WO2022082625A1 - 一种湿式氧化强化微界面系统 - Google Patents

一种湿式氧化强化微界面系统 Download PDF

Info

Publication number
WO2022082625A1
WO2022082625A1 PCT/CN2020/122881 CN2020122881W WO2022082625A1 WO 2022082625 A1 WO2022082625 A1 WO 2022082625A1 CN 2020122881 W CN2020122881 W CN 2020122881W WO 2022082625 A1 WO2022082625 A1 WO 2022082625A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
liquid
oxidation reactor
inlet
interface
Prior art date
Application number
PCT/CN2020/122881
Other languages
English (en)
French (fr)
Inventor
张志炳
周政
张锋
李磊
孟为民
王宝荣
杨高东
罗华勋
杨国强
田洪舟
曹宇
Original Assignee
南京延长反应技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京延长反应技术研究院有限公司 filed Critical 南京延长反应技术研究院有限公司
Publication of WO2022082625A1 publication Critical patent/WO2022082625A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/08Cleaning containers, e.g. tanks
    • B08B9/093Cleaning containers, e.g. tanks by the force of jets or sprays
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/727Treatment of water, waste water, or sewage by oxidation using pure oxygen or oxygen rich gas
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/14Maintenance of water treatment installations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/26Reducing the size of particles, liquid droplets or bubbles, e.g. by crushing, grinding, spraying, creation of microbubbles or nanobubbles

Definitions

  • the invention relates to the field of wet oxidation, in particular to a wet oxidation strengthening micro-interface system.
  • the wet oxidation technology generally has a relatively high operating temperature and relatively high pressure, which not only requires relatively high equipment, high energy consumption, and high cost, but also reduces the operational safety, and the equipment is prone to aging and damage.
  • the residence time in the reactor is short, and most of the oxygen floats out of the reactor without fully reacting, which reduces the reaction efficiency and increases the processing cost.
  • the existing wet oxidation reactor requires a lot of manpower in the process of maintenance and cleaning, including entering the oxidation reactor through manholes for washing and on-site operation of various pipeline valves. This not only increases labor costs, but also reduces the safety of production.
  • the object of the present invention is to provide a wet oxidation-enhanced micro-interface system.
  • the wet-type oxidation-enhanced micro-interface system is provided with a liquid injector in the oxidation reactor.
  • the liquid injector can efficiently break the water for cleaning the oxidation reactor into microns. Class droplets are smashed into the top of the oxidation reactor by the ejector instead of manual cleaning, so as to achieve the effect of improving mass transfer.
  • the invention provides a wet oxidation strengthening micro-interface system, comprising: a waste water heat exchanger, a waste water heater, and an oxidation reactor, and the waste water heat exchanger is provided with a material inlet, a material outlet, a heat source inlet and a heat source outlet;
  • the oxidized water from the oxidation reactor enters the waste water heat exchanger from the heat source inlet, and the material outlet is connected to the waste water heater;
  • the middle area of the bottom surface of the oxidation reactor protrudes upward to form a plane, the flat parts on both sides of the convex plane of the bottom surface of the oxidation reactor are respectively provided with liquid outlets, and the side wall of the oxidation reactor is provided with a liquid inlet
  • the upper part and the side wall of the oxidation reactor are provided with a liquid ejector, the bottom of the liquid ejector is a plane, and the top is a semicircular arc surface, and the semicircular arc surface is arranged in sequence
  • a number of injection ports are arranged, the injection direction of the injection port located in the upper part is toward the top of the oxidation reactor, and the injection direction of the liquid injector located in the side wall is toward the opposite side wall of the oxidation reactor; the liquid inlet port
  • the bottom of the liquid injector located on the upper part is connected by a pipe, and the waste water inlet is connected to the bottom of the liquid injector located on the side wall by a pipe.
  • the wet oxidation strengthening micro-interface system of the present invention firstly filters the waste water and sends it to the waste water heat exchanger to exchange heat with the waste water that has been treated by wet oxidation from the oxidation reactor, and then heats the waste water after the heat exchange.
  • the heater is further heated, and the heated waste water is sent to the oxidation reactor for oxidation treatment.
  • the inside of the oxidation reactor is carefully cleaned by the clean water sprayed from the jet port.
  • the wet oxidation reactor requires a lot of manpower in the process of maintenance and cleaning, including entering the oxidation reactor through manholes for cleaning and on-site operation of various pipeline valves. This not only increases labor costs, but also reduces the safety of production.
  • the present invention provides a wet oxidation strengthening micro-interface system with a specific structure, which mainly relies on the spraying process of the spray port arranged on the semicircular arc surface to efficiently clean the cleaning water. Broken to form a mist, thereby improving the spraying effect and correspondingly improving the mass transfer effect.
  • the wastewater entering the oxidation reactor is also efficiently broken into a mist through the injection port on the liquid ejector, thereby increasing the contact area between the wastewater and the incoming compressed air, so as to improve the oxidation reaction efficiency.
  • the reason why the center of the bottom of the oxidation reactor is raised upward is to efficiently discharge the materials in the oxidation reactor from the liquid outlet.
  • the scheme is implemented to make the center position of the bottom of the oxidation reactor bulge upward to be a plane.
  • the protrusions are in a semi-circular arc shape, which can further reduce the possibility of fluid accumulation.
  • the liquid outlet is set into a conical structure, which can accelerate the discharge of materials.
  • a mesh surface with a plurality of micropores evenly distributed is laid in each of the jetting openings.
  • the two liquid injectors of the present invention are respectively connected with the liquid follow-up port and the waste water inlet through pipes, and the cleaning water or waste water is introduced into the liquid injector and sprayed through the injection port on the semicircular arc surface of the liquid injector.
  • the reason why the structure is designed as a semi-circular arc surface is to improve the cleaning effect and ensure that the sprayed cleaning water and waste water can fill the inner space of the oxidation reactor.
  • the mesh surface with a plurality of micropores is arranged, so that the sprayed water is broken and dispersed into a mist to improve the mass transfer effect, which is also equivalent to the corresponding effect of the micro-interface generator.
  • the liquid inlet is connected to the bottom center of the liquid injector located on the upper part through a pipeline, and the waste water inlet is connected to the bottom center of the liquid injector located on the side wall through a pipeline, so that the incoming liquid is just right Entering from the middle of the liquid ejector can spray the liquid more evenly.
  • a stirring paddle is provided at the center bulge of the inner bottom of the oxidation reactor to accelerate the discharge.
  • the stirring paddle is also arranged in the raised position to improve the discharge efficiency of the fermentation product, and the fermentation efficiency can also be improved by stirring.
  • two stirring paddles are arranged side by side at the protruding plane at the bottom of the oxidation reactor.
  • the oxidation reactor there are two liquid inlets, one of which is connected to the upper liquid injector through a pipeline, and the other is arranged near the bottom of the oxidation reactor.
  • the inside of the oxidation reactor it can not only have the effect of cleaning the upper part of the oxidation reactor, but also the effect of cleaning the lower part of the oxidation reactor.
  • a micro-interface generator can also be arranged in the oxidation reactor, and the micro-interface generator is arranged directly below the liquid injector, and the micro-interface generator is used in combination with the liquid injector to improve the two The effect of synergy between them.
  • the number of the micro-interface generators is two, which are arranged in order from top to bottom.
  • Two micro-interface generators are designed to be used in cooperation with each other.
  • the upper micro-interface generator and the lower micro-interface generator are placed perpendicular to each other so that the outlets of the two micro-interface generators are perpendicular. Because in this way, the air treated with the micro-interface can better fuse and interact with the injected wastewater in different directions, and its specific type is preferably a pneumatic micro-interface generator, because the pneumatic type is relatively low-cost and easy to use. Install.
  • an air inlet for entering compressed air is provided on the side wall of the oxidation reactor, the air inlet is connected with an air pressure device, and the air inlet is connected to the upper micro-interface generator through a pipeline , the micro-interface generator connected to the lower part is branched out from the pipeline. After the air or oxygen is compressed by the air compressor, it enters the micro-interface generator from the air inlet for dispersion and crushing.
  • the micro-interface generator in the oxidation reactor breaks the air into micro-scale micro-bubbles and releases the micro-bubbles into the interior to increase the mass transfer area of the phase boundary between the raw materials during the reaction process, so that the two phases are fully contacted and improved.
  • the concentration of the dissolved gas in the liquid phase improves the efficiency and shortens the reaction time.
  • micro-interface generator used in the present invention has been embodied in the inventor's prior patents, such as application numbers CN201610641119.6, CN201610641251.7, CN201710766435.0, CN106187660, CN105903425A, Patents of CN109437390A, CN205833127U and CN207581700U.
  • application numbers CN201610641119.6, CN201610641251.7, CN201710766435.0, CN106187660, CN105903425A, Patents of CN109437390A, CN205833127U and CN207581700U In the previous patent CN201610641119.6, the specific product structure and working principle of the micro-bubble generator (that is, the micro-interface generator) were introduced in detail.
  • the body is provided with an inlet communicating with the cavity, the opposite first and second ends of the cavity are open, wherein the cross-sectional area of the cavity is from the middle of the cavity to the first and second ends of the cavity.
  • the second end is reduced; the secondary crushing piece is arranged at at least one of the first end and the second end of the cavity, a part of the secondary crushing piece is arranged in the cavity, and both ends of the secondary crushing piece and the cavity are open
  • An annular channel is formed between the through holes of the micro-bubble generator.
  • the micro-bubble generator also includes an air inlet pipe and a liquid inlet pipe.” From the specific structure disclosed in the application document, we can know that its specific working principle is: the liquid enters the micron tangentially through the liquid inlet pipe. In the bubble generator, ultra-high-speed rotation and cutting of the gas make the gas bubbles break into micro-bubbles at the micron level, thereby increasing the mass transfer area between the liquid phase and the gas phase, and the micro-bubble generator in this patent belongs to the pneumatic micro-interface generation. device.
  • the previous patent 201610641251.7 records that the primary bubble breaker has a circulating liquid inlet, a circulating gas inlet and a gas-liquid mixture outlet, and the secondary bubble breaker communicates the feed port with the gas-liquid mixture outlet, indicating that the bubble breaker is both It needs to be mixed with gas and liquid.
  • the primary bubble breaker mainly uses circulating liquid as power, so in fact, the primary bubble breaker belongs to the hydraulic micro-interface generator, and the secondary bubble breaker is a gas-liquid breaker. The mixture is simultaneously fed into the elliptical rotating ball for rotation, so that the bubbles are broken during the rotation, so the secondary bubble breaker is actually a gas-liquid linkage type micro-interface generator.
  • both hydraulic micro-interface generators and gas-liquid linkage micro-interface generators belong to a specific form of micro-interface generators.
  • the micro-interface generators used in the present invention are not limited to the above-mentioned forms.
  • the specific structure of the bubble breaker described in the prior patent is only one of the forms that the micro-interface generator of the present invention can take.
  • the previous patent 201710766435.0 recorded that "the principle of the bubble breaker is to achieve high-speed jets to achieve gas collision", and also stated that it can be used in micro-interface enhanced reactors to verify the relationship between the bubble breaker and the micro-interface generator.
  • the top of the bubble breaker is the liquid phase inlet, and the side is the gas phase inlet.
  • the liquid phase entering from the top provides the entrainment power, so as to achieve the effect of crushing into ultra-fine bubbles, which can also be seen in the accompanying drawings.
  • the bubble breaker has a conical structure, and the diameter of the upper part is larger than that of the lower part, so that the liquid phase can provide better entrainment power.
  • micro-interface generator Since the micro-interface generator was just developed in the early stage of the previous patent application, it was named as micro-bubble generator (CN201610641119.6), bubble breaker (201710766435.0), etc., and later changed its name to micro-interface generator with continuous technological improvement.
  • the micro-interface generator in the present invention is equivalent to the previous micro-bubble generator, bubble breaker, etc., but the names are different.
  • the micro-interface generator of the present invention belongs to the prior art, although some micro-interface generators belong to the type of pneumatic micro-interface generators, some micro-interface generators belong to the type of hydraulic micro-interface generators, and some are of the type of hydraulic micro-interface generators. It belongs to the type of gas-liquid linkage micro-interface generator, but the difference between the types is mainly selected according to the specific working conditions.
  • the connection between the micro-interface generator and the reactor and other equipment including the connection structure, connection position, It depends on the structure of the micro-interface generator, which is not limited.
  • the wet oxidation enhanced micro-interface system of the present invention is provided with a liquid ejector in the oxidation reactor.
  • the liquid ejector can efficiently break the water for cleaning the oxidation reactor into micron-sized droplets, and collide and oxidize through the ejector.
  • the upper part of the reactor is replaced by manual cleaning.
  • a liquid ejector is applied to the incoming wastewater for injection, and the wastewater is efficiently broken into micron-sized droplets, so as to achieve the effect of improving the reaction mass transfer;
  • the wet oxidation strengthening micro-interface system of the present invention can realize the cooperation between the liquid ejector and the micro-interface generator, so that the micro-interface generator can break the air into micro-scale micro-bubbles and release the micro-bubbles into the interior , in order to increase the mass transfer area of the phase boundary between the raw materials in the reaction process, so that the two phases are fully contacted, the concentration of dissolved gas in the liquid phase is increased, the efficiency is improved, and the reaction time is shortened.
  • FIG. 1 is a schematic structural diagram of a wet oxidation strengthening micro-interface system provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a mesh surface of a wet oxidation reinforced micro-interface system provided by an embodiment of the present invention.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • FIG. 1 it is a wet oxidation strengthening micro-interface system according to an embodiment of the present invention, which mainly includes a waste water heat exchanger 30, a waste water heater 40, and an oxidation reactor 10; the waste water heat exchanger 30 is provided with a material inlet 301, Material outlet 302, heat source inlet 303 and heat source outlet 304; the oxidized water from the oxidation reactor 10 enters the waste water heat exchanger 30 from the heat source inlet 303, and the material outlet 302 is connected to the waste water heater 40
  • the oxidation reactor 10 is provided with a liquid injector 103 and a micro-interface generator 105, the liquid injector 103 is respectively arranged on the side wall and the upper part of the oxidation reactor 10, and the micro-interface generator 105 is just arranged on the upper liquid injector Just below 103, the side wall of the oxidation reactor 10 is provided with a liquid inlet 101 and a waste water inlet 107, and is also provided with two air inlets 106 for entering compressed
  • the liquid injector 104 on the side wall is connected with the waste water inlet 107 through the pipeline, the bottom of the liquid injector 103 is flat, and the top surface is a semicircular arc surface, and several semicircular arc surfaces are arranged in sequence.
  • the injection port 1031 the injection direction of the injection port 1031 located in the upper part is toward the top of the oxidation reactor 10, the injection direction of the injection port located on the side wall is toward the opposite side wall of the oxidation reactor 10, and the liquid inlet 101 or the waste water inlet 107 passes through
  • the pipe is connected to the bottom of the liquid ejector 103, preferably by connecting with the bottom center of the liquid ejector 103, and by breaking the liquid entering the liquid ejector 103 into micro-droplets with a diameter of micrometers, the ejection protruding from the surface
  • the port 1031 is ejected to collide with the top of the oxidation reactor for efficient cleaning.
  • a mesh surface 1032 with a plurality of micropores evenly distributed in the spray port 1031 is laid. The number of mesh surfaces 1032 is not limited. See Figure 2 for details.
  • the number of micro-interface generators is two, which are arranged in order from top to bottom.
  • the placement positions of the upper micro-interface generator 105 and the lower micro-interface generator 105 are perpendicular to make the outlets of the two micro-interface generators 105 in phase.
  • the air inlet 106 is connected with the air compressor 20 , the air inlet 106 is connected to the upper micro-interface generator 105 through a pipe, and the pipe branches out to connect to the lower micro-interface generator 105 .
  • the bottom of the oxidation reactor 10 is provided with a liquid outlet 102 for discharging the materials accumulated at the bottom of the oxidation reactor 10 .
  • Both sides of the bottom of the oxidation reactor 10 are flat, and the center position is raised upward to form a plane.
  • the liquid outlets 102 are respectively provided at the flat positions on both sides of the bottom of the oxidation reactor 10.
  • the liquid outlets 102 are used to discharge waste liquid, oxidize
  • a stirring paddle 104 is provided on the central raised plane at the bottom of the reactor 10 to accelerate the discharge, and the direction of the blade is upward for stirring at the bottom of the oxidation reactor 10 for flushing and draining, and the rotational speed can be adjusted steplessly.
  • liquid inlets 101 provided on the side wall of the oxidation reactor 10 , one of the liquid inlets 101 is connected with the liquid injector 103 through a pipeline, and the other liquid inlet 101 is provided near the bottom of the oxidation reactor 10. In this way, efficient liquid feed can be achieved for various positions inside the oxidation reactor 10 .
  • This embodiment also includes a PLC (or DCS, PLC and DCS) control system: connected to the sensor of the oxidation reactor 10, for intelligently controlling process operations and parameters, realizing remote control of production, in line with production intelligence.
  • PLC or DCS, PLC and DCS
  • the cleaning water above the oxidation reactor 10 is transported to the inside of the liquid ejector 103 through the liquid inlet 101 and sprayed out through the jetting port 1031 on the arc surface, and is efficiently broken into micron-level through the mesh surface 1032 (1 ⁇ m ⁇ d ⁇ 1 mm) droplets are ejected from the protruding ejection port 1031 on the surface of the liquid ejector 103 , collide with the top of the oxidation reactor 10 and clean the top.
  • the cleaned droplets form a liquid level at the bottom of the tank.
  • the installation direction of the blades of the stirring paddle 104 is downward, the liquid above the blades will be pumped to the two sides below, and vortices will be formed on both sides of the stirring paddle 104 to wash and clean both sides of the lower part of the oxidation reactor 10 .
  • the lower water circuit is opened, and the input water flow cleans the side wall of the oxidation reactor under the action of the stirring paddle 104.
  • the water delivery valve is closed.
  • the liquid outlet 102 of the device discharges water, closes the liquid outlet 102, and adjusts the speed to 50rpm/min.
  • the waste water is sent into the waste water heat exchanger 30 from the material inlet 301 through the conveying pump for heat exchange, and then goes out from the material outlet 302 and then passes through the waste water heater 40 for further heating, and the heated waste water passes through the side wall.
  • the liquid injector 103 enters the oxidation reactor for oxidation treatment, and the compressed air or compressed oxygen compressed by the air compressor 20 is introduced from the air inlet 106 of the side wall of the oxidation reactor, and first processed by the micro-interface generator 105 Then carry out the oxidation reaction to improve the mass transfer efficiency of the phase interface.
  • the top of the oxidation reactor is provided with a vent, and the purified water treated by the oxidation reactor enters the waste water heat exchanger 30 from the heat source inlet 303 to exchange with the waste water to be treated. After being heated, it goes out from the heat source outlet 304 for reuse.
  • the reaction temperature of the oxidation reactor 10 is 200-220° C., and the reaction pressure is 2-3 MPa.
  • the solution of the present invention realizes not only the dispersion and crushing of the liquid phase, but also the dispersion and crushing of the gas phase through the cooperation of the liquid ejector and the micro-interface generator. particles, so as to improve the mass transfer effect of the system.
  • the wet oxidation strengthening micro-interface system of the invention has high processing capacity, ensures high wet oxidation treatment effect under the condition of relatively low energy consumption, the removal rate of harmful substances and COD can reach 99%, and the cleaning is convenient, saving labor operate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

一种湿式氧化强化微界面系统,包括:废水换热器(30)、废水加热器(40)、氧化反应器(10),废水换热器(30)上设置有物料进口(301)、物料出口(302)、热源进口(303)以及热源出口(304);氧化反应器(10)出来的氧化水从热源进口(303)进入废水换热器(30)中,物料出口(302)连接废水加热器(40);在氧化反应器(10)底面凸起平面的两侧平整部设置有出液口(102),氧化反应器(10)的侧壁上设置有进液口(101)、废水进口(107);氧化反应器(10)内设置有液体喷射器(103),液体喷射器(103)的顶部呈半圆形弧面,半圆形弧面上依次排布有若干个喷射口(1031),进液口(101)通过管道与位于上部的液体喷射器(103)的底部连接,废水进口(107)通过管道与位于侧壁的液体喷射器(103)的底部连接。该湿式氧化强化微界面系统节省了清洗、现场操作的成本。

Description

一种湿式氧化强化微界面系统 技术领域
本发明涉及湿式氧化领域,具体而言,涉及一种湿式氧化强化微界面系统。
背景技术
目前,湿式氧化技术普遍操作温度比较高,压力也比较大,这样不仅对设备要求比较高,能耗高,成本高,也降低了操作安全性,设备容易老化损坏,并且在反应氧化过程中氧气在反应器中的停留时间短,大部分的氧气未进行充分的反应便浮出反应器,这样一来降低了反应效率也增加了处理成本。
并且,现有湿式氧化反应器在检修清洗的过程中需要大量的人力,包括通过人孔进入氧化反应器内部洗刷以及各管路阀门的现场操作等。这样既提高了人力成本,同时降低了生产的安全性。
有鉴于此,特提出本发明。
发明内容
本发明的目的在于提供一种湿式氧化强化微界面系统,该湿式氧化强化微界面系统通过在氧化反应器内设置液体喷射器,一方面液体喷射器可将清洗氧化反应器的水高效破碎成微米级液滴,并通过喷射器冲撞氧化反应器上方取代人工进行清洗,从而达到提高传质的效果。
为了实现本发明的上述目的,特采用以下技术方案:
本发明提供了一种湿式氧化强化微界面系统,包括:废水换热器、废水加热器、氧化反应器,所述废水换热器上设置有物料进口、物料出口、热源进口以及热源出口;所述氧化反应器出来的氧化水从所述热源进口进入所述废水换热器中,所述物料出口连接所述废水加热器;
所述氧化反应器的底面中间区域向上凸起呈平面,在所述氧化反应器底面凸起平面的两侧平整部分别设置有出液口,所述氧化反应器的侧壁上设置有进液口以及废水进口;所述氧化反应器内上部以及侧壁均设置有液体喷射器,所述液体喷射器的底部为平面,顶部呈半圆形弧面,所述半圆形弧面上依次排布有若干个喷射口,位于上部的所述喷射口的喷射方向朝向氧化反应器的顶部,位于侧壁的所述液体喷射器的喷射方向朝向氧化反应器的对侧壁;所述进液口通过管道与位于上部的所述液体喷射器的底部连接,所述废水进口通过管道与位于侧壁的所述液体喷射器的底部连接。
本发明的湿式氧化强化微界面系统,具体工作时先将废水初步过滤后送入废水换热器与从氧化反应器出来的经过湿式氧化处理过的废水进行换热,换热后再经过废水加热器进行进一步的加热,加热后的废水送入氧化反应器中进行氧化处理,氧化反应器在工作之前先通过喷射口喷射出来的清水对内部进行仔细的清洗。
现有技术中,湿式氧化反应器在检修清洗的过程中需要大量的人力,包括通过人孔进入氧化反应器内部洗刷以及各管路阀门的现场操作等。这样既提高了人力成本,同时降低了生产的安全性。
本发明为了提高湿式氧化强化微界面系统的清洗效果,提供了一种具有特定结构的湿式氧化强化微界面系统,主要依靠设置在半圆形弧面上的喷射口喷射过程中将清洗水进行高效破碎形成雾状,从而提高喷淋效果,也相应的提高传质效果。另外,为了提高废水的湿式氧化效果,进入氧化反应器中的废水也通过液体喷射器上的喷射口进行高效破碎成雾状,从而提高废水与进入的压缩空气之间的接触面积,以提高氧化反应效率。
另外,氧化反应器的底部中心位置向上凸起的原因是为了将氧化反应器内的物料高效的从出液口排出,如果底部均为平整的会有少部分物料残留,所以最好按照本发明的方案来实施将氧化反应器底部的中心位置向上凸起呈平面。当然更优地方式是凸起呈半圆弧形,这样更能降低积液的可能性。并且出液口 设置成锥形的结构更能加速物料的排出。
优选地,每个所述喷射口内铺设有均布多个微孔的网面。
本发明的两个液体喷射器分别是跟进液口以及废水进口通过管道连接,通过将清洗水、或者废水引入到液体喷射器中,并通过液体喷射器半圆形弧面上的喷射口喷射出去,之所以设计成半圆形弧面的结构是为了提高清洗效果,保证喷射出去的清洗水以及废水能够布满氧化反应器的内部空间,此外优选地,每个所述喷射口内铺设有均布多个微孔的网面,这样喷射出去的水被打碎分散后,成雾状以提高传质效果,也相当于起到了微界面发生器相应的效果。
优选地,所述进液口通过管道与位于上部的所述液体喷射器底部中心位置连接,所述废水进口通过管道与位于侧壁的所述液体喷射器底部中心位置连接,这样进入的液体正好从液体喷射器的中部进入,能够更加均匀的喷射出液体。
优选地,所述氧化反应器内底部中心凸起处设置有搅拌桨以起到加速排料的作用。凸起的位置设置搅拌桨也是为了提高发酵产物排出的效率,而且通过搅拌还能提升发酵效率。
为了提高搅拌效果,优选地搅拌桨的数量为两个,并排设置在所述氧化反应器底部凸起平面处。
优选地,所述进液口为两个,其中一个所述进液口与上部的所述液体喷射器通过管道连接,另一个所述进液口设置在靠近所述氧化反应器底部的位置。这样当对氧化反应器内部进行清洗时,既能起到对氧化反应器内上部进行清洗的效果,也能起到对氧化反应器内下部进行清洗的效果。
优选地,本发明还可以在氧化反应器内设置微界面发生器,所述微界面发生器设置在所述液体喷射器的正下方,将微界面发生器与液体喷射器结合使用,以提高两者之间互相协同配合的效果。
优选地,所述微界面发生器的个数为两个,由上到下依次排列。微界面发生器设计成两个可互相配合使用,上部的微界面发生器与下部的微界面发生器 的放置位置相垂直以使两个微界面发生器的出口相垂直。因为这样微界面处理后的空气能够朝着不同的方向与喷射进来的废水进行更好的融合互相作用反应,且其具体类型最好为气动式微界面发生器,因为气动式类型相对成本低,容易安装。
优选地,在所述氧化反应器的侧壁上设置有用于进入压缩空气的进气口,所述进气口连接有空压装置,所述进气口通过管道与上部的微界面发生器连接,管道上分支出连接下部的微界面发生器。通过空压装置对空气或氧气进行压缩后,从进气口进入到微界面发生器中进行分散破碎。
氧化反应器内的微界面发生器将空气破碎成微米尺度的微气泡,并将微气泡释放到内部,以增大反应过程中原料之间的相界传质面积,使得两相充分接触,提高液相中的溶解气体的浓度,提高效率,缩短反应时间。
本领域所属技术人员可以理解的是,本发明所采用的微界面发生器在本发明人在先专利中已有体现,如申请号CN201610641119.6、CN201610641251.7、CN201710766435.0、CN106187660、CN105903425A、CN109437390A、CN205833127U及CN207581700U的专利。在先专利CN201610641119.6中详细介绍了微米气泡发生器(即微界面发生器)的具体产品结构和工作原理,该申请文件中记载了“微米气泡发生器包括本体和二次破碎件、本体内具有空腔,本体上设有与空腔连通的进口,空腔的相对的第一端和第二端均敞开,其中空腔的横截面积从空腔的中部向空腔的第一端和第二端减小;二次破碎件设在空腔的第一端和第二端中的至少一个处,二次破碎件的一部分设在空腔内,二次破碎件与空腔两端敞开的通孔之间形成一个环形通道。微米气泡发生器还包括进气管和进液管。”从该申请文件中公开的具体结构可以知晓其具体工作原理为:液体通过进液管切向进入微米气泡发生器内,超高速旋转并切割气体,使气体气泡破碎成微米级别的微气泡,从而提高液相与气相之间的传质面积,而且该专利中的微米气泡发生器属于气动式微界面发生器。
另外,在先专利201610641251.7中有记载一次气泡破碎器具有循环液进 口、循环气进口和气液混合物出口,二次气泡破碎器则是将进料口与气液混合物出口连通,说明气泡破碎器都是需要气液混合进入,另外从后面的附图中可知,一次气泡破碎器主要是利用循环液作为动力,所以其实一次气泡破碎器属于液动式微界面发生器,二次气泡破碎器是将气液混合物同时通入到椭圆形的旋转球中进行旋转,从而在旋转的过程中实现气泡破碎,所以二次气泡破碎器实际上是属于气液联动式微界面发生器。其实,无论是液动式微界面发生器,还是气液联动式微界面发生器,都属于微界面发生器的一种具体形式,然而本发明所采用的微界面发生器并不局限于上述几种形式,在先专利中所记载的气泡破碎器的具体结构只是本发明微界面发生器可采用的其中一种形式而已。此外,在先专利201710766435.0中记载到“气泡破碎器的原理就是高速射流以达到气体相互碰撞”,并且也阐述了其可以用于微界面强化反应器,验证本身气泡破碎器与微界面发生器之间的关联性;而且在先专利CN106187660中对于气泡破碎器的具体结构也有相关的记载,具体见说明书中第[0031]-[0041]段,以及附图部分,其对气泡破碎器S-2的具体工作原理有详细的阐述,气泡破碎器顶部是液相进口,侧面是气相进口,通过从顶部进来的液相提供卷吸动力,从而达到粉碎成超细气泡的效果,附图中也可见气泡破碎器呈锥形的结构,上部的直径比下部的直径要大,也是为了液相能够更好的提供卷吸动力。
由于在先专利申请的初期,微界面发生器才刚研发出来,所以早期命名为微米气泡发生器(CN201610641119.6)、气泡破碎器(201710766435.0)等,随着不断技术改进,后期更名为微界面发生器,现在本发明中的微界面发生器相当于之前的微米气泡发生器、气泡破碎器等,只是名称不一样。
综上所述,本发明的微界面发生器属于现有技术,虽然有的微界面发生器属于气动式微界面发生器类型,有的微界面发生器属于液动式微界面发生器类型,还有的属于气液联动式微界面发生器类型,但是类型之间的差别主要是根据具体工况的不同进行选择,另外关于微界面发生器与反应器、以及其他设备的连接,包括连接结构、连接位置,根据微界面发生器的结构而定,此不作限 定。
与现有技术相比,本发明的有益效果在于:
(1)本发明的湿式氧化强化微界面系统通过在氧化反应器内设置液体喷射器,一方面液体喷射器可将清洗氧化反应器的水高效破碎成微米级液滴,并通过喷射器冲撞氧化反应器上方取代人工进行清洗,此外还将液体喷射器应用于进入的废水进行喷射,通过将废水高效破碎成微米级液滴,从而达到提高反应传质的效果;
(2)本发明的湿式氧化强化微界面系统可以实现将液体喷射器与微界面发生器进行协同合作,以使微界面发生器将空气破碎成微米尺度的微气泡,并将微气泡释放到内部,以增大反应过程中原料之间的相界传质面积,使得两相充分接触,提高液相中的溶解气体的浓度,提高效率,缩短反应时间。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例提供的湿式氧化强化微界面系统的结构示意图;
图2为本发明实施例提供的湿式氧化强化微界面系统的网面的结构示意图。
附图说明:
10-氧化反应器;                     101-进液口;
102-出液口;                        103-液体喷射器;
1031-喷射口;                       1032-网面;
104-搅拌桨;                        105-微界面发生器;
106-进气口;                        107-废水进口;
20-空压装置;                       30-废水换热器;
301-物料进口;                      302-物料出口;
303-热源进口;                      304-热源出口;
40-废水加热器。
具体实施方式
下面将结合附图和具体实施方式对本发明的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本发明一部分实施例,而不是全部的实施例,仅用于说明本发明,而不应视为限制本发明的范围。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普 通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
为了更加清晰的对本发明中的技术方案进行阐述,下面以具体实施例的形式进行说明。
实施例
参阅图1所示,为本发明实施例的湿式氧化强化微界面系统,其主要包括废水换热器30、废水加热器40、氧化反应器10;废水换热器30上设置有物料进口301、物料出口302、热源进口303以及热源出口304;所述氧化反应器10出来的氧化水从所述热源进口303进入所述废水换热器30中,所述物料出口302连接所述废水加热器40;氧化反应器10内设置有液体喷射器103以及微界面发生器105,液体喷射器103分别设置在氧化反应器10的侧壁以及上部,微界面发生器105正好设置在位于上部的液体喷射器103的正下方,氧化反应器10的侧壁设置有进液口101以及废水进口107,还设置有用于进入压缩空气的两个进气口106,上部的液体喷射器103与进液口101通过管道连接,侧壁的液体喷射器104与废水进口107通过管道连接,液体喷射器103的底部位平面,顶面呈半圆形弧面,所述半圆形弧面上依次排布有若干个喷射口1031,位于上部的所述喷射口1031的喷射方向朝向氧化反应器10顶部,位于侧壁的喷射口的喷射方向朝向氧化反应器10的对侧壁,进液口101或废水进口107通过管道与液体喷射器103的底部连接,最优是通过与液体喷射器103的底部中心连接,通过将进入液体喷射器103的液体破碎为直径为微米级的微液滴,从表面凸起的喷射口1031喷出,以冲撞氧化反应器顶部进行高效的清洗。为了提高喷射效果,喷射口1031内铺设有均布多个微孔的网面1032,网面1032的个数不限,目的是为了使液体呈雾状喷射出去,提高传质效果,网面1032的结构具体参见图2。
微界面发生器的个数为两个,由上至下依次排列,上部的微界面发生器105 与下部的微界面发生器105的放置位置相垂直以使两个微界面发生器105的出口相垂直,进气口106连接有空压装置20,进气口106通过管道与上部的微界面发生器105连接,管道上分支出连接下部的微界面发生器105。
氧化反应器10的底部设置有出液口102,用于将堆积在氧化反应器10底部的物料出料。氧化反应器10的底部两侧平整,中心位置向上凸起呈平面,在氧化反应器10底部的两侧平整位置分别设置有所述出液口102,出液口102用于排出废液,氧化反应器10内底部中心凸起平面设置有搅拌桨104以起到加速排料的作用,叶片的方向朝上,以用于氧化反应器10底部冲洗与排液时的搅拌,转速可以无级调节。优选地搅拌桨的个数为两个,并排设置在氧化反应器10底部凸起平面处。
为了配合提高传质效果,在氧化反应器10侧壁设置的进液口101为两个,其中一个所述进液口101与所述液体喷射器103通过管道连接,另一个进液口101设置在靠近所述氧化反应器10底部的位置。这样对于氧化反应器10内部的各个位置都能实现有效的进液。
该实施例还包括PLC(或DCS,PLC和DCS)控制系统:与氧化反应器10的传感器相连,用于智能化控制工艺操作与参数,实现了对生产进行远程控制,符合生产的智能化。
本发明实施例的湿式氧化强化微界面系统的工作过程如下:
(1)清洗:在氧化反应器10上方的清洗水通过进液口101输送到液体喷射器103内部并通过弧面上的喷射口1031将水喷淋出来,经网面1032高效破碎成微米级(1μm≤d<1mm)液滴后从液体喷射器103表面凸起的喷射口1031喷出,冲撞氧化反应器10的顶部并对上方进行清洗。清洗后的液滴在罐底形成液位,当液位上升到氧化反应器10中部时,关闭上方输水阀门,打开底部的搅拌桨104到200rpm。由于搅拌桨104叶片的安装方向向下,会将叶片上方的液体抽往下方两侧,并在搅拌桨104两侧形成漩涡,对氧化反应器10下部两侧进行冲刷清洗。同时打开下方的水路,输入的水流在搅拌桨104的作用 下对氧化反应器侧壁进行清洗,冲刷30min后关闭输水阀门,调小转速到100rpm/min,并通过氧化反应器10下端两侧的出液口102将水排出,关闭出液口102,调小转速到50rpm/min。
(2)工作:废水经过输送泵从物料进口301送入到废水换热器30中进行换热,从物料出口302出去再经过废水加热器40进行进一步的加热,加热后的废水通过位于侧壁的液体喷射器103进入到氧化反应器中进行氧化处理,经过空压装置20压缩后的压缩空气或压缩氧气从氧化反应器的侧壁进气口106通入,先经过微界面发生器105处理后再进行氧化反应,以提高相界面的传质效率,氧化反应器的顶部设置有放空口,氧化反应器处理后的净水从热源进口303进入废水换热器30中与待处理的废水换热后,从热源出口304出去进行回用。
上述湿式氧化强化微界面系统工作过程中的操作以及工艺参数完全由PLC(或DCS,PLC和DCS)的控制系统控制,控制系统与氧化反应器10上各传感器相连接,实现自动化智能化控制,节约人力成本。
氧化反应器10的反应温度为200-220℃,反应压力2-3MPa。
在上述实施例中,泵体的个数并没有具体要求,可根据需要在相应的位置设置。
总之,本发明的方案通过液体喷射器与微界面发生器的协同配合,不仅实现了对液相的分散破碎,也实现了对气相的分散破碎,这样通过将各个相态的物质均破碎成微米颗粒,从而更能提高体系的传质效果。
本发明的湿式氧化强化微界面系统处理能力高,保证在能耗比较低的条件下具有较高的湿式氧化处理效果,有害物、COD去除率可达99%,而且清洗方便,省去了人工操作。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者 对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (7)

  1. 一种湿式氧化强化微界面系统,其特征在于,包括:废水换热器、废水加热器、氧化反应器,所述废水换热器上设置有物料进口、物料出口、热源进口以及热源出口;所述氧化反应器出来的氧化水从所述热源进口进入所述废水换热器中,所述物料出口连接所述废水加热器;
    所述氧化反应器的底面中间区域向上凸起呈平面,在所述氧化反应器底面凸起平面的两侧平整部分别设置有出液口,所述氧化反应器的侧壁上设置有进液口以及废水进口;所述氧化反应器内上部以及侧壁均设置有液体喷射器,所述液体喷射器的底部为平面,顶部呈半圆形弧面,所述半圆形弧面上依次排布有若干个喷射口,位于上部的所述喷射口的喷射方向朝向氧化反应器的顶部,位于侧壁的所述液体喷射器的喷射方向朝向氧化反应器的对侧壁;所述进液口通过管道与位于上部的所述液体喷射器的底部连接,所述废水进口通过管道与位于侧壁的所述液体喷射器的底部连接。
  2. 根据权利要求1所述的湿式氧化强化微界面系统,其特征在于,所述氧化反应器内设置有微界面发生器,所述微界面发生器设置在所述液体喷射器的正下方。
  3. 根据权利要求2所述的湿式氧化强化微界面系统,其特征在于,所述微界面发生器的个数为两个,由上到下依次排列,上部的微界面发生器与下部的微界面发生器的放置位置相垂直以使两个微界面发生器的出口相垂直。
  4. 根据权利要求3所述的湿式氧化强化微界面系统,其特征在于,在所述氧化反应器的侧壁上设置有用于进入压缩空气的进气口,所述进气口连接有空压装置,所述进气口通过管道与上部的微界面发生器连接,管道上分支出连接下部的微界面发生器。
  5. 根据权利要求1所述的湿式氧化强化微界面系统,其特征在于,所述氧化反应器内底部向上凸起处设置有搅拌桨以起到加速排料的作用。
  6. 根据权利要求5所述的湿式氧化强化微界面系统,其特征在于,所述 搅拌桨的数量为两个,并排设置在所述氧化反应器底部凸起平面处。
  7. 根据权利要求1-6任一项所述的湿式氧化强化微界面系统,其特征在于,所述进液口为两个,其中一个所述进液口与位于上部的所述液体喷射器通过管道连接,另一个所述进液口设置在靠近所述氧化反应器底部的位置。
PCT/CN2020/122881 2020-10-21 2020-10-22 一种湿式氧化强化微界面系统 WO2022082625A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011130568.7A CN112340916A (zh) 2020-10-21 2020-10-21 一种湿式氧化强化微界面系统
CN202011130568.7 2020-10-21

Publications (1)

Publication Number Publication Date
WO2022082625A1 true WO2022082625A1 (zh) 2022-04-28

Family

ID=74359443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122881 WO2022082625A1 (zh) 2020-10-21 2020-10-22 一种湿式氧化强化微界面系统

Country Status (2)

Country Link
CN (1) CN112340916A (zh)
WO (1) WO2022082625A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118165806A (zh) * 2024-05-15 2024-06-11 上海数郜机电有限公司 一种生物发酵罐

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113666563A (zh) * 2021-09-17 2021-11-19 南京万德斯环保科技股份有限公司 一种垃圾填埋场渗滤液处理方法
CN114477577B (zh) * 2022-01-19 2023-09-01 南京延长反应技术研究院有限公司 一种超声波废水处理的装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110089108A1 (en) * 2008-06-25 2011-04-21 Mazzei Injector Company, Llc Aeration and filtration system and process for treating wastewater
CN104761041A (zh) * 2014-01-08 2015-07-08 万华化学集团股份有限公司 催化湿式氧化处理反应塔及使用该塔处理高浓有机废水的方法及装置
CN205635031U (zh) * 2016-04-20 2016-10-12 宁波青云环保科技有限公司 一种催化湿式氧化处理装置
CN106348421A (zh) * 2016-10-11 2017-01-25 羿太环保科技(上海)有限公司 降解高浓度有机废水的连续湿式氧化工艺及其设备
CN109689581A (zh) * 2016-07-19 2019-04-26 3V绿鹰有限公司 用于废物的湿式氧化的方法和设备
CN111362493A (zh) * 2019-12-23 2020-07-03 南京延长反应技术研究院有限公司 一种双甘磷高盐废水的处理系统及方法
CN111573964A (zh) * 2020-03-24 2020-08-25 南京延长反应技术研究院有限公司 一种内置微界面造纸废水处理系统及处理方法
CN211712859U (zh) * 2019-12-26 2020-10-20 南京延长反应技术研究院有限公司 一种乙烯脱硫废水的智能处理系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110089108A1 (en) * 2008-06-25 2011-04-21 Mazzei Injector Company, Llc Aeration and filtration system and process for treating wastewater
CN104761041A (zh) * 2014-01-08 2015-07-08 万华化学集团股份有限公司 催化湿式氧化处理反应塔及使用该塔处理高浓有机废水的方法及装置
CN205635031U (zh) * 2016-04-20 2016-10-12 宁波青云环保科技有限公司 一种催化湿式氧化处理装置
CN109689581A (zh) * 2016-07-19 2019-04-26 3V绿鹰有限公司 用于废物的湿式氧化的方法和设备
CN106348421A (zh) * 2016-10-11 2017-01-25 羿太环保科技(上海)有限公司 降解高浓度有机废水的连续湿式氧化工艺及其设备
CN111362493A (zh) * 2019-12-23 2020-07-03 南京延长反应技术研究院有限公司 一种双甘磷高盐废水的处理系统及方法
CN211712859U (zh) * 2019-12-26 2020-10-20 南京延长反应技术研究院有限公司 一种乙烯脱硫废水的智能处理系统
CN111573964A (zh) * 2020-03-24 2020-08-25 南京延长反应技术研究院有限公司 一种内置微界面造纸废水处理系统及处理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118165806A (zh) * 2024-05-15 2024-06-11 上海数郜机电有限公司 一种生物发酵罐

Also Published As

Publication number Publication date
CN112340916A (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
WO2022082625A1 (zh) 一种湿式氧化强化微界面系统
WO2022082614A1 (zh) 一种发酵系统及其发酵方法
WO2022082620A1 (zh) 一种微界面发酵系统及其发酵方法
CN102002395B (zh) 液相循环加氢脱硫系统溶气方法及装置
WO2022082622A1 (zh) 一种加氢微界面系统
CN102218275A (zh) 微纳气泡发生器
WO2022082626A1 (zh) 一种湿式氧化微界面系统
CN110563131B (zh) 一种mbr膜曝气器及mbr膜曝气装置及mbr膜污水处理设备
CN204911503U (zh) 一种初级反应釜
WO2022082621A1 (zh) 一种加氢强化微界面系统
KR101708552B1 (ko) 가스 용해 장치
CN101481176A (zh) 一种升流式厌氧污泥床中的布水装置及其布水方法
CN219024334U (zh) 一种离子交换柱的在线清洗装置
CN211078590U (zh) 一种mbr膜曝气器及mbr膜曝气装置及mbr膜污水处理设备
CN106966454A (zh) 一种采用氧气和臭氧混合处理污水的环保型溶气气浮机
CN1242933C (zh) 污泥高温好氧消化装置
CN110124547A (zh) 一种液体混合罐
CN115231729A (zh) 一种全自动控制运行的高效溶气气浮装置
CN213824692U (zh) 一种湿式氧化微界面系统
CN213824693U (zh) 一种湿式氧化强化微界面系统
WO2022082617A1 (zh) 一种柠檬酸发酵系统及其发酵方法
WO2022082623A1 (zh) 一种喷淋系统
KR101522614B1 (ko) 노즐격자형 순간혼화장치
CN207511861U (zh) 污水处理装置
CN112221459A (zh) 一种聚醚中和反应器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20958207

Country of ref document: EP

Kind code of ref document: A1