管道的多级配合混合,经喷射混合器混合后的两股混合流高速相向流动撞击,在混合腔中撞击瞬间达到极高的相间相对速度,强化相间传递,混合管道中不同管径的螺旋管不仅增强了径向混合,而且产生了迪恩涡,管内湍动得以增强,螺旋管内设置阻流组件,将迪恩涡分离,并形成交替的反向分离涡,促进气液接触混合,能够增加气液传质,进而提高水合物的生成效率。
2.螺旋管中的迪恩涡的强度与螺旋管的内径和螺旋直径相关,本发明中多个螺旋管的管径从内层向外层逐渐增大,螺旋直径从内层向外层也是逐渐增大的,因此不同管径的螺旋管产生的迪恩涡的旋涡强度相当,增加了流体的高效混合;介质流经不同管径的螺旋管的时间不同,在一定程度上增加了沿轴向的子混合。
3.本发明的水合物法联合膜法的连续气体分离系统,实现了贫 气水合分离和富气膜分离的耦合,能够弥补单纯水合物法对低浓度气体分离效率不高、需要额外加压等问题,本发明的系统包括生成、分离和化解整个过程,实现了连续气体分离,易于规模化、工业化应用。
4.通过水合物生成环道,提高气液接触停留时间,气液界面更新速度快,有利于水合物的连续高效快速生成。
上述说明仅为本发明技术方案的概述,为了能够更清楚地了解本发明的技术手段并可依据说明书的内容予以实施,同时为了使本发明的上述和其他目的、技术特征以及优点更加易懂,以下列举一个或多个优选实施例,并配合附图详细说明如下。
附图说明
图1是根据本发明的实施方式的水合物法联合膜法的连续气体分离系统的示意图。
图2是根据本发明的实施方式的混合管道的俯视结构示意图。
图3是根据本发明的实施方式的螺旋管的结构示意图。
图4是根据本发明的实施方式的螺旋管的横截面的示意图,其中示出该截面上的一组阻流组件。
主要附图标记说明:
10-气瓶,11-气体增压泵,12-应急排放单元,13-背压单元,20-扰动装置,21-喷射混合器,22-混合腔,23-混合管道,231-圆心管,232-螺旋管,2321-阻流柱,233-外套管,30-水合物生成环道,31-分离器,311-气体循环泵,312-磁力循环泵,32-保温装置,331-水,332- 大流量平流泵,333-促进剂,334-柱塞泵,40-三相分离器,50-水合物分解模块,60-膜分离单元,61-产品气出口,70-回收单元。
具体实施方式
下面结合附图,对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。
除非另有其他明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其他元件或其他组成部分。
在本文中,为了描述的方便,可以使用空间相对术语,诸如“下面”、“下方”、“下”、“上面”、“上方”、“上”等,来描述一个元件或特征与另一元件或特征在附图中的关系。应理解的是,空间相对术语旨在包含除了在图中所绘的方向之外物件在使用或操作中的不同方向。例如,如果在图中的物件被翻转,则被描述为在其他元件或特征“下方”或“下”的元件将取向在元件或特征的“上方”。因此,示范性术语“下方”可以包含下方和上方两个方向。物件也可以有其他取向(旋转90度或其他取向)且应对本文使用的空间相对术语作出相应的解释。
在本文中,术语“第一”、“第二”等是用以区别两个不同的元件或部位,并不是用以限定特定的位置或相对关系。换言之,在一些实施例中,术语“第一”、“第二”等也可以彼此互换。
如图1所示,根据本发明具体实施方式的水合物法联合膜法的连 续气体分离系统,其包括水合物生成环道30,其入口设有扰动装置20,水合物生成环道30上设有分离器31。分离器31的第一入口与进气单元相连接,示例性地,进气单元包括气瓶10。分离器31的第二入口与水合物生成环道30的出口相连接,第一出口和第二出口与扰动装置20相连接。分离器31的第三出口与三相分离器40的入口相连接,三相分离器40的水合物出口与水合物分解模块50相连接,混合气出口与膜分离单元60相连接,膜分离单元60设有产品气出口61。水合物分解模块50用于将产生的水合物浆液进行化解,膜分离单元60用于将产生的贫气进行进一步分离。水合物法联合膜法能够实现富气水合分离和贫气膜分离的耦合,弥补采用单一方法时分离效率不高的问题。
结合图2~4所示,根据本发明具体实施方式的扰动装置20包括两个喷射混合器21、混合腔22和混合管道23,混合腔22连接在两个喷射混合器21之间,混合管道23连接在混合腔22的下方。喷射混合器21为将两种或两种以上的液体或气体加以混合的装置,经混合后的两股流体由两个喷射混合器21沿水平方向相对高速喷出,两股流体在混合腔22相向撞击,在撞击瞬间达到极高的相间相对速度,强化相间传递。混合腔22内的流体进入混合管道23。示例性地,混合管道23处于混合腔22的横向中心位置。在本发明的一个或多个实施方式中,混合管道23由内至外依次包括圆心管231、多个螺旋管232和外套管233。圆心管231为竖直设置的直管,多个螺旋管232分为多层缠绕设置在圆心管231外,多层螺旋管232的管径从内层向 外层逐渐增大,外套管233为套设在最外层的螺旋管232外的直管。每一个螺旋管232内间隔设置多组阻流组件。
进一步地,在本发明的一个或多个示例性实施方式中,相邻的两组阻流组件之间相隔1/4螺旋,即螺旋管232每旋转90°的位置上设置一组阻流组件。进一步地,在本发明的一个或多个示例性实施方式中,每一组阻流组件可以为偶数个阻流柱2321,每一个阻流柱2321的轴向沿螺旋管232的横截面的径向设置,每一组阻流组件的偶数个阻流柱2321对称地分布在螺旋管232的横截面上。在图4所示的实施方式中,每一组阻流组件包括四个均匀分布在螺旋管232的横截面上的阻流柱2321,相邻的两个阻流柱2321相隔90°,应了解的是,本发明并不以此为限。阻流柱2321的设置方向均垂直于螺旋管232中主流体的流动方向。当流体流经螺旋管时,由于流体垂直于流动方向的压力梯度不平衡及离心力的作用产生两个旋转方向相反的旋涡,产生二次流,形成迪恩涡,螺旋管内速度场、压力场发生变化,其为发生在垂直于主流方向中的一种伴流流动。迪恩涡的产生提高了流体的传质和传热性能,增强气液接触和混合。迪恩数是描述流体流动过程中离心力和黏性力的关系的,可以用来表征迪恩涡的强度。迪恩数与螺旋管的管径和螺旋直径相关,螺旋管采用管径由内至外逐渐变大的设计,螺旋直径同样由内到外逐渐变大,从而使得多层螺旋管产生的旋涡强度相当,促进了流体的高效混合。螺旋管中设有对称分布的阻流柱,将螺旋管道中产生的两个迪恩涡进行分离,打乱迪恩涡对流体的扰动。阻流柱后侧形成交替的反向旋涡,即分离涡,阻流柱的分 离作用通过再分配使流体实现充分接触,进一步强化混合。随后流体再次由于螺旋管二次流的影响形成迪恩涡,然后经阻流柱形成分离涡,如此反复通过螺旋管。不同湍流强度的气液混合介质流经混合管道的时间不同,从而增加了沿轴向的子混合。
进一步地,在本发明的一个或多个示例性实施方式中,阻流柱2321的截面形状为圆形、三角形、T字型或梯形。应了解的是,本发明并不以此为限,阻流柱2321的形状可以根据实际需要进行选择。
进一步地,在本发明的一个或多个示例性实施方式中,阻流柱2321的长度为相应的螺旋管232的管径的1/4~1/3。进一步地,在本发明的一个或多个示例性实施方式中,阻流柱2321的宽度为相应的螺旋管232的直径的0.1~0.3倍。阻流柱2321的宽度是指迎流面的宽度,例如,当阻流柱为圆柱时,其宽度为圆柱的直径,当阻流柱为三角柱时,其宽度为迎流面的底边长度。
进一步地,在本发明的一个或多个示例性实施方式中,最外层的螺旋管232的管径与圆心管231的直径相同。
如图1所示,在本发明的一个或多个实施方式中,水合物法联合膜法的连续气体分离系统还包括回收单元70,其用于回收膜分离单元60和水合物分解模块50的非产品气体,以免污染环境。
进一步地,在本发明的一个或多个示例性实施方式中,水合物生成环道30可以为管式反应环道。优选而非限制性地,管式反应环道设置为可拆换设计,可以在不同管径之间方便更换,管道承压为15MPa,工作温度为-20~90℃,管式反应环道可以由316不锈钢制成,本发明 并不以此为限。进一步地,在本发明的一个或多个示例性实施方式中,水合物生成环道30外部设有保温装置32,以保持温度恒定。示例性地,保温装置32可以为高低温一体化浴槽,工作温度为-20~90℃,并且具有过热保护、过载保护等功能。进一步地,在本发明的一个或多个示例性实施方式中,水合物生成环道30设有观察视窗(图中未示出),观察视窗耐压大于或等于20MPa。观察视窗主要用于观察水合物生成环道30中的流动情况和水合物的形成情况。
进一步地,在本发明的一个或多个示例性实施方式中,分离器31的第一出口与喷射混合器21之间设有气体循环泵311;分离器31的第二出口与喷射混合器21之间设有磁力循环泵312。
进一步地,在本发明的一个或多个示例性实施方式中,水合物生成环道30设有定量注剂模块,定量注剂模块通过柱塞泵334向水合物生成环道30注入促进剂333,通过大流量平流泵332向水合物生成环道30注入水331,定量注剂模块可以与水合物分解模块50的液体出口相连接,实现系统中水的循环利用。应了解的是,本发明并不以此为限,具体采用的泵的类型可以根据实际需要选择。进一步地,在本发明的一个或多个示例性实施方式中,促进剂333可以为四氢呋喃和/或四丁基溴化铵,本发明并不以此为限。
进一步地,在本发明的一个或多个示例性实施方式中,进气单元的气瓶10与分离器31的第一入口之间设有应急排放单元12和背压单元13。
进一步地,在本发明的一个或多个示例性实施方式中,当气瓶 10的压力不足时,气瓶10通过气体增压泵11与分离器31的第一入口相连接。
实施例1
本实施例的水合物法联合膜法的连续气体分离系统如图1~4所示,其工作流程如下:
气瓶10中的A/B混合气体通过分离器31的第一入口进入,分离器31中的A/B混合气体通过其第一出口经气体循环泵311泵入两个喷射混合器21,分离器31中的循环液体通过其第二出口经磁力循环泵312泵入两个喷射混合器21。经喷射混合器21混合后的流体喷出,在混合腔22中相向撞击混合。撞击混合后的流体进入混合管道23进行混合。经扰动装置20混合后的流体进入水合物生成环道30进行水合物的生成,定量注剂模块向水合物生成环道定量补充水331和促进剂333,以确保系统的连续循环。水合物生成环道30中生成的A水合物与一部分未反应的A/B混合气体一起经分离器31的第三出口进入三相分离器40。A水合物和A/B混合气体在三相分离器31中进行分离后,A/B混合气体经三相分离器31的混合气出口进入膜分离单元60,A水合物及其浆液经三相分离器31的水合物出口进入水合物分解模块50。含有低浓度A气体的A/B混合气体进入膜分离单元60进行分离后,A气体进入回收单元70进行回收,B气体经膜分离单元60的产品气出口61排出收集。A水合物及其浆液在水合物分解模块50中分解为A气体和水或者促进剂溶液,A气体进入回收单元70进行回收,水或者促进剂溶液进入定量注剂模块进行循环利用。
前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。针对上述示例性实施方案所做的任何简单修改、等同变化与修饰,都应落入本发明的保护范围。

Claims (22)

  1. 一种扰动装置,其特征在于,包括:
    两个喷射混合器,其沿水平方向相对设置;
    混合腔,其连接在所述两个喷射混合器之间;以及
    混合管道,其连接在所述混合腔的下方,所述混合管道包括:
    多个螺旋管,其分为多层并缠绕所述混合管道的中心轴线设置,所述多个螺旋管的管径从内层向外层逐渐增大,每一个所述螺旋管内间隔设置多组阻流组件;以及
    外套管,所述外套管套设在最外层的所述螺旋管外。
  2. 根据权利要求1所述的扰动装置,其特征在于,所述混合管道包括圆心管,其竖直设置在所述混合管道的中心轴线处,所述多个螺旋管缠绕所述圆心管设置。
  3. 根据权利要求2所述的扰动装置,其特征在于,所述外套管为直管,所述圆心管为直管。
  4. 根据权利要求1所述的扰动装置,其特征在于,所述混合管道处于所述混合腔的横向中心位置。
  5. 根据权利要求1所述的扰动装置,其特征在于,相邻的两组所述阻流组件之间相隔1/4螺旋。
  6. 根据权利要求1所述的扰动装置,其特征在于,每一组所述阻流组件包括偶数个阻流柱,每一个所述阻流柱的轴向沿所述螺旋管的横截面的径向设置,所述偶数个阻流柱对称地分布在所述螺旋管的横截面上。
  7. 根据权利要求1所述的扰动装置,其特征在于,所述阻流柱的截面形状为圆形、三角形、T字型或梯形。
  8. 根据权利要求1所述的扰动装置,其特征在于,所述阻流柱的长度为相应的所述螺旋管的管径的1/4~1/3。
  9. 根据权利要求1所述的扰动装置,其特征在于,所述阻流柱的宽度为相应的所述螺旋管的管径的0.1~0.3倍。
  10. 根据权利要求1所述的扰动装置,其特征在于,所述最外层的所述螺旋管的管径与所述圆心管的直径相同。
  11. 一种水合物法联合膜法的连续气体分离系统,其特征在于,包括:
    水合物生成环道,其入口设有如权利要求1~10中任意一项所述的扰动装置,所述水合物生成环道上设有分离器,所述分离器的第一入口与进气单元相连接,第二入口与所述水合物生成环道的出口相连接,第一出口和第二出口与所述喷射混合器相连接;
    三相分离器,其入口与所述分离器的第三出口相连接;
    水合物分解模块,其与所述三相分离器的水合物出口相连接。
  12. 根据权利要求11所述的水合物法联合膜法的连续气体分离系统,其特征在于,还包括膜分离单元,其与所述三相分离器的混合气出口相连接,所述膜分离单元设有产品气出口。
  13. 根据权利要求12所述的水合物法联合膜法的连续气体分离系统,其特征在于,还包括:
    回收单元,其用于回收所述膜分离单元和所述水合物分解模块的 非产品气体。
  14. 根据权利要求11所述的水合物法联合膜法的连续气体分离系统,其特征在于,所述水合物生成环道为管式反应环道。
  15. 根据权利要求11所述的水合物法联合膜法的连续气体分离系统,其特征在于,所述水合物生成环道外部设有保温装置。
  16. 根据权利要求11所述的水合物法联合膜法的连续气体分离系统,其特征在于,所述水合物生成环道设有观察视窗,所述观察视窗耐压大于或等于20MPa。
  17. 根据权利要求11所述的水合物法联合膜法的连续气体分离系统,其特征在于,所述分离器的第一出口与所述喷射混合器之间设有气体循环泵;所述分离器的第二出口与所述喷射混合器之间设有磁力循环泵。
  18. 根据权利要求11所述的水合物法联合膜法的连续气体分离系统,其特征在于,所述水合物生成环道设有定量注剂模块,所述定量注剂模块向所述水合物生成环道注入水和促进剂,所述定量注剂模块与所述水合物分解模块的液体出口相连接。
  19. 根据权利要求17所述的水合物法联合膜法的连续气体分离系统,其特征在于,所述定量注剂模块包括大流量平流泵和柱塞泵。
  20. 根据权利要求17所述的水合物法联合膜法的连续气体分离系统,其特征在于,所述促进剂为四氢呋喃和/或四丁基溴化铵。
  21. 根据权利要求11所述的水合物法联合膜法的连续气体分离系统,其特征在于,所述进气单元与所述分离器的第一入口之间设有 应急排放单元和背压单元。
  22. 根据权利要求11所述的水合物法联合膜法的连续气体分离系统,其特征在于,所述进气单元为气瓶,当所述气瓶的压力不足时,所述气瓶通过气体增压泵与所述分离器的第一入口相连接。
PCT/CN2021/124722 2020-10-20 2021-10-19 水合物法联合膜法的连续气体分离系统及其扰动装置 WO2022083588A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21882004.1A EP4215264A4 (en) 2020-10-20 2021-10-19 CONTINUOUS GAS SEPARATION SYSTEM WITH A COMBINATION OF A HYDRATE-BASED PROCESS AND A REVERSE OSMOSIS PROCESS AND A DISTURBANCE DEVICE
US18/249,270 US20230415111A1 (en) 2020-10-20 2021-10-19 Continuous Gas Separation System Combining Hydrate-based Process and Reverse Osmosis Process and Disturbance Device
CA3198942A CA3198942A1 (en) 2020-10-20 2021-10-19 Continuous gas separation system combining hydrate-based process and reverse osmosis process and disturbance device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011121986.XA CN114432945B (zh) 2020-10-20 2020-10-20 水合物法联合膜法的连续气体分离系统及其扰动装置
CN202011121986.X 2020-10-20

Publications (1)

Publication Number Publication Date
WO2022083588A1 true WO2022083588A1 (zh) 2022-04-28

Family

ID=81289682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124722 WO2022083588A1 (zh) 2020-10-20 2021-10-19 水合物法联合膜法的连续气体分离系统及其扰动装置

Country Status (6)

Country Link
US (1) US20230415111A1 (zh)
EP (1) EP4215264A4 (zh)
CN (1) CN114432945B (zh)
CA (1) CA3198942A1 (zh)
TW (1) TW202222411A (zh)
WO (1) WO2022083588A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115492566A (zh) * 2022-10-24 2022-12-20 宜宾学院 一种串并结合实现多级水合物原位分离除砂装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103537211A (zh) * 2013-10-10 2014-01-29 彭伟明 双涡旋体涡旋乳化的方法和装置
CN105688630A (zh) * 2016-01-19 2016-06-22 辽宁石油化工大学 一种水合物与过滤膜结合分离烟气中二氧化碳的方法
CN106523830A (zh) * 2016-10-24 2017-03-22 扬州市勘测设计研究院有限公司 一种带导流筋板90°弯管
CN109603601A (zh) * 2019-01-14 2019-04-12 青岛科技大学 一种入口管径尺寸可调撞击流混合器
CN110227331A (zh) * 2019-06-13 2019-09-13 中国石油大学(北京) 一种水合物-膜法耦合分离混合气体的方法和装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6730214B2 (en) * 2001-10-26 2004-05-04 Angelo L. Mazzei System and apparatus for accelerating mass transfer of a gas into a liquid
CN101513600B (zh) * 2009-03-23 2012-01-18 江苏工业学院 一种气体水合物生产方法及装置
CN103623766B (zh) * 2013-12-10 2015-03-11 中国科学院广州能源研究所 一种快速形成气体水合物的喷雾装置
CN205886828U (zh) * 2016-05-31 2017-01-18 兰州兰石集团有限公司 螺旋挡板式冷氢箱
CN106474904B (zh) * 2016-11-25 2019-03-08 中国科学院广州能源研究所 一种水合物法联合化学吸收法的co2气体分离装置及方法
CN106669582B (zh) * 2017-01-18 2019-12-03 沈阳化工大学 一种多组分层对称挡板式撞击流混合反应器
CN110469769B (zh) * 2018-05-12 2021-04-06 中国石油化工股份有限公司 一种利用lng冷能与压力能的天然气水合物生成系统
CN110016374B (zh) * 2019-04-25 2021-05-11 西南石油大学 在井口用水合物法直接分离天然气中h2s的方法及设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103537211A (zh) * 2013-10-10 2014-01-29 彭伟明 双涡旋体涡旋乳化的方法和装置
CN105688630A (zh) * 2016-01-19 2016-06-22 辽宁石油化工大学 一种水合物与过滤膜结合分离烟气中二氧化碳的方法
CN106523830A (zh) * 2016-10-24 2017-03-22 扬州市勘测设计研究院有限公司 一种带导流筋板90°弯管
CN109603601A (zh) * 2019-01-14 2019-04-12 青岛科技大学 一种入口管径尺寸可调撞击流混合器
CN110227331A (zh) * 2019-06-13 2019-09-13 中国石油大学(北京) 一种水合物-膜法耦合分离混合气体的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4215264A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115492566A (zh) * 2022-10-24 2022-12-20 宜宾学院 一种串并结合实现多级水合物原位分离除砂装置
CN115492566B (zh) * 2022-10-24 2023-11-14 宜宾学院 一种串并结合实现多级水合物原位分离除砂装置

Also Published As

Publication number Publication date
CA3198942A1 (en) 2022-04-28
CN114432945A (zh) 2022-05-06
US20230415111A1 (en) 2023-12-28
TW202222411A (zh) 2022-06-16
CN114432945B (zh) 2023-01-10
EP4215264A4 (en) 2024-03-27
EP4215264A1 (en) 2023-07-26

Similar Documents

Publication Publication Date Title
CN105080436B (zh) 一种超声波耦合超重力旋转填充床及其应用
KR101072978B1 (ko) 배관
RU2760675C1 (ru) Улучшенные реакционная система с встроенным средством для создания межфазных микроповерхностей и способ для получения терефталевой кислоты с использованием параксилола
WO2022083588A1 (zh) 水合物法联合膜法的连续气体分离系统及其扰动装置
CA2831393A1 (en) Reactor and alkylation process using the reactor
CN201692802U (zh) 用于连续生产六氟环氧丙烷的设备
Song et al. Hydrodynamic cavitation as an efficient water treatment method for various sewage:-A review
CN102345791B (zh) 一种管道内气液两相螺旋流发生装置
WO2015009208A1 (ru) Способ и установка для получения битума
CN206064376U (zh) 一种节能式气动反应装置
Chang et al. Gas–liquid swirling-sparger configured along a toroidal distributor for the intensification of gas–liquid contacting
Wang et al. The enhancement of ozone–liquid mass transfer performance in a PTFE hollow fiber membrane contactor using ultrasound as a catalyzer
CN114437842B (zh) 水合物法联合膜法的气体连续分离系统及其扰动装置
CN116478743A (zh) 一种多级水合物-膜法耦合的连续气体分离系统
CN104226217B (zh) 一种超重力微管道反应器
CN106477670B (zh) 一种含油乳化污水破乳装置
CN116948713A (zh) 多级水合物-膜法耦合的连续气体分离系统
CN105948376A (zh) 一种污水深度处理装置
Ding et al. Structure design and industrial experiment of compact flotation unit for refinery wastewater treatment
Zhang et al. Preparation of p-hydroxybenzaldehyde by hydrolysis of diazonium salts using rotating packed bed
US3254048A (en) Process for separating at least two immiscible liquids by causing interpenetration and intermixing of liquids of different densities
RU2473667C1 (ru) Способ обессоливания газоконденсатов
CN110066015A (zh) 一种肠道式厌氧生物反应器
Abiev Process intensification in chemical engineering: Pulsations, vortices and flows in microchannels
Song et al. corrected Proof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18249270

Country of ref document: US

ENP Entry into the national phase

Ref document number: 3198942

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021882004

Country of ref document: EP

Effective date: 20230420

NENP Non-entry into the national phase

Ref country code: DE