WO2022083113A1 - 一种车辆制动方法、装置及列车 - Google Patents

一种车辆制动方法、装置及列车 Download PDF

Info

Publication number
WO2022083113A1
WO2022083113A1 PCT/CN2021/094001 CN2021094001W WO2022083113A1 WO 2022083113 A1 WO2022083113 A1 WO 2022083113A1 CN 2021094001 W CN2021094001 W CN 2021094001W WO 2022083113 A1 WO2022083113 A1 WO 2022083113A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
braking
vehicle
threshold
idling
Prior art date
Application number
PCT/CN2021/094001
Other languages
English (en)
French (fr)
Inventor
王田农
王延翠
杨丽丽
田庆
张祖伟
Original Assignee
中车青岛四方机车车辆股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车青岛四方机车车辆股份有限公司 filed Critical 中车青岛四方机车车辆股份有限公司
Priority to CA3198394A priority Critical patent/CA3198394C/en
Priority to EP21881537.1A priority patent/EP4230500A4/en
Publication of WO2022083113A1 publication Critical patent/WO2022083113A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • B61L23/08Control, warning or like safety means along the route or between vehicles or trains for controlling traffic in one direction only
    • B61L23/14Control, warning or like safety means along the route or between vehicles or trains for controlling traffic in one direction only automatically operated
    • B61L23/18Control, warning or like safety means along the route or between vehicles or trains for controlling traffic in one direction only automatically operated specially adapted for changing lengths of track sections in dependence upon speed and traffic density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1701Braking or traction control means specially adapted for particular types of vehicles
    • B60T8/1705Braking or traction control means specially adapted for particular types of vehicles for rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/321Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration deceleration
    • B60T8/3235Systems specially adapted for rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0062On-board target speed calculation or supervision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • B61L23/34Control, warning or like safety means along the route or between vehicles or trains for indicating the distance between vehicles or trains by the transmission of signals therebetween
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control
    • B60T2201/022Collision avoidance systems

Definitions

  • the present application relates to the field of computers, and in particular, to a vehicle braking method, device and train.
  • the automatic train protection system (ATP) is usually used to measure the speed of the train. After the ATP is removed, the radar auxiliary protection system is enabled to measure the distance between the vehicle and the preceding vehicle in the same direction in real time.
  • the train should decelerate according to the braking ability of the train itself before colliding with the preceding vehicle.
  • the driving experience of conductors alone is not enough to improve the safety of trains and reduce the risk of rear-end collisions.
  • the existing radar auxiliary protection system after removing ATP has a higher risk of rear-end collision and lower train driving safety.
  • the embodiments of the present application provide a vehicle braking method, device and train, which can effectively reduce the risk of rear-end collision with the preceding vehicle, Improve the safety of train operation.
  • Embodiments of the present application provide a vehicle braking method, the method comprising:
  • the preset deceleration is performed to brake the distance traveled by the host vehicle.
  • the target idling distance is the sum of the first idling distance and the second idling distance.
  • the emergency braking distance is obtained according to at least one of the first braking distance, the second braking distance and the third braking distance, and the first braking distance is performed by all bogies under normal working conditions.
  • the driving distance of braking the own vehicle, the second braking distance is the distance that all bogies brake the driving distance of the own vehicle under wet rail conditions, and the third braking distance is the removal of a preset number of turns The braking force of the rack and the distance traveled by the host vehicle when braking is performed in wet rail conditions.
  • the emergency braking distance is a maximum value among the first braking distance, the second braking distance and the third braking distance.
  • the method further includes:
  • the distance is less than or equal to a second threshold, an alarm is performed, the second threshold is greater than the first threshold, and the second threshold is determined according to the first threshold and the minimum alarm interval;
  • Embodiments of the present application also provide a vehicle braking device, the device comprising:
  • Obtaining unit used to obtain the distance between the vehicle and the preceding vehicle
  • a first alarm unit configured to issue an alarm if the distance is less than or equal to a first threshold
  • a first braking unit configured to receive a first braking command triggered by a user, and according to the first braking command, brake the host vehicle according to a first preset deceleration, wherein the first threshold is
  • the target idling distance is obtained according to the sum of the target idling distance and the emergency braking distance, and the target idling distance is obtained according to at least one of the first idling distance and the second idling distance, and the first idling distance is obtained by obtaining the own vehicle.
  • the distance traveled by the own vehicle during the distance to the preceding vehicle, the second idling distance is the distance traveled by the vehicle when the user triggers the first braking command, and the emergency braking
  • the moving distance is the distance that the host vehicle is driven by braking according to the first preset deceleration.
  • the target idling distance is the sum of the first idling distance and the second idling distance.
  • the emergency braking distance is obtained according to at least one of the first braking distance, the second braking distance and the third braking distance, and the first braking distance is performed by all bogies under normal working conditions.
  • the driving distance of braking the own vehicle, the second braking distance is the distance that all bogies brake the driving distance of the own vehicle under wet rail conditions, and the third braking distance is the removal of a preset number of turns The braking force of the rack and the distance traveled by the host vehicle when braking is performed in wet rail conditions.
  • the emergency braking distance is a maximum value among the first braking distance, the second braking distance and the third braking distance.
  • the device further includes:
  • a second alarm unit configured to perform an alarm if the distance is less than or equal to a second threshold, the second threshold is greater than the first threshold, and the second threshold is based on the first threshold and the minimum alarm interval time to determine;
  • the second braking unit is configured to receive a second braking command triggered by the user, and according to the second braking command, brake the vehicle according to a second preset deceleration, and the second preset deceleration The speed is less than the first preset deceleration.
  • Embodiments of the present application further provide a train, including a vehicle braking device
  • the vehicle braking device is used to execute any one of the vehicle braking methods provided in the embodiments of the present application.
  • the present invention has at least the following advantages:
  • An embodiment of the present application provides a vehicle braking method.
  • the method includes: acquiring the distance between the vehicle and the vehicle in front, and if the distance is less than or equal to a first threshold, alarming, and receiving a first braking triggered by a user instruction, according to the first braking instruction, the vehicle is braked according to the first preset deceleration, wherein the first threshold value is obtained according to the sum of the target idle distance and the emergency braking distance, the The target idling distance is obtained according to at least one of the first idling distance and the second idling distance, where the first idling distance is the distance traveled by the vehicle in the process of obtaining the distance between the vehicle and the preceding vehicle , the second idling distance is the distance the vehicle travels when the user triggers the braking command, and the emergency braking distance is the braking of the vehicle according to the first preset deceleration distance traveled by the car.
  • the distance from the vehicle in front is measured and compared with the threshold value. If the measured distance is less than or equal to the threshold value, the train starts to brake.
  • the braking threshold value is limited by the idling distance and the braking performance of the train itself.
  • the emergency braking distance of the vehicle is determined.
  • the vehicle braking method provided by the embodiment of the present application determines the braking threshold by taking into account the ranging capability of the radar protection system and the braking performance of the train, which can effectively reduce the risk of rear-end collision with the preceding vehicle. Improve the safety of train operation.
  • Embodiment 1 is a flowchart of Embodiment 1 of a vehicle braking method provided by the application;
  • FIG. 2 is a structural block diagram of Embodiment 1 of a vehicle braking device provided by the present application.
  • the radar auxiliary protection system is used to continue to measure the distance to the vehicle in front.
  • the ranging capability of the radar auxiliary protection system is 1 kilometer (km).
  • the risk of rear-end collision needs to take into account the ranging performance of the radar auxiliary protection system and the braking ability of the train itself to improve the safety of train operation.
  • the distance from the preceding vehicle is measured and compared with the threshold value. If the measured distance is less than or equal to the threshold value, the train starts to brake, and the braking threshold value is limited by the idling distance and the braking performance of the train itself. The moving distance is determined.
  • the vehicle braking method provided by the embodiment of the present application determines the braking threshold by taking into account the ranging capability of the radar protection system and the emergency braking performance of the train, which can effectively reduce the risk of rear-end collision with the preceding vehicle and improve the train speed. operational security.
  • FIG. 1 is a flowchart of a vehicle braking method provided in Embodiment 1 of the present application.
  • the vehicle braking method provided in this embodiment can be applied to, for example, a controller of a vehicle, and specifically includes the following steps:
  • Step 101 Obtain the distance between the vehicle and the vehicle in front.
  • the radar auxiliary protection system can be used to obtain the distance between the vehicle and the preceding vehicle, that is, the radar auxiliary protection system is used for distance detection, and the detection result is sent to the train controller.
  • the radar auxiliary protection system adopts radio frequency technology.
  • the radar auxiliary protection system of the vehicle first sends the electromagnetic wave of ranging to the radar auxiliary protection system of the preceding vehicle, and the radar auxiliary protection system of the preceding vehicle receives the electromagnetic wave of the ranging and identifies the electromagnetic wave.
  • the radar auxiliary protection system of the rear vehicle After identifying and determining that it is the electromagnetic wave of distance measurement sent by the radar auxiliary protection system of the rear vehicle, it returns the electromagnetic wave to the radar auxiliary protection system of the rear vehicle, and the radar auxiliary protection system of the vehicle receives the reply electromagnetic wave from the radar auxiliary protection system of the preceding vehicle. Then, use the transmission speed of the electromagnetic wave and the round-trip time to determine the distance between the vehicle and the preceding vehicle.
  • the embodiment of the present application may also use other ranging means to detect the distance between the vehicle and the vehicle in front, such as infrared rays, etc., which will not be repeated here.
  • the radar auxiliary protection system is used as an example for description below.
  • Step 102 If the distance is less than or equal to the first threshold, alarm.
  • the first threshold represents that the distance between the vehicle and the preceding vehicle is at a certain fixed value, and the value is independent of the relative speed of the vehicle and the preceding vehicle.
  • the detected distance between the vehicle and the vehicle in front is less than or equal to the first threshold, which means that the distance between the vehicle and the vehicle in front may be too close, and the risk of rear-end collision may be high.
  • the driver can be alerted to remind the vehicle. safety issues and reduce the risk of rear-end collisions.
  • Step 103 Receive a first braking command triggered by a user, and according to the first braking command, brake the vehicle according to a first preset deceleration, wherein the first threshold value is based on the target idling distance and the sum of the emergency braking distance, the target idling distance is obtained according to at least one of the first idling distance and the second idling distance, and the first idling distance is the distance between the vehicle and the preceding vehicle.
  • the distance traveled by the host vehicle during the distance, the second idling distance is the distance traveled by the host vehicle when the user triggers the first braking command, and the emergency braking distance is based on the The first preset deceleration is used to brake the distance traveled by the host vehicle.
  • the controller of the vehicle after detecting that the distance between the vehicle and the vehicle in front is less than or equal to the first threshold, performs alarm processing.
  • the user triggers the first braking command
  • the first The braking command refers to the command to brake the vehicle.
  • the first preset deceleration corresponds to the first braking command
  • the first preset deceleration is a fixed value.
  • the first preset deceleration may be the deceleration during emergency braking.
  • the first preset deceleration may be the maximum deceleration during emergency braking, and the maximum deceleration during emergency braking may represent the braking performance of the vehicle.
  • the first threshold is the sum of the target idle distance and the emergency braking distance.
  • the target idling distance represents the distance traveled by the vehicle before braking. This is because the train is still running during the time interval when the distance is detected, the alarm is notified, and the brake is started after receiving the alarm. During this time interval , the distance traveled by the train is the target idling distance.
  • the emergency braking distance represents the distance traveled by the vehicle after braking until it stops.
  • the radar auxiliary protection system may have a ranging deviation. Therefore, for the safety of the train, the ranging deviation of the radar auxiliary protection system can be set.
  • the first threshold is the difference between the target idle distance and the emergency braking distance.
  • the sum and the ranging deviation are determined.
  • the first threshold is the product of the sum of the target idling distance and the emergency braking distance and the ranging deviation.
  • the target idling distance can be determined, and the target idling distance can be determined according to the difference between the first idling distance and the second idling distance. At least one gets.
  • the target idling distance can be obtained according to the first idling distance.
  • the first idling distance refers to the distance traveled by the vehicle in the process of detecting the distance between the vehicle and the vehicle in front, that is, it takes time to detect the distance between the vehicle and the vehicle in front. Still driving. Specifically, the time spent by the radar protection system in detecting the distance and the maximum speed of the vehicle can be used to determine the first idling distance.
  • the time spent by the radar protection system in detecting the distance is t1, and the unit can be is seconds (s), the maximum speed of the vehicle is v1, and the unit can be meters per second (m/s), then the first idling distance L1 can be the time spent by the radar protection system in detecting the distance and the vehicle's speed.
  • the target idling distance may be obtained according to the second idling distance.
  • the second idling distance refers to the distance traveled by the vehicle when the user triggers the braking command, that is, the time spent by the user between receiving the distance alarm and triggering the braking command.
  • the second idling distance can be determined by using a certain fixed user reaction time and the driving speed of the vehicle.
  • the fixed user reaction time is t2, and the unit may be seconds (s).
  • the driving speed is v1, and the unit can be meters per second (m/s).
  • the target idling distance can also be obtained according to the first idling distance and the second idling distance.
  • the time t1 spent by the radar protection system in detecting the distance is 1s
  • the maximum speed v1 of the vehicle is 120 kilometers per hour (km/h)
  • the emergency braking distance may be determined, and the emergency braking distance may be the vehicle when braking according to the first preset deceleration. distance traveled.
  • the emergency braking distance may be obtained according to at least one of the first braking distance, the second braking distance and the third braking distance.
  • the emergency braking distance can be obtained according to the first braking distance.
  • the first braking distance is the distance traveled by the vehicle when all the bogies are braking under normal operating conditions.
  • the first braking distance can be determined by using the first preset deceleration and the driving speed of the vehicle.
  • the first preset deceleration can be the maximum deceleration of all bogies during emergency braking under normal operating conditions.
  • the travel speed can be the maximum travel speed.
  • the emergency braking distance may be obtained according to the second braking distance.
  • the second braking distance is the distance traveled by the vehicle when all the bogies are braked under wet rail conditions.
  • the second braking distance can be determined by using the first preset deceleration and the running speed of the vehicle.
  • the first preset deceleration can be the maximum deceleration of all bogies during emergency braking under wet track conditions.
  • the maximum deceleration of all bogies under emergency braking is less than the maximum deceleration of all bogies under emergency braking under normal conditions.
  • the travel speed of the host vehicle may be the maximum travel speed.
  • the maximum deceleration of all bogies during emergency braking under wet track conditions is a2
  • the unit is meters per second squared (m/s 2 )
  • the maximum speed of the vehicle is v1
  • the unit can be meters per second (m/s)
  • the emergency braking distance may be obtained according to the third braking distance.
  • the third braking distance is the distance traveled by the vehicle when the braking force of the preset number of bogies is removed for braking under wet track conditions.
  • the third braking distance may be determined by using the first preset deceleration and the traveling speed of the host vehicle.
  • the first preset deceleration may be the maximum deceleration during emergency braking when the braking force of the preset number of bogies is removed in a wet track condition
  • the driving speed of the vehicle may be the braking force of the preset number of bogies removed. The limited speed of the powered vehicle.
  • the preset number of bogies to be cut off is determined according to the actual situation. As an example, one bogie can be cut off.
  • the emergency braking distance may also be jointly obtained according to the first braking distance, the second braking distance and the third braking distance.
  • the emergency braking distance S may be the maximum value among the first braking distance, the second braking distance and the third braking distance.
  • the maximum deceleration a1 during emergency braking of all bogies under normal operating conditions is 1.2 m/s 2
  • the maximum driving speed v1 of the vehicle is 120 km/h
  • the maximum deceleration a2 of all bogies during emergency braking under wet track conditions is 0.91m/s 2
  • the maximum running speed v1 of the vehicle is 120km/h
  • the maximum deceleration a3 when the braking force of one bogie is removed under wet track conditions is 0.91m/s 2 ⁇ 11 ⁇ 12, and the braking force of one bogie is removed from the vehicle.
  • the limited speed v2 of the rear vehicle is 110km/h
  • the ranging deviation can be 5%
  • the first threshold can be rounded up to the nearest nearest integer, that is, the first threshold can be 720m.
  • the alarm for the first threshold corresponds to the emergency braking of the train, that is, if the distance between the vehicle and the vehicle in front is less than the first threshold, if emergency braking is not performed, the risk of rear-end collision is high.
  • a second threshold corresponding to regular braking may be detected before detecting the first threshold corresponding to emergency braking.
  • common braking has a longer braking distance, which can leave a longer distance for the train to brake, which can further reduce the risk of train rear-end collision.
  • the detected distance between the vehicle and the preceding vehicle can also be compared with a second threshold, and if the detected distance is less than or equal to the second threshold, an alarm is processed, and the second threshold is greater than the first threshold.
  • the second threshold value is greater than the first threshold value corresponding to emergency braking, that is, the second threshold value corresponds to the alarm distance used for normal braking.
  • the detected distance between the vehicle and the vehicle in front is less than or equal to the second threshold, which means that the distance between the vehicle and the vehicle in front is less than or equal to a certain fixed value, that is, the distance between the vehicle and the vehicle in front is close, and there may be a risk of rear-end collision , the vehicle driver can be alerted to remind the vehicle of safety problems and reduce the probability of rear-end collisions.
  • the second threshold may be determined according to the first threshold and the minimum alarm interval.
  • the minimum alarm interval is the time interval between the first threshold for alarming and the second threshold for alarming. The time interval cannot be too short, which will cause continuous alarms, affect the user's judgment, and bring unnecessary driving risks.
  • the second threshold may be determined according to the first threshold, the minimum alarm interval time and the driving speed of the vehicle.
  • an alarm process is performed.
  • the user triggers a second braking command.
  • the second braking command refers to the When the vehicle brakes according to the second braking command, there is a corresponding second preset deceleration for braking.
  • the second preset deceleration corresponds to the second braking command, and the second preset deceleration
  • the deceleration is smaller than the first preset deceleration, and the second preset deceleration is a fixed value.
  • the second preset deceleration may be the deceleration during normal braking.
  • the second preset deceleration may be the deceleration during normal braking, and the deceleration during normal braking may be 1.0 m/s 2 .
  • the second threshold can also be determined according to the sum of the target idle distance and the common braking distance, and the target idle distance of the second threshold can be the same as the target idle distance of the first threshold, that is, the target idle distance
  • the idling distance can be obtained according to the first idling distance and the second idling distance.
  • the normal braking distance is the distance traveled by the vehicle when braking according to the second preset deceleration.
  • the second preset deceleration is smaller than the first preset deceleration.
  • the common braking distance can be obtained according to at least one of the first common braking distance, the second common braking distance and the third common braking distance.
  • the maximum deceleration a2 of all bogies during common braking under wet track conditions is 0.91m/s 2
  • the maximum driving speed v1 of the vehicle is 120km/h
  • the maximum deceleration a3 when the braking force of one bogie is removed in the wet track condition is 0.91m/s 2 ⁇ 11 ⁇ 12, and the braking force of the vehicle when one bogie is removed is 0.91m/s.
  • the value determined by the first threshold and the minimum alarm interval time may also be compared with the maximum value of the sum of the target idle distance and the normal braking distance, and the maximum value of the two may be determined as the second threshold value .
  • the distance from the vehicle in front is measured and compared with the threshold value. If the measured distance is less than or equal to the threshold value, the train starts to brake.
  • the braking threshold value is limited by the idling distance and the braking performance of the train itself.
  • the braking distance of the vehicle is determined.
  • the vehicle braking method provided by the embodiment of the present application determines the braking threshold by taking into account the ranging capability of the radar protection system and the braking performance of the train, which can effectively reduce the risk of rear-end collision with the preceding vehicle and improve the Safety of train operation.
  • the embodiments of the present application also provide a vehicle braking device, the working principle of which will be described in detail below with reference to the accompanying drawings.
  • FIG. 2 is a structural block diagram of a vehicle braking device 200 according to an embodiment of the present application.
  • the vehicle braking device 200 provided in this embodiment includes:
  • an obtaining unit 210 configured to obtain the distance between the vehicle and the preceding vehicle
  • a first alarm unit 220 configured to issue an alarm if the distance is less than or equal to a first threshold
  • the first braking unit 230 is configured to receive a first braking command triggered by a user, and according to the first braking command, brake the vehicle according to a first preset deceleration, wherein the first braking The threshold value is obtained according to the sum of the target idling distance and the emergency braking distance, the target idling distance is obtained according to at least one of the first idling distance and the second idling distance, and the first idling distance is to obtain the The distance traveled by the vehicle during the distance between the vehicle and the vehicle in front, the second idling distance is the distance traveled by the vehicle during the user triggering the first braking command, the emergency The braking distance is the distance that the host vehicle is driven by braking according to the first preset deceleration.
  • the target idling distance is the sum of the first idling distance and the second idling distance.
  • the emergency braking distance is obtained according to at least one of the first braking distance, the second braking distance and the third braking distance, and the first braking distance is a normal working condition
  • the driving distance of the vehicle under all bogies to brake the vehicle, the second braking distance is the distance that all the trucks brake the vehicle to travel under wet rail conditions, and the third braking distance is the cut-off distance
  • the braking force of a preset number of bogies and the distance traveled by the host vehicle are braked under wet rail conditions.
  • the emergency braking distance is a maximum value among the first braking distance, the second braking distance and the third braking distance.
  • the vehicle braking device 200 further includes:
  • a second alarm unit configured to perform an alarm if the distance is less than or equal to a second threshold, the second threshold is greater than the first threshold, and the second threshold is based on the first threshold and the minimum alarm interval time to determine;
  • the second braking unit is configured to receive a second braking command triggered by the user, and according to the second braking command, brake the vehicle according to a second preset deceleration, and the second preset deceleration The speed is less than the first preset deceleration.
  • the vehicle braking device 200 is a device corresponding to the method provided by the above method embodiments, the specific implementation of each unit of the vehicle braking device 200 is the same concept as the above method embodiments.
  • the specific implementation of each unit of the vehicle braking device 200 reference may be made to the description part of the above method embodiments, which will not be repeated here.
  • Embodiments of the present application also provide a train, including a vehicle braking device.
  • the vehicle braking device may be used to execute any vehicle braking method provided in the embodiments of the present application.
  • the realization of all or part of the processes in the above method embodiments can be accomplished by instructing relevant hardware through a computer program, and the program can be stored in a computer-readable storage In the medium, when the program is executed, it may include the processes of the foregoing method embodiments.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM) or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Regulating Braking Force (AREA)

Abstract

一种车辆制动方法、装置(200)和列车,制动方法包括:获取本车与前车之间的距离(101);若距离小于或等于第一阈值,则进行报警(102);接收用户触发的第一制动指令,根据第一制动指令,按照第一预设减速度对本车进行制动,其中,第一阈值根据目标空走距离与紧急制动距离之和得到,目标空走距离根据第一空走距离和第二空走距离中至少一个得到,第一空走距离为获取本车与前车之间距离的过程中本车行驶的距离,第二空走距离为用户触发第一制动指令过程中本车行驶的距离,紧急制动距离为按照第一预设减速度进行制动本车行驶的距离(103)。有益效果:通过兼顾测距能力和列车的制动性能来确定制动的阈值,能够有效降低与前车的追尾风险,提高列车运行的安全性。

Description

一种车辆制动方法、装置及列车
本申请要求于2020年10月19日提交中国国家知识产权局、申请号为CN202011118479.0、发明名称为“一种车辆制动方法、装置及列车”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及计算机领域,尤其涉及一种车辆制动方法、装置及列车。
背景技术
现有的轨道交通中,通常利用列车自动防护系统(Automatic Train Protection,ATP)来实现对于列车速度的测定,在ATP切除后,启用雷达辅助防护系统实时测量本车与同一运行方向的前车之间的距离,为了提高列车的安全性,需要避免列车与同一运行方向的前车的追尾风险,因此,列车应该在与前车相撞之前,根据列车本身的制动能力减速。但是,仅凭列车员的行驶经验不足以提高列车的安全性,降低追尾的风险。
综上,现有的切除ATP后的雷达辅助防护系统,追尾的风险较高,列车行驶安全性较低。
发明内容
为了解决现有技术中切除ATP后的雷达辅助防护系统提高列车的行驶安全性的问题,本申请实施例提供了一种车辆制动方法、装置及列车,能够有效降低与前车的追尾风险,提高列车运行的安全性。
本申请实施例提供了一种车辆制动方法,所述方法包括:
获取本车与前车之间的距离;
若所述距离小于或等于第一阈值,则进行报警;
接收用户触发的第一制动指令,根据所述第一制动指令,按照第一预设减速度对所述本车进行制动,其中,所述第一阈值根据目标空走距离与紧急制动距离之和得到,所述目标空走距离根据第一空走距离和第二空走距离中至少一个得到,所述第一空走距离为获取所述本车与前车之间的距离过程中所述本车行驶的距离,所述第二空走距离为所述用户触发所述第一制动指令过程中所述本车行驶的距离,所述紧急制动距离为按照所述第一预设减速度进行制动所述本车行驶的距离。
可选的,所述目标空走距离为所述第一空走距离与所述第二空走距离之和。
可选的,所述紧急制动距离根据第一制动距离、第二制动距离和第三制动距离中的至少一个得到,所述第一制动距离为正常工况下全部转向架进行制动所述本车行驶的距离,所述第二制动距离为湿轨状况下全部转向架进行制动所述本车行驶的距离,所述第三制动距离为切除预设数目个转向架的制动力且在湿轨状况下进行制动所述本车行驶的距离。
可选的,所述紧急制动距离为所述第一制动距离、所述第二制动距离和所述第三制动 距离中的最大值。
可选的,所述方法还包括:
若所述距离小于或等于第二阈值,则进行报警,所述第二阈值大于所述第一阈值,所述第二阈值根据所述第一阈值和最小报警间隔时间进行确定;
接收用户触发的第二制动指令,根据所述第二制动指令,按照第二预设减速度对所述本车进行制动,所述第二预设减速度小于所述第一预设减速度。
本申请实施例还提供了一种车辆制动装置,所述装置包括:
获取单元,用于获取本车与前车之间的距离;
第一报警单元,用于若所述距离小于或等于第一阈值,则进行报警;
第一制动单元,用于接收用户触发的第一制动指令,根据所述第一制动指令,按照第一预设减速度对所述本车进行制动,其中,所述第一阈值根据目标空走距离与紧急制动距离之和得到,所述目标空走距离根据第一空走距离和第二空走距离中至少一个得到,所述第一空走距离为获取所述本车与前车之间的距离过程中所述本车行驶的距离,所述第二空走距离为所述用户触发所述第一制动指令过程中所述本车行驶的距离,所述紧急制动距离为按照所述第一预设减速度进行制动所述本车行驶的距离。
可选的,所述目标空走距离为所述第一空走距离与所述第二空走距离之和。
可选的,所述紧急制动距离根据第一制动距离、第二制动距离和第三制动距离中的至少一个得到,所述第一制动距离为正常工况下全部转向架进行制动所述本车行驶的距离,所述第二制动距离为湿轨状况下全部转向架进行制动所述本车行驶的距离,所述第三制动距离为切除预设数目个转向架的制动力且在湿轨状况下进行制动所述本车行驶的距离。
可选的,所述紧急制动距离为所述第一制动距离、所述第二制动距离和所述第三制动距离中的最大值。
可选的,所述装置还包括:
第二报警单元,用于若所述距离小于或等于第二阈值,则进行报警,所述第二阈值大于所述第一阈值,所述第二阈值根据所述第一阈值和最小报警间隔时间进行确定;
第二制动单元,用于接收用户触发的第二制动指令,根据所述第二制动指令,按照第二预设减速度对所述本车进行制动,所述第二预设减速度小于所述第一预设减速度。
本申请实施例还提供一种列车,包括车辆制动装置;
所述车辆制动装置,用于执行本申请实施例提供的任意一种车辆制动方法。
与现有技术相比,本发明至少具有以下优点:
本申请实施例提供了一种车辆制动方法,方法包括:获取本车与前车之间的距离,若所述距离小于或等于第一阈值,则进行报警,接收用户触发的第一制动指令,根据所述第一制动指令,按照第一预设减速度对所述本车进行制动,其中,所述第一阈值根据目标空走距离与紧急制动距离之和得到,所述目标空走距离根据第一空走距离和第二空走距离中至少一个得到,所述第一空走距离为获取所述本车与前车之间的距离过程中所述本车行驶的距离,所述第二空走距离为所述用户触发所述制动指令过程中所述本车行驶的距离,所述紧急制动距离为按照所述第一预设减速度进行制动所述本车行驶的距离。由此可见,本 申请实施例通过测定与前车的距离和阈值进行比较,若测定距离小于或等于阈值,则列车开始制动,制动的阈值由空走距离和列车本身的制动性能限制的紧急制动距离确定,本申请实施例提供的车辆制动方法,通过兼顾雷达防护系统的测距能力和列车的制动性能来确定制动的阈值,能够有效降低与前车的追尾风险,提高列车运行的安全性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请提供的一种车辆制动方法实施例一的流程图;
图2为本申请提供的一种车辆制动装置实施例一的结构框图。
具体实施方式
为了使本领域技术人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
由背景技术可知,列车在运行过程中切除ATP之后,是利用雷达辅助防护系统继续测定与前车的距离,目前雷达辅助防护系统的测距能力在1千米(km),为了降低与前车追尾的风险,需要兼顾雷达辅助防护系统的测距性能和列车自身的制动能力来提高列车运行的安全性。
因此,本申请实施例通过测定与前车的距离和阈值进行比较,若测定距离小于或等于阈值,则列车开始制动,制动的阈值由空走距离和列车本身的制动性能限制的制动距离确定,本申请实施例提供的车辆制动方法,通过兼顾雷达防护系统的测距能力和列车的紧急制动性能来确定制动的阈值,能够有效降低与前车的追尾风险,提高列车运行的安全性。
参见图1,该图为本申请实施例一提供的一种车辆制动方法的流程图。
本实施例提供的车辆制动方法,可以例如应用于车辆的控制器,具体包括如下步骤:
步骤101:获取本车与前车之间的距离。
在本申请的实施例中,在车辆运行过程中,需要实时获取本车和同一运行方向前车的距离,以便根据获取到的距离进行后续的处理。获取本车与前车的距离可以利用雷达辅助防护系统,即利用雷达辅助防护系统进行距离检测,并将检测结果发送至列车的控制器。具体的,雷达辅助防护系统采用无线射频技术,本车的雷达辅助防护系统首先向前车的雷达辅助防护系统发送测距的电磁波,前车的雷达辅助防护系统接收到测距的电磁波后进行识别辨认,确定是后车的雷达辅助防护系统发送的测距的电磁波后,向后车的雷达辅助防护系统返回答复电磁波,本车的雷达辅助防护系统接收到前车的雷达辅助防护系统的答复电磁波后,利用电磁波的传输速度及往返时间确定本车与前车的车距。
当然,除了采用雷达辅助防护系统以外,本申请实施例还可以采用其他测距手段对本车和前车之间的距离进行检测,例如红外线等,此处不再赘述。为了描述方便,下文均采用雷达辅助防护系统作为示例进行说明。
步骤102:若所述距离小于或等于第一阈值,则进行报警。
在本申请的实施例中,第一阈值代表本车与前车的距离处于某一个固定的数值,该数值与本车和前车的相对速度无关。检测到的本车和前车的距离小于或等于第一阈值,代表本车和前车的距离可能过近,追尾的风险可能较高,可以通过向车辆驾驶员进行报警处理,以此提醒车辆的安全性问题,降低追尾事故的发生的几率。
步骤103:接收用户触发的第一制动指令,根据所述第一制动指令,按照第一预设减速度对所述本车进行制动,其中,所述第一阈值根据目标空走距离与紧急制动距离之和得到,所述目标空走距离根据第一空走距离和第二空走距离中至少一个得到,所述第一空走距离为获取所述本车与前车之间的距离过程中所述本车行驶的距离,所述第二空走距离为所述用户触发所述第一制动指令过程中所述本车行驶的距离,所述紧急制动距离为按照所述第一预设减速度进行制动所述本车行驶的距离。
在本申请的实施例中,经过检测本车与前车的距离小于或等于第一阈值后,车辆的控制器进行报警处理,用户在收到报警后,触发第一制动指令,第一制动指令是指对车辆进行制动的指令。列车按照第一制动指令进行制动时,有对应的第一预设减速度来进行制动,第一预设减速度对应于第一制动指令,第一预设减速度为固定值。具体的,第一预设减速度可以为紧急制动时的减速度。作为一种示例,第一预设减速度可以为紧急制动时的最大减速度,紧急制动时的最大减速度可以代表车辆的制动性能。
在车辆行进的过程中,时刻检测本车与前车的距离是否小于或等于第一阈值,第一阈值为目标空走距离和紧急制动距离之和。目标空走距离代表在没有制动之前车辆行驶的距离,这是由于在检测车距、通知报警及接收到报警开始制动的时间区间中,列车依旧在行驶中,而在这段时间区间内,列车行驶的距离即为目标空走距离。紧急制动距离代表车辆制动之后至停止经过的距离。在实际情况中,雷达辅助防护系统可能存在测距偏差,因此为了列车的安全性,可以设置雷达辅助防护系统的测距偏差,具体的,第一阈值为目标空走距离和紧急制动距离之和与测距偏差确定,作为一种示例,第一阈值为目标空走距离和紧急制动距离之和与测距偏差的乘积。
由于第一阈值为目标空走距离和紧急制动距离之和,因此为了确定第一阈值,可以确定目标空走距离,目标空走距离可以根据第一空走距离和第二空走距离中的至少一个得到。
作为一种实现方式,目标空走距离可以根据第一空走距离得到。第一空走距离是指在检测本车与前车之间的距离过程中本车行驶的距离,即在检测本车与前车的距离过程中,花费了时间,在这段时间内,车辆依旧在行驶。具体的,可以利用雷达防护系统在检测距离时花费的时间与本车的最高行驶速度确定第一空走距离,作为一种示例,利用雷达防护系统在检测距离时花费的时间为t1,单位可以是秒(s),本车的最高行驶速度为v1,单位可以是米每秒(m/s),则第一空走距离L1可以为雷达防护系统在检测距离时花费的时间与本车的最高行驶速度的乘积,即如下关系:L1=v1×t1,单位可以是米(m)。
作为另一种实现方式,目标空走距离可以根据第二空走距离得到。第二空走距离是指用户触发制动指令的过程中本车行驶的距离,即用户在接收到距离报警至触发制动指令之间花费的时间。具体的,可以利用某个固定的用户反应时间和本车的行驶速度确定第二空走距离,作为一种示例,固定的用户反应时间为t2,单位可以是秒(s),本车的最高行驶速度为v1,单位可以是米每秒(m/s),则第二空走距离L2可以是用户反应时间与本车的最高行驶速度的乘积,即如下关系:L2=v1×t2。
作为又一种实现方式,目标空走距离还可以根据第一空走距离和第二空走距离共同得到,具体的,目标空走距离L可以是第一空走距离与第二空走距离之和,即L=L1+L2。作为一种示例,在第一空走距离的计算中,利用雷达防护系统在检测距离时花费的时间t1为1s,本车的最高行驶速度v1为120千米每小时(km/h),则第一空走距离L1=v1×t1=120km/h÷3.6×1s=33.3m,其中公式中除以3.6是对最高行驶速度的单位千米每小时换算为米每秒。在第二空走距离的计算中,固定的用户反应时间t2为1.15s,本车的最高行驶速度v1为120km/h,则第二空走距离L2=v1×t2=120km/h÷3.6×1.15s=38.3m,其中公式中除以3.6是对最高行驶速度的单位千米每小时换算为米每秒。目标空走距离可以是第一空走距离与第二空走距离之和,则目标空走距离L=L1+L2=33.3+38.3=71.6m。
由于第一阈值为目标空走距离和紧急制动距离之和,因此为了确定第一阈值,可以确定紧急制动距离,紧急制动距离可以是按照第一预设减速度进行制动时本车行驶的距离。紧急制动距离可以根据第一制动距离、第二制动距离和第三制动距离中的至少一个得到。
作为一种实现方式,紧急制动距离可以根据第一制动距离得到。第一制动距离为正常工况下全部转向架进行制动时本车行驶的距离。第一制动距离可以利用第一预设减速度与本车的行驶速度确定,具体的,第一预设减速度可以是正常工况下全部转向架紧急制动时的最大减速度,本车的行驶速度可以是最高行驶速度。作为一种示例,正常工况下全部转向架紧急制动时的最大减速度为a1,单位为米每二次方秒(m/s 2),本车的最高行驶速度为v1,单位可以是米每秒(m/s),则第一制动距离S1可以是本车的最高行驶速度的平方与正常工况下全部转向架紧急制动时的最大减速度的比值,即如下关系:S1=v1 2/2a1。
作为另一种实现方式,紧急制动距离可以根据第二制动距离得到。第二制动距离为湿轨状况下全部转向架进行制动时本车行驶的距离。第二制动距离可以利用第一预设减速度与本车的行驶速度确定,具体的,第一预设减速度可以是湿轨状况下全部转向架紧急制动时的最大减速度,湿轨状况下全部转向架紧急制动时的最大减速度小于正常工况下全部转向架紧急制动时的最大减速度。本车的行驶速度可以是最高行驶速度。作为一种示例,湿轨状况下全部转向架紧急制动时的最大减速度为a2,单位为米每二次方秒(m/s 2),本车的最高行驶速度为v1,单位可以是米每秒(m/s),则第二制动距离S2可以是本车的最高行驶速度的平方与湿轨状况下全部转向架紧急制动时的最大减速度的比值,即如下关系:S2=v1 2/2a2。
作为又一种实现方式,紧急制动距离可以根据第三制动距离得到。第三制动距离为湿轨状况下切除预设数目个转向架的制动力进行制动时本车行驶的距离。第三制动距离可以利用第一预设减速度与本车的行驶速度确定。具体的,第一预设减速度可以是湿轨状况下 切除预设数目个转向架的制动力紧急制动时的最大减速度,本车的行驶速度可以是切除预设数目个转向架的制动力后车辆的限定速度。作为一种示例,湿轨状况下切除预设数目个转向架的制动力紧急制动时的最大减速度为a3,其中a3=a2×转向架剩余数目÷转向架总数目,单位为米每二次方秒(m/s 2),本车的切除预设数目个转向架的制动力后车辆的限定速度为v2,单位可以是米每秒(m/s),则第三制动距离S3可以是本车的切除预设数目个转向架的制动力后车辆的限定速度的平方与湿轨状况下切除预设数目个转向架的制动力紧急制动时的最大减速度的比值,即如下关系:S3=v2 2/2a3。切除预设数目个转向架按照实际情况进行确定,作为一种示例,可以是切除一个转向架。
作为又一种实现方式,紧急制动距离还可以根据第一制动距离、第二制动距离和第三制动距离共同得到。具体的,紧急制动距离S可以是第一制动距离、第二制动距离和第三制动距离中的最大值。作为一种示例,在第一制动距离的计算中,正常工况下全部转向架紧急制动时的最大减速度a1为1.2m/s 2,本车的最高行驶速度v1为120km/h,则第一制动距离S1=v1 2/2a1=(120km/h÷3.6)×(120km/h÷3.6)/(2×1.2m/s 2)=463.0m。在第二制动距离的计算中,湿轨状况下全部转向架紧急制动时的最大减速度a2为0.91m/s 2,本车的最高行驶速度v1为120km/h,则第二制动距离S2=v1 2/2a2=(120km/h÷3.6)×(120km/h÷3.6)/(2×0.91m/s 2)=610.5m。在第三制动距离的计算中,湿轨状况下切除一个转向架的制动力紧急制动时的最大减速度a3为0.91m/s 2×11÷12,本车切除一个转向架的制动力后车辆的限定速度v2为110km/h,则第三制动距离S3=v2 2/2a3=(110km/h÷3.6)×(110km/h÷3.6)/(2×0.91m/s 2×11÷12)=559.6m。紧急制动距离可以是第一制动距离、第二制动距离和第三制动距离中的最大值,则紧急制动距离为第二制动距离,即S=S2=610.5m。
第一阈值Y1为目标空走距离和紧急制动距离之和,即Y1=L+S,作为一种示例,第一阈值Y1=L+S=71.6m+610.5m=682.1m。在实际情况中,考虑到雷达辅助防护系统的测距偏差问题,为了增大列车的安全性,测距偏差可以是5%,则第一阈值Y1=(L+S)×(1+5%)=682.1×(1+5%)=716.2m,考虑到实际情况中要为列车留出制动距离的冗余,可以对第一阈值进行就近向上取整,即第一阈值可以是720m。
在列车行驶的实际情况中,针对第一阈值进行报警,是对应列车紧急制动的情况,即如果本车与前车的距离小于第一阈值,若不进行紧急制动,则追尾风险较大。为了提高列车的安全性,可以在检测紧急制动对应的第一阈值之前,还检测常用制动对应的第二阈值。常用制动相对于紧急制动而言,制动距离较长,可以留给列车较长的距离进行制动,能够进一步的降低列车追尾的风险。
在本申请实施例中,还可以将检测得到的本车与前车的距离与第二阈值进行比较,若检测得到的距离小于或等于第二阈值,则进行报警处理,第二阈值大于第一阈值,第二阈值大于紧急制动对应的第一阈值,即第二阈值对应为常用制动采用的报警距离。检测到的本车和前车的距离小于或等于第二阈值,代表本车与前车的距离小于或等于某一个固定的数值,即本车和前车的距离在接近,可能有追尾的风险,可以通过向车辆驾驶员进行报警处理,以此提醒车辆的安全性问题,降低追尾事故的发生的几率。
第二阈值可以根据第一阈值和最小报警间隔时间确定。最小报警间隔时间为第一阈值进行报警和第二阈值进行报警的时间间隔,时间间隔不能过短,会导致连续报警,影响用户的判断,带来不必要的行车风险。具体的,第二阈值可以根据第一阈值、最小报警间隔时间和本车的行驶速度确定。作为一种示例,本车的行驶速度可以是最高行驶速度v1,单位可以是米每秒(m/s),最小报警时间间隔可以是t3,单位可以是秒(s),则第二阈值Y2可以是第一阈值Y1与最高行驶速度和最小报警时间间隔的乘积之和,即如下关系:Y2=Y1+v1×t3。在具体计算第二阈值时,本车的行驶速度可以是最高行驶速度v1,v1为120km/h,最小报警时间间隔t3为5s,则第二阈值Y2=Y1+v1×t3=720m+120km/h÷3.6×5s=886.7m。
在本申请实施例中,经过检测本车与前车的距离小于或等于第二阈值后,进行报警处理,用户在收到报警后,触发第二制动指令,第二制动指令是指对车辆进行制动的指令,按照第二制动指令进行制动时,有对应的第二预设减速度来进行制动,第二预设减速度对应于第二制动指令,第二预设减速度小于第一预设减速度,第二预设减速度为固定值。具体的,第二预设减速度可以为常用制动时的减速度。作为一种示例,第二预设减速度可以为常用制动时的减速度,常用制动时的减速度可以是1.0m/s 2
在实际情况中,第二阈值也可以根据目标空走距离和常用制动距离之和来确定,第二阈值的目标空走距离可以与第一阈值的目标空走距离相同,也就是说,目标空走距离可以根据第一空走距离和第二空走距离共同得到,具体的,目标空走距离L可以是第一空走距离与第二空走距离之和,即L=L1+L2=71.6m。常用制动距离为按照第二预设减速度进行制动时本车行驶的距离。第二预设减速度小于第一预设减速度。常用制动距离可以根据第一常用制动距离、第二常用制动距离和第三常用制动距离中的至少一个得到,具体的,常用制动距离S'可以是第一制动距离、第二制动距离和第三制动距离中的最大值。作为一种示例,在第一常用制动距离的计算中,正常工况下全部转向架常用制动时的最大减速度a1'为1.0m/s 2,本车的最高行驶速度v1为120km/h,则第一常用制动距离S1'=v1 2/2a1'=(120km/h÷3.6)×(120km/h÷3.6)/(2×1.0m/s 2)=555.6m。在第二常用制动距离的计算中,湿轨状况下全部转向架常用制动时的最大减速度a2为0.91m/s 2,本车的最高行驶速度v1为120km/h,则第二常用制动距离S2'=v1 2/2a2=(120km/h÷3.6)×(120km/h÷3.6)/(2×0.91m/s 2)=610.5m。在第三常用制动距离的计算中,湿轨状况下切除一个转向架的制动力紧急制动时的最大减速度a3为0.91m/s 2×11÷12,本车切除一个转向架的制动力后车辆的限定速度v2为110km/h,则第三常用制动距离S3'=v2 2/2a3=(110km/h÷3.6)×(110km/h÷3.6)/(2×0.91m/s 2×11÷12)=559.6m。常用制动距离可以是第一常用制动距离、第二常用制动距离和第三常用制动距离中的最大值,则常用制动距离为第二常用制动距离,即S'=S2'=610.5m。第二阈值Y2为目标空走距离和常用制动距离之和,即Y2=L+S',作为一种示例,第二阈值Y2=L+S'=71.6m+610.5m=682.1m。在实际情况中,考虑到雷达辅助防护系统的测距偏差问题,为了增大列车的安全性,测距偏差范围的最大值可以是5%,则第二阈值Y2=(L+S')×(1+5%)=682.1×(1+5%)=716.2m。
在本申请实施例中,还可以对第一阈值及最小报警间隔时间确定的值和目标空走距离 及常用制动距离之和的最大值进行比较,将两者的最大值确定为第二阈值。作为一种示例,经过第一阈值及最小报警间隔时间确定的第二阈值Y2=Y1+v1×t3=720m+120km/h÷3.6×5s=886.7m。经过目标空走距离及常用制动距离之和确定的第二阈值Y2=(L+S')×(1+5%)=682.1×(1+5%)=716.2m。经过数值的比较,可以看出利用第一阈值及最小报警间隔时间确定的值第二阈值的数值较大,因此将利用第一阈值及最小报警间隔时间确定的值确定为第二阈值。
由此可见,本申请实施例通过测定与前车的距离和阈值进行比较,若测定距离小于或等于阈值,则列车开始制动,制动的阈值由空走距离和列车本身的制动性能限制的制动距离确定,本申请实施例提供的车辆制动方法,通过兼顾雷达防护系统的测距能力和列车的制动性能来确定制动的阈值,能够有效降低与前车的追尾风险,提高列车运行的安全性。
基于以上实施例提供的一种车辆制动方法,本申请实施例还提供了一种车辆制动装置,下面结合附图来详细说明其工作原理。
参见图2,该图为本申请实施例提供的一种车辆制动装置200的结构框图。
本实施例提供的车辆制动装置200包括:
获取单元210,用于获取本车与前车之间的距离;
第一报警单元220,用于若所述距离小于或等于第一阈值,则进行报警;
第一制动单元230,用于接收用户触发的第一制动指令,根据所述第一制动指令,按照第一预设减速度对所述本车进行制动,其中,所述第一阈值根据目标空走距离与紧急制动距离之和得到,所述目标空走距离根据第一空走距离和第二空走距离中至少一个得到,所述第一空走距离为获取所述本车与前车之间的距离过程中所述本车行驶的距离,所述第二空走距离为所述用户触发所述第一制动指令过程中所述本车行驶的距离,所述紧急制动距离为按照所述第一预设减速度进行制动所述本车行驶的距离。
在一种可能的实现方式中,所述目标空走距离为所述第一空走距离与所述第二空走距离之和。
在一种可能的实现方式中,所述紧急制动距离根据第一制动距离、第二制动距离和第三制动距离中的至少一个得到,所述第一制动距离为正常工况下全部转向架进行制动所述本车行驶的距离,所述第二制动距离为湿轨状况下全部转向架进行制动所述本车行驶的距离,所述第三制动距离为切除预设数目个转向架的制动力且在湿轨状况下进行制动所述本车行驶的距离。
在一种可能的实现方式中,所述紧急制动距离为所述第一制动距离、所述第二制动距离和所述第三制动距离中的最大值。
在一种可能的实现方式中,所述车辆制动装置200还包括:
第二报警单元,用于若所述距离小于或等于第二阈值,则进行报警,所述第二阈值大于所述第一阈值,所述第二阈值根据所述第一阈值和最小报警间隔时间进行确定;
第二制动单元,用于接收用户触发的第二制动指令,根据所述第二制动指令,按照第二预设减速度对所述本车进行制动,所述第二预设减速度小于所述第一预设减速度。
由于所述车辆制动装置200是与以上方法实施例提供的方法对应的装置,所述车辆制 动装置200的各个单元的具体实现,均与以上方法实施例为同一构思,因此,关于所述车辆制动装置200的各个单元的具体实现,可以参考以上方法实施例的描述部分,此处不再赘述。
本申请实施例还提供一种列车,包括车辆制动装置。其中,所述车辆制动装置,可以用于执行本申请实施例提供的任意一种车辆制动方法。
当介绍本申请的各种实施例的元件时,冠词“一”、“一个”、“这个”和“所述”都意图表示有一个或多个元件。词语“包括”、“包含”和“具有”都是包括性的并意味着除了列出的元件之外,还可以有其它元件。
需要说明的是,本领域普通技术人员可以理解实现上述方法实施例中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。其中,所述存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元及模块可以是或者也可以不是物理上分开的。另外,还可以根据实际的需要选择其中的部分或者全部单元和模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (11)

  1. 一种车辆制动方法,其特征在于,所述方法包括:
    获取本车与前车之间的距离;
    若所述距离小于或等于第一阈值,则进行报警;
    接收用户触发的第一制动指令,根据所述第一制动指令,按照第一预设减速度对所述本车进行制动,其中,所述第一阈值根据目标空走距离与紧急制动距离之和得到,所述目标空走距离根据第一空走距离和第二空走距离中至少一个得到,所述第一空走距离为获取所述本车与前车之间的距离过程中所述本车行驶的距离,所述第二空走距离为所述用户触发所述第一制动指令过程中所述本车行驶的距离,所述紧急制动距离为按照所述第一预设减速度进行制动所述本车行驶的距离。
  2. 根据权利要求1所述的方法,其特征在于,所述目标空走距离为所述第一空走距离与所述第二空走距离之和。
  3. 根据权利要求1所述的方法,其特征在于,所述紧急制动距离根据第一制动距离、第二制动距离和第三制动距离中的至少一个得到,所述第一制动距离为正常工况下全部转向架进行制动所述本车行驶的距离,所述第二制动距离为湿轨状况下全部转向架进行制动所述本车行驶的距离,所述第三制动距离为切除预设数目个转向架的制动力且在湿轨状况下进行制动所述本车行驶的距离。
  4. 根据权利要求3所述的方法,其特征在于,所述紧急制动距离为所述第一制动距离、所述第二制动距离和所述第三制动距离中的最大值。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    若所述距离小于或等于第二阈值,则进行报警,所述第二阈值大于所述第一阈值,所述第二阈值根据所述第一阈值和最小报警间隔时间进行确定;
    接收用户触发的第二制动指令,根据所述第二制动指令,按照第二预设减速度对所述本车进行制动,所述第二预设减速度小于所述第一预设减速度。
  6. 一种车辆制动装置,其特征在于,所述装置包括:
    获取单元,用于获取本车与前车之间的距离;
    第一报警单元,用于若所述距离小于或等于第一阈值,则进行报警;
    第一制动单元,用于接收用户触发的第一制动指令,根据所述第一制动指令,按照第一预设减速度对所述本车进行制动,其中,所述第一阈值根据目标空走距离与紧急制动距离之和得到,所述目标空走距离根据第一空走距离和第二空走距离中至少一个得到,所述第一空走距离为获取所述本车与前车之间的距离过程中所述本车行驶的距离,所述第二空走距离为所述用户触发所述第一制动指令过程中所述本车行驶的距离,所述紧急制动距离为按照所述第一预设减速度进行制动所述本车行驶的距离。
  7. 根据权利要求6所述的装置,其特征在于,所述目标空走距离为所述第一空走距离与所述第二空走距离之和。
  8. 根据权利要求6所述的装置,其特征在于,所述紧急制动距离根据第一制动距离、第二制动距离和第三制动距离中的至少一个得到,所述第一制动距离为正常工况下全部转 向架进行制动所述本车行驶的距离,所述第二制动距离为湿轨状况下全部转向架进行制动所述本车行驶的距离,所述第三制动距离为切除预设数目个转向架的制动力且在湿轨状况下进行制动所述本车行驶的距离。
  9. 根据权利要求8所述的装置,其特征在于,所述紧急制动距离为所述第一制动距离、所述第二制动距离和所述第三制动距离中的最大值。
  10. 根据权利要求6-9任一项所述的装置,其特征在于,所述装置还包括:
    第二报警单元,用于若所述距离小于或等于第二阈值,则进行报警,所述第二阈值大于所述第一阈值,所述第二阈值根据所述第一阈值和最小报警间隔时间进行确定;
    第二制动单元,用于接收用户触发的第二制动指令,根据所述第二制动指令,按照第二预设减速度对所述本车进行制动,所述第二预设减速度小于所述第一预设减速度。
  11. 一种列车,其特征在于,包括车辆制动装置;
    所述车辆制动装置,用于执行权利要求1至5任意一项所述的车辆制动方法。
PCT/CN2021/094001 2020-10-19 2021-05-17 一种车辆制动方法、装置及列车 WO2022083113A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3198394A CA3198394C (en) 2020-10-19 2021-05-17 Vehicle braking method and device, and train
EP21881537.1A EP4230500A4 (en) 2020-10-19 2021-05-17 METHOD AND DEVICE FOR BRAKING A VEHICLE AND TRAIN

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011118479.0 2020-10-19
CN202011118479.0A CN112172870B (zh) 2020-10-19 2020-10-19 一种车辆制动方法、装置及列车

Publications (1)

Publication Number Publication Date
WO2022083113A1 true WO2022083113A1 (zh) 2022-04-28

Family

ID=73950899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094001 WO2022083113A1 (zh) 2020-10-19 2021-05-17 一种车辆制动方法、装置及列车

Country Status (4)

Country Link
EP (1) EP4230500A4 (zh)
CN (1) CN112172870B (zh)
CA (1) CA3198394C (zh)
WO (1) WO2022083113A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112172870B (zh) * 2020-10-19 2023-01-03 中车青岛四方机车车辆股份有限公司 一种车辆制动方法、装置及列车

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136041A (ja) * 2004-11-02 2006-05-25 Kyosan Electric Mfg Co Ltd 列車停止制御装置
CN104859654A (zh) * 2015-05-12 2015-08-26 同济大学 车辆限速目标距离的实时计算方法及跟驰运行控制方法
CN105346563A (zh) * 2015-10-19 2016-02-24 杭州创联电子技术有限公司 一种基于绝对位移的轨道车辆防碰撞系统及方法
KR20160133731A (ko) * 2015-05-13 2016-11-23 인터콘시스템스 주식회사 속도 감응형 열차 충돌 방지 시스템 및 방법
CN112172870A (zh) * 2020-10-19 2021-01-05 中车青岛四方机车车辆股份有限公司 一种车辆制动方法、装置及列车
CN112278017A (zh) * 2020-11-03 2021-01-29 中车青岛四方机车车辆股份有限公司 一种车辆报警方法、装置及列车

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3025331A1 (de) * 1980-07-04 1982-01-28 Georg 8501 Kalchreuth Gugel Verfahren zur abstands-warnung von fahrzeugen, insbesondere kraftfahrzeugen im strassenverkehr
JPS6177533A (ja) * 1984-09-26 1986-04-21 Nissan Motor Co Ltd 車間距離制御装置
JP2523028B2 (ja) * 1989-12-05 1996-08-07 日野自動車工業株式会社 車間距離警報装置
FR2866853B1 (fr) * 2004-02-27 2006-05-26 Michelin Soc Tech Methode et dispositif de controle du glissement
CN101750612A (zh) * 2008-12-11 2010-06-23 联创汽车电子有限公司 倒车雷达系统
CN103465907B (zh) * 2013-08-27 2016-04-27 奇瑞汽车股份有限公司 一种汽车避撞装置及方法
US10023162B2 (en) * 2014-09-05 2018-07-17 Mitsubishi Electric Corporation Automatic train operation system and brake control device
CN104648388A (zh) * 2015-02-04 2015-05-27 深圳市航盛电子股份有限公司 一种基于毫米波雷达的前向防碰撞预警方法
CN107037446A (zh) * 2016-07-07 2017-08-11 无锡中科光电技术有限公司 一种大气颗粒物走航观测激光雷达装置
CN107878508B (zh) * 2016-12-21 2018-12-21 比亚迪股份有限公司 列车超速防护方法和装置
DE102017206199A1 (de) * 2017-04-11 2018-10-11 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Unterstützung von Zugleitsystemen durch Online-Übertragung von Informationen zum Bremsvermögen
DE102017111003A1 (de) * 2017-05-19 2018-11-22 Wabco Europe Bvba Verfahren zum Ermitteln einer autonomen Notbremsung, Verfahren zur Durchführung der Notbremsung, und Steuereinrichtung für ein Fahrdynamiksystem
CN107640150A (zh) * 2017-09-13 2018-01-30 深圳市鑫汇达机械设计有限公司 一种安全性高的防碰撞系统
DE102018001054A1 (de) * 2017-12-08 2019-06-13 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Verfahren zum Bewegen einer Fahrzeugkolonne auf Basis einer der Fahrzeugkolonne zugeordneten, vorgebbaren Gesamtbetriebsstrategie
JP7000232B2 (ja) * 2018-04-02 2022-02-04 株式会社東芝 前方監視装置、支障物衝突回避装置及び列車制御装置
CN108896321A (zh) * 2018-08-10 2018-11-27 安徽江淮汽车集团股份有限公司 用于评估自动制动系统的测试装置
CN110682907B (zh) * 2019-10-17 2021-06-01 四川大学 一种汽车防追尾控制系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136041A (ja) * 2004-11-02 2006-05-25 Kyosan Electric Mfg Co Ltd 列車停止制御装置
CN104859654A (zh) * 2015-05-12 2015-08-26 同济大学 车辆限速目标距离的实时计算方法及跟驰运行控制方法
KR20160133731A (ko) * 2015-05-13 2016-11-23 인터콘시스템스 주식회사 속도 감응형 열차 충돌 방지 시스템 및 방법
CN105346563A (zh) * 2015-10-19 2016-02-24 杭州创联电子技术有限公司 一种基于绝对位移的轨道车辆防碰撞系统及方法
CN112172870A (zh) * 2020-10-19 2021-01-05 中车青岛四方机车车辆股份有限公司 一种车辆制动方法、装置及列车
CN112278017A (zh) * 2020-11-03 2021-01-29 中车青岛四方机车车辆股份有限公司 一种车辆报警方法、装置及列车

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4230500A4
ZHENG, YI, YI ZHENG, YUNQING HU, HONGLIANG GENG, YE SUN, TAO SHEN, KE SUN: "Research on Interstation Tracking Interval of CBTC System Based on Train-train Communication", CONTROL AND INFORMATION TECHNOLOGY, no. 3, 1 March 2020 (2020-03-01), pages 81 - 88, XP055923688, ISSN: 2096-5427, DOI: 10.13889/j.issn.2096-5427.2020.03.016 *

Also Published As

Publication number Publication date
CN112172870B (zh) 2023-01-03
CN112172870A (zh) 2021-01-05
EP4230500A1 (en) 2023-08-23
CA3198394A1 (en) 2022-04-28
EP4230500A4 (en) 2024-02-21
CA3198394C (en) 2023-10-24

Similar Documents

Publication Publication Date Title
CN111845862B (zh) 一种基于相对速度的列车安全追踪防护方法和装置
US11267497B2 (en) Method and apparatus for generating movement authority for train, train-mounted ATP and ZC
WO2017129091A1 (zh) 电动汽车的防碰撞系统及其控制方法及电动汽车
CN110588723A (zh) 一种列车动态追踪安全防护模型
CN103587516B (zh) 一种车辆爆胎分级制动控制装置及控制方法
CN102897155A (zh) 一种电动汽车的防撞系统及自动刹车方法
WO2022083113A1 (zh) 一种车辆制动方法、装置及列车
CN113401183A (zh) 列车制动方法、装置、电子设备和存储介质
CN114179875B (zh) 移动闭塞下列车发车追踪距离的优化方法及装置
CN107878308A (zh) 一种预防车辆被追尾的方法
CN102700573B (zh) 一种主动式轨道车辆防碰撞系统及其防碰撞方法
CN105894858A (zh) 一种车辆紧急刹车预警系统
CN111717176B (zh) 用于紧急制动的控制装置、控制方法及列车
CN112278017B (zh) 一种车辆报警方法、装置及列车
CN204895286U (zh) 一种汽车防追尾远程安全预警辅助系统
CN109204388B (zh) 列车速度控制方法、系统、设备及计算机可读存储介质
CN112373443B (zh) 一种车辆减速伞制动设备及制动方法
WO2023092704A1 (zh) 协同编队列车安全防护方法、装置、设备、系统及介质
Liu et al. Vehicle anti-collision warning system based on v2v communication technology
WO2022105865A1 (zh) 车辆编组的方法、装置、系统、车辆及存储介质
CN117022200A (zh) 一种倒车自动紧急刹车的主动安全方法
CN114906185A (zh) 轨道车辆安全车距计算方法、系统和防撞预警装置
CN114919603B (zh) 基于多制动方式的虚拟编组单元列车防护控制方法及系统
CN102849010A (zh) 一种行车安全主动保护系统
JP7349271B2 (ja) 列車保安システム、列車保安制御方法及び列車車上装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21881537

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3198394

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023007269

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021881537

Country of ref document: EP

Effective date: 20230519

ENP Entry into the national phase

Ref document number: 112023007269

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230418