WO2022083414A1 - 一种纳米TiN导电橡胶复合材料以及一种传感器及其制备方法 - Google Patents

一种纳米TiN导电橡胶复合材料以及一种传感器及其制备方法 Download PDF

Info

Publication number
WO2022083414A1
WO2022083414A1 PCT/CN2021/120842 CN2021120842W WO2022083414A1 WO 2022083414 A1 WO2022083414 A1 WO 2022083414A1 CN 2021120842 W CN2021120842 W CN 2021120842W WO 2022083414 A1 WO2022083414 A1 WO 2022083414A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive rubber
nano
tin
rubber
composite material
Prior art date
Application number
PCT/CN2021/120842
Other languages
English (en)
French (fr)
Inventor
盖卫明
吕双坤
姜瑞娟
支春义
聂新民
Original Assignee
深圳市市政设计研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市市政设计研究院有限公司 filed Critical 深圳市市政设计研究院有限公司
Publication of WO2022083414A1 publication Critical patent/WO2022083414A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/06Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of piezo-resistive devices
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the invention relates to the technical field of pressure measurement, in particular to a nano-TiN conductive rubber composite material, a sensor and a preparation method thereof.
  • Nano-conductive rubber is a composite material with conductive properties obtained by incorporating nano-scale conductive fillers into an insulating matrix. It has good piezoresistive properties, durability and flexibility, and has a wide range of applications in the field of pressure sensing.
  • the conductive fillers used in the existing nano-conductive rubber pressure sensors are generally conductive carbon black and metal powders (copper powder, zinc powder, silver powder), etc.
  • the fillers have a large filling amount and poor stability.
  • Some new conductive fillers such as graphene, carbon nanotubes and other materials have complex preparation methods and are expensive.
  • the pressure test range of traditional nano-conductive rubber sensors is mostly between 0 and 2MPa, and the test range is narrow.
  • the internal stress of the sensor cannot be effectively offset, resulting in stress concentration. It is easy to cause damage to the structure of the sensor, which greatly affects the stability and life of the sensor.
  • the above problems seriously limit the application of nano-conductive rubber sensors in construction engineering, bridge engineering, Internet of Things, smart wear, medical and health, etc.
  • the present invention provides a nano-TiN conductive rubber composite material, a sensor and a preparation method thereof; the present invention innovatively applies nano-TiN as a conductive filler to the nano-conductive rubber composite material and uses the composite material to prepare
  • the conductive rubber sensor reduces the internal stress through the design of the sensor structure, and provides a conductive rubber sensor with a wide measurement range, high sensitivity, good stability and long service life.
  • the invention provides the application of nanometer TiN as conductive filler in nanometer conductive rubber composite material.
  • a nano-TiN conductive rubber composite material comprises the following components: a rubber matrix material, nano-TiN and a vulcanizing agent; the mass fraction of nano-TiN in the nano-TiN conductive rubber composite material is 3.0-15.0%.
  • the rubber matrix material is natural rubber, polydimethylsiloxane, fumed silica gel, liquid silica gel, nitrile rubber, EPDM rubber or polyurethane elastomer.
  • the nano-TiN has a length of 600-800 nm and a width of 100-200 nm.
  • the vulcanizing agent is a bis-25 vulcanizing agent or a bis-24 vulcanizing agent.
  • the present invention also provides the preparation method of the nano-TiN conductive rubber composite material described in the above scheme, comprising the following steps:
  • the first mixing of the rubber matrix material and the nano-TiN is performed, and the second mixing of the obtained mixture and the vulcanizing agent is performed to obtain the nano-TiN conductive rubber composite material.
  • the first mixing and the second mixing independently include stirring, ultrasonic dispersion or banburying;
  • the temperature of the banburying is 80-120°C
  • the banburying includes the first step banburying and the second step banburying.
  • the rotating speed is 20 ⁇ 50rpm, and the time is 5 ⁇ 30min
  • the rotating speed of the second step of banburying is 25 ⁇ 30rpm, and the time is 5 ⁇ 10min;
  • the temperature of Banbury is room temperature
  • the rotation speed is 10rpm
  • the time is 5min.
  • the present invention also provides a nano-TiN conductive rubber composite material sensor, comprising a rubber encapsulation layer and a sensing element encapsulated inside the rubber encapsulation layer;
  • the sensing element includes a conductive rubber and a sensor arranged on the upper and lower surfaces of the conductive rubber
  • the conductive rubber is prepared from the nano-TiN conductive rubber composite material described in the above scheme.
  • the components of the rubber encapsulation layer include a rubber matrix material and a vulcanizing agent.
  • the electrode is made of conductive thin film material; the thickness of the electrode is 0.02-0.05mm;
  • the surface morphology of the conductive rubber is plane or mesh
  • the thickness of the sensing element is 0.2-5 mm.
  • the conductive film material is a conductive fiber fabric or a conductive metal sheet.
  • a layer of reinforcement layer is further included on the plane of the center of the conductive rubber; the material of the reinforcement layer is silk fabric.
  • the thickness of the reinforcing layer is 0.02-0.03 mm.
  • the present invention also provides the preparation method of the nano-TiN conductive rubber composite material sensor described in the above scheme, comprising the following steps:
  • the calendered sheet is vulcanized and molded to obtain conductive rubber, then electrodes are arranged on the upper and lower surfaces of the conductive rubber, and wires are connected to the electrodes to obtain a sensing element;
  • the step (2) is replaced by:
  • the calendered sheet is vulcanized and formed in a mold provided with a mesh substrate to obtain a mesh-shaped conductive rubber, and then electrodes are arranged on the upper and lower surfaces of the conductive rubber and wires are connected to the electrodes to obtain a sensor element;
  • step (2) is replaced by:
  • a reinforcing layer is placed in the middle of the two calendered sheets, and the vulcanization molding is carried out after rolling again to obtain a conductive rubber. Then, electrodes are arranged on the upper and lower surfaces of the conductive rubber, and wires are connected to the electrodes to form a sensor element;
  • a reinforcing layer is placed between two calendered sheets, electrodes are arranged on the upper and lower surfaces of the obtained composite calendered sheet after rolling again, and then vulcanization molding is performed, and then wires are connected to the electrodes to obtain a sensing element.
  • the vulcanization molding method is hot pressing molding, casting molding or injection molding.
  • the pressure of the vulcanization molding is 5-25 MPa.
  • the invention provides a nano-TiN conductive rubber composite material.
  • the invention applies nano-TiN to the conductive rubber composite material for the first time, which broadens the application of nano-TiN; the addition amount of nano-TiN in the composite material is only 3-15%, and the filling The amount is small and the dispersion is good in the rubber matrix material.
  • the mass fraction of TiN in the nano-TiN conductive rubber composite is 7.2%, the percolation threshold can be reached. At this time, the conductivity of the conductive rubber increases significantly.
  • the permanent deformation of the nano-TiN conductive rubber composite material is smaller, and the mechanical strength and resilience performance are optimal; using the composite material of the present invention to prepare the conductive rubber sensor can reduce the cost of the conductive rubber sensor, and the obtained conductive rubber sensor can maintain a wide The pressure test range (0 ⁇ 20MPa), good linearity, sensitivity and stability performance, and the current signal is strong.
  • the present invention provides a preparation method of the nano-TiN conductive rubber composite material described in the above scheme.
  • the preparation method provided by the invention has simple steps and is easy to operate. Further, the present invention adopts the method of high temperature banburying to mix the rubber matrix material and nano-TiN, which can improve the dispersion degree of nano-TiN and further ensure that the seepage threshold can be reached when the content of nano-TiN is low.
  • the invention provides a nano-TiN conductive rubber composite material sensor, which includes a rubber encapsulation layer and a sensing element encapsulated inside the rubber encapsulation layer; the sensing element includes conductive rubber, electrodes and wires; the conductive rubber is composed of the above
  • the nano-TiN conductive rubber composite material described in the scheme is prepared.
  • the invention uses the rubber encapsulation layer to encapsulate the sensing element, so that the sensor is balanced in force, and there is no phenomenon of stress concentration and structural damage, so it has better stability and longer fatigue safety life under high load. And the design of the package structure makes the sensor more resistant to external interference and corrosion, can recover elastic compression deformation faster, reduce permanent deformation, and will not have problems such as baseline drift.
  • the present invention uses the rubber material to encapsulate the sensor element, and the obtained conductive rubber sensor has better flexibility.
  • the present invention also provides a preparation method of the nano-TiN conductive rubber composite material sensor described in the above solution; the preparation method provided by the present invention has simple steps and is easy to operate. Further, the present invention performs vulcanization molding under high pressure, and the obtained rubber structure itself is more compact, so that the high pressure resistance capability of the conductive rubber sensor is improved and the structure stability and lifespan can be maintained.
  • Fig. 1 is the scanning electron microscope picture of the nano-TiN used in the embodiment of the present invention.
  • Figure 2 is a schematic structural diagram of the sensor when the plane of the center of the conductive rubber does not include a reinforcing layer;
  • FIG. 3 is a schematic structural diagram of a sensor when a reinforcing layer is included on the plane of the center of the conductive rubber;
  • Fig. 4 is a graph showing the change of current of the sensor in Example 1 under the condition of 0-10MPa cyclic loading pressure
  • FIG. 5 is a graph showing the change of current of the sensor in Example 1 under the condition of cyclic loading pressure of 0-20 MPa.
  • the invention provides a nano-TiN conductive rubber composite material, comprising the following components: a rubber matrix material, nano-TiN and a vulcanizing agent; the mass fraction of nano-TiN in the nano-TiN conductive rubber composite material is 3-15%.
  • the rubber matrix material preferably includes natural rubber, polydimethylsiloxane (PDMS), fumed silica gel, liquid silica gel (LSR), nitrile rubber (NBR), ethylene propylene diene monomer (EPDM) Or polyurethane elastomer (TPU);
  • the rubber matrix material selected in the present invention is a high-toughness rubber with higher mechanical properties, bubbles are not easy to appear in the preparation process, the conductive filler is easier to disperse evenly, and the composite material is used to prepare
  • the internal stress distribution of the sensor is uniform and the compression resistance is stronger, which is beneficial to improve the measurement range of the sensor.
  • the size of the nano-TiN is preferably: length 600-800 nm, width 100-200 nm; the mass percentage content of nano-TiN in the nano-TiN conductive rubber composite material is 3-15%, more preferably 7.2% ⁇ 15%; the nano-TiN has the properties of high melting point, high hardness, good stability, and superconductivity.
  • the present invention has no special requirements for the source of the TiN, and the nano-TiN well-known to those skilled in the art can be used.
  • the morphology of the nano-TiN is shown in FIG. 1 .
  • the present invention has no special requirements for the vulcanizing agent, and a vulcanizing agent well-known to those skilled in the art can be used.
  • a vulcanizing agent well-known to those skilled in the art can be used.
  • the mass percentage content of the nano-TiN conductive rubber composite vulcanizing agent is preferably 0.8-1.2%, more preferably 1 to 1.1%.
  • the present invention also provides the preparation method of the nano-TiN conductive rubber composite material described in the above scheme, comprising the following steps:
  • the first mixing of the rubber matrix material and the nano-TiN is performed, and the second mixing of the obtained mixture and the vulcanizing agent is performed to obtain the nano-TiN conductive rubber composite material.
  • the first mixing method and the second mixing method independently preferably include stirring, ultrasonic dispersion or banburying, and the stirring method is preferably mechanical stirring, magnetic stirring or planetary stirring.
  • the stirring method is preferably mechanical stirring, magnetic stirring or planetary stirring.
  • the rubber matrix material is a liquid polymer material with low viscosity (such as liquid polydimethylsiloxane, liquid silica gel, etc.)
  • the present invention preferably adopts stirring or ultrasonic to carry out the first mixing and the second mixing.
  • Second mixing when the rubber matrix material is a semi-solid macromolecule material with high viscosity (such as natural rubber, gas-phase silica gel, EPDM rubber, etc.), the present invention preferably adopts the method of banburying to carry out the first mixing and the second mixing.
  • the temperature of the banburying is preferably 80-120°C, preferably 90-110°C; the banburying preferably includes the first step of banburying and the second step of banburying.
  • the rotational speed of the first-step banburying is preferably 20-50 rpm, more preferably 40 rpm, and the time is preferably 5-30 min, more preferably 10 min, and the rotating speed of the second-step banburying is preferably 25- 30rpm, more preferably 26-28rpm, the time is preferably 5-10min, more preferably 6-8min, the temperature of the first step and the second step are preferably the same;
  • the mixing time of the nano-conductive filler improves the dispersion uniformity of the nano-conductive filler; the invention mixes the rubber matrix material and the nano-TiN through banburying at high temperature, which can improve the dispersion degree of the nano-TiN and further ensure that the nano-TiN content is low.
  • the temperature of the banburying is preferably room temperature
  • the rotation speed is preferably 10 rpm
  • the time is preferably 5 min.
  • both the first mixing and the second mixing are banbury, in the present invention, preferably, after the first mixing is completed, the mixture is cooled to room temperature, and then a vulcanizing agent is added for the second mixing.
  • the invention provides a nano-TiN conductive rubber composite material sensor, which comprises a rubber encapsulation layer and a sensing element encapsulated inside the rubber encapsulation layer.
  • the components of the rubber encapsulation layer preferably include a rubber matrix material and a vulcanizing agent, and the preferred types of the rubber matrix materials are the same as the above solutions, and are not repeated here; the preferred types of the vulcanizing agent are the same as those described above.
  • the solution is the same and will not be repeated here; the content of the vulcanizing agent in the rubber encapsulation layer is preferably 0.8-1.2%; the thickness of the rubber encapsulation layer is preferably 4.0 mm-10.0 mm.
  • the rubber used in the rubber encapsulation layer is preferably the same as the rubber matrix material in the nano-TiN conductive rubber composite material, the mechanical properties of the same rubber matrix material are similar, and the encapsulated rubber matrix and the nano-conductive rubber sensor have synchronous properties.
  • the ratio of force shrinkage can avoid structural damage caused by unbalanced internal stress of the sensor, and can also improve the sensitivity and consistency of the sensor.
  • the sensing element includes conductive rubber, electrodes arranged on the upper and lower surfaces of the conductive rubber, and wires connected to the electrodes; the conductive rubber is prepared from the nano-TiN conductive rubber composite material described in the above scheme.
  • the surface topography of the conductive rubber is preferably a plane or a mesh; the mesh can be formed by embossing a fabric on the surface of the conductive rubber, which will be described in detail later.
  • the conductive rubber surface is arranged in a mesh shape, which can increase the contact area and is beneficial to improve the sensitivity of the sensor.
  • the plane of the center of the conductive rubber preferably further includes a reinforcing layer; the material of the reinforcing layer is preferably a silk fabric; the thickness of the reinforcing layer is preferably 0.02-0.03 mm; The area is preferably the same as that of the conductive rubber; in the present invention, a reinforcing layer is arranged on the plane of the center of the conductive rubber, which can increase the toughness of the conductive rubber, improve the structural stability, and prevent short circuits.
  • the present invention has no special requirements on the shape of the conductive rubber, and a shape well-known to those skilled in the art may be adopted, specifically, a circle.
  • the electrode is preferably a conductive film material
  • the conductive film material is preferably a conductive fiber fabric or a conductive metal sheet
  • the conductive metal sheet preferably includes copper foil, zinc foil or aluminum foil
  • the conductive fiber fabric is preferably It is a silver-plated fiber fabric
  • the thickness of the electrode is preferably 0.02-0.05mm, more preferably 0.03-0.04mm.
  • one end of the wire is connected to the electrode, and the other end protrudes from the rubber encapsulation layer; the wire is specifically two, which are respectively connected to the electrodes on the upper and lower surfaces of the conductive rubber; the present invention has no effect on the type of the wire
  • a wire well known to those skilled in the art can be used, such as copper enameled wire, stainless steel yarn or stretchable conductive fiber.
  • the thickness of the sensor element is preferably 0.2 to 5 mm, and more preferably 0.3 to 4.5 mm.
  • the structure of the sensor when the plane of the center of the conductive rubber does not include a reinforcing layer, the structure of the sensor is as shown in FIG. 2 , and when the plane of the center of the conductive rubber includes a reinforcing layer, the structure of the sensor is As shown in Figure 3; in Figures 2 to 3: 1-conductive rubber, 2-electrode, 3-wire, 4-rubber encapsulation layer, 5-enhancing layer.
  • the present invention also provides the preparation method of the nano-TiN conductive rubber composite material sensor described in the above scheme, comprising the following steps:
  • the calendered sheet is vulcanized and molded to obtain conductive rubber, then electrodes are arranged on the upper and lower surfaces of the conductive rubber, and wires are connected to the electrodes to obtain a sensing element;
  • the sensing element is encapsulated with a rubber encapsulation layer material to obtain a nano-TiN conductive rubber composite sensor.
  • the nano-TiN conductive rubber composite material is calendered to obtain a calendered sheet.
  • the calendering is preferably performed using a roller press; the thickness of the calendered material can be set according to the thickness of the sensor element described in the above scheme; the shape and size of the conductive rubber are based on the shape of the target sensor element It can be set according to the size, which is not specifically limited in the present invention.
  • the present invention uses the rolled sheet, electrodes and wires to prepare the sensing element.
  • electrodes can be arranged on the surface of the rolled sheet, and then vulcanization molding is performed, or the rolled sheet can be vulcanized and formed first, and then electrodes are arranged;
  • the electrode, the method of vulcanization and molding is recorded as method 1, and the method of first vulcanization and molding, and then the method of setting the electrode is recorded as method 2, and the following are respectively introduced:
  • the first method is as follows: electrodes are arranged on the upper and lower surfaces of the rolled sheet to obtain a sandwich structure, the sandwich structure is vulcanized and formed, and then wires are connected to the electrodes to obtain a sensing element.
  • This method is suitable for the case where the electrode is a conductive fiber fabric, and it is suitable for the preparation of products with a wide range and low sensitivity.
  • the conductive fabric has air permeability and will not affect the exhaust during the vulcanization process. Bubbles will appear.
  • the electrodes are preferably flattened on the upper and lower surfaces of the calendered sheet, and before the electrodes are flattened, preferably the electrodes are subjected to a coupling agent wetting treatment; the coupling agent wetting treatment uses a coupling
  • the agent is preferably KH560, KH550 or KH570; the present invention has no special requirements for the specific method of the coupling agent wetting treatment, and the electrode surface can be wetted with the coupling agent; the present invention uses the coupling agent to wet the electrode surface , which can increase the bonding force between the electrode and the rubber.
  • the vulcanization molding method is preferably hot press molding, casting molding or injection molding.
  • the specific method of vulcanization molding is preferably selected according to the type of rubber matrix material; in the present invention
  • the vulcanization molding method is more preferably hot-press molding, and the pressure of the hot-press molding is preferably 5-25 MPa, more preferably 10-20 MPa; the present invention performs vulcanization molding under high pressure, and the obtained rubber structure It is more dense, which improves the high pressure resistance of the rubber and maintains good structural stability and life;
  • the sandwich structure is preferably placed in a mold for vulcanization molding; the present invention has no special requirements for the mold.
  • a mold well-known to those skilled in the art may be sufficient, and the present invention does not have special requirements on the temperature of the vulcanization molding, which can be set according to the type of the rubber matrix material used.
  • the present invention has no special requirements on the access mode of the wire, and the access mode known to those skilled in the art can be used.
  • the second method is: vulcanizing the calendered sheet to obtain a conductive rubber, then setting electrodes on the upper and lower surfaces of the conductive rubber, and connecting wires to the electrodes to obtain a sensing element.
  • this method is suitable for the case where the electrode is a conductive metal sheet, and is suitable for preparing products with high sensitivity and low range.
  • the conductive metal sheet does not have air permeability. Small bubbles appear between, and the contact is not good.
  • the specific conditions of the vulcanization molding are preferably the same as those in the first method, and will not be repeated here; the present invention preferably uses conductive silver paste to bond the electrodes on the upper and lower surfaces of the conductive rubber.
  • the present invention when the surface of the conductive rubber is reticulated, the present invention preferably prepares the sensing element by the following method: vulcanizing the rolled sheet in a mold provided with a reticulated substrate to obtain a reticulated surface The conductive rubber is then arranged on the surface of the conductive rubber and the wires are connected to obtain the sensor element.
  • the methods of vulcanization molding and electrode setting are all the same as the above-mentioned solutions, which will not be repeated here; the mesh substrate is preferably a real silk fabric.
  • the present invention preferably prepares the sensing element by the following method: placing a reinforcing layer in the middle of two calendered sheets, and performing vulcanization molding after rolling again to obtain the conductive rubber, and then adding Electrodes are arranged on the upper and lower surfaces of the conductive rubber, and wires are connected to the electrodes to form a sensor element; or, a reinforcing layer is placed between two calendered sheets, and electrodes are arranged on the upper and lower surfaces of the obtained composite calendered sheet after rolling again, and then vulcanization molding is performed. , and then connect the wire on the electrode to get the sensing element.
  • the methods of calendering, vulcanization molding and electrode setting are all the same as the above-mentioned solutions, and will not be repeated here; The mold can be hot-pressed.
  • the present invention uses the rubber encapsulation layer material to encapsulate the sensing element to obtain a nano-TiN conductive rubber composite material sensor.
  • the material of the rubber encapsulation layer is preferably a mixture of a rubber matrix material and a vulcanizing agent.
  • the mixture is preferably put into a mold, the sensor element is covered with the mixture, and then vulcanized and packaged; the The temperature and time of the vulcanization package can be controlled according to the selected rubber type.
  • the present invention has no special requirements on the specific process of the encapsulation, as long as the encapsulation can be realized.
  • nano-TiN conductive rubber composite material raw materials (in parts by mass): 100 parts of high-strength gas phase silica gel GS-1050u, 8 parts of nano-TiN (the morphology is shown in Figure 1), and vulcanizing agent double-250.6 parts; High-strength gas-phase silica gel and nano-TiN are mixed for banburying, the banburying temperature is 120 °C, and after cooling, the vulcanizing agent bis-25 is added at room temperature, and the banburying mixture is uniform at room temperature to obtain the nano-TiN conductive rubber composite material;
  • the fabricated sensor element is vulcanized and packaged with gas-phase silica gel GS-1050u (vulcanization temperature is 165°C, time is 10 minutes, vulcanizing agent is double 25, and the amount of vulcanizing agent is 1%), and the thickness of the encapsulation layer is 4 mm to obtain nano-TiN conductive rubber composite Material sensor.
  • gas-phase silica gel GS-1050u vulcanization temperature is 165°C, time is 10 minutes, vulcanizing agent is double 25, and the amount of vulcanizing agent is 1%
  • the thickness of the encapsulation layer is 4 mm to obtain nano-TiN conductive rubber composite Material sensor.
  • Figure 4 is a graph of the current change of the sensor under the condition of 0-10MPa cyclic loading pressure
  • Figure 5 is a graph of the current change of the sensor under the condition of 0-20MPa cyclic loading pressure. According to Figure 4 and Figure 5, it can be seen that after applying pressure, the sensor generates a strong current signal with high sensitivity, and in the process of cyclic pressure application, the sensor has good stability and no baseline drift phenomenon.
  • the mechanical properties of the obtained nano-TiN conductive rubber composite sensor were tested, and the results were: Shore hardness 40A, tensile strength 10MPa, elongation at break 300%, tear strength 24N/mm, indicating the nano-TiN conductive rubber of the present invention
  • Composite sensors have excellent flexibility.
  • nano-TiN conductive rubber composite material raw materials (in parts by mass): 100 parts of high-strength fumed silica gel GS-1050u, 10 parts of nano-TiN, and 250.8 parts of vulcanizing agent; mix high-strength fumed silica gel and nano-TiN for banburying , the banburying temperature is 120 °C, after cooling, adding vulcanizing agent bis-25 is banburying and mixing at room temperature to obtain nano-TiN conductive rubber composite material;
  • the above nano-TiN conductive rubber composite material was rolled into a disc-like structure with a radius of 7.0 mm and a thickness of 0.3 mm, and then the silk fiber was placed in the middle of the two disc-shaped structures and fully rolled to a thickness of 0.5 mm (the conductive sensing material was fully penetrated). into the gap of the silk fiber), finally put into the mold (sprayed with a mold release agent, the silk is the substrate) and vulcanized with a hot press (vulcanization temperature 165 ° C, pressure 10MPa, time 10min) to obtain a molded part (thickness is 0.47mm, the sensor surface is a fabric mesh interface).
  • a hot press vulcanization temperature 165 ° C, pressure 10MPa, time 10min
  • Electrodes Connect the upper and lower sides of the molded part to conductive copper foil discs (diameter 6.5mm, thickness: 0.025mm) as electrodes, and electrodes are welded with copper enameled wires as conductors to obtain sensor elements.
  • the sensor element is vulcanized and packaged with gas-phase silica gel GS-1050u (vulcanization temperature is 165°C, time is 10min, vulcanizing agent is double 25, and the amount of vulcanizing agent is 1%), and the thickness of the encapsulation layer is 6.0mm to obtain nano-TiN conductive rubber composite sensor. .
  • Example 1 The performance test of the obtained nano-TiN conductive rubber composite sensor was carried out according to the method in Example 1, and the obtained results were similar to those in Example 1.
  • Example 1 the performance test of the nano-TiN conductive rubber composite material sensors obtained in Examples 3 to 4 is carried out.
  • the results show that the sensitivity of the obtained sensors is relatively high, and the stability of the sensor is good in the process of cyclic pressure application. , without baseline drift.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Conductive Materials (AREA)

Abstract

本发明涉及压力测量技术领域,提供了一种纳米TiN导电橡胶复合材料以及一种传感器及其制备方法,本发明提供的复合材料组成成分包括橡胶基体材料、纳米TiN和硫化剂,本发明首次将纳米TiN作为导电填料应用于导电橡胶复合材料中并利用该复合材料制备导电橡胶传感器,拓宽了纳米TiN的应用,所得导电橡胶传感器具有较宽的压力测试范围,较好的线性度、灵敏度和稳定性能,且电流信号较强;本发明使用橡胶封装层封装传感元件,使得传感器受力均衡,没有应力集中而结构破坏的现象,因此具有更好的稳定性,在高载荷下具有更长的疲劳安全寿命。

Description

一种纳米TiN导电橡胶复合材料以及一种传感器及其制备方法
本申请要求于2020年10月23日提交中国专利局、申请号为202011143982.1、发明名称为“一种纳米TiN导电橡胶复合材料以及一种传感器及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及压力测量技术领域,尤其涉及一种纳米TiN导电橡胶复合材料以及一种传感器及其制备方法。
背景技术
纳米导电橡胶是一种在绝缘基体中掺入纳米级导电填料后得到的具有导电性能的复合材料,具有良好的压阻特性、耐久性和柔韧性,在压力传感领域具有广泛的应用。
现有的纳米导电橡胶压力传感器中使用的导电填料一般为导电炭黑和金属粉(铜粉、锌粉、银粉)等,填料的填充量大,稳定性差。一些新型的导电填料如石墨烯、碳纳米管等材料制备方法复杂、价格昂贵。
传统的纳米导电橡胶传感器的压力测试范围在大多分布在0~2MPa之间,测试范围窄,针对极少部分大量程的导电橡胶传感器,由于结构设计问题不能有效抵消传感器内部应力,造成应力集中,容易对传感器的结构造成破坏,大大影响了传感器的使用稳定性和寿命。上述问题严重限制了纳米导电橡胶传感器在建筑工程、桥梁工程、物联网、智能穿戴、医疗健康等方面的应用。
发明内容
有鉴于此,本发明提供了一种纳米TiN导电橡胶复合材料以及一种传感器及其制备方法;本发明创新性的将纳米TiN作为导电填料应用于纳米导电橡胶复合材料中并利用该复合材料制备导电橡胶传感器,通过对传感器结构的设计降低了内部应力,提供了一种测量范围宽、灵敏度高、稳定性好、使用寿命长的导电橡胶传感器。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了纳米TiN作为导电填料在纳米导电橡胶复合材料中的应用。
一种纳米TiN导电橡胶复合材料,包括以下组分:橡胶基体材料、纳米TiN和硫化剂;所述纳米TiN导电橡胶复合材料中纳米TiN的质量分数为3.0~15.0%。
优选的,所述橡胶基体材料为天然橡胶、聚二甲基硅氧烷、气相硅胶、液态硅胶、丁腈橡胶、三元乙丙橡胶或聚氨酯弹性体。
优选的,所述纳米TiN的长度为600~800nm,宽度为100~200nm。
优选的,所述硫化剂为双-25硫化剂或双-24硫化剂。
本发明还提供了上述方案所述纳米TiN导电橡胶复合材料的制备方法,包括以下步骤:
将橡胶基体材料和纳米TiN进行第一混合,将所得混合料和硫化剂进行第二混合,得到所述纳米TiN导电橡胶复合材料。
优选的,所述第一混合和第二混合的方式独立的包括搅拌、超声分散或密炼;
当所述第一混合的方式为密炼时,所述密炼的温度为80~120℃,所述密炼包括第一步密炼和第二步密炼,所述第一步密炼的转速为20~50rpm,时间为5~30min,所述第二步密炼的转速为25~30rpm,时间为5~10min;
当所述第二混合的方式为密炼时,所述密炼的温度为室温,转速为10rpm,时间为5min。
本发明还提供了一种纳米TiN导电橡胶复合材料传感器,包括橡胶封装层和封装在所述橡胶封装层内部的传感元件;所述传感元件包括导电橡胶和设置在导电橡胶上、下表面的电极以及和电极连接的导线;所述导线一端和电极连接,另一端伸出橡胶封装层;所述导电橡胶由上述方案所述的纳米TiN导电橡胶复合材料制备得到。
优选的,所述橡胶封装层的组成成分包括橡胶基体材料和硫化剂。
优选的,所述电极为导电薄膜材料;所述电极的厚度为0.02~0.05mm;
所述导电橡胶的表面形貌为平面或网状;
所述传感元件的厚度为0.2~5mm。
优选的,所述导电薄膜材料为导电纤维织物或导电金属片。
优选的,所述导电橡胶中心的平面上还包括一层增强层;所述增强层的材质为真丝织物。
优选的,所述增强层的厚度为0.02~0.03mm。
本发明还提供了上述方案所述纳米TiN导电橡胶复合材料传感器的制备方法,包括以下步骤:
(1)将纳米TiN导电橡胶复合材料进行压延,得到压延片;
(2)在所述压延片上下表面设置电极,得到夹心结构,将所述夹心结构进行硫化成型,然后在电极上接入导线,得到传感元件;
或,将所述压延片硫化成型,得到导电橡胶,然后在所述导电橡胶上下表面设置电极,并在电极上接入导线,得到传感元件;
(3)使用橡胶封装层材料将所述传感元件封装,得到纳米TiN导电橡胶复合材料传感器。
优选的,当导电橡胶表面形貌为网状时,所述步骤(2)替换为:
将压延片在设置有网状衬底的模具中进行硫化成型,得到表面为网状的导电橡胶,然后在导电橡胶上、下表面设置电极并在电极上接入导线,得到传感器元件;
当导电橡胶中心的平面上还括一层增强层时,所述步骤(2)替换为:
在两片压延片中间放置增强层,再次压延后进行硫化成型,得到导电橡胶,然后在导电橡胶上、下表面设置电极,并在电极上接入导线,形成传感器元件;
或,在两片压延片中间放置增强层,再次压延后在所得复合压延片上下表面设置电极,之后进行硫化成型,然后在电极上接入导线,得到传感元件。
优选的,所述硫化成型的方式为热压成型、浇注成型或注射成型。
优选的,所述硫化成型的压力为5~25MPa。
本发明提供了一种纳米TiN导电橡胶复合材料,本发明首次将纳米TiN应用于导电橡胶复合材料中,拓宽了纳米TiN的应用;复合材料中纳米TiN的添加量仅为3~15%,填充量小,在橡胶基体材料中分散性好,当纳米TiN导电橡胶复合材料中TiN的质量分数为7.2%时,即可到渗流 阈值,此时导电橡胶的导电率明显增加,当导电填料较少时,纳米TiN导电橡胶复合材料的永久形变更小,机械强度和回弹性能达到最佳;利用本发明的复合材料制备导电橡胶传感器,能够降低导电橡胶传感器的成本,所得导电橡胶传感器能保持宽的压力测试范围(0~20MPa),较好的线性度、灵敏度和稳定性能,且电流信号较强。
本发明提供了上述方案所述纳米TiN导电橡胶复合材料的制备方法。本发明提供的制备方法步骤简单,容易操作。进一步的,本发明采用高温密炼的方法将橡胶基体材料和纳米TiN混合,能够提高纳米TiN的分散程度,进一步保证在纳米TiN含量较低的情况下即可达到渗流阈值。
本发明提供了一种纳米TiN导电橡胶复合材料传感器,包括包括橡胶封装层和封装在橡胶封装层内部的传感元件;所述传感元件包括导电橡胶、电极和导线;所述导电橡胶由上述方案所述的纳米TiN导电橡胶复合材料制备得到。本发明使用橡胶封装层封装传感元件,使得传感器受力均衡,没有应力集中而结构破坏的现象,因此具有更好的稳定性,在高载荷下具有更长的疲劳安全寿命。并且封装结构的设计使得传感器具备更强的抵抗外界干扰和腐蚀的能力,能够更快的恢复弹性压缩变形,减少永久变形,不会出现基线漂移等问题。此外,本发明使用橡胶材料封装传感器元件,所得导电橡胶传感器的柔韧性更好。
本发明还提供了上述方案所述纳米TiN导电橡胶复合材料传感器的制备方法;本发明提供的制备方法步骤简单,容易操作。进一步的,本发明在高压下进行硫化成型,所得橡胶结构本身更加致密,使得导电橡胶传感器的耐高压能力提高且能保持好的结构稳定性和寿命。
附图说明
图1为本发明实施例中使用的纳米TiN的扫描电镜图;
图2为当导电橡胶中心的平面上不包括增强层时传感器的结构示意图;
图3为导电橡胶中心的平面上包括增强层时传感器的结构示意图;
图2~3中:1-导电橡胶,2-电极,3-导线,4-橡胶封装层,5-增强层;
图4为实施例1中传感器在0~10MPa循环加载压力条件下电流的变化情况图;
图5为为实施例1中传感器在0~20MPa循环加载压力条件下电流的变化情况图。
具体实施方式
本发明提供了一种纳米TiN导电橡胶复合材料,包括以下组分:橡胶基体材料、纳米TiN和硫化剂;所述纳米TiN导电橡胶复合材料中纳米TiN的质量分数为3~15%。
在本发明中,所述橡胶基体材料优选包括天然橡胶、聚二甲基硅氧烷(PDMS)、气相硅胶、液态硅胶(LSR)、丁腈橡胶(NBR)、三元乙丙橡胶(EPDM)或聚氨酯弹性体(TPU);本发明选择的橡胶基体材料均为具有较高机械性能的高韧橡胶,在制备过程中内部不易出现气泡,导电填料更容易分散均匀,且利用该复合材料制备得到的传感器内部应力分布均匀抗压能力更强,有利于提高传感器的测量范围。
在本发明中,所述纳米TiN的尺寸优选为:长600~800nm,宽100~200nm;所述纳米TiN导电橡胶复合材料中纳米TiN的质量百分含量为3~15%,更优选为7.2~15%;所述纳米TiN具有熔点高、硬度高、稳定性好、超导电的性能,本发明对所述TiN的来源没有特殊要求,使用本领域技术人员熟知的纳米TiN即可,在本发明的一个具体实施例中,所述纳米TiN的形貌如图1所示。
本发明对所述硫化剂没有特殊要求,使用本领域技术人员熟知的硫化剂即可,具体的如双-25硫化剂(2,5-二甲基-2,5-二(叔丁基过氧基)己烷)或双-24硫化剂(2,4-二氯过氧苯甲酰);所述纳米TiN导电橡胶复合材料硫化剂的质量百分含量优选为0.8~1.2%,更优选为1~1.1%。
本发明还提供了上述方案所述纳米TiN导电橡胶复合材料的制备方法,包括以下步骤:
将橡胶基体材料和纳米TiN进行第一混合,将所得混合料和硫化剂进行第二混合,得到所述纳米TiN导电橡胶复合材料。
在本发明中,所述第一混合和第二混合的方式独立的优选包括搅拌、超声分散或密炼,所述搅拌的方式优选为机械搅拌、磁力搅拌或行星搅拌,在本发明的具体实施例中,当所述橡胶基体材料为粘度较低的液态高分子材料(如液态聚二甲基硅氧烷、液态硅胶等)时,本发明优选采用搅拌或 超声的方式进行第一混合和第二混合,当所述橡胶基体材料为粘度很大的半固体高分子材料(如天然橡胶、气相硅胶、三元乙丙橡胶等)时,本发明优选采用密炼的方式进行第一混合和第二混合;当所述第一混合的方式优选为密炼时,所述密炼的温度优选为80~120℃,优选为90~110℃;所述密炼优选包括第一步密炼和第二步密炼,所述第一步密炼的转速优选为20~50rpm,更优选为40rpm,时间优选为5~30min,更优选为10min,所述第二步密炼的转速优选为25~30rpm,更优选为26~28rpm,时间优选为5~10min,更优选为6~8min,所述第一步密炼和第二步密炼的温度优选相同;本发明通过分步密炼减少密炼时间,提高纳米导电填料的分散均匀度;本发明在高温下通过密炼将橡胶基体材料和纳米TiN混合,能够提高纳米TiN的分散程度,进一步保证在纳米TiN含量较低的情况下即可达到渗流阈值。
在本发明中,当所述第二混合的方式优选为密炼时,所述密炼的温度优选为室温,转速优选为10rpm,时间优选为5min。
当第一混合和第二混合的方式均为密炼时,本发明优选在第一混合完成后,将混合料冷却至室温,然后再加入硫化剂进行第二混合。
本发明提供了一种纳米TiN导电橡胶复合材料传感器,包括橡胶封装层和封装在橡胶封装层内部的传感元件。
在本发明中,所述橡胶封装层的组成成分优选包括橡胶基体材料和硫化剂,所述橡胶基体材料的优选种类和上述方案一致,在此不再赘述;所述硫化剂的优选种类和上述方案一致,在此不再赘述;所述橡胶封装层中硫化剂的含量优选为0.8~1.2%;所述橡胶封装层的厚度优选为4.0mm~10.0mm。在本发明中,所述橡胶封装层所使用的橡胶优选和纳米TiN导电橡胶复合材料中橡胶基体材料相同,同种橡胶基体材料的力学性能相近,封装后橡胶基体和纳米导电橡胶传感器具有同步的受力收缩比例,避免传感器内部应力不均衡而造成的结构破坏,还可以提升传感器的灵敏度和一致性。
在本发明中,所述传感元件包括导电橡胶和设置在导电橡胶上、下表面的电极以及和电极连接的导线;所述导电橡胶由上述方案所述的纳米TiN导电橡胶复合材料制备得到。在本发明中,所述导电橡胶的表面形貌 优选为平面或网状;所述网状具体可以利用织物在导电橡胶表面压印形成,后续进行具体说明。本发明将导电橡胶表面设置成网状,可以增大接触面积,有利于提升传感器的灵敏度。
在本发明中,所述导电橡胶中心的平面上优选还括一层增强层;所述增强层的材质优选为真丝织物;所述增强层的厚度优选为0.02~0.03mm;所述增强层的面积优选和导电橡胶一致;本发明在导电橡胶中心的平面上设置增强层,可以增加导电橡胶的韧性,提高结构稳定性,防止短路。
本发明对所述导电橡胶的形状没有特殊要求,采用本领域技术人员熟知的形状即可,具体的如圆形。
在本发明中,所述电极优选为导电薄膜材料,所述导电薄膜材料优选为导电纤维织物或导电金属片,所述导电金属片优选包括铜箔、锌箔或铝箔;所述导电纤维织物优选为镀银纤维织物;所述电极的厚度优选为0.02~0.05mm,更优选为0.03~0.04mm。
在本发明中,所述导线一端和电极连接,另一端伸出橡胶封装层;所述导线具体为2根,分别和导电橡胶上、下表面的电极连接;本发明对所述导线的种类没有特殊要求,使用本领域技术人员熟知的导线即可,具体的如铜漆包线、不锈钢纱线或可伸缩导电纤维。
在本发明中,所述传感器元件的厚度优选为0.2~5mm,更优选为0.3~4.5mm。
在本发明中,当所述导电橡胶中心的平面上不包括增强层时,所述传感器的结构如图2所示,当所述导电橡胶中心的平面上包括增强层时,所述传感器的结构如图3所示;图2~3中:1-导电橡胶,2-电极,3-导线,4-橡胶封装层,5-增强层。
本发明还提供了上述方案所述纳米TiN导电橡胶复合材料传感器的制备方法,包括以下步骤:
(1)将纳米TiN导电橡胶复合材料进行压延,得到压延片;
(2)在所述压延片上下表面设置电极,得到夹心结构,将所述夹心结构进行硫化成型,然后在电极上接入导线,得到传感元件;
或,将所述压延片硫化成型,得到导电橡胶,然后在所述导电橡胶上下表面设置电极,并在电极上接入导线,得到传感元件;
(3)使用橡胶封装层材料将传感元件封装,得到纳米TiN导电橡胶复合材料传感器。
本发明将纳米TiN导电橡胶复合材料压延,得到压延片。在本发明中,所述压延优选使用辊压机进行;所述压延材料的厚度根据上述方案所述的传感器元件的厚度进行设置即可;所述导电橡胶的形状和尺寸根据目标传感器元件的形状和尺寸进行设置即可,本发明不做具体限定。
得到压延片后,本发明利用压延片、电极和导线制备传感元件,具体可以先在压延片表面设置电极,再进行硫化成型,也可以先将压延片硫化成型,再设置电极;将先设置电极,再硫化成型的方法记为方法一,先硫化成型,再设置电极的方法记为方法二,下面分别进行介绍:
在本发明中,所述方法一为:在压延片上下表面设置电极,得到夹心结构,将所述夹心结构进行硫化成型,然后在电极上接入导线,得到传感元件。这种方法适用于电极为导电纤维织物的情况,适用于制备量程宽、灵敏度低的产品,导电织物具有透气性,在硫化过程中不会影响排气,电极和硫化所得的导电橡胶之间不会出现气泡。在本发明中,所述电极优选平铺在压延片的上下表面,所述电极在平铺前,优选还包括将电极进行偶联剂润湿处理;所述偶联剂润湿处理用偶联剂优选为KH560、KH550或KH570;本发明对所述偶联剂润湿处理的具体方法没有特殊要求,能够使用偶联剂将电极表面润湿即可;本发明利用偶联剂润湿电极表面,能够增加电极和橡胶之间的结合力。
在本发明中,所述硫化成型的方法优选为热压成型、浇注成型或注射成型,在本发明的具体实施例中,优选根据橡胶基体材料的种类选择硫化成型的具体方式;在本发明的具体实施例中,所述硫化成型的方法更优选为热压成型,所述热压成型的压力优选为5~25MPa,更优选为10~20MPa;本发明在高压下进行硫化成型,所得橡胶结构本身更加致密,使得橡胶的耐高压能力提高且能保持好的结构稳定性和寿命;本发明优选将所述夹心结构放置在模具中进行硫化成型;本发明对所述模具没有特殊要求,使用本领域技术人员熟知的模具即可,本发明对所述硫化成型的温度没有特殊要求,根据所使用橡胶基体材料的种类进行设置即可。
本发明对所述导线的接入方式没有特殊要求,使用本领域技术人员熟 知的接入方式即可。
在本发明中,所述方法二为:将所述压延片硫化成型,得到导电橡胶,然后在所述导电橡胶上下表面设置电极,并在电极上接入导线,得到传感元件。在本发明中,这种方法适用于电极为导电金属片的情况,适用于制备灵敏度高、量程低的产品,导电金属片不具有透气性,若先设置电极再硫化或导致电极和导电橡胶之间出现细小的气泡,接触不好。在本发明中,所述硫化成型的具体条件优选和方法一中一致,在此不再赘述;本发明优选使用导电银浆将电极粘结在导电橡胶上下表面。
在本发明中,当所述导电橡胶的表面为网状时,本发明优选通过以下方法制备传感元件:将压延片在设置有网状衬底的模具中进行硫化成型,得到表面为网状的导电橡胶,然后在导电橡胶表面设置电极并连接导线,得到传感器元件。其中硫化成型、设置电极的方法均和上述方案一致,在此不再赘述;所述网状衬底优选为真丝织物。
当所述导电橡胶中心的平面上还设置有增强层时,本发明优选通过以下方法制备传感元件:在两片压延片中间放置增强层,再次压延后进行硫化成型,得到导电橡胶,然后在导电橡胶上、下表面设置电极,并在电极上接入导线,形成传感器元件;或,在两片压延片中间放置增强层,再次压延后在所得复合压延片上下表面设置电极,之后进行硫化成型,然后在电极上接入导线,得到传感元件。其中压延、硫化成型和设置电极的方法均和上述方案一致,在此不再赘述;当制备中心平面上设置有增强层、且表面为网状的导电橡胶时,使用设置有网状衬底的模具进行热压成型即可。
得到传感元件后,本发明使用橡胶封装层材料将传感元件封装,得到纳米TiN导电橡胶复合材料传感器。在本发明中,所述橡胶封装层材料优选为橡胶基体材料和硫化剂的混合料,本发明优选将混合料放入模具中,使用混合料将传感器元件包覆,然后进行硫化封装;所述硫化封装的温度和时间根据选择的橡胶种类进行控制即可。本发明对所述封装的具体过程没有特殊要求,能够实现封装即可。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。
实施例1
纳米TiN导电橡胶复合材料的制备:原料(以质量份计):高强度气相硅胶GS-1050u 100份,为纳米TiN 8份(形貌如图1所示),硫化剂双-250.6份;将高强度气相硅胶和纳米TiN混合进行密炼,密炼温度为120℃,冷却后加入硫化剂双-25在室温密炼混合均匀,得到纳米TiN导电橡胶复合材料;
将纳米TiN导电橡胶复合材料辊压成半径7.0mm的片状,并将镀银纤维织物(厚度为0.02mm)置于压延片上下表面构成夹心结构,然后将夹心结构放入模具并用热压机硫化成型(硫化温度165℃,压力为20MPa,时间为15min),将成型件表面的镀银纤维织物接入紫铜铜漆包线作为导线,得到传感器元件,厚度为2.1mm。
将制作成型的传感器元件用气相硅胶GS-1050u硫化封装(硫化温度165℃,时间10min,硫化剂为双25,硫化剂添加量为1%),封装层的厚度为4mm得到纳米TiN导电橡胶复合材料传感器。
对所得纳米TiN导电橡胶复合材料传感器施加0-10MPa和0-20MPa的循环加载的压力下,将传感器导线接入无纸记录仪并记录传感器的电流变化,所得结果如图4和图5所示,其中图4为传感器在0~10MPa循环加载压力条件下电流的变化情况图,图5为传感器在0~20MPa循环加载压力条件下电流的变化情况图。根据图4和图5可以看出,在施加压力后,传感器产生较强的电流信号,灵敏度较高,且在循环施加压力的过程中,传感器的稳定性好,无基线漂移现象。
对所得纳米TiN导电橡胶复合材料传感器的力学性能进行测试,结果为:邵氏硬度40A,拉伸强度10MPa,断裂伸长率300%,撕裂强度24N/mm,说明本发明的纳米TiN导电橡胶复合材料传感器具有优异的柔韧性。
实施例2
纳米TiN导电橡胶复合材料的制备:原料(以质量份计):高强度气相硅胶GS-1050u 100份,纳米TiN10份,硫化剂双-250.8份;将高强度气相硅胶和纳米TiN混合进行密炼,密炼温度为120℃,冷却后加入硫化剂双-25在室温密炼混合均匀,得到纳米TiN导电橡胶复合材料;
将上述纳米TiN导电橡胶复合材料辊压成半径7.0mm,厚0.3mm圆片状结构,然后真丝纤维置于两片圆片状结构中间,充分辊压成0.5mm厚(导电传感材料充分渗透入真丝纤维的空隙内),最后放入模具(喷有脱模剂,真丝为衬底)并用热压机硫化成型(硫化温度165℃,压力为10MPa,时间10min),得到成型件(厚度为0.47mm,传感器表面为织物网状界面)。
将成型件上下两面分别连接导电铜箔圆片(直径6.5mm,厚度:0.025mm)作为电极,电极焊接铜漆包线作为导线,得到传感器元件。
用气相硅胶GS-1050u将传感器原件硫化封装(硫化温度165℃,时间10min,硫化剂为双25,硫化剂添加量为1%),封装层的厚度为6.0mm得到纳米TiN导电橡胶复合材料传感器。
按照实施例1中的方法对所得纳米TiN导电橡胶复合材料传感器进行性能测试,所得结果和实施例1相似。
实施例3
其他条件和实施例1相同,仅将其中纳米TiN的质量份数改为4份。
实施例4
其他条件和实施例1相同,仅将其中纳米TiN的质量份数改为15份。
按照实施例1中的方法对实施例3~4所得纳米TiN导电橡胶复合材料传感器进行性能测试,结果显示,所得传感器的灵敏度均较高,且在循环施加压力的过程中,传感器的稳定性好,无基线漂移现象。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (20)

  1. 纳米TiN作为导电填料在纳米导电橡胶复合材料中的应用。
  2. 一种纳米TiN导电橡胶复合材料,其特征在于,包括以下组分:橡胶基体材料、纳米TiN和硫化剂;所述纳米TiN导电橡胶复合材料中纳米TiN的质量分数为3.0~15.0%。
  3. 根据权利要求2所述的纳米TiN导电橡胶复合材料,所述橡胶基体材料为天然橡胶、聚二甲基硅氧烷、气相硅胶、液态硅胶、丁腈橡胶、三元乙丙橡胶或聚氨酯弹性体。
  4. 根据权利要求2所述的纳米TiN导电橡胶复合材料,其特征在于,所述纳米TiN的长度为600~800nm,宽度为100~200nm。
  5. 根据权利要求2所述的纳米TiN导电橡胶复合材料,其特征在于,所述硫化剂为双-25硫化剂或双-24硫化剂。
  6. 权利要求2~5任意一项所述纳米TiN导电橡胶复合材料的制备方法,其特征在于,包括以下步骤:
    将橡胶基体材料和纳米TiN进行第一混合,将所得混合料和硫化剂进行第二混合,得到所述纳米TiN导电橡胶复合材料。
  7. 根据权利要求6所述的制备方法,其特征在于,所述第一混合和第二混合的方式独立的包括搅拌、超声分散或密炼。
  8. 根据权利要求7所述的制备方法,其特征在于,当所述第一混合的方式为密炼时,所述密炼的温度为80~120℃,所述密炼包括第一步密炼和第二步密炼,所述第一步密炼的转速为20~50rpm,时间为5~30min,所述第二步密炼的转速为25~30rpm,时间为5~10min。
  9. 根据权利要求8所述的制备方法,其特征在于,当所述第二混合的方式为密炼时,所述密炼的温度为室温,转速为10rpm,时间为5min。
  10. 一种纳米TiN导电橡胶复合材料传感器,其特征在于,包括橡胶封装层和封装在所述橡胶封装层内部的传感元件;所述传感元件包括导电橡胶和设置在导电橡胶上、下表面的电极以及和电极连接的导线;所述导线一端和电极连接,另一端伸出橡胶封装层;所述导电橡胶由权利要求2~5任意一项所述的纳米TiN导电橡胶复合材料或权利要求6~9任意一项 所述制备方法制备的纳米TiN导电橡胶复合材料制备得到。
  11. 根据权利要求10所述的传感器,其特征在于,所述橡胶封装层的组成成分包括橡胶基体材料和硫化剂。
  12. 根据权利要求10所述的传感器,其特征在于,所述电极为导电薄膜材料;所述电极的厚度为0.02~0.05mm;
    所述导电橡胶的表面形貌为平面或网状;
    所述传感元件的厚度为0.2~5mm。
  13. 根据权利要求12所述的传感器,其特征在于,所述导电薄膜材料为导电纤维织物或导电金属片。
  14. 根据权利要求10所述的传感器,其特征在于,所述导电橡胶中心的平面上还包括一层增强层;所述增强层的材质为真丝织物。
  15. 根据权利要求14所述的传感器,其特征在于,所述增强层的厚度为0.02~0.03mm。
  16. 权利要求10~15任意一项所述纳米TiN导电橡胶复合材料传感器的制备方法,其特征在于,包括以下步骤:
    (1)将纳米TiN导电橡胶复合材料进行压延,得到压延片;
    (2)在所述压延片上下表面设置电极,得到夹心结构,将所述夹心结构进行硫化成型,然后在电极上接入导线,得到传感元件;
    或,将所述压延片硫化成型,得到导电橡胶,然后在所述导电橡胶上下表面设置电极,并在电极上接入导线,得到传感元件;
    (3)使用橡胶封装层材料将所述传感元件封装,得到纳米TiN导电橡胶复合材料传感器。
  17. 根据权利要求16所述的制备方法,其特征在于,当导电橡胶表面形貌为网状时,所述步骤(2)替换为:
    将压延片在设置有网状衬底的模具中进行硫化成型,得到表面为网状的导电橡胶,然后在导电橡胶上、下表面设置电极并在电极上接入导线,得到传感器元件。
  18. 根据权利要求16所述的制备方法,其特征在于,当导电橡胶中心的平面上还括一层增强层时,所述步骤(2)替换为:
    在两片压延片中间放置增强层,再次压延后进行硫化成型,得到导电 橡胶,然后在导电橡胶上、下表面设置电极,并在电极上接入导线,形成传感器元件;
    或,在两片压延片中间放置增强层,再次压延后在所得复合压延片上下表面设置电极,之后进行硫化成型,然后在电极上接入导线,得到传感元件。
  19. 根据权利要求16、17或18所述的制备方法,其特征在于,所述硫化成型的方式为热压成型、浇注成型或注射成型。
  20. 根据权利要求19所述的制备方法,其特征在于,所述热压成型的压力优选为5~25MPa。
PCT/CN2021/120842 2020-10-23 2021-09-27 一种纳米TiN导电橡胶复合材料以及一种传感器及其制备方法 WO2022083414A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011143982.1 2020-10-23
CN202011143982.1A CN112266506B (zh) 2020-10-23 2020-10-23 一种纳米TiN导电橡胶复合材料以及一种传感器及其制备方法

Publications (1)

Publication Number Publication Date
WO2022083414A1 true WO2022083414A1 (zh) 2022-04-28

Family

ID=74341599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120842 WO2022083414A1 (zh) 2020-10-23 2021-09-27 一种纳米TiN导电橡胶复合材料以及一种传感器及其制备方法

Country Status (2)

Country Link
CN (1) CN112266506B (zh)
WO (1) WO2022083414A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112266506B (zh) * 2020-10-23 2021-08-17 深圳市市政设计研究院有限公司 一种纳米TiN导电橡胶复合材料以及一种传感器及其制备方法
CN112857636B (zh) * 2021-02-04 2024-06-07 王明秋 压力传感器
CN115584468A (zh) * 2022-09-30 2023-01-10 青岛国工高新材料有限公司 一种抗冲击涂层及具有该涂层的人防设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163507A (ja) * 1985-01-11 1986-07-24 古河電気工業株式会社 導電性ゴム組成物
CN102543331A (zh) * 2011-12-31 2012-07-04 上海长园维安电子线路保护有限公司 高分子基导电复合材料及ptc元件
US20150175449A1 (en) * 2013-12-24 2015-06-25 Samsung Electronics Co., Ltd. Capacitive deionization electrodes, capacitive deionization apparatuses including the same, and production methods thereof
CN105778814A (zh) * 2014-12-24 2016-07-20 党庆风 一种室温固化有机硅导电胶
KR20180138254A (ko) * 2017-06-19 2018-12-31 전남대학교산학협력단 가요성 전극 및 이의 제조방법
WO2019079040A1 (en) * 2017-10-16 2019-04-25 Starkey Laboratories, Inc. ELECTRODES FOR HEARING AIDS AND RELATED METHODS
CN111129491A (zh) * 2019-12-20 2020-05-08 广东工业大学 一种锂离子电池负极活性材料、其制备方法和锂离子电池
CN111276692A (zh) * 2019-12-20 2020-06-12 广东工业大学 一种锂离子电池负极活性材料、其制备方法和锂离子电池
CN112266506A (zh) * 2020-10-23 2021-01-26 深圳市市政设计研究院有限公司 一种纳米TiN导电橡胶复合材料以及一种传感器及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102998035A (zh) * 2012-11-21 2013-03-27 东北大学 基于石墨烯填充硅橡胶复合材料压容效应的敏感元件及其研制方法
CN106009677B (zh) * 2016-07-18 2018-06-26 深圳市尚智工程技术咨询有限公司 一种纳米导电橡胶传感单元及其制备方法
CN108314898A (zh) * 2018-02-02 2018-07-24 深圳市腾顺电子材料有限公司 导电橡胶组合物、导电橡胶及其制备方法
CN109294233B (zh) * 2018-09-25 2021-03-19 重庆大学 一种纳米导电纤维/高分子复合材料应变传感器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163507A (ja) * 1985-01-11 1986-07-24 古河電気工業株式会社 導電性ゴム組成物
CN102543331A (zh) * 2011-12-31 2012-07-04 上海长园维安电子线路保护有限公司 高分子基导电复合材料及ptc元件
US20150175449A1 (en) * 2013-12-24 2015-06-25 Samsung Electronics Co., Ltd. Capacitive deionization electrodes, capacitive deionization apparatuses including the same, and production methods thereof
CN105778814A (zh) * 2014-12-24 2016-07-20 党庆风 一种室温固化有机硅导电胶
KR20180138254A (ko) * 2017-06-19 2018-12-31 전남대학교산학협력단 가요성 전극 및 이의 제조방법
WO2019079040A1 (en) * 2017-10-16 2019-04-25 Starkey Laboratories, Inc. ELECTRODES FOR HEARING AIDS AND RELATED METHODS
CN111129491A (zh) * 2019-12-20 2020-05-08 广东工业大学 一种锂离子电池负极活性材料、其制备方法和锂离子电池
CN111276692A (zh) * 2019-12-20 2020-06-12 广东工业大学 一种锂离子电池负极活性材料、其制备方法和锂离子电池
CN112266506A (zh) * 2020-10-23 2021-01-26 深圳市市政设计研究院有限公司 一种纳米TiN导电橡胶复合材料以及一种传感器及其制备方法

Also Published As

Publication number Publication date
CN112266506B (zh) 2021-08-17
CN112266506A (zh) 2021-01-26

Similar Documents

Publication Publication Date Title
WO2022083414A1 (zh) 一种纳米TiN导电橡胶复合材料以及一种传感器及其制备方法
Shang et al. High stretchable MWNTs/polyurethane conductive nanocomposites
WO2022083415A1 (zh) 一种大量程高韧纳米导电橡胶传感器及其制备和封装方法
US20200363273A1 (en) Conductive polymer nanocellulose aerogels and use as strain sensor
Nam et al. Nano carbon/fluoroelastomer composite bipolar plate for a vanadium redox flow battery (VRFB)
WO2022236768A1 (zh) 一种基于复合材料的柔性温度传感器、制备方法及其应用
US20180017450A1 (en) Nano-conductive rubber sensing unit and preparation method therefor
CN105001641A (zh) 一种炭黑填充压敏导电硅橡胶复合材料及其制备方法
Yang et al. Graphene rubber composites integrated sealing rings for monitoring contact pressure and the aging process
CN109732943A (zh) 燃料电池用双极板及其制备方法
CN109627516A (zh) 一种密封圈
Yao et al. Flexible, programable sensing system with poly (AAm-HEMA-SA) for human motion detection
CN109233288A (zh) 一种改性碳纤维补强的硅橡胶绝热材料及其制备方法
CN111875991A (zh) 一种聚(2-氨基噻唑)改性石墨烯的制备方法及环氧复合涂料
Li et al. A multidimensional hierarchical structure designed for lateral strain-isolated ultrasensitive pressure sensing
Wang et al. Thermal insulation performance and ablation resistance of ethylene propylene diene monomer insulation materials reinforced with polydopamine-coated carbon nanotubes
CN109535510A (zh) 一种密封圈
Shen et al. PVF composite conductive nanofibers-based organic electrochemical transistors for lactate detection in human sweat
CN111978611B (zh) 一种高强度导电自愈合的橡胶复合材料及其制备方法
Chang et al. A novel assembled carbon black/carbon nanotubes (CB/MWCNT) nano-structured composite for pressure-sensitive conductive silicon rubber (SR)
CN110863352A (zh) 一种基于双组份聚氨酯线的高可拉伸柔性应变传感器及其制备方法
KR102033627B1 (ko) 박형 복합 바이폴라 플레이트 및 이의 제조방법
CN114438617B (zh) 一种ANF/CNT/PPy气凝胶纤维传感器及其制备方法和应用
CN109535463A (zh) 一种tpu导电薄膜的制备方法
CN212988660U (zh) 一种纳米导电橡胶传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21881833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/08/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21881833

Country of ref document: EP

Kind code of ref document: A1