WO2022082617A1 - 一种柠檬酸发酵系统及其发酵方法 - Google Patents

一种柠檬酸发酵系统及其发酵方法 Download PDF

Info

Publication number
WO2022082617A1
WO2022082617A1 PCT/CN2020/122872 CN2020122872W WO2022082617A1 WO 2022082617 A1 WO2022082617 A1 WO 2022082617A1 CN 2020122872 W CN2020122872 W CN 2020122872W WO 2022082617 A1 WO2022082617 A1 WO 2022082617A1
Authority
WO
WIPO (PCT)
Prior art keywords
fermentation
liquid
micro
tank
fermenter
Prior art date
Application number
PCT/CN2020/122872
Other languages
English (en)
French (fr)
Inventor
张志炳
周政
张锋
李磊
孟为民
王宝荣
杨高东
罗华勋
杨国强
田洪舟
曹宇
Original Assignee
南京延长反应技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京延长反应技术研究院有限公司 filed Critical 南京延长反应技术研究院有限公司
Publication of WO2022082617A1 publication Critical patent/WO2022082617A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/025Ultrasonics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/04Heat
    • A61L2/06Hot gas
    • A61L2/07Steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/08Cleaning containers, e.g. tanks
    • B08B9/0804Cleaning containers having tubular shape, e.g. casks, barrels, drums
    • B08B9/0813Cleaning containers having tubular shape, e.g. casks, barrels, drums by the force of jets or sprays
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/58Reaction vessels connected in series or in parallel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/02Stirrer or mobile mixing elements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control

Definitions

  • the invention relates to the field of fermentation, in particular, to a citric acid fermentation system and a fermentation method thereof.
  • Industrial fermentation is an industrial process in which fermentation raw materials are converted into microbial products needed by human beings through the life activities of microorganisms.
  • fermentation industry as an important branch of biotechnology, has developed rapidly in recent years, and new fermentation industries (such as amino acids, enzymes, organic acids, single-cell proteins, starch sugars, etc.) are growing at an average annual rate of 21%. So far, my country has formed a large-scale fermentation industry system with a wide variety of varieties, complete categories, and its product applications cover many industries such as medicine, health, light industry, agriculture, energy, and environmental protection.
  • the dissolved oxygen content is the limiting factor for bacterial growth and fermentation, while in the traditional aerobic fermentation process, the dissolved oxygen concentration in the fermentation broth is generally only 7-8 ppm, resulting in low fermentation efficiency. Therefore, it is an important direction for the development of modern fermentation industry to seek fermentation equipment with higher gas-liquid mass transfer efficiency to increase dissolved oxygen concentration and fermentation yield.
  • the first object of the present invention is to provide a citric acid fermentation system.
  • the citric acid fermentation system is provided with a micro-interface generator and a liquid ejector in the fermentation device.
  • the liquid ejector can efficiently crush the water for cleaning the tank into The micron-sized droplets are collided with the top of the fermenter by the ejector to replace manual cleaning.
  • the air is efficiently broken into micron-sized bubbles by the micro-interface generator, and dispersed into the fermentation liquid to form a micro-interface system, with dozens of times.
  • the gas-liquid interface area in the anti-gas liquid is greatly increased, the mass transfer rate of oxygen to the fermentation liquid is greatly improved, the concentration of dissolved oxygen and the macro-fermentation rate are increased, and an intelligent cleaning device is used instead of manual cleaning, and PLC ( Or DCS, PLC and DCS) control system for remote control of production, which is in line with the intelligence of production.
  • PLC Or DCS, PLC and DCS
  • the second object of the present invention is to provide a method for fermentation using the above-mentioned citric acid fermentation system.
  • the fermentation method is easy to operate, and the obtained fermentation product has high purity and good fermentation effect, and is worthy of widespread application.
  • the invention provides a citric acid fermentation system, comprising: a fermentation device and a control system, the control system is connected with the fermentation device to control the working state of the fermentation device, and the fermentation device is composed of a primary fermentation tank and a control system.
  • the secondary fermentation tanks are formed in parallel, and the tops of the primary fermentation tanks and the secondary fermentation tanks are provided with a bacterial liquid inlet and a feed liquid inlet for the entry of bacterial liquid and feed liquid, and the primary fermentation tanks and The bottom of the secondary fermentation tank is provided with a liquid outlet for discharging the fermentation product;
  • the primary fermentation tank and the secondary fermentation tank are provided with several liquid injectors and micro-interface generators, and the side wall of the fermentation tank is provided with a cleaning water inlet and an air inlet, and the air inlet is passed through a pipeline.
  • the air inlet is in one-to-one correspondence with the micro-interface generator, the liquid injector is connected with the cleaning water inlet through a pipeline, and the cleaning water inlet is one with the liquid injector. A correspondence.
  • the present invention provides a novel citric acid fermentation in order to solve the above-mentioned technical problems.
  • the citric acid fermentation system integrates a micro-interface generator and a liquid ejector to fully disperse and crush the air and water, improve the cleaning effect of the fermentation tank, and improve the gas-liquid mass transfer effect during the fermentation process. Thus, the effect of improving the fermentation yield is finally achieved.
  • the fermentation device of the present invention is formed by a first-level fermentation tank and a second-level fermentation tank in parallel with each other, because in the process of fermentation, in order to improve the fermentation effect and improve the mass transfer effect of the fermentation process, the two fermentation tanks are operated in parallel. Can effectively improve the fermentation effect. At the same time, the way of working can also increase the fermentation processing capacity and shorten the processing time.
  • the number of the micro-interface generators in the primary fermentor is two, the number of the liquid injectors is three, and the micro-interface generator located in the upper part is close to the top of the fermenter , the micro-interface generator located in the lower part is close to the bottom of the fermenter, and the liquid injectors are all arranged in the upper part of the fermenter, wherein two liquid injectors are respectively arranged on the side wall of the fermenter, and the other liquid injector The generator is arranged opposite to the micro-interface generator on the upper part.
  • the number of the micro-interface generators in the secondary fermenter is three, the number of the liquid injectors is one, and the micro-interface generators are arranged in order from top to bottom along the vertical direction
  • the micro-interface generator located in the upper part is close to the top of the fermenter, the micro-interface generator located in the lower part is close to the bottom of the fermenter, and the liquid injectors are all arranged in the upper part of the fermenter.
  • the two liquid injectors arranged on the side walls of each fermenter are vertically offset from each other.
  • the liquid ejector is located directly above the upper micro-interface generator.
  • the top of the liquid injector is a semi-circular arc surface
  • a plurality of injection ports are sequentially arranged on the semi-circular arc surface
  • the cleaning water inlet is connected to the bottom of the liquid injector through pipes .
  • the liquid injector of the present invention is mainly connected with the cleaning water inlet through a pipeline, and the cleaning water is introduced into the liquid injector and sprayed out through the spray port on the semicircular arc surface of the liquid injector.
  • the reason why it is designed as a semicircle The structure of the arc-shaped surface is to improve the cleaning effect and ensure that the sprayed cleaning water can clean the wall surface of the fermentation tank in an all-round way.
  • a mesh surface with a plurality of evenly distributed micropores is laid in each of the spray ports. , the water sprayed out in this way is broken and dispersed into mist to improve the mass transfer effect, which is equivalent to the corresponding effect of the micro-interface generator.
  • the liquid injectors of the present invention are specifically used in combination, one of which is located in the middle, and the other two are located on the inner wall of the fermenter, so that the directions of water mist sprayed by each liquid injector are different directions , so as to ensure that the inside of the fermentation tank is cleaned from all angles.
  • the offset placement of the two liquid injectors on the inner wall is also to prevent the two liquid injectors from interfering with each other.
  • one of the two micro-interface generators is preferably set at a lower position in the fermenter, so that the air can enter and fill the whole fermenter. If the position is too high, it may affect the oxygen and bacterial liquid, The dispersion effect between the materials and liquids, another micro-interface generator is located closer to the upper liquid injector, because the liquid phase entering the micro-interface generator during the working process of the liquid injector can also further It plays the role of dispersing and breaking, so that the liquid dispersion effect is better, so it can be seen that the two micro-interface generators play different roles respectively.
  • the secondary fermenter there is a single liquid injector, because the secondary fermenter is mainly used to cooperate with the primary fermenter, so the number of liquid injectors set inside it can be adjusted appropriately, without the need for Too many.
  • the micro-interface generators in the secondary fermenter are arranged in sequence along the vertical direction, and there are connecting rods between them to enhance the stability. Since the space in the fermenter itself is relatively large, if only two are installed. The space for dispersing and crushing may be limited and cannot play a good role. The setting of three micro-interface generators can just make full use of each area in the fermenter, so that the effect of dispersing and crushing is optimal.
  • the micro-interface generators provided in the primary fermentor and the secondary fermentor work in cooperation with each other, and the specific type of the micro-interface generator is preferably a pneumatic micro-interface generator, because the pneumatic type is relatively low in cost and easy to install.
  • each micro-interface generator corresponds to an air inlet, so that each micro-interface generator can achieve the effect of dispersing and breaking the incoming air at the first time, so it is best not to have two micro-interface generators corresponding to the same air inlet at the same time. An air inlet, but the air is blown into the fermenter in a one-to-one correspondence.
  • the micro-interface generator breaks the air into micro-scale micro-bubbles, and releases the micro-bubbles into the fermentation liquid to increase the mass transfer area between the oxygen and the fermentation liquid during the fermentation process, so that the two phases are fully contacted and improved.
  • the dissolved oxygen concentration in the fermentation broth improves the fermentation efficiency and shortens the fermentation time.
  • micro-interface generator used in the present invention has been embodied in the inventor's prior patents, such as application numbers CN201610641119.6, CN201610641251.7, CN201710766435.0, CN106187660, CN105903425A, Patents of CN109437390A, CN205833127U and CN207581700U.
  • application numbers CN201610641119.6, CN201610641251.7, CN201710766435.0, CN106187660, CN105903425A, Patents of CN109437390A, CN205833127U and CN207581700U In the previous patent CN201610641119.6, the specific product structure and working principle of the micro-bubble generator (that is, the micro-interface generator) were introduced in detail.
  • the body is provided with an inlet communicating with the cavity, the opposite first and second ends of the cavity are open, wherein the cross-sectional area of the cavity is from the middle of the cavity to the first and second ends of the cavity.
  • the second end is reduced; the secondary crushing piece is arranged at at least one of the first end and the second end of the cavity, a part of the secondary crushing piece is arranged in the cavity, and both ends of the secondary crushing piece and the cavity are open
  • An annular channel is formed between the through holes of the micro-bubble generator.
  • the micro-bubble generator also includes an air inlet pipe and a liquid inlet pipe.” From the specific structure disclosed in the application document, we can know that its specific working principle is: the liquid enters the micron tangentially through the liquid inlet pipe. In the bubble generator, ultra-high-speed rotation and cutting of the gas make the gas bubbles break into micro-bubbles at the micron level, thereby increasing the mass transfer area between the liquid phase and the gas phase, and the micro-bubble generator in this patent belongs to the pneumatic micro-interface generation. device.
  • the previous patent 201610641251.7 records that the primary bubble breaker has a circulating liquid inlet, a circulating gas inlet and a gas-liquid mixture outlet, and the secondary bubble breaker communicates the feed port with the gas-liquid mixture outlet, indicating that the bubble breaker is both It needs to be mixed with gas and liquid.
  • the primary bubble breaker mainly uses circulating liquid as power, so in fact, the primary bubble breaker belongs to the hydraulic micro-interface generator, and the secondary bubble breaker is a gas-liquid breaker. The mixture is simultaneously fed into the elliptical rotating ball for rotation, so that the bubbles are broken during the rotation, so the secondary bubble breaker is actually a gas-liquid linkage type micro-interface generator.
  • both hydraulic micro-interface generators and gas-liquid linkage micro-interface generators belong to a specific form of micro-interface generators.
  • the micro-interface generators used in the present invention are not limited to the above-mentioned forms.
  • the specific structure of the bubble breaker described in the prior patent is only one of the forms that the micro-interface generator of the present invention can take.
  • the previous patent 201710766435.0 recorded that "the principle of the bubble breaker is to achieve high-speed jets to achieve gas collision", and also stated that it can be used in micro-interface enhanced reactors to verify the relationship between the bubble breaker and the micro-interface generator.
  • the top of the bubble breaker is the liquid phase inlet, and the side is the gas phase inlet.
  • the liquid phase entering from the top provides the entrainment power, so as to achieve the effect of crushing into ultra-fine bubbles, which can also be seen in the accompanying drawings.
  • the bubble breaker has a conical structure, and the diameter of the upper part is larger than that of the lower part, so that the liquid phase can provide better entrainment power.
  • micro-interface generator Since the micro-interface generator was just developed in the early stage of the previous patent application, it was named as micro-bubble generator (CN201610641119.6), bubble breaker (201710766435.0), etc., and later changed its name to micro-interface generator with continuous technological improvement.
  • the micro-interface generator in the present invention is equivalent to the previous micro-bubble generator, bubble breaker, etc., but the names are different.
  • the micro-interface generator of the present invention belongs to the prior art, although some micro-interface generators belong to the type of pneumatic micro-interface generators, some micro-interface generators belong to the type of hydraulic micro-interface generators, and some are of the type of hydraulic micro-interface generators. It belongs to the type of gas-liquid linkage micro-interface generator, but the difference between the types is mainly selected according to the specific working conditions.
  • the connection between the micro-interface generator and the reactor and other equipment including the connection structure, connection position, It depends on the structure of the micro-interface generator, which is not limited.
  • the citric acid fermentation system includes a liquid bacterial strain premixing device and a bacterial liquid tank, the bacterial liquid tank is communicated with the bacterial liquid inlet, and the bacterial strains premixed by the liquid bacterial strain premixing device are stored in a in the bacterial liquid tank.
  • the liquid bacterial strain premixing device includes a split premixing pipe and a confluence premixing pipe, and different types of bacterial liquids are merged into the confluent premixing pipe through the splitting premixing pipe for premixing, and the confluent premixing pipe is connected with the confluence premixing pipe.
  • the bacterial liquid tank is communicated.
  • the bacterial strain premixing device is designed to realize the premixing of various liquid strains. Different types of bacterial liquids first pass through different shunt premixing pipes, and then are aggregated into the confluence premixing pipe for mixing between different bacterial liquids. , so as to realize the mixing of different bacterial liquids to improve the pre-mixing rate of bacterial species, and also improve the subsequent fermentation effect.
  • the citric acid fermentation system includes a feed liquid tank, and the feed liquid tank is communicated with the feed liquid inlet through a pipeline.
  • the feed liquid stored in the feed liquid tank enters the fermentation tank through the feed liquid inlet.
  • both sides of the bottom of the fermenter are flat, and a bulge is formed upward at the center position, and the liquid outlets are respectively provided at the flat positions on both sides of the bottom of the fermenter.
  • the reason why the center position is raised upwards is to efficiently discharge the fermented products generated by aerobic fermentation from the outlet.
  • the center of the bottom of the fermenter is raised upwards.
  • a stirring paddle is provided at the center bulge of the inner bottom of the fermentation tank to accelerate the discharge.
  • the stirring paddle is also arranged in the raised position to improve the discharge efficiency of the fermentation product, and the fermentation efficiency can also be improved by stirring.
  • the citric acid fermentation system of the present invention further comprises a plurality of high-temperature steam pipes for sterilizing the fermenter, respectively sterilizing the feed liquid, the bacterial liquid and the cleaning water.
  • the fermenter is provided with an ultrasonic sterilization device, and the ultrasonic sterilization device is close to the inner wall of the fermenter, so that while steam is passed into the fermenter through the steam pipeline, the ultrasonic sterilization device can be used to assist sterilization. .
  • the cleaning water inlet is provided near the bottom of the fermenter to clean the inner bottom of the fermenter. This can not only have the effect of cleaning the upper part of the fermentation tank, but also the effect of cleaning the lower part of the fermentation tank.
  • the present invention also provides a fermentation method, comprising the steps of:
  • the cleaning water is broken into micron-sized droplets to clean the inside of the fermentation device;
  • the air micro-interface After the air micro-interface is dispersed and broken, it is mixed with bacterial liquid and feed liquid for aerobic fermentation, and the fermentation product is discharged and collected.
  • a micro-interface generator is arranged inside each fermentation tank in the fermentation device, so that before the air and the fermentation liquid are fermented, the micro-interface generator breaks the air into a diameter of 1 ⁇ m or more and a diameter of less than 1 ⁇ m.
  • 1mm microbubbles make the air contact with the fermentation liquid in the state of microbubbles, so as to increase the mass transfer area of the phase boundary between the oxygen and the fermentation liquid during the fermentation process, so that the two phases are fully contacted, and the dissolved oxygen concentration in the fermentation liquid is increased. , improving the fermentation efficiency and shortening the fermentation time, thereby solving the problem of low fermentation efficiency in the prior art.
  • the automatic fermenter cleaning process and the intelligent control process are realized by adding the control system, which further saves the production cost.
  • the citric acid fermentation system of the present invention is provided with a micro-interface generator and a liquid ejector in the fermentation tank.
  • the liquid ejector can efficiently break the water for cleaning the tank into micron-level droplets, and collide with the ejector.
  • the top of the fermentation tank is replaced by manual cleaning.
  • the air is efficiently broken into micron-sized bubbles by the micro-interface generator, and dispersed into the fermentation liquid to form a micro-interface system, which can improve the gas-liquid phase in the anti-gas liquid dozens of times.
  • the interface area greatly increases the mass transfer rate of oxygen to the fermentation broth, increases the concentration of dissolved oxygen and the macro-fermentation rate;
  • the citric acid fermentation system of the present invention adopts an intelligent cleaning device to replace manual cleaning, and adopts a PLC (or DCS, PLC and DCS) control system to remotely control the production, which is in line with the intelligentization of production;
  • the fermentation method of the present invention is easy to operate, the obtained fermented product has high purity and good fermentation effect, and is worthy of wide popularization and application.
  • Fig. 1 is the structural representation of the citric acid fermentation system provided in the embodiment of the present invention.
  • Fig. 2 is the internal structure diagram of the primary fermentation tank in Fig. 1;
  • Fig. 3 is the internal structure diagram of the secondary fermentation tank in Fig. 1;
  • FIG. 4 is a schematic structural diagram of a mesh surface of a citric acid fermentation system provided in an embodiment of the present invention.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • FIG. 1 it is a citric acid fermentation system according to an embodiment of the present invention, which mainly includes a fermentation device and a control system 20.
  • the fermentation device is composed of a first-level fermentation tank 10 and a second-level fermentation tank 30 in parallel with each other.
  • the schematic diagram of the internal structure of the fermentation tank 10 is shown in FIG. 2
  • the schematic diagram of the internal structure of the secondary fermentation tank is shown in FIG. 3 .
  • the primary fermentation tank 10 is provided with three liquid injectors 103 and two micro interface generators 104 located at The upper micro-interface generator 104 is close to the top of the primary fermenter 10, the micro-interface generator 104 located at the lower part is close to the bottom of the primary fermenter 10, and the liquid injectors 103 are all arranged in the upper part of the primary fermenter 10, two of which are located in the upper part of the primary fermenter 10.
  • the two liquid injectors 103 are respectively arranged on the side walls of the primary fermenter 10, and are arranged at a mutual dislocation, and another liquid injector 103 is arranged opposite to the upper micro-interface generator 104, and is arranged directly above the micro-interface generator 104,
  • the side wall of the primary fermentation tank 10 is provided with a cleaning water inlet 106 and an air inlet 105, and the top of the primary fermentation tank 10 is provided with a bacterial liquid inlet 101 and a feed liquid inlet 102 for the entry of bacterial liquid and feed liquid.
  • the generator 104 is connected with the air inlet 105 through a pipeline, the cleaning water inlet 106 is in one-to-one correspondence with the liquid ejector 103, and is used to disperse and crush the cleaning water in the liquid ejector 103, and the air inlet 105 and the micro-interface generator 104 are one-to-one.
  • the air is broken into micro-bubbles with a diameter of micrometers to increase the mass transfer area of the phase boundary between the oxygen and the fermentation liquid during the fermentation process, so that the two phases are fully contacted, and the concentration in the fermentation liquid is increased. Dissolved oxygen concentration, improve fermentation efficiency and shorten fermentation time.
  • the number of micro-interface generators 104 in the secondary fermenter 30 is three, and the number of liquid injectors 103 is one.
  • the device 104 is close to the top of the secondary fermenter 30 , the micro-interface generator 104 located at the lower part is close to the bottom of the secondary fermenter 30 , and the liquid injectors 103 are all arranged in the upper part of the secondary fermenter 30 .
  • the liquid ejector 103 is located directly above the upper micro-interface generator 104 .
  • the fermentation system includes a liquid strain premixing device 112, a bacterial liquid tank 110 and a material liquid tank 111.
  • the liquid strain premixing device 112 includes a shunt premixing pipe 1121 and a confluence premixing pipe 1122.
  • the mixing pipe 1121 is merged into the confluence premixing pipe 1122 for premixing, the confluence premixing pipe 1122 is connected with the bacterial liquid tank 110, the material liquid tank 111 is connected with the material liquid inlet 102 through a pipeline, and the bacterial liquid tank 110 is connected with the bacterial liquid inlet 101 through a pipeline. Pipeline connection.
  • the liquid injector 103 is connected with the cleaning water inlet 106 through a pipeline.
  • the top surface of the liquid injector 103 is a semi-circular arc surface, and a number of injection ports 1031 are arranged in sequence on the semi-circular arc surface.
  • 106 is connected to the bottom of the liquid injector 103 through a pipeline, and the cleaning water is broken into micro-droplets with a diameter of micrometers, and sprayed from the ejection port 1031 raised on the surface to collide with the inside of the tank for efficient cleaning.
  • a mesh surface 1032 with a plurality of micropores evenly distributed is laid in the spray port 1031, and the number of the mesh surface 1032 is not limited.
  • the structure of the mesh surface 1032 refer to FIG. 4 for details.
  • the bottoms of the primary fermentation tank 10 and the secondary fermentation tank 30 are provided with a liquid outlet 107 for discharging waste water and waste gas and discharging products.
  • the bottom sides of the primary fermentation tank 10 and the secondary fermentation tank 30 are flat on both sides, and the center position is upward to form a bulge.
  • a stirring paddle 108 is provided at the center bulge of the inner bottom of the primary fermenter 10 and the secondary fermenter 30 to accelerate the discharge, and the direction of the blade is upward, for the primary fermenter 10 and the secondary fermenter 108.
  • the stirring at the bottom of the fermentation tank 30 during flushing, fermentation and liquid drainage can be adjusted steplessly.
  • a cleaning water inlet 106 is also correspondingly provided at the bottom of the side walls of the primary fermentation tank 10 and the secondary fermentation tank 30 . In this way, various positions inside the primary fermentation tank 10 and the secondary fermentation tank 30 can be effectively cleaned.
  • the primary fermenter 10 and the secondary fermenter 30 of the present invention can also realize the sterilization function, and a steam line is correspondingly arranged on each feed line, and the inner side walls of the primary fermenter 10 and the secondary fermenter 30 are provided.
  • an ultrasonic sterilization device 109 is provided to assist the sterilization of the steam line.
  • This embodiment also includes a PLC (or DCS, PLC and DCS) control system 20: connected to the sensors of the primary fermenter 10 and the secondary fermenter 30, for intelligently controlling process operations and parameters, and realizing remote production control Control, in line with the intelligent production.
  • PLC or DCS, PLC and DCS
  • the cleaning water above the primary fermentation tank 10 and the secondary fermentation tank 30 is transported to the inside of the liquid ejector 103 and sprayed out through the jetting port 1031 on the arc surface, and is efficiently broken into pieces by the mesh surface 1032.
  • the micron-sized (1 ⁇ m ⁇ d ⁇ 1mm) droplets are ejected from the protruding ejection port 1031 on the surface of the liquid ejector 103 , collide with the interior of the primary fermenter 10 and the secondary fermenter 30 and clean the top.
  • the cleaned droplets form a liquid level at the bottom of the tank. When the liquid level rises to the middle of the tank, close the upper water delivery valve and open the stirring paddle at the bottom at 108 to 200 rpm.
  • the installation direction of the blades of the stirring paddle 108 is downward, the liquid above the blades will be pumped to the lower sides, and a vortex will be formed on both sides of the stirring paddle 108 to wash both sides of the lower part of the primary fermentation tank 10 and the secondary fermentation tank 30 cleaning.
  • the lower waterway is opened, so that the flowing water enters from the lower cleaning water inlet 106, and the input water flow cleans the high-side tank wall under the action of the stirring paddle 108.
  • the water delivery valve is closed, and the speed is reduced to 100rpm. /min, and discharge the waste water through the liquid outlet 107 on both sides of the lower end of the tank, close the liquid outlet 107, and reduce the speed to 50 rpm.
  • Feeding open the feed liquid inlet 102 at the top of the primary fermentation tank 10 and the secondary fermentation tank 30, feed erythromycin from the feed liquid inlet 102 through the pipeline, when the liquid level reaches a certain height, the feeding is completed , close the valve to stop feeding.
  • Ventilation after the feed liquid is cooled to room temperature, the fermented fungi are introduced from the bacterial liquid inlet 101, the stirring speed is increased to 100 rpm, the bacteria feeding pipeline is closed, and the air inlet 105 begins to introduce air into the micro-interface generator 104 .
  • the micro-interface generator 104 breaks the air into micro-bubbles of micron scale, and releases the micro-bubbles into the fermentation liquid, so as to increase the mass transfer area of the phase boundary between the oxygen and the fermentation liquid during the fermentation process, so that the two phases are fully contacted, The dissolved oxygen concentration in the fermentation broth is increased, the fermentation efficiency is improved, and the fermentation time is shortened.
  • control system 20 of PLC or DCS, PLC and DCS. Control and save labor costs.
  • micro-interface generators 104 By converting the pressure energy of the gas and/or the kinetic energy of the liquid into the surface energy of the bubbles and transferring them to the bubbles, the bubbles are broken into pieces with a diameter of 1 ⁇ m or more and less than 1 mm.
  • Micro-bubbles of micron level are classified into pneumatic micro-interface generator 104, hydraulic micro-interface generator 104 and gas-liquid linkage micro-interface generator 104 according to the energy input method or gas-liquid ratio, wherein the pneumatic micro-interface generator 104 is driven by gas, and the input
  • the gas volume is much greater than the liquid volume
  • the hydraulic micro-interface generator 104 is driven by liquid, and the input gas volume is generally less than the liquid volume
  • the gas-liquid linkage micro-interface generator 104 is driven by gas and liquid simultaneously, and the input gas volume is close to the liquid volume.
  • the micro-interface generator 104 is selected from one or more of the pneumatic micro-interface generator 104 , the hydraulic micro-interface generator 104 and the gas-liquid linkage micro-interface generator 104 .
  • micro-interface generators 104 can also be added.
  • the installation position is not limited. It can be external or built-in. When built-in, it can also be installed on the side wall of the kettle. , so as to achieve hedging of the micro-bubbles coming out of the outlet of the micro-interface generator 104 .
  • the fermentation temperature can be normal temperature or the temperature required by the bacterial species
  • the fermentation pressure is normal pressure
  • the fermented substances can be erythromycin, penicillin, etc. in addition to citric acid.

Abstract

一种柠檬酸发酵系统及其发酵方法,柠檬酸发酵系统包括:发酵装置以及控制系统,所述控制系统与所述发酵装置连接以实现对发酵装置的工作状态进行控制,所述发酵装置由一级发酵罐与二级发酵罐并联形成,所述一级发酵罐以及所述二级发酵罐的顶部均设置有菌液进口以及料液进口以用于菌液与料液的进入,所述一级发酵罐以及二级发酵罐的底部设置有出液口以用于发酵产物排出。

Description

一种柠檬酸发酵系统及其发酵方法 技术领域
本发明涉及发酵领域,具体而言,涉及一种柠檬酸发酵系统及其发酵方法。
背景技术
工业发酵就是通过微生物的生命活动,把发酵原料转化为人类所需要的微生物产品的工业过程。在我国,发酵工业作为生物技术中的重要分支近年来已有长足的发展,新型发酵工业(例如氨基酸、酶制剂、有机酸、单细胞蛋白、淀粉糖等)以年平均21%的速度增长。至今,我国已形成了一个品种繁多,门类齐全,具有相当规模的发酵工业体系,其产品应用覆盖医药、卫生、轻工、农业、能源、环保等诸多行业。
在好氧发酵中,溶解的氧含量是菌体生长与发酵的限制性因素,而传统好氧发酵工艺中采用,发酵液中溶解氧浓度一般仅为7~8ppm,使得发酵效率低下。因此谋求更高气液传质效率的发酵设备以提高溶解氧浓度,提高发酵产率,是现代发酵工业发展的重要方向。
此外,现有发酵工艺需要大量的人力,包括通过人孔进入罐体内部洗刷以及各管路阀门的现场操作等。这样既提高了人力成本,同时降低了生产的安全性。
有鉴于此,特提出本发明。
发明内容
本发明的第一目的在于提供一种柠檬酸发酵系统,该柠檬酸发酵系统通过在发酵装置内设置微界面发生器与液体喷射器,一方面液体喷射器可将清洗罐体的水高效破碎成微米级液滴,并通过喷射器冲撞发酵罐上方取代人工进行清 洗,另一方面通过微界面发生器将空气高效破碎成微米级气泡,并分散到发酵液中形成微界面体系,以数十倍地提高反气液内的气液相界面积,大幅提高氧气向发酵液的传质速率,提高溶解氧的浓度及宏观发酵速率,再者通过采用智能化的清洗装置代替人工清洗,采用PLC(或DCS,PLC和DCS)控制系统对生产进行远程控制,符合生产的智能化。
本发明的第二目的在于提供一种采用上述柠檬酸发酵系统进行发酵的方法,该发酵方法操作简便,得到的发酵产物纯度高,发酵效果好,值得广泛推广进行应用。
为了实现本发明的上述目的,特采用以下技术方案:
本发明提供了一种柠檬酸发酵系统,包括:发酵装置以及控制系统,所述控制系统与所述发酵装置连接以实现对发酵装置的工作状态进行控制,所述发酵装置由一级发酵罐与二级发酵罐并联形成,所述一级发酵罐以及所述二级发酵罐的顶部均设置有菌液进口以及料液进口以用于菌液与料液的进入,所述一级发酵罐以及二级发酵罐的底部设置有出液口以用于发酵产物排出;
所述一级发酵罐以及所述二级发酵罐内设置有若干液体喷射器以及微界面发生器,所述发酵罐的侧壁设置有清洗水进口以及空气进口,所述空气进口通过管道通入所述微界面发生器中,所述空气进口与所述微界面发生器一一对应,所述液体喷射器与所述清洗水进口通过管道连接,所述清洗水进口与所述液体喷射器一一对应。
现有技术中的柠檬酸发酵系统在好氧发酵过程中,一般由于气液的传质效率比较低导致发酵产率也不高,本发明为了解决上述技术问题提供了一种新型的柠檬酸发酵系统,在该柠檬酸发酵系统中集成了微界面发生器以及液体喷射器对空气以及水进行充分的分散破碎,提高了发酵罐的清洗效果,同时提高了发酵过程中的气液传质效果,从而最终达到提高了发酵产率的效果。
本发明的发酵装置是由一级发酵罐与二级发酵罐相互并联形成的,因为当 进行发酵的过程中为了提升发酵效果,提高发酵过程的传质效果,通过两个发酵罐并行操作的方式可以切实提高发酵效果。同时工作的方式还可以提升发酵处理量,缩短处理时间。
优选地,所述一级发酵罐内的所述微界面发生器的个数为两个,所述液体喷射器的个数为三个,位于上部的微界面发生器靠近所述发酵罐的顶部,位于下部的微界面发生器靠近所述发酵罐的底部,所述液体喷射器均设置在所述发酵罐内上部,其中两个液体喷射器分别设置发酵罐的侧壁上,另一个液体喷射器与上部的所述微界面发生器相对设置。
优选地,所述二级发酵罐内的所述微界面发生器的个数为三个,所述液体喷射器的个数为一个,所述微界面发生器沿竖直方向从上至下依次设置,位于上部的微界面发生器靠近所述发酵罐的顶部,位于下部的微界面发生器靠近所述发酵罐的底部,所述液体喷射器均设置在所述发酵罐内上部。
优选地,设置在每个发酵罐侧壁上的两个液体喷射器沿竖直向互相错位设置。
优选地,所述液体喷射器位于上部的所述微界面发生器的正上方。
优选地,所述液体喷射器的顶部呈半圆形弧面,所述半圆形弧面上依次排布有若干个喷射口,所述清洗水进口通过管道与所述液体喷射器的底部连接。
本发明的液体喷射器主要是跟清洗水进口通过管道连接,通过将清洗水引入到液体喷射器中,并通过液体喷射器半圆形弧面上的喷射口喷射出去,之所以设计成半圆形弧面的结构是为了提高清洗效果,保证喷射出去的清洗水能够对发酵罐的壁面进行全方位的清洗,此外优选地,每个所述喷射口内铺设有均布多个微孔的网面,这样喷射出去的水被打碎分散后,成雾状以提高传质效果,也相当于起到了微界面发生器相应的效果。
在一级发酵罐中,本发明的液体喷射器具体为三个配合使用,其中一个位于中间,另外两个位于发酵罐的内壁上,这样每个液体喷射器喷射水雾的方向为不同的方向,从而保证从各个角度对发酵罐内部进行清洗。两个位于内壁上 的液体喷射器互相错位放置也是为了防止两个液体喷射器互相影响。
需要额外注意的是,两个微界面发生器最好一个设置在发酵罐内比较靠下的位置处,这样空气能够进入充满整个发酵罐,如果位置太过靠上可能会影响氧气与菌液、料液之间的分散效果,另外一个微界面发生器则位于与上部的液体喷射器比较靠近的位置,因为在液体喷射器进行工作的过程中进入到微界面发生器中的液相也可以进一步起到分散破碎的作用,使其液体分散效果更佳,所以可见两个微界面发生器分别发挥不同的作用。
在二级发酵罐中,液体喷射器为单个,因为二级发酵罐主要是为了配合一级发酵罐进行动作的,所以其内部所设置的液体喷射器的个数可以进行适当的调整,不需要个数太多。二级发酵罐中的微界面发生器为三个沿垂直方向依次设置,相互之间还设置有连接杆以起到加强稳定的作用,由于发酵罐内的空间本身比较大,如果仅仅设置两个可能分散破碎的空间有限,并不能发挥良好的作用,通过三个微界面发生器的设置正好能够充分利用到发酵罐内的各个区域,从而使得分散破碎效果达到最优。
并且,无论是一级发酵罐还是二级发酵罐内部设置的微界面发生器均互相配合进行工作,且其具体类型最好为气动式微界面发生器,因为气动式类型相对成本低,容易安装。并且每个微界面发生器分别对应一个空气进口,这样每个微界面发生器均能实现将进来的空气第一时间进行分散破碎的效果,所以最好不要将两个微界面发生器同时对应同一个空气进口,而是采用一一对应的方式将空气鼓入发酵罐内。
微界面发生器将空气破碎成微米尺度的微气泡,并将微气泡释放到发酵液内部,以增大发酵过程中氧气与发酵液之间的相界传质面积,使得两相充分接触,提高发酵液中的溶解氧浓度,提高发酵效率,缩短发酵时间。
本领域所属技术人员可以理解的是,本发明所采用的微界面发生器在本发明人在先专利中已有体现,如申请号CN201610641119.6、CN201610641251.7、CN201710766435.0、CN106187660、CN105903425A、CN109437390A、 CN205833127U及CN207581700U的专利。在先专利CN201610641119.6中详细介绍了微米气泡发生器(即微界面发生器)的具体产品结构和工作原理,该申请文件中记载了“微米气泡发生器包括本体和二次破碎件、本体内具有空腔,本体上设有与空腔连通的进口,空腔的相对的第一端和第二端均敞开,其中空腔的横截面积从空腔的中部向空腔的第一端和第二端减小;二次破碎件设在空腔的第一端和第二端中的至少一个处,二次破碎件的一部分设在空腔内,二次破碎件与空腔两端敞开的通孔之间形成一个环形通道。微米气泡发生器还包括进气管和进液管。”从该申请文件中公开的具体结构可以知晓其具体工作原理为:液体通过进液管切向进入微米气泡发生器内,超高速旋转并切割气体,使气体气泡破碎成微米级别的微气泡,从而提高液相与气相之间的传质面积,而且该专利中的微米气泡发生器属于气动式微界面发生器。
另外,在先专利201610641251.7中有记载一次气泡破碎器具有循环液进口、循环气进口和气液混合物出口,二次气泡破碎器则是将进料口与气液混合物出口连通,说明气泡破碎器都是需要气液混合进入,另外从后面的附图中可知,一次气泡破碎器主要是利用循环液作为动力,所以其实一次气泡破碎器属于液动式微界面发生器,二次气泡破碎器是将气液混合物同时通入到椭圆形的旋转球中进行旋转,从而在旋转的过程中实现气泡破碎,所以二次气泡破碎器实际上是属于气液联动式微界面发生器。其实,无论是液动式微界面发生器,还是气液联动式微界面发生器,都属于微界面发生器的一种具体形式,然而本发明所采用的微界面发生器并不局限于上述几种形式,在先专利中所记载的气泡破碎器的具体结构只是本发明微界面发生器可采用的其中一种形式而已。此外,在先专利201710766435.0中记载到“气泡破碎器的原理就是高速射流以达到气体相互碰撞”,并且也阐述了其可以用于微界面强化反应器,验证本身气泡破碎器与微界面发生器之间的关联性;而且在先专利CN106187660中对于气泡破碎器的具体结构也有相关的记载,具体见说明书中第[0031]-[0041]段,以及附图部分,其对气泡破碎器S-2的具体工作原理有详细的阐述,气泡 破碎器顶部是液相进口,侧面是气相进口,通过从顶部进来的液相提供卷吸动力,从而达到粉碎成超细气泡的效果,附图中也可见气泡破碎器呈锥形的结构,上部的直径比下部的直径要大,也是为了液相能够更好的提供卷吸动力。
由于在先专利申请的初期,微界面发生器才刚研发出来,所以早期命名为微米气泡发生器(CN201610641119.6)、气泡破碎器(201710766435.0)等,随着不断技术改进,后期更名为微界面发生器,现在本发明中的微界面发生器相当于之前的微米气泡发生器、气泡破碎器等,只是名称不一样。
综上所述,本发明的微界面发生器属于现有技术,虽然有的微界面发生器属于气动式微界面发生器类型,有的微界面发生器属于液动式微界面发生器类型,还有的属于气液联动式微界面发生器类型,但是类型之间的差别主要是根据具体工况的不同进行选择,另外关于微界面发生器与反应器、以及其他设备的连接,包括连接结构、连接位置,根据微界面发生器的结构而定,此不作限定。
优选地,所述柠檬酸发酵系统包括液体菌种预混装置以及菌液罐,所述菌液罐与所述菌液进口连通,所述液体菌种预混装置预混后的菌种储存在所述菌液罐中。
优选地,所述液体菌种预混装置包括分流预混管以及汇流预混管,不同种类的菌液经过分流预混管汇合到汇流预混管中进行预混,所述汇流预混管与所述菌液罐连通。
设计菌种预混装置是为了实现多种液体菌种之间的预混,不同类型的菌液先通过不同的分流预混管,然后汇总到汇流预混管中进行不同菌液之间的混合,从而实现不同菌液混合后以提高菌种的预混率,也提高了后续的发酵效果。
优选地,所述柠檬酸发酵系统包括料液罐,所述料液罐与所述料液进口通过管道连通。储存在料液罐里面的料液通过料液进口进入到发酵罐中。
优选地,所述发酵罐的底部两侧平整,中心位置向上形成凸起,在所述发酵罐底部的两侧平整位置分别设置有所述出液口。中心位置向上凸起的原因是 为了将有氧发酵生成的发酵产物高效的从出料口排出,如果底部均为平整的会有少部分发酵产物残留,所以最好按照本发明的方案来实施将发酵罐底部的中心位置向上凸起。
优选地,所述发酵罐内底部中心凸起处设置有搅拌桨以起到加速排料的作用。凸起的位置设置搅拌桨也是为了提高发酵产物排出的效率,而且通过搅拌还能提升发酵效率。
优选地,本发明的柠檬酸发酵系统还包括若干对发酵罐进行杀菌的高温蒸汽管道,分别对料液、菌液以及清洗水进行杀菌。
优选地,所述发酵罐内设置有超声波灭菌装置,所述超声波灭菌装置紧贴发酵罐的内壁,这样通过蒸汽管道往发酵罐里面通蒸汽的同时还能采用超声波灭菌装置辅助灭菌。
优选地,靠近所述发酵罐底部的位置设置有所述清洗水进口以实现对所述发酵罐内底部进行清洗。这样既能起到对发酵罐内上部进行清洗的效果,也能起到对发酵罐内下部进行清洗的效果。
此外,本发明还提供了一种发酵方法,包括如下步骤:
将清洗水破碎为微米级的微液滴对发酵装置内部进行清洗;
将空气微界面分散破碎后,与菌液、料液混合进行有氧发酵,发酵产物排出收集。
总之,本发明的发酵方法通过在发酵装置中的每个发酵罐内部设置有微界面发生器,使得在空气与发酵液进行发酵之前,微界面发生器将空气破碎成直径为大于等于1μm、小于1mm的微气泡,使得空气以微气泡的状态与发酵液接触,以增大发酵过程中氧气与发酵液之间的相界传质面积,使得两相充分接触,提高发酵液中的溶解氧浓度,提高发酵效率,缩短发酵时间,从而解决了现有技术中发酵效率低下的问题。
尤其在本柠檬酸发酵系统中,通过添加控制系统实现了自动化的发酵罐清洗过程以及智能化的控制过程,进一步节约了生产成本。
与现有技术相比,本发明的有益效果在于:
(1)本发明的柠檬酸发酵系统通过在发酵罐内设置微界面发生器与液体喷射器,一方面液体喷射器可将清洗罐体的水高效破碎成微米级液滴,并通过喷射器冲撞发酵罐上方取代人工进行清洗,另一方面通过微界面发生器将空气高效破碎成微米级气泡,并分散到发酵液中形成微界面体系,以数十倍地提高反气液内的气液相界面积,大幅提高氧气向发酵液的传质速率,提高溶解氧的浓度及宏观发酵速率;
(2)本发明的柠檬酸发酵系统通过采用智能化的清洗装置代替人工清洗,采用PLC(或DCS,PLC和DCS)控制系统对生产进行远程控制,符合生产的智能化;
(3)本发明的发酵方法操作简便,得到的发酵产物纯度高,发酵效果好,值得广泛推广进行应用。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例提供的柠檬酸发酵系统的结构示意图;
图2为图1中的一级发酵罐内部结构图;
图3为图1中的二级发酵罐内部结构图;
图4为本发明实施例提供的柠檬酸发酵系统的网面的结构示意图。
附图说明:
10-一级发酵罐;                     101-菌液进口;
102-料液进口;                      103-液体喷射器;
104-微界面发生器;                  105-空气进口;
106-清洗水进口;                    1031-喷射口;
1032-网面;                         107-出液口;
108-搅拌桨;                        109-超声波灭菌装置;
110-菌液罐;                        111-料液罐;
112-液体菌种预混装置;              1121-分流预混管;
1122-汇流预混管;                   20-控制系统;
30-二级发酵罐。
具体实施方式
下面将结合附图和具体实施方式对本发明的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本发明一部分实施例,而不是全部的实施例,仅用于说明本发明,而不应视为限制本发明的范围。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安 装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
为了更加清晰的对本发明中的技术方案进行阐述,下面以具体实施例的形式进行说明。
实施例
参阅图1所示,为本发明实施例的柠檬酸发酵系统,其主要包括发酵装置以及控制系统20,所述发酵装置由一级发酵罐10与二级发酵罐30相互并联构成,具体一级发酵罐10内部的结构示意图参照图2所示,二级发酵罐内部的结构示意图参见图3所示,一级发酵罐10内设置有三个液体喷射器103以及两个微界面发生器104,位于上部的微界面发生器104靠近一级发酵罐10的顶部,位于下部的微界面发生器104靠近一级发酵罐10的底部,液体喷射器103均设置在一级发酵罐10内上部,其中两个液体喷射器103分别设置一级发酵罐10的侧壁上,互相错位设置,另一个液体喷射器103与上部的微界面发生器104相对设置,设置在该微界面发生器104的正上方,一级发酵罐10的侧壁设置有清洗水进口106以及空气进口105,一级发酵罐10的顶部设置有菌液进口101以及料液进口102以用于菌液与料液的进入,微界面发生器104与空气进口105通过管道连接,清洗水进口106与液体喷射器103一一对应,用于将清洗水在液体喷射器103内进行分散破碎,空气进口105与微界面发生器104一一对应,用于发酵反应之前,将空气破碎成直径为微米级的微气泡,以增大发酵过程中氧气与发酵液之间的相界传质面积,使得两相充分接触,提高发酵液中的溶解氧浓度,提高发酵效率,缩短发酵时间。
二级发酵罐30的微界面发生器104的个数为三个,液体喷射器103的个 数为一个,微界面发生器104沿竖直方向从上至下依次设置,位于上部的微界面发生器104靠近二级发酵罐30的顶部,位于下部的微界面发生器104靠近二级发酵罐30的底部,液体喷射器103均设置在二级发酵罐30内上部。液体喷射器103位于上部的微界面发生器104的正上方。
该发酵系统包括液体菌种预混装置112、菌液罐110以及料液罐111,液体菌种预混装置112包括分流预混管1121以及汇流预混管1122,不同种类的菌液经过分流预混管1121汇合到汇流预混管1122中进行预混,汇流预混管1122与菌液罐110连通,料液罐111与料液进口102通过管道连通,菌液罐110与菌液进口101通过管道连通。
液体喷射器103与清洗水进口106通过管道连接,液体喷射器103的顶面呈半圆形弧面,所述半圆形弧面上依次排布有若干个喷射口1031,所述清洗水进口106通过管道与所述液体喷射器103的底部连接,通过将清洗水破碎为直径为微米级的微液滴,从表面凸起的喷射口1031喷出,以冲撞罐体内部进行高效的清洗。为了提高清洗效果,喷射口1031内铺设有均布多个微孔的网面1032,网面1032的个数不限,目的是为了使清洗水呈雾状喷射出去,提高清洗的传质效果,网面1032的结构具体参见图4。
一级发酵罐10以及二级发酵罐30的底部设置有出液口107,用于废水、废气的排放以及产物出料。一级发酵罐10以及二级发酵罐30的底部两侧平整,中心位置向上形成凸起,在一级发酵罐10以及二级发酵罐30底部的两侧平整位置分别设置有所述出液口107,一级发酵罐10以及二级发酵罐30内底部中心凸起处设置有搅拌桨108以起到加速排料的作用,叶片的方向朝上,以用于一级发酵罐10以及二级发酵罐30底部冲洗、发酵与排液时的搅拌,转速可以无级调节。
为了配合清洗,在一级发酵罐10以及二级发酵罐30侧壁的底部也相应的设置清洗水进口106。这样对于一级发酵罐10以及二级发酵罐30内部的各个位置都能实现有效的清洗。
本发明的一级发酵罐10以及二级发酵罐30还可以实现消毒功能,在每个进料管线上都相应的设置蒸汽管线,并在一级发酵罐10以及二级发酵罐30内侧壁面上相应的设置有超声波灭菌装置109,辅助蒸汽管线进行灭菌。
该实施例还包括PLC(或DCS,PLC和DCS)控制系统20:与一级发酵罐10以及二级发酵罐30的传感器相连,用于智能化控制工艺操作与参数,实现了对生产进行远程控制,符合生产的智能化。
本发明实施例的红霉素具体发酵过程如下:
(1)清洗:在一级发酵罐10以及二级发酵罐30上方的清洗水输送到液体喷射器103内部并通过弧面上的喷射口1031将水喷淋出来,经网面1032高效破碎成微米级(1μm≤d<1mm)液滴后从液体喷射器103表面凸起的喷射口1031喷出,冲撞一级发酵罐10以及二级发酵罐30的内部并对上方进行清洗。清洗后的液滴在罐底形成液位,当液位上升到罐体中部时,关闭上方输水阀门,打开底部的搅拌桨108到200rpm。由于搅拌桨108叶片的安装方向向下,会将叶片上方的液体抽往下方两侧,并在搅拌桨108两侧形成漩涡,对一级发酵罐10以及二级发酵罐30下部两侧进行冲刷清洗。同时打开下方的水路,使水流通水从下部的清洗水进口106进入,输入的水流在搅拌桨108的作用下对高侧罐壁进行清洗,冲刷30min后关闭输水阀门,调小转速到100rpm/min,并通过罐体下端两侧的出液口107将废水排出,关闭出液口107,调小转速到50rpm。
(2)消毒:打开高温蒸汽管线,通入121~180℃,3公斤蒸汽进行杀菌消毒,在通蒸汽的同时维持搅拌速率50rpm,使得罐体内的蒸汽均匀分布。在蒸汽消毒的同时可以打开罐体上侧内壁的超声波灭菌装置109辅助灭菌。30~50min后关闭蒸汽管线,蒸汽冷凝后的水从罐底两侧的出液口107排放,关闭出液口107,冷却罐体至室温。
(3)进料:打开一级发酵罐10以及二级发酵罐30顶部的料液进口102,将红霉素通过管路从料液进口102进料,当液位达到一定高度,进料完毕,关闭阀门停止进料。
(4)消毒:打开高温蒸汽管线,通入121~180℃,3公斤蒸汽分别对流经料液的管路和料液进行杀菌消毒,维持搅拌桨108转速50rpm,30~50min后关闭蒸汽阀门,冷却罐体至室温。
(5)通气:待料液冷却至室温后,从菌液进口101通入发酵的真菌,提高搅拌转速至100rpm,关闭进菌管路,空气进口105开始通入空气至微界面发生器104中。微界面发生器104将空气破碎成微米尺度的微气泡,并将微气泡释放到发酵液内部,以增大发酵过程中氧气与发酵液之间的相界传质面积,使得两相充分接触,提高发酵液中的溶解氧浓度,提高发酵效率,缩短发酵时间。
(6)出料:发酵完成后,停止通气,打开出液口107进行出料,降低搅拌转速至50rpm,出料完全后料液用于后续分离纯化,发酵罐10内废气在搅拌一段时间后置换为空气,关闭出料阀,进行下一个循环的发酵过程。
上述发酵过程中的操作以及工艺参数完全由PLC(或DCS,PLC和DCS)的控制系统20控制,控制系统20与一级发酵罐10以及二级发酵罐30上各传感器相连接,实现自动化智能化控制,节约人力成本。
在上述实施例中,微界面发生器104为多个,通过将气体的压力能和/或液体的动能转变为气泡表面能并传递给气泡,使气泡破碎成直径为大于等于1μm、小于1mm的微米级别的微气泡,根据能量输入方式或气液比分为气动式微界面发生器104、液动式微界面发生器104和气液联动式微界面发生器104,其中气动式微界面发生器104采用气体驱动,输入气量远大于液体量;液动式微界面发生器104采用液体驱动,输入气量一般小于液体量;气液联动式微界面发生器104采用气液同时驱动,输入气量接近于液体量。微界面发生器104选用气动式微界面发生器104、液动式微界面发生器104以及气液联动式微界面发生器104中的一种或几种。
为了增加分散、传质效果,也可以多增设额外的微界面发生器104,安装位置其实也是不限的,可以外置也可以内置,内置时还可以采用安装在釜内的 侧壁上相对设置,以实现从微界面发生器104的出口出来的微气泡发生对冲。
在上述实施例中,泵体的个数并没有具体要求,可根据需要在相应的位置设置。
在上述实施例中,发酵温度可以是常温也可以是菌种所需温度,发酵压力为常压,发酵的物质除了为柠檬酸以外,还可以为红霉素、青霉素等等。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种柠檬酸发酵系统,其特征在于,包括:发酵装置以及控制系统,所述控制系统与所述发酵装置连接以实现对发酵装置的工作状态进行控制,所述发酵装置由一级发酵罐与二级发酵罐并联形成,所述一级发酵罐以及所述二级发酵罐的顶部均设置有菌液进口以及料液进口以用于菌液与料液的进入,所述一级发酵罐以及二级发酵罐的底部设置有出液口以用于发酵产物排出;
    所述一级发酵罐以及所述二级发酵罐内设置有若干液体喷射器以及微界面发生器,所述一级发酵罐以及所述二级发酵罐的侧壁设置有清洗水进口以及空气进口,所述空气进口通过管道通入所述微界面发生器中,所述空气进口与所述微界面发生器一一对应,所述液体喷射器与所述清洗水进口通过管道连接,所述清洗水进口与所述液体喷射器一一对应。
  2. 根据权利要求1所述的发酵系统,其特征在于,所述一级发酵罐内的所述微界面发生器的个数为两个,所述液体喷射器的个数为三个,位于上部的微界面发生器靠近所述发酵罐的顶部,位于下部的微界面发生器靠近所述一级发酵罐的底部,所述液体喷射器均设置在所述一级发酵罐内上部,其中两个液体喷射器分别设置一级发酵罐的侧壁上,另一个液体喷射器与上部的所述微界面发生器相对设置。
  3. 根据权利要求1所述的发酵系统,其特征在于,所述二级发酵罐内的所述微界面发生器的个数为三个,所述液体喷射器的个数为一个,所述微界面发生器沿竖直方向从上至下依次设置,位于上部的微界面发生器靠近所述发酵罐的顶部,位于下部的微界面发生器靠近所述二级发酵罐的底部,所述液体喷射器均设置在所述二级发酵罐内上部。
  4. 根据权利要求2所述的发酵系统,其特征在于,设置在一级发酵罐侧壁上的两个液体喷射器沿竖直向互相错位设置。
  5. 根据权利要求2或3所述的柠檬酸发酵系统,其特征在于,所述液体喷射器位于上部的所述微界面发生器的正上方。
  6. 根据权利要求1所述的柠檬酸发酵系统,其特征在于,所述柠檬酸发酵系统包括液体菌种预混装置以及菌液罐,所述菌液罐与所述菌液进口连通,所述液体菌种预混装置预混后的菌种储存在所述菌液罐中。
  7. 根据权利要求6所述的柠檬酸发酵系统,其特征在于,所述液体菌种预混装置包括分流预混管以及汇流预混管,不同种类的菌液经过分流预混管汇合到汇流预混管中进行预混,所述汇流预混管与所述菌液罐连通。
  8. 根据权利要求1所述的柠檬酸发酵系统,其特征在于,所述液体喷射器的顶部呈半圆形弧面,所述半圆形弧面上依次排布有若干个喷射口,所述清洗水进口通过管道与所述液体喷射器的底部连接。
  9. 根据权利要求1-8任一项所述的柠檬酸发酵系统,其特征在于,每个所述发酵罐的底部两侧平整,中心位置向上形成凸起,在所述发酵罐底部的两侧平整位置分别设置有所述出液口。
  10. 采用权利要求1-9任一项所述的柠檬酸发酵系统的发酵方法,其特征在于,包括如下步骤:
    将清洗水破碎为微米级的微液滴对发酵装置内部进行清洗;
    将空气微界面分散破碎后,与菌液、料液混合进行有氧发酵,发酵产物排出收集。
PCT/CN2020/122872 2020-10-21 2020-10-22 一种柠檬酸发酵系统及其发酵方法 WO2022082617A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011128559.4A CN112280668A (zh) 2020-10-21 2020-10-21 一种柠檬酸发酵系统及其发酵方法
CN202011128559.4 2020-10-21

Publications (1)

Publication Number Publication Date
WO2022082617A1 true WO2022082617A1 (zh) 2022-04-28

Family

ID=74423188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122872 WO2022082617A1 (zh) 2020-10-21 2020-10-22 一种柠檬酸发酵系统及其发酵方法

Country Status (2)

Country Link
CN (1) CN112280668A (zh)
WO (1) WO2022082617A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113684115A (zh) * 2021-08-31 2021-11-23 南京延长反应技术研究院有限公司 一种微界面传质强化发酵系统及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4052261A (en) * 1975-09-27 1977-10-04 Standard-Messo Duisburg Gesellschaft Fuer Chemietechnik Mit Beschraenkter Haftung & Co. Process and apparatus for the fermentation of carbohydrate-containing nutrient substrate
CN201127917Y (zh) * 2007-11-30 2008-10-08 马庚 万向喷淋装置
CN202131308U (zh) * 2011-07-01 2012-02-01 南阳启伟微生态基因科技开发有限公司 微纳米气泡发生装置及使用该发生装置的发酵装置
CN103695319A (zh) * 2013-12-23 2014-04-02 安徽丰原发酵技术工程研究有限公司 一种生产柠檬酸的菌株及其发酵制备柠檬酸的方法
CN203923188U (zh) * 2014-06-30 2014-11-05 孙百虎 好氧发酵罐
CN104293647A (zh) * 2014-09-19 2015-01-21 北京利晟新能生物科技中心(有限合伙) 用于连续发酵或间隙发酵的发酵装备及发酵工艺
CN206854309U (zh) * 2017-06-29 2018-01-09 光明乳业股份有限公司 一种cip清洗系统及发酵罐
CN108624480A (zh) * 2018-06-27 2018-10-09 津药新瑞制药股份有限公司 一种用于两组好氧发酵罐的物料分配装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4052261A (en) * 1975-09-27 1977-10-04 Standard-Messo Duisburg Gesellschaft Fuer Chemietechnik Mit Beschraenkter Haftung & Co. Process and apparatus for the fermentation of carbohydrate-containing nutrient substrate
CN201127917Y (zh) * 2007-11-30 2008-10-08 马庚 万向喷淋装置
CN202131308U (zh) * 2011-07-01 2012-02-01 南阳启伟微生态基因科技开发有限公司 微纳米气泡发生装置及使用该发生装置的发酵装置
CN103695319A (zh) * 2013-12-23 2014-04-02 安徽丰原发酵技术工程研究有限公司 一种生产柠檬酸的菌株及其发酵制备柠檬酸的方法
CN203923188U (zh) * 2014-06-30 2014-11-05 孙百虎 好氧发酵罐
CN104293647A (zh) * 2014-09-19 2015-01-21 北京利晟新能生物科技中心(有限合伙) 用于连续发酵或间隙发酵的发酵装备及发酵工艺
CN206854309U (zh) * 2017-06-29 2018-01-09 光明乳业股份有限公司 一种cip清洗系统及发酵罐
CN108624480A (zh) * 2018-06-27 2018-10-09 津药新瑞制药股份有限公司 一种用于两组好氧发酵罐的物料分配装置

Also Published As

Publication number Publication date
CN112280668A (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
WO2022082620A1 (zh) 一种微界面发酵系统及其发酵方法
WO2022082614A1 (zh) 一种发酵系统及其发酵方法
WO2022082616A1 (zh) 一种红霉素加工系统及其加工方法
CN104893964B (zh) 一种高含固厌氧发酵罐用射流搅拌装置及厌氧发酵罐
CN103436435B (zh) 一种农作物秸秆联合发酵装置
CN206368170U (zh) 一种多菌种发酵罐
CN102732417B (zh) 乳化式好氧发酵罐
CN208649156U (zh) 一种秸秆有机肥发酵装置
WO2022082617A1 (zh) 一种柠檬酸发酵系统及其发酵方法
WO2022082619A1 (zh) 一种青霉素精制系统及其精制方法
CN113512483A (zh) 一种超高效低压气源微界面强化生物发酵的装置及方法
CN202007224U (zh) 海洋微生物酶发酵对偶气体环流装置
CN204298395U (zh) 一种新型立式厌氧发酵罐
WO2022082622A1 (zh) 一种加氢微界面系统
WO2022082625A1 (zh) 一种湿式氧化强化微界面系统
CN208949284U (zh) 一种顶盖可提升式发酵罐
CN203346172U (zh) 一种多区式生物反应器
WO2022082626A1 (zh) 一种湿式氧化微界面系统
CN1318322C (zh) 厌氧性发酵槽和厌氧性发酵的方法
WO2022082623A1 (zh) 一种喷淋系统
CN214167937U (zh) 一种喷淋系统
CN202595129U (zh) 一种乳化式好氧发酵罐
CN113583822A (zh) 一种常压气源微界面强化生物发酵的装置及方法
CN203212564U (zh) 一种发酵罐
CN207998590U (zh) 一种白酒、果酒酿醋的气升式生物发酵罐

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20958199

Country of ref document: EP

Kind code of ref document: A1